]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2015 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48
49 extern void _initialize_elfread (void);
50
51 /* Forward declarations. */
52 static const struct sym_fns elf_sym_fns_gdb_index;
53 static const struct sym_fns elf_sym_fns_lazy_psyms;
54
55 /* The struct elfinfo is available only during ELF symbol table and
56 psymtab reading. It is destroyed at the completion of psymtab-reading.
57 It's local to elf_symfile_read. */
58
59 struct elfinfo
60 {
61 asection *stabsect; /* Section pointer for .stab section */
62 asection *mdebugsect; /* Section pointer for .mdebug section */
63 };
64
65 /* Per-BFD data for probe info. */
66
67 static const struct bfd_data *probe_key = NULL;
68
69 static void free_elfinfo (void *);
70
71 /* Minimal symbols located at the GOT entries for .plt - that is the real
72 pointer where the given entry will jump to. It gets updated by the real
73 function address during lazy ld.so resolving in the inferior. These
74 minimal symbols are indexed for <tab>-completion. */
75
76 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
77
78 /* Locate the segments in ABFD. */
79
80 static struct symfile_segment_data *
81 elf_symfile_segments (bfd *abfd)
82 {
83 Elf_Internal_Phdr *phdrs, **segments;
84 long phdrs_size;
85 int num_phdrs, num_segments, num_sections, i;
86 asection *sect;
87 struct symfile_segment_data *data;
88
89 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
90 if (phdrs_size == -1)
91 return NULL;
92
93 phdrs = alloca (phdrs_size);
94 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
95 if (num_phdrs == -1)
96 return NULL;
97
98 num_segments = 0;
99 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
100 for (i = 0; i < num_phdrs; i++)
101 if (phdrs[i].p_type == PT_LOAD)
102 segments[num_segments++] = &phdrs[i];
103
104 if (num_segments == 0)
105 return NULL;
106
107 data = XCNEW (struct symfile_segment_data);
108 data->num_segments = num_segments;
109 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
110 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
111
112 for (i = 0; i < num_segments; i++)
113 {
114 data->segment_bases[i] = segments[i]->p_vaddr;
115 data->segment_sizes[i] = segments[i]->p_memsz;
116 }
117
118 num_sections = bfd_count_sections (abfd);
119 data->segment_info = XCNEWVEC (int, num_sections);
120
121 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
122 {
123 int j;
124 CORE_ADDR vma;
125
126 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
127 continue;
128
129 vma = bfd_get_section_vma (abfd, sect);
130
131 for (j = 0; j < num_segments; j++)
132 if (segments[j]->p_memsz > 0
133 && vma >= segments[j]->p_vaddr
134 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
135 {
136 data->segment_info[i] = j + 1;
137 break;
138 }
139
140 /* We should have found a segment for every non-empty section.
141 If we haven't, we will not relocate this section by any
142 offsets we apply to the segments. As an exception, do not
143 warn about SHT_NOBITS sections; in normal ELF execution
144 environments, SHT_NOBITS means zero-initialized and belongs
145 in a segment, but in no-OS environments some tools (e.g. ARM
146 RealView) use SHT_NOBITS for uninitialized data. Since it is
147 uninitialized, it doesn't need a program header. Such
148 binaries are not relocatable. */
149 if (bfd_get_section_size (sect) > 0 && j == num_segments
150 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
151 warning (_("Loadable section \"%s\" outside of ELF segments"),
152 bfd_section_name (abfd, sect));
153 }
154
155 return data;
156 }
157
158 /* We are called once per section from elf_symfile_read. We
159 need to examine each section we are passed, check to see
160 if it is something we are interested in processing, and
161 if so, stash away some access information for the section.
162
163 For now we recognize the dwarf debug information sections and
164 line number sections from matching their section names. The
165 ELF definition is no real help here since it has no direct
166 knowledge of DWARF (by design, so any debugging format can be
167 used).
168
169 We also recognize the ".stab" sections used by the Sun compilers
170 released with Solaris 2.
171
172 FIXME: The section names should not be hardwired strings (what
173 should they be? I don't think most object file formats have enough
174 section flags to specify what kind of debug section it is.
175 -kingdon). */
176
177 static void
178 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
179 {
180 struct elfinfo *ei;
181
182 ei = (struct elfinfo *) eip;
183 if (strcmp (sectp->name, ".stab") == 0)
184 {
185 ei->stabsect = sectp;
186 }
187 else if (strcmp (sectp->name, ".mdebug") == 0)
188 {
189 ei->mdebugsect = sectp;
190 }
191 }
192
193 static struct minimal_symbol *
194 record_minimal_symbol (const char *name, int name_len, int copy_name,
195 CORE_ADDR address,
196 enum minimal_symbol_type ms_type,
197 asection *bfd_section, struct objfile *objfile)
198 {
199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
200
201 if (ms_type == mst_text || ms_type == mst_file_text
202 || ms_type == mst_text_gnu_ifunc)
203 address = gdbarch_addr_bits_remove (gdbarch, address);
204
205 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
206 ms_type,
207 gdb_bfd_section_index (objfile->obfd,
208 bfd_section),
209 objfile);
210 }
211
212 /* Read the symbol table of an ELF file.
213
214 Given an objfile, a symbol table, and a flag indicating whether the
215 symbol table contains regular, dynamic, or synthetic symbols, add all
216 the global function and data symbols to the minimal symbol table.
