]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
Add debuginfod support to GDB
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2020 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "stabsread.h"
32 #include "complaints.h"
33 #include "demangle.h"
34 #include "psympriv.h"
35 #include "filenames.h"
36 #include "probe.h"
37 #include "arch-utils.h"
38 #include "gdbtypes.h"
39 #include "value.h"
40 #include "infcall.h"
41 #include "gdbthread.h"
42 #include "inferior.h"
43 #include "regcache.h"
44 #include "bcache.h"
45 #include "gdb_bfd.h"
46 #include "build-id.h"
47 #include "location.h"
48 #include "auxv.h"
49 #include "mdebugread.h"
50 #include "ctfread.h"
51 #include "gdbsupport/gdb_string_view.h"
52 #include "gdbsupport/scoped_fd.h"
53 #include "debuginfod-support.h"
54
55 /* Forward declarations. */
56 extern const struct sym_fns elf_sym_fns_gdb_index;
57 extern const struct sym_fns elf_sym_fns_debug_names;
58 extern const struct sym_fns elf_sym_fns_lazy_psyms;
59
60 /* The struct elfinfo is available only during ELF symbol table and
61 psymtab reading. It is destroyed at the completion of psymtab-reading.
62 It's local to elf_symfile_read. */
63
64 struct elfinfo
65 {
66 asection *stabsect; /* Section pointer for .stab section */
67 asection *mdebugsect; /* Section pointer for .mdebug section */
68 asection *ctfsect; /* Section pointer for .ctf section */
69 };
70
71 /* Type for per-BFD data. */
72
73 typedef std::vector<std::unique_ptr<probe>> elfread_data;
74
75 /* Per-BFD data for probe info. */
76
77 static const struct bfd_key<elfread_data> probe_key;
78
79 /* Minimal symbols located at the GOT entries for .plt - that is the real
80 pointer where the given entry will jump to. It gets updated by the real
81 function address during lazy ld.so resolving in the inferior. These
82 minimal symbols are indexed for <tab>-completion. */
83
84 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
85
86 /* Locate the segments in ABFD. */
87
88 static struct symfile_segment_data *
89 elf_symfile_segments (bfd *abfd)
90 {
91 Elf_Internal_Phdr *phdrs, **segments;
92 long phdrs_size;
93 int num_phdrs, num_segments, num_sections, i;
94 asection *sect;
95 struct symfile_segment_data *data;
96
97 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
98 if (phdrs_size == -1)
99 return NULL;
100
101 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
102 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
103 if (num_phdrs == -1)
104 return NULL;
105
106 num_segments = 0;
107 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
108 for (i = 0; i < num_phdrs; i++)
109 if (phdrs[i].p_type == PT_LOAD)
110 segments[num_segments++] = &phdrs[i];
111
112 if (num_segments == 0)
113 return NULL;
114
115 data = XCNEW (struct symfile_segment_data);
116 data->num_segments = num_segments;
117 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
118 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
119
120 for (i = 0; i < num_segments; i++)
121 {
122 data->segment_bases[i] = segments[i]->p_vaddr;
123 data->segment_sizes[i] = segments[i]->p_memsz;
124 }
125
126 num_sections = bfd_count_sections (abfd);
127 data->segment_info = XCNEWVEC (int, num_sections);
128
129 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
130 {
131 int j;
132
133 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
134 continue;
135
136 Elf_Internal_Shdr *this_hdr = &elf_section_data (sect)->this_hdr;
137
138 for (j = 0; j < num_segments; j++)
139 if (ELF_SECTION_IN_SEGMENT (this_hdr, segments[j]))
140 {
141 data->segment_info[i] = j + 1;
142 break;
143 }
144
145 /* We should have found a segment for every non-empty section.
146 If we haven't, we will not relocate this section by any
147 offsets we apply to the segments. As an exception, do not
148 warn about SHT_NOBITS sections; in normal ELF execution
149 environments, SHT_NOBITS means zero-initialized and belongs
150 in a segment, but in no-OS environments some tools (e.g. ARM
151 RealView) use SHT_NOBITS for uninitialized data. Since it is
152 uninitialized, it doesn't need a program header. Such
153 binaries are not relocatable. */
154 if (bfd_section_size (sect) > 0 && j == num_segments
155 && (bfd_section_flags (sect) & SEC_LOAD) != 0)
156 warning (_("Loadable section \"%s\" outside of ELF segments"),
157 bfd_section_name (sect));
158 }
159
160 return data;
161 }
162
163 /* We are called once per section from elf_symfile_read. We
164 need to examine each section we are passed, check to see
165 if it is something we are interested in processing, and
166 if so, stash away some access information for the section.
167
168 For now we recognize the dwarf debug information sections and
169 line number sections from matching their section names. The
170 ELF definition is no real help here since it has no direct
171 knowledge of DWARF (by design, so any debugging format can be
172 used).
173
174 We also recognize the ".stab" sections used by the Sun compilers
175 released with Solaris 2.
176
177 FIXME: The section names should not be hardwired strings (what
178 should they be? I don't think most object file formats have enough
179 section flags to specify what kind of debug section it is.
180 -kingdon). */
181
182 static void
183 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
184 {
185 struct elfinfo *ei;
186
187 ei = (struct elfinfo *) eip;
188 if (strcmp (sectp->name, ".stab") == 0)
189 {
190 ei->stabsect = sectp;
191 }
192 else if (strcmp (sectp->name, ".mdebug") == 0)
193 {
194 ei->mdebugsect = sectp;
195 }
196 else if (strcmp (sectp->name, ".ctf") == 0)
197 {
198 ei->ctfsect = sectp;
199 }
200 }
201
202 static struct minimal_symbol *
203 record_minimal_symbol (minimal_symbol_reader &reader,
204 gdb::string_view name, bool copy_name,
205 CORE_ADDR address,
206 enum minimal_symbol_type ms_type,
207 asection *bfd_section, struct objfile *objfile)
208 {
209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
210
211 if (ms_type == mst_text || ms_type == mst_file_text
212 || ms_type == mst_text_gnu_ifunc)
213 address = gdbarch_addr_bits_remove (gdbarch, address);
214
215 /* We only setup section information for allocatable sections. Usually
216 we'd only expect to find msymbols for allocatable sections, but if the
217 ELF is malformed then this might not be the case. In that case don't
218 create an msymbol that references an uninitialised section object. */
219 int section_index = 0;
220 if ((bfd_section_flags (bfd_section) & SEC_ALLOC) == SEC_ALLOC)
221 section_index = gdb_bfd_section_index (objfile->obfd, bfd_section);
222
223 struct minimal_symbol *result
224 = reader.record_full (name, copy_name, address, ms_type, section_index);
225 if ((objfile->flags & OBJF_MAINLINE) == 0
226 && (ms_type == mst_data || ms_type == mst_bss))
227 result->maybe_copied = 1;
228
229 return result;
230 }
231
232 /* Read the symbol table of an ELF file.
233
234 Given an objfile, a symbol table, and a flag indicating whether the
235 symbol table contains regular, dynamic, or synthetic symbols, add all
236 the global function and data symbols to the minimal symbol table.
237
238 In stabs-in-ELF, as implemented by Sun, there are some local symbols
239 defined in the ELF symbol table, which can be used to locate
240 the beginnings of sections from each ".o" file that was linked to
241 form the executable objfile. We gather any such info and record it
242 in data structures hung off the objfile's private data. */
243
244 #define ST_REGULAR 0
245 #define ST_DYNAMIC 1
246 #define ST_SYNTHETIC 2
247
248 static void
249 elf_symtab_read (minimal_symbol_reader &reader,
250 struct objfile *objfile, int type,
251 long number_of_symbols, asymbol **symbol_table,
252 bool copy_names)
253 {
254 struct gdbarch *gdbarch = get_objfile_arch (objfile);
255 asymbol *sym;
256 long i;
257 CORE_ADDR symaddr;
258 enum minimal_symbol_type ms_type;
259 /* Name of the last file symbol. This is either a constant string or is
260 saved on the objfile's filename cache. */
261 const char *filesymname = "";
262 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
263 int elf_make_msymbol_special_p
264 = gdbarch_elf_make_msymbol_special_p (gdbarch);
265
266 for (i = 0; i < number_of_symbols; i++)
267 {
268 sym = symbol_table[i];
269 if (sym->name == NULL || *sym->name == '\0')
270 {
271 /* Skip names that don't exist (shouldn't happen), or names
272 that are null strings (may happen). */
273 continue;
274 }
275
276 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
277 symbols which do not correspond to objects in the symbol table,
278 but have some other target-specific meaning. */
279 if (bfd_is_target_special_symbol (objfile->obfd, sym))
280 {
281 if (gdbarch_record_special_symbol_p (gdbarch))
282 gdbarch_record_special_symbol (gdbarch, objfile, sym);
283 continue;
284 }
285
286 if (type == ST_DYNAMIC
287 && sym->section == bfd_und_section_ptr
288 && (sym->flags & BSF_FUNCTION))
289 {
290 struct minimal_symbol *msym;
291 bfd *abfd = objfile->obfd;
292 asection *sect;
293
294 /* Symbol is a reference to a function defined in
295 a shared library.
296 If its value is non zero then it is usually the address
297 of the corresponding entry in the procedure linkage table,
298 plus the desired section offset.
299 If its value is zero then the dynamic linker has to resolve
300 the symbol. We are unable to find any meaningful address
301 for this symbol in the executable file, so we skip it. */
302 symaddr = sym->value;
303 if (symaddr == 0)
304 continue;
305
306 /* sym->section is the undefined section. However, we want to
307 record the section where the PLT stub resides with the
308 minimal symbol. Search the section table for the one that
309 covers the stub's address. */
310 for (sect = abfd->sections; sect != NULL; sect = sect->next)
311 {
312 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
313 continue;
314
315 if (symaddr >= bfd_section_vma (sect)
316 && symaddr < bfd_section_vma (sect)
317 + bfd_section_size (sect))
318 break;
319 }
320 if (!sect)
321 continue;
322
323 /* On ia64-hpux, we have discovered that the system linker
324 adds undefined symbols with nonzero addresses that cannot
325 be right (their address points inside the code of another
326 function in the .text section). This creates problems
327 when trying to determine which symbol corresponds to
328 a given address.
329
330 We try to detect those buggy symbols by checking which
331 section we think they correspond to. Normally, PLT symbols
332 are stored inside their own section, and the typical name
333 for that section is ".plt". So, if there is a ".plt"
334 section, and yet the section name of our symbol does not
335 start with ".plt", we ignore that symbol. */
336 if (!startswith (sect->name, ".plt")
337 && bfd_get_section_by_name (abfd, ".plt") != NULL)
338 continue;
339
340 msym = record_minimal_symbol
341 (reader, sym->name, copy_names,
342 symaddr, mst_solib_trampoline, sect, objfile);
343 if (msym != NULL)
344 {
345 msym->filename = filesymname;
346 if (elf_make_msymbol_special_p)
347 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
348 }
349 continue;
350 }
351
352 /* If it is a nonstripped executable, do not enter dynamic
353 symbols, as the dynamic symbol table is usually a subset
354 of the main symbol table. */
355 if (type == ST_DYNAMIC && !stripped)
356 continue;
357 if (sym->flags & BSF_FILE)
358 {
359 filesymname
360 = ((const char *) objfile->per_bfd->filename_cache.insert
361 (sym->name, strlen (sym->name) + 1));
362 }
363 else if (sym->flags & BSF_SECTION_SYM)
364 continue;
365 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
366 | BSF_GNU_UNIQUE))
367 {
368 struct minimal_symbol *msym;
369
370 /* Select global/local/weak symbols. Note that bfd puts abs
371 symbols in their own section, so all symbols we are
372 interested in will have a section. */
373 /* Bfd symbols are section relative. */
374 symaddr = sym->value + sym->section->vma;
375 /* For non-absolute symbols, use the type of the section
376 they are relative to, to intuit text/data. Bfd provides
377 no way of figuring this out for absolute symbols. */
378 if (sym->section == bfd_abs_section_ptr)
379 {
380 /* This is a hack to get the minimal symbol type
381 right for Irix 5, which has absolute addresses
382 with special section indices for dynamic symbols.