217
218 In stabs-in-ELF, as implemented by Sun, there are some local symbols
219 defined in the ELF symbol table, which can be used to locate
220 the beginnings of sections from each ".o" file that was linked to
221 form the executable objfile. We gather any such info and record it
222 in data structures hung off the objfile's private data. */
223
224 #define ST_REGULAR 0
225 #define ST_DYNAMIC 1
226 #define ST_SYNTHETIC 2
227
228 static void
229 elf_symtab_read (struct objfile *objfile, int type,
230 long number_of_symbols, asymbol **symbol_table,
231 int copy_names)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 asymbol *sym;
235 long i;
236 CORE_ADDR symaddr;
237 CORE_ADDR offset;
238 enum minimal_symbol_type ms_type;
239 /* If sectinfo is nonNULL, it contains section info that should end up
240 filed in the objfile. */
241 struct stab_section_info *sectinfo = NULL;
242 /* If filesym is nonzero, it points to a file symbol, but we haven't
243 seen any section info for it yet. */
244 asymbol *filesym = 0;
245 /* Name of filesym. This is either a constant string or is saved on
246 the objfile's filename cache. */
247 const char *filesymname = "";
248 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
249 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
250 int elf_make_msymbol_special_p
251 = gdbarch_elf_make_msymbol_special_p (gdbarch);
252
253 for (i = 0; i < number_of_symbols; i++)
254 {
255 sym = symbol_table[i];
256 if (sym->name == NULL || *sym->name == '\0')
257 {
258 /* Skip names that don't exist (shouldn't happen), or names
259 that are null strings (may happen). */
260 continue;
261 }
262
263 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
264 symbols which do not correspond to objects in the symbol table,
265 but have some other target-specific meaning. */
266 if (bfd_is_target_special_symbol (objfile->obfd, sym))
267 {
268 if (gdbarch_record_special_symbol_p (gdbarch))
269 gdbarch_record_special_symbol (gdbarch, objfile, sym);
270 continue;
271 }
272
273 offset = ANOFFSET (objfile->section_offsets,
274 gdb_bfd_section_index (objfile->obfd, sym->section));
275 if (type == ST_DYNAMIC
276 && sym->section == bfd_und_section_ptr
277 && (sym->flags & BSF_FUNCTION))
278 {
279 struct minimal_symbol *msym;
280 bfd *abfd = objfile->obfd;
281 asection *sect;
282
283 /* Symbol is a reference to a function defined in
284 a shared library.
285 If its value is non zero then it is usually the address
286 of the corresponding entry in the procedure linkage table,
287 plus the desired section offset.
288 If its value is zero then the dynamic linker has to resolve
289 the symbol. We are unable to find any meaningful address
290 for this symbol in the executable file, so we skip it. */
291 symaddr = sym->value;
292 if (symaddr == 0)
293 continue;
294
295 /* sym->section is the undefined section. However, we want to
296 record the section where the PLT stub resides with the
297 minimal symbol. Search the section table for the one that
298 covers the stub's address. */
299 for (sect = abfd->sections; sect != NULL; sect = sect->next)
300 {
301 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
302 continue;
303
304 if (symaddr >= bfd_get_section_vma (abfd, sect)
305 && symaddr < bfd_get_section_vma (abfd, sect)
306 + bfd_get_section_size (sect))
307 break;
308 }
309 if (!sect)
310 continue;
311
312 /* On ia64-hpux, we have discovered that the system linker
313 adds undefined symbols with nonzero addresses that cannot
314 be right (their address points inside the code of another
315 function in the .text section). This creates problems
316 when trying to determine which symbol corresponds to
317 a given address.
318
319 We try to detect those buggy symbols by checking which
320 section we think they correspond to. Normally, PLT symbols
321 are stored inside their own section, and the typical name
322 for that section is ".plt". So, if there is a ".plt"
323 section, and yet the section name of our symbol does not
324 start with ".plt", we ignore that symbol. */
325 if (strncmp (sect->name, ".plt", 4) != 0
326 && bfd_get_section_by_name (abfd, ".plt") != NULL)
327 continue;
328
329 msym = record_minimal_symbol
330 (sym->name, strlen (sym->name), copy_names,
331 symaddr, mst_solib_trampoline, sect, objfile);
332 if (msym != NULL)
333 {
334 msym->filename = filesymname;
335 if (elf_make_msymbol_special_p)
336 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
337 }
338 continue;
339 }
340
341 /* If it is a nonstripped executable, do not enter dynamic
342 symbols, as the dynamic symbol table is usually a subset
343 of the main symbol table. */
344 if (type == ST_DYNAMIC && !stripped)
345 continue;
346 if (sym->flags & BSF_FILE)
347 {
348 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
349 Chain any old one onto the objfile; remember new sym. */
350 if (sectinfo != NULL)
351 {
352 sectinfo->next = dbx->stab_section_info;
353 dbx->stab_section_info = sectinfo;
354 sectinfo = NULL;
355 }
356 filesym = sym;
357 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
358 objfile->per_bfd->filename_cache);
359 }
360 else if (sym->flags & BSF_SECTION_SYM)
361 continue;
362 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
363 | BSF_GNU_UNIQUE))
364 {
365 struct minimal_symbol *msym;
366
367 /* Select global/local/weak symbols. Note that bfd puts abs
368 symbols in their own section, so all symbols we are
369 interested in will have a section. */
370 /* Bfd symbols are section relative. */
371 symaddr = sym->value + sym->section->vma;
372 /* For non-absolute symbols, use the type of the section
373 they are relative to, to intuit text/data. Bfd provides
374 no way of figuring this out for absolute symbols. */
375 if (sym->section == bfd_abs_section_ptr)
376 {
377 /* This is a hack to get the minimal symbol type
378 right for Irix 5, which has absolute addresses
379 with special section indices for dynamic symbols.
380
381 NOTE: uweigand-20071112: Synthetic symbols do not
382 have an ELF-private part, so do not touch those. */
383 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
384 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
385
386 switch (shndx)
387 {
388 case SHN_MIPS_TEXT:
389 ms_type = mst_text;
390 break;
391 case SHN_MIPS_DATA:
392 ms_type = mst_data;
393 break;
394 case SHN_MIPS_ACOMMON:
395 ms_type = mst_bss;
396 break;
397 default:
398 ms_type = mst_abs;
399 }
400
401 /* If it is an Irix dynamic symbol, skip section name
402 symbols, relocate all others by section offset. */
403 if (ms_type != mst_abs)
404 {
405 if (sym->name[0] == '.')