383
384 NOTE: uweigand-20071112: Synthetic symbols do not
385 have an ELF-private part, so do not touch those. */
386 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
387 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
388
389 switch (shndx)
390 {
391 case SHN_MIPS_TEXT:
392 ms_type = mst_text;
393 break;
394 case SHN_MIPS_DATA:
395 ms_type = mst_data;
396 break;
397 case SHN_MIPS_ACOMMON:
398 ms_type = mst_bss;
399 break;
400 default:
401 ms_type = mst_abs;
402 }
403
404 /* If it is an Irix dynamic symbol, skip section name
405 symbols, relocate all others by section offset. */
406 if (ms_type != mst_abs)
407 {
408 if (sym->name[0] == '.')
409 continue;
410 }
411 }
412 else if (sym->section->flags & SEC_CODE)
413 {
414 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
415 {
416 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
417 ms_type = mst_text_gnu_ifunc;
418 else
419 ms_type = mst_text;
420 }
421 /* The BSF_SYNTHETIC check is there to omit ppc64 function
422 descriptors mistaken for static functions starting with 'L'.
423 */
424 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
425 && (sym->flags & BSF_SYNTHETIC) == 0)
426 || ((sym->flags & BSF_LOCAL)
427 && sym->name[0] == '$'
428 && sym->name[1] == 'L'))
429 /* Looks like a compiler-generated label. Skip
430 it. The assembler should be skipping these (to
431 keep executables small), but apparently with
432 gcc on the (deleted) delta m88k SVR4, it loses.
433 So to have us check too should be harmless (but
434 I encourage people to fix this in the assembler
435 instead of adding checks here). */
436 continue;
437 else
438 {
439 ms_type = mst_file_text;
440 }
441 }
442 else if (sym->section->flags & SEC_ALLOC)
443 {
444 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
445 {
446 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
447 {
448 ms_type = mst_data_gnu_ifunc;
449 }
450 else if (sym->section->flags & SEC_LOAD)
451 {
452 ms_type = mst_data;
453 }
454 else
455 {
456 ms_type = mst_bss;
457 }
458 }
459 else if (sym->flags & BSF_LOCAL)
460 {
461 if (sym->section->flags & SEC_LOAD)
462 {
463 ms_type = mst_file_data;
464 }
465 else
466 {
467 ms_type = mst_file_bss;
468 }
469 }
470 else
471 {
472 ms_type = mst_unknown;
473 }
474 }
475 else
476 {
477 /* FIXME: Solaris2 shared libraries include lots of
478 odd "absolute" and "undefined" symbols, that play
479 hob with actions like finding what function the PC
480 is in. Ignore them if they aren't text, data, or bss. */
481 /* ms_type = mst_unknown; */
482 continue; /* Skip this symbol. */
483 }
484 msym = record_minimal_symbol
485 (reader, sym->name, copy_names, symaddr,
486 ms_type, sym->section, objfile);
487
488 if (msym)
489 {
490 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
491 ELF-private part. */
492 if (type != ST_SYNTHETIC)
493 {
494 /* Pass symbol size field in via BFD. FIXME!!! */
495 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
496 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
497 }
498
499 msym->filename = filesymname;
500 if (elf_make_msymbol_special_p)
501 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
502 }
503
504 /* If we see a default versioned symbol, install it under
505 its version-less name. */
506 if (msym != NULL)
507 {
508 const char *atsign = strchr (sym->name, '@');
509
510 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
511 {
512 int len = atsign - sym->name;
513
514 record_minimal_symbol (reader,
515 gdb::string_view (sym->name, len),
516 true, symaddr, ms_type, sym->section,
517 objfile);
518 }
519 }
520
521 /* For @plt symbols, also record a trampoline to the
522 destination symbol. The @plt symbol will be used in
523 disassembly, and the trampoline will be used when we are
524 trying to find the target. */
525 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
526 {
527 int len = strlen (sym->name);
528
529 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
530 {
531 struct minimal_symbol *mtramp;
532
533 mtramp = record_minimal_symbol
534 (reader, gdb::string_view (sym->name, len - 4), true,
535 symaddr, mst_solib_trampoline, sym->section, objfile);
536 if (mtramp)
537 {
538 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
539 mtramp->created_by_gdb = 1;
540 mtramp->filename = filesymname;
541 if (elf_make_msymbol_special_p)
542 gdbarch_elf_make_msymbol_special (gdbarch,
543 sym, mtramp);
544 }
545 }
546 }
547 }
548 }
549 }
550
551 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
552 for later look ups of which function to call when user requests
553 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
554 library defining `function' we cannot yet know while reading OBJFILE which
555 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
556 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
557
558 static void
559 elf_rel_plt_read (minimal_symbol_reader &reader,
560 struct objfile *objfile, asymbol **dyn_symbol_table)
561 {
562 bfd *obfd = objfile->obfd;
563 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
564 asection *relplt, *got_plt;
565 bfd_size_type reloc_count, reloc;
566 struct gdbarch *gdbarch = get_objfile_arch (objfile);
567 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
568 size_t ptr_size = TYPE_LENGTH (ptr_type);
569
570 if (objfile->separate_debug_objfile_backlink)
571 return;
572
573 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
574 if (got_plt == NULL)
575 {
576 /* For platforms where there is no separate .got.plt. */
577 got_plt = bfd_get_section_by_name (obfd, ".got");
578 if (got_plt == NULL)
579 return;
580 }
581
582 /* Depending on system, we may find jump slots in a relocation
583 section for either .got.plt or .plt. */
584 asection *plt = bfd_get_section_by_name (obfd, ".plt");
585 int plt_elf_idx = (plt != NULL) ? elf_section_data (plt)->this_idx : -1;
586