406 continue;
407 }
408 }
409 else if (sym->section->flags & SEC_CODE)
410 {
411 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
412 {
413 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
414 ms_type = mst_text_gnu_ifunc;
415 else
416 ms_type = mst_text;
417 }
418 /* The BSF_SYNTHETIC check is there to omit ppc64 function
419 descriptors mistaken for static functions starting with 'L'.
420 */
421 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
422 && (sym->flags & BSF_SYNTHETIC) == 0)
423 || ((sym->flags & BSF_LOCAL)
424 && sym->name[0] == '$'
425 && sym->name[1] == 'L'))
426 /* Looks like a compiler-generated label. Skip
427 it. The assembler should be skipping these (to
428 keep executables small), but apparently with
429 gcc on the (deleted) delta m88k SVR4, it loses.
430 So to have us check too should be harmless (but
431 I encourage people to fix this in the assembler
432 instead of adding checks here). */
433 continue;
434 else
435 {
436 ms_type = mst_file_text;
437 }
438 }
439 else if (sym->section->flags & SEC_ALLOC)
440 {
441 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
442 {
443 if (sym->section->flags & SEC_LOAD)
444 {
445 ms_type = mst_data;
446 }
447 else
448 {
449 ms_type = mst_bss;
450 }
451 }
452 else if (sym->flags & BSF_LOCAL)
453 {
454 /* Named Local variable in a Data section.
455 Check its name for stabs-in-elf. */
456 int special_local_sect;
457
458 if (strcmp ("Bbss.bss", sym->name) == 0)
459 special_local_sect = SECT_OFF_BSS (objfile);
460 else if (strcmp ("Ddata.data", sym->name) == 0)
461 special_local_sect = SECT_OFF_DATA (objfile);
462 else if (strcmp ("Drodata.rodata", sym->name) == 0)
463 special_local_sect = SECT_OFF_RODATA (objfile);
464 else
465 special_local_sect = -1;
466 if (special_local_sect >= 0)
467 {
468 /* Found a special local symbol. Allocate a
469 sectinfo, if needed, and fill it in. */
470 if (sectinfo == NULL)
471 {
472 int max_index;
473 size_t size;
474
475 max_index = SECT_OFF_BSS (objfile);
476 if (objfile->sect_index_data > max_index)
477 max_index = objfile->sect_index_data;
478 if (objfile->sect_index_rodata > max_index)
479 max_index = objfile->sect_index_rodata;
480
481 /* max_index is the largest index we'll
482 use into this array, so we must
483 allocate max_index+1 elements for it.
484 However, 'struct stab_section_info'
485 already includes one element, so we
486 need to allocate max_index aadditional
487 elements. */
488 size = (sizeof (struct stab_section_info)
489 + (sizeof (CORE_ADDR) * max_index));
490 sectinfo = (struct stab_section_info *)
491 xmalloc (size);
492 memset (sectinfo, 0, size);
493 sectinfo->num_sections = max_index;
494 if (filesym == NULL)
495 {
496 complaint (&symfile_complaints,
497 _("elf/stab section information %s "
498 "without a preceding file symbol"),
499 sym->name);
500 }
501 else
502 {
503 sectinfo->filename =
504 (char *) filesym->name;
505 }
506 }
507 if (sectinfo->sections[special_local_sect] != 0)
508 complaint (&symfile_complaints,
509 _("duplicated elf/stab section "
510 "information for %s"),
511 sectinfo->filename);
512 /* BFD symbols are section relative. */
513 symaddr = sym->value + sym->section->vma;
514 /* Relocate non-absolute symbols by the
515 section offset. */
516 if (sym->section != bfd_abs_section_ptr)
517 symaddr += offset;
518 sectinfo->sections[special_local_sect] = symaddr;
519 /* The special local symbols don't go in the
520 minimal symbol table, so ignore this one. */
521 continue;
522 }
523 /* Not a special stabs-in-elf symbol, do regular
524 symbol processing. */
525 if (sym->section->flags & SEC_LOAD)
526 {
527 ms_type = mst_file_data;
528 }
529 else
530 {
531 ms_type = mst_file_bss;
532 }
533 }
534 else
535 {
536 ms_type = mst_unknown;
537 }
538 }
539 else
540 {
541 /* FIXME: Solaris2 shared libraries include lots of
542 odd "absolute" and "undefined" symbols, that play
543 hob with actions like finding what function the PC
544 is in. Ignore them if they aren't text, data, or bss. */
545 /* ms_type = mst_unknown; */
546 continue; /* Skip this symbol. */
547 }
548 msym = record_minimal_symbol
549 (sym->name, strlen (sym->name), copy_names, symaddr,
550 ms_type, sym->section, objfile);
551
552 if (msym)
553 {
554 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
555 ELF-private part. */
556 if (type != ST_SYNTHETIC)
557 {
558 /* Pass symbol size field in via BFD. FIXME!!! */
559 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
560 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
561 }
562
563 msym->filename = filesymname;
564 if (elf_make_msymbol_special_p)
565 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
566 }
567
568 /* If we see a default versioned symbol, install it under
569 its version-less name. */
570 if (msym != NULL)
571 {
572 const char *atsign = strchr (sym->name, '@');
573
574 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
575 {
576 int len = atsign - sym->name;
577
578 record_minimal_symbol (sym->name, len, 1, symaddr,
579 ms_type, sym->section, objfile);
580 }
581 }
582
583 /* For @plt symbols, also record a trampoline to the
584 destination symbol. The @plt symbol will be used in
585 disassembly, and the trampoline will be used when we are
586 trying to find the target. */
587 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
588 {
589 int len = strlen (sym->name);
590
591 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
592 {
593 struct minimal_symbol *mtramp;
594
595 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
596 symaddr,
597 mst_solib_trampoline,
598 sym->section, objfile);
599 if (mtramp)
600 {
601 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
602 mtramp->created_by_gdb = 1;
603 mtramp->filename = filesymname;
604 if (elf_make_msymbol_special_p)
605 gdbarch_elf_make_msymbol_special (gdbarch,
606 sym, mtramp);
607 }
608 }
609 }
610 }
611 }
612 }
613
614 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
615 for later look ups of which function to call when user requests
616 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
617 library defining `function' we cannot yet know while reading OBJFILE which
618 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
619 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
620
621 static void
622 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
623 {
624 bfd *obfd = objfile->obfd;
625 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
626 asection *plt, *relplt, *got_plt;
627 int plt_elf_idx;
628 bfd_size_type reloc_count, reloc;
629 char *string_buffer = NULL;
630 size_t string_buffer_size = 0;
631 struct cleanup *back_to;
632 struct gdbarch *gdbarch = get_objfile_arch (objfile);
633 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
634 size_t ptr_size = TYPE_LENGTH (ptr_type);
635
636 if (objfile->separate_debug_objfile_backlink)
637 return;
638
639 plt = bfd_get_section_by_name (obfd, ".plt");
640 if (plt == NULL)
641 return;
642 plt_elf_idx = elf_section_data (plt)->this_idx;
643
644 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
645 if (got_plt == NULL)
646 {
647 /* For platforms where there is no separate .got.plt. */
648 got_plt = bfd_get_section_by_name (obfd, ".got");
649 if (got_plt == NULL)
650 return;
651 }
652
653 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
654 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
655 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
656 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
657 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
658 break;
659 if (relplt == NULL)
660 return;
661
662 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
663 return;
664
665 back_to = make_cleanup (free_current_contents, &string_buffer);
666
667 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
668 for (reloc = 0; reloc < reloc_count; reloc++)
669 {
670 const char *name;
671 struct minimal_symbol *msym;
672 CORE_ADDR address;
673 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
674 size_t name_len;
675
676 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
677 name_len = strlen (name);
678 address = relplt->relocation[reloc].address;
679
680 /* Does the pointer reside in the .got.plt section? */
681 if (!(bfd_get_section_vma (obfd, got_plt) <= address
682 && address < bfd_get_section_vma (obfd, got_plt)
683 + bfd_get_section_size (got_plt)))
684 continue;
685
686 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
687 OBJFILE the symbol is undefined and the objfile having NAME defined
688 may not yet have been loaded. */
689
690 if (string_buffer_size < name_len + got_suffix_len + 1)
691 {
692 string_buffer_size = 2 * (name_len + got_suffix_len);
693 string_buffer = xrealloc (string_buffer, string_buffer_size);
694 }
695 memcpy (string_buffer, name, name_len);
696 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
697 got_suffix_len + 1);
698
699 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
700 1, address, mst_slot_got_plt, got_plt,
701 objfile);
702 if (msym)
703 SET_MSYMBOL_SIZE (msym, ptr_size);
704 }
705
706 do_cleanups (back_to);
707 }
708
709 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
710
711 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
712
713 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
714
715 struct elf_gnu_ifunc_cache
716 {
717 /* This is always a function entry address, not a function descriptor. */
718 CORE_ADDR addr;
719
720 char name[1];
721 };
722
723 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
724
725 static hashval_t
726 elf_gnu_ifunc_cache_hash (const void *a_voidp)
727 {
728 const struct elf_gnu_ifunc_cache *a = a_voidp;
729
730 return htab_hash_string (a->name);
731 }
732
733 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
734
735 static int
736 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
737 {
738 const struct elf_gnu_ifunc_cache *a = a_voidp;
739 const struct elf_gnu_ifunc_cache *b = b_voidp;
740
741 return strcmp (a->name, b->name) == 0;
742 }
743
744 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
745 function entry address ADDR. Return 1 if NAME and ADDR are considered as
746 valid and therefore they were successfully recorded, return 0 otherwise.
747
748 Function does not expect a duplicate entry. Use
749 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
750 exists. */
751
752 static int
753 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
754 {
755 struct bound_minimal_symbol msym;
756 asection *sect;
757 struct objfile *objfile;
758 htab_t htab;
759 struct elf_gnu_ifunc_cache entry_local, *entry_p;
760 void **slot;
761
762 msym = lookup_minimal_symbol_by_pc (addr);
763 if (msym.minsym == NULL)
764 return 0;
765 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
766 return 0;
767 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
768 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
769 objfile = msym.objfile;
770
771 /* If .plt jumps back to .plt the symbol is still deferred for later
772 resolution and it has no use for GDB. Besides ".text" this symbol can
773 reside also in ".opd" for ppc64 function descriptor. */
774 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
775 return 0;
776
777 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
778 if (htab == NULL)
779 {
780 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
781 elf_gnu_ifunc_cache_eq,
782 NULL, &objfile->objfile_obstack,
783 hashtab_obstack_allocate,
784 dummy_obstack_deallocate);
785 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
786 }
787
788 entry_local.addr = addr;
789 obstack_grow (&objfile->objfile_obstack, &entry_local,
790 offsetof (struct elf_gnu_ifunc_cache, name));
791 obstack_grow_str0 (&objfile->objfile_obstack, name);
792 entry_p = obstack_finish (&objfile->objfile_obstack);
793
794 slot = htab_find_slot (htab, entry_p, INSERT);
795 if (*slot != NULL)
796 {
797 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
799
800 if (entry_found_p->addr != addr)
801 {
802 /* This case indicates buggy inferior program, the resolved address
803 should never change. */
804
805 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
806 "function_address from %s to %s"),
807 name, paddress (gdbarch, entry_found_p->addr),
808 paddress (gdbarch, addr));
809 }
810
811 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
812 }
813 *slot = entry_p;
814
815 return 1;
816 }
817
818 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
819 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
820 is not NULL) and the function returns 1. It returns 0 otherwise.