587 int got_plt_elf_idx = elf_section_data (got_plt)->this_idx;
588
589 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
590 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
591 {
592 const auto &this_hdr = elf_section_data (relplt)->this_hdr;
593
594 if (this_hdr.sh_type == SHT_REL || this_hdr.sh_type == SHT_RELA)
595 {
596 if (this_hdr.sh_info == plt_elf_idx
597 || this_hdr.sh_info == got_plt_elf_idx)
598 break;
599 }
600 }
601 if (relplt == NULL)
602 return;
603
604 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
605 return;
606
607 std::string string_buffer;
608
609 /* Does ADDRESS reside in SECTION of OBFD? */
610 auto within_section = [obfd] (asection *section, CORE_ADDR address)
611 {
612 if (section == NULL)
613 return false;
614
615 return (bfd_section_vma (section) <= address
616 && (address < bfd_section_vma (section)
617 + bfd_section_size (section)));
618 };
619
620 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
621 for (reloc = 0; reloc < reloc_count; reloc++)
622 {
623 const char *name;
624 struct minimal_symbol *msym;
625 CORE_ADDR address;
626 const char *got_suffix = SYMBOL_GOT_PLT_SUFFIX;
627 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
628
629 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
630 address = relplt->relocation[reloc].address;
631
632 asection *msym_section;
633
634 /* Does the pointer reside in either the .got.plt or .plt
635 sections? */
636 if (within_section (got_plt, address))
637 msym_section = got_plt;
638 else if (within_section (plt, address))
639 msym_section = plt;
640 else
641 continue;
642
643 /* We cannot check if NAME is a reference to
644 mst_text_gnu_ifunc/mst_data_gnu_ifunc as in OBJFILE the
645 symbol is undefined and the objfile having NAME defined may
646 not yet have been loaded. */
647
648 string_buffer.assign (name);
649 string_buffer.append (got_suffix, got_suffix + got_suffix_len);
650
651 msym = record_minimal_symbol (reader, string_buffer,
652 true, address, mst_slot_got_plt,
653 msym_section, objfile);
654 if (msym)
655 SET_MSYMBOL_SIZE (msym, ptr_size);
656 }
657 }
658
659 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
660
661 static const struct objfile_key<htab, htab_deleter>
662 elf_objfile_gnu_ifunc_cache_data;
663
664 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
665
666 struct elf_gnu_ifunc_cache
667 {
668 /* This is always a function entry address, not a function descriptor. */
669 CORE_ADDR addr;
670
671 char name[1];
672 };
673
674 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
675
676 static hashval_t
677 elf_gnu_ifunc_cache_hash (const void *a_voidp)
678 {
679 const struct elf_gnu_ifunc_cache *a
680 = (const struct elf_gnu_ifunc_cache *) a_voidp;
681
682 return htab_hash_string (a->name);
683 }
684
685 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
686
687 static int
688 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
689 {
690 const struct elf_gnu_ifunc_cache *a
691 = (const struct elf_gnu_ifunc_cache *) a_voidp;
692 const struct elf_gnu_ifunc_cache *b
693 = (const struct elf_gnu_ifunc_cache *) b_voidp;
694
695 return strcmp (a->name, b->name) == 0;
696 }
697
698 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
699 function entry address ADDR. Return 1 if NAME and ADDR are considered as
700 valid and therefore they were successfully recorded, return 0 otherwise.
701
702 Function does not expect a duplicate entry. Use
703 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
704 exists. */
705
706 static int
707 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
708 {
709 struct bound_minimal_symbol msym;
710 struct objfile *objfile;
711 htab_t htab;
712 struct elf_gnu_ifunc_cache entry_local, *entry_p;
713 void **slot;
714
715 msym = lookup_minimal_symbol_by_pc (addr);
716 if (msym.minsym == NULL)
717 return 0;
718 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
719 return 0;
720 objfile = msym.objfile;
721
722 /* If .plt jumps back to .plt the symbol is still deferred for later
723 resolution and it has no use for GDB. */
724 const char *target_name = msym.minsym->linkage_name ();
725 size_t len = strlen (target_name);
726
727 /* Note we check the symbol's name instead of checking whether the
728 symbol is in the .plt section because some systems have @plt
729 symbols in the .text section. */
730 if (len > 4 && strcmp (target_name + len - 4, "@plt") == 0)
731 return 0;
732
733 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
734 if (htab == NULL)
735 {
736 htab = htab_create_alloc (1, elf_gnu_ifunc_cache_hash,
737 elf_gnu_ifunc_cache_eq,
738 NULL, xcalloc, xfree);
739 elf_objfile_gnu_ifunc_cache_data.set (objfile, htab);
740 }
741
742 entry_local.addr = addr;
743 obstack_grow (&objfile->objfile_obstack, &entry_local,
744 offsetof (struct elf_gnu_ifunc_cache, name));
745 obstack_grow_str0 (&objfile->objfile_obstack, name);
746 entry_p
747 = (struct elf_gnu_ifunc_cache *) obstack_finish (&objfile->objfile_obstack);
748
749 slot = htab_find_slot (htab, entry_p, INSERT);
750 if (*slot != NULL)
751 {
752 struct elf_gnu_ifunc_cache *entry_found_p
753 = (struct elf_gnu_ifunc_cache *) *slot;
754 struct gdbarch *gdbarch = get_objfile_arch (objfile);
755
756 if (entry_found_p->addr != addr)
757 {
758 /* This case indicates buggy inferior program, the resolved address
759 should never change. */
760
761 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
762 "function_address from %s to %s"),
763 name, paddress (gdbarch, entry_found_p->addr),
764 paddress (gdbarch, addr));
765 }
766
767 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
768 }
769 *slot = entry_p;
770
771 return 1;
772 }
773
774 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
775 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
776 is not NULL) and the function returns 1. It returns 0 otherwise.