821
822 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
823 function. */
824
825 static int
826 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
827 {
828 struct objfile *objfile;
829
830 ALL_PSPACE_OBJFILES (current_program_space, objfile)
831 {
832 htab_t htab;
833 struct elf_gnu_ifunc_cache *entry_p;
834 void **slot;
835
836 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
837 if (htab == NULL)
838 continue;
839
840 entry_p = alloca (sizeof (*entry_p) + strlen (name));
841 strcpy (entry_p->name, name);
842
843 slot = htab_find_slot (htab, entry_p, NO_INSERT);
844 if (slot == NULL)
845 continue;
846 entry_p = *slot;
847 gdb_assert (entry_p != NULL);
848
849 if (addr_p)
850 *addr_p = entry_p->addr;
851 return 1;
852 }
853
854 return 0;
855 }
856
857 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
858 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
859 is not NULL) and the function returns 1. It returns 0 otherwise.
860
861 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
862 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
863 prevent cache entries duplicates. */
864
865 static int
866 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
867 {
868 char *name_got_plt;
869 struct objfile *objfile;
870 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
871
872 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
873 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
874
875 ALL_PSPACE_OBJFILES (current_program_space, objfile)
876 {
877 bfd *obfd = objfile->obfd;
878 struct gdbarch *gdbarch = get_objfile_arch (objfile);
879 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
880 size_t ptr_size = TYPE_LENGTH (ptr_type);
881 CORE_ADDR pointer_address, addr;
882 asection *plt;
883 gdb_byte *buf = alloca (ptr_size);
884 struct bound_minimal_symbol msym;
885
886 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
887 if (msym.minsym == NULL)
888 continue;
889 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
890 continue;
891 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
892
893 plt = bfd_get_section_by_name (obfd, ".plt");
894 if (plt == NULL)
895 continue;
896
897 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
898 continue;
899 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
900 continue;
901 addr = extract_typed_address (buf, ptr_type);
902 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
903 &current_target);
904 addr = gdbarch_addr_bits_remove (gdbarch, addr);
905
906 if (addr_p)
907 *addr_p = addr;
908 if (elf_gnu_ifunc_record_cache (name, addr))
909 return 1;
910 }
911
912 return 0;
913 }
914
915 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
916 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
917 is not NULL) and the function returns 1. It returns 0 otherwise.
918
919 Both the elf_objfile_gnu_ifunc_cache_data hash table and
920 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
921
922 static int
923 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
924 {
925 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
926 return 1;
927
928 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
929 return 1;
930
931 return 0;
932 }
933
934 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
935 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
936 is the entry point of the resolved STT_GNU_IFUNC target function to call.
937 */
938
939 static CORE_ADDR
940 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
941 {
942 const char *name_at_pc;
943 CORE_ADDR start_at_pc, address;
944 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
945 struct value *function, *address_val;
946
947 /* Try first any non-intrusive methods without an inferior call. */
948
949 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
950 && start_at_pc == pc)
951 {
952 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
953 return address;
954 }
955 else
956 name_at_pc = NULL;
957
958 function = allocate_value (func_func_type);
959 set_value_address (function, pc);
960
961 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
962 function entry address. ADDRESS may be a function descriptor. */
963
964 address_val = call_function_by_hand (function, 0, NULL);
965 address = value_as_address (address_val);
966 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
967 &current_target);
968 address = gdbarch_addr_bits_remove (gdbarch, address);
969
970 if (name_at_pc)
971 elf_gnu_ifunc_record_cache (name_at_pc, address);
972
973 return address;
974 }
975
976 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
977
978 static void
979 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
980 {
981 struct breakpoint *b_return;
982 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
983 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
984 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
985 int thread_id = pid_to_thread_id (inferior_ptid);
986
987 gdb_assert (b->type == bp_gnu_ifunc_resolver);
988
989 for (b_return = b->related_breakpoint; b_return != b;
990 b_return = b_return->related_breakpoint)
991 {
992 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
993 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
994 gdb_assert (frame_id_p (b_return->frame_id));
995
996 if (b_return->thread == thread_id
997 && b_return->loc->requested_address == prev_pc
998 && frame_id_eq (b_return->frame_id, prev_frame_id))
999 break;
1000 }
1001
1002 if (b_return == b)
1003 {
1004 struct symtab_and_line sal;
1005
1006 /* No need to call find_pc_line for symbols resolving as this is only
1007 a helper breakpointer never shown to the user. */
1008
1009 init_sal (&sal);
1010 sal.pspace = current_inferior ()->pspace;
1011 sal.pc = prev_pc;
1012 sal.section = find_pc_overlay (sal.pc);
1013 sal.explicit_pc = 1;
1014 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1015 prev_frame_id,
1016 bp_gnu_ifunc_resolver_return);
1017
1018 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1019 prev_frame = NULL;
1020
1021 /* Add new b_return to the ring list b->related_breakpoint. */
1022 gdb_assert (b_return->related_breakpoint == b_return);
1023 b_return->related_breakpoint = b->related_breakpoint;
1024 b->related_breakpoint = b_return;
1025 }
1026 }
1027
1028 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1029
1030 static void
1031 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1032 {
1033 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1034 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1035 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1036 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1037 struct value *func_func;
1038 struct value *value;
1039 CORE_ADDR resolved_address, resolved_pc;
1040 struct symtab_and_line sal;
1041 struct symtabs_and_lines sals, sals_end;
1042
1043 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1044
1045 while (b->related_breakpoint != b)
1046 {
1047 struct breakpoint *b_next = b->related_breakpoint;
1048
1049 switch (b->type)
1050 {
1051 case bp_gnu_ifunc_resolver:
1052 break;
1053 case bp_gnu_ifunc_resolver_return:
1054 delete_breakpoint (b);
1055 break;
1056 default:
1057 internal_error (__FILE__, __LINE__,
1058 _("handle_inferior_event: Invalid "
1059 "gnu-indirect-function breakpoint type %d"),
1060 (int) b->type);
1061 }
1062 b = b_next;
1063 }
1064 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1065 gdb_assert (b->loc->next == NULL);
1066
1067 func_func = allocate_value (func_func_type);
1068 set_value_address (func_func, b->loc->related_address);
1069
1070 value = allocate_value (value_type);
1071 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1072 value_contents_raw (value), NULL);
1073 resolved_address = value_as_address (value);
1074 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1075 resolved_address,
1076 &current_target);
1077 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
1078
1079 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1080 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1081
1082 sal = find_pc_line (resolved_pc, 0);
1083 sals.nelts = 1;
1084 sals.sals = &sal;
1085 sals_end.nelts = 0;
1086
1087 b->type = bp_breakpoint;
1088 update_breakpoint_locations (b, sals, sals_end);
1089 }
1090
1091 /* A helper function for elf_symfile_read that reads the minimal
1092 symbols. */
1093
1094 static void
1095 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1096 const struct elfinfo *ei)
1097 {
1098 bfd *synth_abfd, *abfd = objfile->obfd;
1099 struct cleanup *back_to;
1100 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1101 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1102 asymbol *synthsyms;
1103 struct dbx_symfile_info *dbx;
1104
1105 if (symtab_create_debug)
1106 {
1107 fprintf_unfiltered (gdb_stdlog,
1108 "Reading minimal symbols of objfile %s ...\n",
1109 objfile_name (objfile));
1110 }
1111
1112 /* If we already have minsyms, then we can skip some work here.
1113 However, if there were stabs or mdebug sections, we go ahead and
1114 redo all the work anyway, because the psym readers for those
1115 kinds of debuginfo need extra information found here. This can
1116 go away once all types of symbols are in the per-BFD object. */
1117 if (objfile->per_bfd->minsyms_read
1118 && ei->stabsect == NULL
1119 && ei->mdebugsect == NULL)
1120 {
1121 if (symtab_create_debug)
1122 fprintf_unfiltered (gdb_stdlog,
1123 "... minimal symbols previously read\n");
1124 return;
1125 }
1126
1127 init_minimal_symbol_collection ();
1128 back_to = make_cleanup_discard_minimal_symbols ();
1129
1130 /* Allocate struct to keep track of the symfile. */
1131 dbx = XCNEW (struct dbx_symfile_info);
1132 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1133 make_cleanup (free_elfinfo, (void *) objfile);
1134
1135 /* Process the normal ELF symbol table first. This may write some
1136 chain of info into the dbx_symfile_info of the objfile, which can
1137 later be used by elfstab_offset_sections. */
1138
1139 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1140 if (storage_needed < 0)
1141 error (_("Can't read symbols from %s: %s"),
1142 bfd_get_filename (objfile->obfd),
1143 bfd_errmsg (bfd_get_error ()));
1144
1145 if (storage_needed > 0)
1146 {
1147 symbol_table = (asymbol **) xmalloc (storage_needed);
1148 make_cleanup (xfree, symbol_table);
1149 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1150
1151 if (symcount < 0)
1152 error (_("Can't read symbols from %s: %s"),
1153 bfd_get_filename (objfile->obfd),
1154 bfd_errmsg (bfd_get_error ()));
1155
1156 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1157 }
1158
1159 /* Add the dynamic symbols. */
1160
1161 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1162
1163 if (storage_needed > 0)
1164 {
1165 /* Memory gets permanently referenced from ABFD after
1166 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1167 It happens only in the case when elf_slurp_reloc_table sees
1168 asection->relocation NULL. Determining which section is asection is
1169 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1170 implementation detail, though. */
1171
1172 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1173 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1174 dyn_symbol_table);
1175
1176 if (dynsymcount < 0)
1177 error (_("Can't read symbols from %s: %s"),
1178 bfd_get_filename (objfile->obfd),
1179 bfd_errmsg (bfd_get_error ()));
1180
1181 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1182
1183 elf_rel_plt_read (objfile, dyn_symbol_table);
1184 }
1185
1186 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1187 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1188
1189 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1190 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1191 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1192 read the code address from .opd while it reads the .symtab section from
1193 a separate debug info file as the .opd section is SHT_NOBITS there.
1194
1195 With SYNTH_ABFD the .opd section will be read from the original
1196 backlinked binary where it is valid. */
1197
1198 if (objfile->separate_debug_objfile_backlink)
1199 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1200 else
1201 synth_abfd = abfd;
1202
1203 /* Add synthetic symbols - for instance, names for any PLT entries. */
1204
1205 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1206 dynsymcount, dyn_symbol_table,
1207 &synthsyms);
1208 if (synthcount > 0)
1209 {
1210 asymbol **synth_symbol_table;
1211 long i;
1212
1213 make_cleanup (xfree, synthsyms);
1214 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1215 for (i = 0; i < synthcount; i++)
1216 synth_symbol_table[i] = synthsyms + i;
1217 make_cleanup (xfree, synth_symbol_table);
1218 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1219 synth_symbol_table, 1);
1220 }
1221
1222 /* Install any minimal symbols that have been collected as the current
1223 minimal symbols for this objfile. The debug readers below this point
1224 should not generate new minimal symbols; if they do it's their
1225 responsibility to install them. "mdebug" appears to be the only one
1226 which will do this. */
1227
1228 install_minimal_symbols (objfile);
1229 do_cleanups (back_to);
1230
1231 if (symtab_create_debug)
1232 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1233 }
1234
1235 /* Scan and build partial symbols for a symbol file.
1236 We have been initialized by a call to elf_symfile_init, which
1237 currently does nothing.
1238
1239 This function only does the minimum work necessary for letting the
1240 user "name" things symbolically; it does not read the entire symtab.
1241 Instead, it reads the external and static symbols and puts them in partial
1242 symbol tables. When more extensive information is requested of a
1243 file, the corresponding partial symbol table is mutated into a full
1244 fledged symbol table by going back and reading the symbols
1245 for real.
1246
1247 We look for sections with specific names, to tell us what debug
1248 format to look for: FIXME!!!