777
778 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
779 function. */
780
781 static int
782 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
783 {
784 for (objfile *objfile : current_program_space->objfiles ())
785 {
786 htab_t htab;
787 struct elf_gnu_ifunc_cache *entry_p;
788 void **slot;
789
790 htab = elf_objfile_gnu_ifunc_cache_data.get (objfile);
791 if (htab == NULL)
792 continue;
793
794 entry_p = ((struct elf_gnu_ifunc_cache *)
795 alloca (sizeof (*entry_p) + strlen (name)));
796 strcpy (entry_p->name, name);
797
798 slot = htab_find_slot (htab, entry_p, NO_INSERT);
799 if (slot == NULL)
800 continue;
801 entry_p = (struct elf_gnu_ifunc_cache *) *slot;
802 gdb_assert (entry_p != NULL);
803
804 if (addr_p)
805 *addr_p = entry_p->addr;
806 return 1;
807 }
808
809 return 0;
810 }
811
812 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
813 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
814 is not NULL) and the function returns 1. It returns 0 otherwise.
815
816 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
817 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
818 prevent cache entries duplicates. */
819
820 static int
821 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
822 {
823 char *name_got_plt;
824 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
825
826 name_got_plt = (char *) alloca (strlen (name) + got_suffix_len + 1);
827 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
828
829 for (objfile *objfile : current_program_space->objfiles ())
830 {
831 bfd *obfd = objfile->obfd;
832 struct gdbarch *gdbarch = get_objfile_arch (objfile);
833 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
834 size_t ptr_size = TYPE_LENGTH (ptr_type);
835 CORE_ADDR pointer_address, addr;
836 asection *plt;
837 gdb_byte *buf = (gdb_byte *) alloca (ptr_size);
838 struct bound_minimal_symbol msym;
839
840 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
841 if (msym.minsym == NULL)
842 continue;
843 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
844 continue;
845 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
846
847 plt = bfd_get_section_by_name (obfd, ".plt");
848 if (plt == NULL)
849 continue;
850
851 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
852 continue;
853 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
854 continue;
855 addr = extract_typed_address (buf, ptr_type);
856 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
857 current_top_target ());
858 addr = gdbarch_addr_bits_remove (gdbarch, addr);
859
860 if (elf_gnu_ifunc_record_cache (name, addr))
861 {
862 if (addr_p != NULL)
863 *addr_p = addr;
864 return 1;
865 }
866 }
867
868 return 0;
869 }
870
871 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
872 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
873 is not NULL) and the function returns true. It returns false otherwise.
874
875 Both the elf_objfile_gnu_ifunc_cache_data hash table and
876 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
877
878 static bool
879 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
880 {
881 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
882 return true;
883
884 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
885 return true;
886
887 return false;
888 }
889
890 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
891 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
892 is the entry point of the resolved STT_GNU_IFUNC target function to call.
893 */
894
895 static CORE_ADDR
896 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
897 {
898 const char *name_at_pc;
899 CORE_ADDR start_at_pc, address;
900 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
901 struct value *function, *address_val;
902 CORE_ADDR hwcap = 0;
903 struct value *hwcap_val;
904
905 /* Try first any non-intrusive methods without an inferior call. */
906
907 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
908 && start_at_pc == pc)
909 {
910 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
911 return address;
912 }
913 else
914 name_at_pc = NULL;
915
916 function = allocate_value (func_func_type);
917 VALUE_LVAL (function) = lval_memory;
918 set_value_address (function, pc);
919
920 /* STT_GNU_IFUNC resolver functions usually receive the HWCAP vector as
921 parameter. FUNCTION is the function entry address. ADDRESS may be a
922 function descriptor. */
923
924 target_auxv_search (current_top_target (), AT_HWCAP, &hwcap);
925 hwcap_val = value_from_longest (builtin_type (gdbarch)
926 ->builtin_unsigned_long, hwcap);
927 address_val = call_function_by_hand (function, NULL, hwcap_val);
928 address = value_as_address (address_val);
929 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address, current_top_target ());
930 address = gdbarch_addr_bits_remove (gdbarch, address);
931
932 if (name_at_pc)
933 elf_gnu_ifunc_record_cache (name_at_pc, address);
934
935 return address;
936 }
937
938 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
939
940 static void
941 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
942 {
943 struct breakpoint *b_return;
944 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
945 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
946 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
947 int thread_id = inferior_thread ()->global_num;
948
949 gdb_assert (b->type == bp_gnu_ifunc_resolver);
950
951 for (b_return = b->related_breakpoint; b_return != b;
952 b_return = b_return->related_breakpoint)
953 {
954 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
955 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
956 gdb_assert (frame_id_p (b_return->frame_id));
957
958 if (b_return->thread == thread_id
959 && b_return->loc->requested_address == prev_pc
960 && frame_id_eq (b_return->frame_id, prev_frame_id))
961 break;
962 }
963
964 if (b_return == b)
965 {
966 /* No need to call find_pc_line for symbols resolving as this is only
967 a helper breakpointer never shown to the user. */
968
969 symtab_and_line sal;
970 sal.pspace = current_inferior ()->pspace;
971 sal.pc = prev_pc;
972 sal.section = find_pc_overlay (sal.pc);
973 sal.explicit_pc = 1;
974 b_return
975 = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
976 prev_frame_id,
977 bp_gnu_ifunc_resolver_return).release ();
978
979 /* set_momentary_breakpoint invalidates PREV_FRAME. */
980 prev_frame = NULL;
981
982 /* Add new b_return to the ring list b->related_breakpoint. */
983 gdb_assert (b_return->related_breakpoint == b_return);
984 b_return->related_breakpoint = b->related_breakpoint;
985 b->related_breakpoint = b_return;
986 }
987 }
988
989 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
990
991 static void
992 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