1249
1250 elfstab_build_psymtabs() handles STABS symbols;
1251 mdebug_build_psymtabs() handles ECOFF debugging information.
1252
1253 Note that ELF files have a "minimal" symbol table, which looks a lot
1254 like a COFF symbol table, but has only the minimal information necessary
1255 for linking. We process this also, and use the information to
1256 build gdb's minimal symbol table. This gives us some minimal debugging
1257 capability even for files compiled without -g. */
1258
1259 static void
1260 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1261 {
1262 bfd *abfd = objfile->obfd;
1263 struct elfinfo ei;
1264
1265 memset ((char *) &ei, 0, sizeof (ei));
1266 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1267
1268 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1269
1270 /* ELF debugging information is inserted into the psymtab in the
1271 order of least informative first - most informative last. Since
1272 the psymtab table is searched `most recent insertion first' this
1273 increases the probability that more detailed debug information
1274 for a section is found.
1275
1276 For instance, an object file might contain both .mdebug (XCOFF)
1277 and .debug_info (DWARF2) sections then .mdebug is inserted first
1278 (searched last) and DWARF2 is inserted last (searched first). If
1279 we don't do this then the XCOFF info is found first - for code in
1280 an included file XCOFF info is useless. */
1281
1282 if (ei.mdebugsect)
1283 {
1284 const struct ecoff_debug_swap *swap;
1285
1286 /* .mdebug section, presumably holding ECOFF debugging
1287 information. */
1288 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1289 if (swap)
1290 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1291 }
1292 if (ei.stabsect)
1293 {
1294 asection *str_sect;
1295
1296 /* Stab sections have an associated string table that looks like
1297 a separate section. */
1298 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1299
1300 /* FIXME should probably warn about a stab section without a stabstr. */
1301 if (str_sect)
1302 elfstab_build_psymtabs (objfile,
1303 ei.stabsect,
1304 str_sect->filepos,
1305 bfd_section_size (abfd, str_sect));
1306 }
1307
1308 if (dwarf2_has_info (objfile, NULL))
1309 {
1310 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1311 information present in OBJFILE. If there is such debug info present
1312 never use .gdb_index. */
1313
1314 if (!objfile_has_partial_symbols (objfile)
1315 && dwarf2_initialize_objfile (objfile))
1316 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1317 else
1318 {
1319 /* It is ok to do this even if the stabs reader made some
1320 partial symbols, because OBJF_PSYMTABS_READ has not been
1321 set, and so our lazy reader function will still be called
1322 when needed. */
1323 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1324 }
1325 }
1326 /* If the file has its own symbol tables it has no separate debug
1327 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1328 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1329 `.note.gnu.build-id'.
1330
1331 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1332 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1333 an objfile via find_separate_debug_file_in_section there was no separate
1334 debug info available. Therefore do not attempt to search for another one,
1335 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1336 be NULL and we would possibly violate it. */
1337
1338 else if (!objfile_has_partial_symbols (objfile)
1339 && objfile->separate_debug_objfile == NULL
1340 && objfile->separate_debug_objfile_backlink == NULL)
1341 {
1342 char *debugfile;
1343
1344 debugfile = find_separate_debug_file_by_buildid (objfile);
1345
1346 if (debugfile == NULL)
1347 debugfile = find_separate_debug_file_by_debuglink (objfile);
1348
1349 if (debugfile)
1350 {
1351 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1352 bfd *abfd = symfile_bfd_open (debugfile);
1353
1354 make_cleanup_bfd_unref (abfd);
1355 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1356 do_cleanups (cleanup);
1357 }
1358 }
1359 }
1360
1361 /* Callback to lazily read psymtabs. */
1362
1363 static void
1364 read_psyms (struct objfile *objfile)
1365 {
1366 if (dwarf2_has_info (objfile, NULL))
1367 dwarf2_build_psymtabs (objfile);
1368 }
1369
1370 /* This cleans up the objfile's dbx symfile info, and the chain of
1371 stab_section_info's, that might be dangling from it. */
1372
1373 static void
1374 free_elfinfo (void *objp)
1375 {
1376 struct objfile *objfile = (struct objfile *) objp;
1377 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1378 struct stab_section_info *ssi, *nssi;
1379
1380 ssi = dbxinfo->stab_section_info;
1381 while (ssi)
1382 {
1383 nssi = ssi->next;
1384 xfree (ssi);
1385 ssi = nssi;
1386 }
1387
1388 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1389 }
1390
1391
1392 /* Initialize anything that needs initializing when a completely new symbol
1393 file is specified (not just adding some symbols from another file, e.g. a
1394 shared library).
1395
1396 We reinitialize buildsym, since we may be reading stabs from an ELF
1397 file. */
1398
1399 static void
1400 elf_new_init (struct objfile *ignore)
1401 {
1402 stabsread_new_init ();
1403 buildsym_new_init ();
1404 }
1405
1406 /* Perform any local cleanups required when we are done with a particular
1407 objfile. I.E, we are in the process of discarding all symbol information
1408 for an objfile, freeing up all memory held for it, and unlinking the
1409 objfile struct from the global list of known objfiles. */
1410
1411 static void
1412 elf_symfile_finish (struct objfile *objfile)
1413 {
1414 dwarf2_free_objfile (objfile);
1415 }
1416
1417 /* ELF specific initialization routine for reading symbols. */
1418
1419 static void
1420 elf_symfile_init (struct objfile *objfile)
1421 {
1422 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1423 find this causes a significant slowdown in gdb then we could
1424 set it in the debug symbol readers only when necessary. */
1425 objfile->flags |= OBJF_REORDERED;
1426 }
1427
1428 /* When handling an ELF file that contains Sun STABS debug info,
1429 some of the debug info is relative to the particular chunk of the
1430 section that was generated in its individual .o file. E.g.