993 {
994 thread_info *thread = inferior_thread ();
995 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
996 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
997 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
998 struct regcache *regcache = get_thread_regcache (thread);
999 struct value *func_func;
1000 struct value *value;
1001 CORE_ADDR resolved_address, resolved_pc;
1002
1003 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1004
1005 while (b->related_breakpoint != b)
1006 {
1007 struct breakpoint *b_next = b->related_breakpoint;
1008
1009 switch (b->type)
1010 {
1011 case bp_gnu_ifunc_resolver:
1012 break;
1013 case bp_gnu_ifunc_resolver_return:
1014 delete_breakpoint (b);
1015 break;
1016 default:
1017 internal_error (__FILE__, __LINE__,
1018 _("handle_inferior_event: Invalid "
1019 "gnu-indirect-function breakpoint type %d"),
1020 (int) b->type);
1021 }
1022 b = b_next;
1023 }
1024 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1025 gdb_assert (b->loc->next == NULL);
1026
1027 func_func = allocate_value (func_func_type);
1028 VALUE_LVAL (func_func) = lval_memory;
1029 set_value_address (func_func, b->loc->related_address);
1030
1031 value = allocate_value (value_type);
1032 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1033 value_contents_raw (value), NULL);
1034 resolved_address = value_as_address (value);
1035 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1036 resolved_address,
1037 current_top_target ());
1038 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1039
1040 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1041 elf_gnu_ifunc_record_cache (event_location_to_string (b->location.get ()),
1042 resolved_pc);
1043
1044 b->type = bp_breakpoint;
1045 update_breakpoint_locations (b, current_program_space,
1046 find_function_start_sal (resolved_pc, NULL, true),
1047 {});
1048 }
1049
1050 /* A helper function for elf_symfile_read that reads the minimal
1051 symbols. */
1052
1053 static void
1054 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1055 const struct elfinfo *ei)
1056 {
1057 bfd *synth_abfd, *abfd = objfile->obfd;
1058 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1059 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1060 asymbol *synthsyms;
1061
1062 if (symtab_create_debug)
1063 {
1064 fprintf_unfiltered (gdb_stdlog,
1065 "Reading minimal symbols of objfile %s ...\n",
1066 objfile_name (objfile));
1067 }
1068
1069 /* If we already have minsyms, then we can skip some work here.
1070 However, if there were stabs or mdebug sections, we go ahead and
1071 redo all the work anyway, because the psym readers for those
1072 kinds of debuginfo need extra information found here. This can
1073 go away once all types of symbols are in the per-BFD object. */
1074 if (objfile->per_bfd->minsyms_read
1075 && ei->stabsect == NULL
1076 && ei->mdebugsect == NULL
1077 && ei->ctfsect == NULL)
1078 {
1079 if (symtab_create_debug)
1080 fprintf_unfiltered (gdb_stdlog,
1081 "... minimal symbols previously read\n");
1082 return;
1083 }
1084
1085 minimal_symbol_reader reader (objfile);
1086
1087 /* Process the normal ELF symbol table first. */
1088
1089 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1090 if (storage_needed < 0)
1091 error (_("Can't read symbols from %s: %s"),
1092 bfd_get_filename (objfile->obfd),
1093 bfd_errmsg (bfd_get_error ()));
1094
1095 if (storage_needed > 0)
1096 {
1097 /* Memory gets permanently referenced from ABFD after
1098 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1099
1100 symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1101 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1102
1103 if (symcount < 0)
1104 error (_("Can't read symbols from %s: %s"),
1105 bfd_get_filename (objfile->obfd),
1106 bfd_errmsg (bfd_get_error ()));
1107
1108 elf_symtab_read (reader, objfile, ST_REGULAR, symcount, symbol_table,
1109 false);
1110 }
1111
1112 /* Add the dynamic symbols. */
1113
1114 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1115
1116 if (storage_needed > 0)
1117 {
1118 /* Memory gets permanently referenced from ABFD after
1119 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1120 It happens only in the case when elf_slurp_reloc_table sees
1121 asection->relocation NULL. Determining which section is asection is
1122 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1123 implementation detail, though. */
1124
1125 dyn_symbol_table = (asymbol **) bfd_alloc (abfd, storage_needed);
1126 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1127 dyn_symbol_table);
1128
1129 if (dynsymcount < 0)
1130 error (_("Can't read symbols from %s: %s"),
1131 bfd_get_filename (objfile->obfd),
1132 bfd_errmsg (bfd_get_error ()));
1133
1134 elf_symtab_read (reader, objfile, ST_DYNAMIC, dynsymcount,
1135 dyn_symbol_table, false);
1136
1137 elf_rel_plt_read (reader, objfile, dyn_symbol_table);
1138 }
1139
1140 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1141 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1142
1143 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1144 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1145 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1146 read the code address from .opd while it reads the .symtab section from
1147 a separate debug info file as the .opd section is SHT_NOBITS there.
1148
1149 With SYNTH_ABFD the .opd section will be read from the original
1150 backlinked binary where it is valid. */
1151
1152 if (objfile->separate_debug_objfile_backlink)
1153 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1154 else
1155 synth_abfd = abfd;
1156
1157 /* Add synthetic symbols - for instance, names for any PLT entries. */
1158
1159 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1160 dynsymcount, dyn_symbol_table,
1161 &synthsyms);
1162 if (synthcount > 0)
1163 {
1164 long i;
1165
1166 std::unique_ptr<asymbol *[]>
1167 synth_symbol_table (new asymbol *[synthcount]);
1168 for (i = 0; i < synthcount; i++)
1169 synth_symbol_table[i] = synthsyms + i;
1170 elf_symtab_read (reader, objfile, ST_SYNTHETIC, synthcount,
1171 synth_symbol_table.get (), true);
1172
1173 xfree (synthsyms);
1174 synthsyms = NULL;
1175 }
1176
1177 /* Install any minimal symbols that have been collected as the current
1178 minimal symbols for this objfile. The debug readers below this point
1179 should not generate new minimal symbols; if they do it's their
1180 responsibility to install them. "mdebug" appears to be the only one
1181 which will do this. */
1182
1183 reader.install ();
1184
1185 if (symtab_create_debug)
1186 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1187 }
1188
1189 /* Scan and build partial symbols for a symbol file.
1190 We have been initialized by a call to elf_symfile_init, which
1191 currently does nothing.
1192
1193 This function only does the minimum work necessary for letting the
1194 user "name" things symbolically; it does not read the entire symtab.
1195 Instead, it reads the external and static symbols and puts them in partial
1196 symbol tables. When more extensive information is requested of a
1197 file, the corresponding partial symbol table is mutated into a full
1198 fledged symbol table by going back and reading the symbols
1199 for real.
1200
1201 We look for sections with specific names, to tell us what debug
1202 format to look for: FIXME!!!
1203
1204 elfstab_build_psymtabs() handles STABS symbols;
1205 mdebug_build_psymtabs() handles ECOFF debugging information.
1206
1207 Note that ELF files have a "minimal" symbol table, which looks a lot
1208 like a COFF symbol table, but has only the minimal information necessary
1209 for linking. We process this also, and use the information to
1210 build gdb's minimal symbol table. This gives us some minimal debugging
1211 capability even for files compiled without -g. */
1212
1213 static void
1214 elf_symfile_read (struct objfile *objfile, symfile_add_flags symfile_flags)
1215 {
1216 bfd *abfd = objfile->obfd;
1217 struct elfinfo ei;
1218 bool has_dwarf2 = true;
1219
1220 memset ((char *) &ei, 0, sizeof (ei));
1221 if (!(objfile->flags & OBJF_READNEVER))
1222 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1223
1224 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1225
1226 /* ELF debugging information is inserted into the psymtab in the
1227 order of least informative first - most informative last. Since
1228 the psymtab table is searched `most recent insertion first' this
1229 increases the probability that more detailed debug information
1230 for a section is found.
1231
1232 For instance, an object file might contain both .mdebug (XCOFF)
1233 and .debug_info (DWARF2) sections then .mdebug is inserted first
1234 (searched last) and DWARF2 is inserted last (searched first). If
1235 we don't do this then the XCOFF info is found first - for code in
1236 an included file XCOFF info is useless. */
1237
1238 if (ei.mdebugsect)
1239 {
1240 const struct ecoff_debug_swap *swap;
1241
1242 /* .mdebug section, presumably holding ECOFF debugging
1243 information. */
1244 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1245 if (swap)
1246 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1247 }
1248 if (ei.stabsect)
1249 {
1250 asection *str_sect;
1251
1252 /* Stab sections have an associated string table that looks like
1253 a separate section. */
1254 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1255
1256 /* FIXME should probably warn about a stab section without a stabstr. */
1257 if (str_sect)
1258 elfstab_build_psymtabs (objfile,
1259 ei.stabsect,
1260 str_sect->filepos,
1261 bfd_section_size (str_sect));
1262 }
1263
1264 if (dwarf2_has_info (objfile, NULL, true))
1265 {
1266 dw_index_kind index_kind;
1267
1268 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF
1269 debug information present in OBJFILE. If there is such debug
1270 info present never use an index. */
1271 if (!objfile_has_partial_symbols (objfile)
1272 && dwarf2_initialize_objfile (objfile, &index_kind))
1273 {
1274 switch (index_kind)
1275 {
1276 case dw_index_kind::GDB_INDEX:
1277 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1278 break;
1279 case dw_index_kind::DEBUG_NAMES:
1280 objfile_set_sym_fns (objfile, &elf_sym_fns_debug_names);
1281 break;
1282 }
1283 }
1284 else
1285 {
1286 /* It is ok to do this even if the stabs reader made some
1287 partial symbols, because OBJF_PSYMTABS_READ has not been
1288 set, and so our lazy reader function will still be called
1289 when needed. */
1290 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1291 }
1292 }
1293 /* If the file has its own symbol tables it has no separate debug
1294 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1295 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1296 `.note.gnu.build-id'.
1297
1298 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1299 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1300 an objfile via find_separate_debug_file_in_section there was no separate
1301 debug info available. Therefore do not attempt to search for another one,
1302 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1303 be NULL and we would possibly violate it. */
1304
1305 else if (!objfile_has_partial_symbols (objfile)
1306 && objfile->separate_debug_objfile == NULL
1307 && objfile->separate_debug_objfile_backlink == NULL)
1308 {
1309 std::string debugfile = find_separate_debug_file_by_buildid (objfile);
1310
1311 if (debugfile.empty ())
1312 debugfile = find_separate_debug_file_by_debuglink (objfile);
1313
1314 if (!debugfile.empty ())
1315 {
1316 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (debugfile.c_str ()));
1317
1318 symbol_file_add_separate (debug_bfd.get (), debugfile.c_str (),
1319 symfile_flags, objfile);
1320 }
1321 else
1322 {
1323 has_dwarf2 = false;
1324 const struct bfd_build_id *build_id = build_id_bfd_get (objfile->obfd);
1325
1326 if (build_id != nullptr)
1327 {
1328 gdb::unique_xmalloc_ptr<char> symfile_path;
1329 scoped_fd fd (debuginfod_debuginfo_query (build_id->data,
1330 build_id->size,
1331 objfile->original_name,
1332 &symfile_path));
1333
1334 if (fd.get () >= 0)
1335 {
1336 /* File successfully retrieved from server. */
1337 gdb_bfd_ref_ptr debug_bfd (symfile_bfd_open (symfile_path.get ()));
1338
1339 if (debug_bfd == nullptr)
1340 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
1341 objfile->original_name);
1342 else if (build_id_verify (debug_bfd.get (), build_id->size, build_id->data))
1343 {
1344 symbol_file_add_separate (debug_bfd.get (), symfile_path.get (),
1345 symfile_flags, objfile);
1346 has_dwarf2 = true;
1347 }
1348 }
1349 }
1350 }
1351 }
1352
1353 /* Read the CTF section only if there is no DWARF info. */
1354 if (!has_dwarf2 && ei.ctfsect)
1355 {
1356 elfctf_build_psymtabs (objfile);
1357 }
1358 }
1359
1360 /* Callback to lazily read psymtabs. */
1361
1362 static void
1363 read_psyms (struct objfile *objfile)
1364 {
1365 if (dwarf2_has_info (objfile, NULL))
1366 dwarf2_build_psymtabs (objfile);
1367 }
1368
1369 /* Initialize anything that needs initializing when a completely new symbol
1370 file is specified (not just adding some symbols from another file, e.g. a
1371 shared library). */
1372
1373 static void
1374 elf_new_init (struct objfile *ignore)
1375 {
1376 }
1377
1378 /* Perform any local cleanups required when we are done with a particular
1379 objfile. I.E, we are in the process of discarding all symbol information
1380 for an objfile, freeing up all memory held for it, and unlinking the
1381 objfile struct from the global list of known objfiles. */
1382
1383 static void
1384 elf_symfile_finish (struct objfile *objfile)
1385 {
1386 }
1387
1388 /* ELF specific initialization routine for reading symbols. */
1389
1390 static void
1391 elf_symfile_init (struct objfile *objfile)
1392 {
1393 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1394 find this causes a significant slowdown in gdb then we could
1395 set it in the debug symbol readers only when necessary. */
1396 objfile->flags |= OBJF_REORDERED;
1397 }
1398
1399 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1400
1401 static const elfread_data &
1402 elf_get_probes (struct objfile *objfile)
1403 {
1404 elfread_data *probes_per_bfd = probe_key.get (objfile->obfd);
1405
1406 if (probes_per_bfd == NULL)
1407 {
1408 probes_per_bfd = probe_key.emplace (objfile->obfd);
1409
1410 /* Here we try to gather information about all types of probes from the
1411 objfile. */
1412 for (const static_probe_ops *ops : all_static_probe_ops)
1413 ops->get_probes (probes_per_bfd, objfile);
1414 }
1415
1416 return *probes_per_bfd;
1417 }
1418
1419 \f
1420
1421 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1422
1423 static const struct sym_probe_fns elf_probe_fns =
1424 {
1425 elf_get_probes, /* sym_get_probes */
1426 };
1427
1428 /* Register that we are able to handle ELF object file formats. */
1429
1430 static const struct sym_fns elf_sym_fns =
1431 {
1432 elf_new_init, /* init anything gbl to entire symtab */
1433 elf_symfile_init, /* read initial info, setup for sym_read() */
1434 elf_symfile_read, /* read a symbol file into symtab */
1435 NULL, /* sym_read_psymbols */
1436 elf_symfile_finish, /* finished with file, cleanup */
1437 default_symfile_offsets, /* Translate ext. to int. relocation */
1438 elf_symfile_segments, /* Get segment information from a file. */
1439 NULL,
1440 default_symfile_relocate, /* Relocate a debug section. */
1441 &elf_probe_fns, /* sym_probe_fns */
1442 &psym_functions
1443 };
1444
1445 /* The same as elf_sym_fns, but not registered and lazily reads
1446 psymbols. */
1447
1448 const struct sym_fns elf_sym_fns_lazy_psyms =
1449 {
1450 elf_new_init, /* init anything gbl to entire symtab */
1451 elf_symfile_init, /* read initial info, setup for sym_read() */
1452 elf_symfile_read, /* read a symbol file into symtab */
1453 read_psyms, /* sym_read_psymbols */
1454 elf_symfile_finish, /* finished with file, cleanup */
1455 default_symfile_offsets, /* Translate ext. to int. relocation */
1456 elf_symfile_segments, /* Get segment information from a file. */
1457 NULL,
1458 default_symfile_relocate, /* Relocate a debug section. */
1459 &elf_probe_fns, /* sym_probe_fns */
1460 &psym_functions
1461 };
1462
1463 /* The same as elf_sym_fns, but not registered and uses the
1464 DWARF-specific GNU index rather than psymtab. */
1465 const struct sym_fns elf_sym_fns_gdb_index =
1466 {
1467 elf_new_init, /* init anything gbl to entire symab */
1468 elf_symfile_init, /* read initial info, setup for sym_red() */
1469 elf_symfile_read, /* read a symbol file into symtab */
1470 NULL, /* sym_read_psymbols */
1471 elf_symfile_finish, /* finished with file, cleanup */
1472 default_symfile_offsets, /* Translate ext. to int. relocation */
1473 elf_symfile_segments, /* Get segment information from a file. */
1474 NULL,
1475 default_symfile_relocate, /* Relocate a debug section. */
1476 &elf_probe_fns, /* sym_probe_fns */
1477 &dwarf2_gdb_index_functions
1478 };
1479
1480 /* The same as elf_sym_fns, but not registered and uses the
1481 DWARF-specific .debug_names index rather than psymtab. */
1482 const struct sym_fns elf_sym_fns_debug_names =
1483 {
1484 elf_new_init, /* init anything gbl to entire symab */
1485 elf_symfile_init, /* read initial info, setup for sym_red() */
1486 elf_symfile_read, /* read a symbol file into symtab */
1487 NULL, /* sym_read_psymbols */
1488 elf_symfile_finish, /* finished with file, cleanup */
1489 default_symfile_offsets, /* Translate ext. to int. relocation */
1490 elf_symfile_segments, /* Get segment information from a file. */
1491 NULL,
1492 default_symfile_relocate, /* Relocate a debug section. */
1493 &elf_probe_fns, /* sym_probe_fns */
1494 &dwarf2_debug_names_functions
1495 };
1496
1497 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1498
1499 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1500 {
1501 elf_gnu_ifunc_resolve_addr,
1502 elf_gnu_ifunc_resolve_name,
1503 elf_gnu_ifunc_resolver_stop,
1504 elf_gnu_ifunc_resolver_return_stop
1505 };
1506
1507 void _initialize_elfread ();
1508 void
1509 _initialize_elfread ()
1510 {
1511 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1512
1513 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1514 }