1431 offsets to static variables are relative to the start of the data
1432 segment *for that module before linking*. This information is
1433 painfully squirreled away in the ELF symbol table as local symbols
1434 with wierd names. Go get 'em when needed. */
1435
1436 void
1437 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1438 {
1439 const char *filename = pst->filename;
1440 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1441 struct stab_section_info *maybe = dbx->stab_section_info;
1442 struct stab_section_info *questionable = 0;
1443 int i;
1444
1445 /* The ELF symbol info doesn't include path names, so strip the path
1446 (if any) from the psymtab filename. */
1447 filename = lbasename (filename);
1448
1449 /* FIXME: This linear search could speed up significantly
1450 if it was chained in the right order to match how we search it,
1451 and if we unchained when we found a match. */
1452 for (; maybe; maybe = maybe->next)
1453 {
1454 if (filename[0] == maybe->filename[0]
1455 && filename_cmp (filename, maybe->filename) == 0)
1456 {
1457 /* We found a match. But there might be several source files
1458 (from different directories) with the same name. */
1459 if (0 == maybe->found)
1460 break;
1461 questionable = maybe; /* Might use it later. */
1462 }
1463 }
1464
1465 if (maybe == 0 && questionable != 0)
1466 {
1467 complaint (&symfile_complaints,
1468 _("elf/stab section information questionable for %s"),
1469 filename);
1470 maybe = questionable;
1471 }
1472
1473 if (maybe)
1474 {
1475 /* Found it! Allocate a new psymtab struct, and fill it in. */
1476 maybe->found++;
1477 pst->section_offsets = (struct section_offsets *)
1478 obstack_alloc (&objfile->objfile_obstack,
1479 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1480 for (i = 0; i < maybe->num_sections; i++)
1481 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1482 return;
1483 }
1484
1485 /* We were unable to find any offsets for this file. Complain. */
1486 if (dbx->stab_section_info) /* If there *is* any info, */
1487 complaint (&symfile_complaints,
1488 _("elf/stab section information missing for %s"), filename);
1489 }
1490
1491 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1492
1493 static VEC (probe_p) *
1494 elf_get_probes (struct objfile *objfile)
1495 {
1496 VEC (probe_p) *probes_per_bfd;
1497
1498 /* Have we parsed this objfile's probes already? */
1499 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
1500
1501 if (!probes_per_bfd)
1502 {
1503 int ix;
1504 const struct probe_ops *probe_ops;
1505
1506 /* Here we try to gather information about all types of probes from the
1507 objfile. */
1508 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1509 ix++)
1510 probe_ops->get_probes (&probes_per_bfd, objfile);
1511
1512 if (probes_per_bfd == NULL)
1513 {
1514 VEC_reserve (probe_p, probes_per_bfd, 1);
1515 gdb_assert (probes_per_bfd != NULL);
1516 }
1517
1518 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1519 }
1520
1521 return probes_per_bfd;
1522 }
1523
1524 /* Helper function used to free the space allocated for storing SystemTap
1525 probe information. */
1526
1527 static void
1528 probe_key_free (bfd *abfd, void *d)
1529 {
1530 int ix;
1531 VEC (probe_p) *probes = d;
1532 struct probe *probe;
1533
1534 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1535 probe->pops->destroy (probe);
1536
1537 VEC_free (probe_p, probes);
1538 }
1539
1540 \f
1541
1542 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1543
1544 static const struct sym_probe_fns elf_probe_fns =
1545 {
1546 elf_get_probes, /* sym_get_probes */
1547 };
1548
1549 /* Register that we are able to handle ELF object file formats. */
1550
1551 static const struct sym_fns elf_sym_fns =
1552 {
1553 elf_new_init, /* init anything gbl to entire symtab */
1554 elf_symfile_init, /* read initial info, setup for sym_read() */
1555 elf_symfile_read, /* read a symbol file into symtab */
1556 NULL, /* sym_read_psymbols */
1557 elf_symfile_finish, /* finished with file, cleanup */
1558 default_symfile_offsets, /* Translate ext. to int. relocation */
1559 elf_symfile_segments, /* Get segment information from a file. */
1560 NULL,
1561 default_symfile_relocate, /* Relocate a debug section. */
1562 &elf_probe_fns, /* sym_probe_fns */
1563 &psym_functions
1564 };
1565
1566 /* The same as elf_sym_fns, but not registered and lazily reads
1567 psymbols. */
1568
1569 static const struct sym_fns elf_sym_fns_lazy_psyms =
1570 {
1571 elf_new_init, /* init anything gbl to entire symtab */
1572 elf_symfile_init, /* read initial info, setup for sym_read() */
1573 elf_symfile_read, /* read a symbol file into symtab */
1574 read_psyms, /* sym_read_psymbols */
1575 elf_symfile_finish, /* finished with file, cleanup */
1576 default_symfile_offsets, /* Translate ext. to int. relocation */
1577 elf_symfile_segments, /* Get segment information from a file. */
1578 NULL,
1579 default_symfile_relocate, /* Relocate a debug section. */
1580 &elf_probe_fns, /* sym_probe_fns */
1581 &psym_functions
1582 };
1583
1584 /* The same as elf_sym_fns, but not registered and uses the
1585 DWARF-specific GNU index rather than psymtab. */
1586 static const struct sym_fns elf_sym_fns_gdb_index =
1587 {
1588 elf_new_init, /* init anything gbl to entire symab */
1589 elf_symfile_init, /* read initial info, setup for sym_red() */
1590 elf_symfile_read, /* read a symbol file into symtab */
1591 NULL, /* sym_read_psymbols */
1592 elf_symfile_finish, /* finished with file, cleanup */
1593 default_symfile_offsets, /* Translate ext. to int. relocatin */
1594 elf_symfile_segments, /* Get segment information from a file. */
1595 NULL,
1596 default_symfile_relocate, /* Relocate a debug section. */
1597 &elf_probe_fns, /* sym_probe_fns */
1598 &dwarf2_gdb_index_functions
1599 };
1600
1601 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1602
1603 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1604 {
1605 elf_gnu_ifunc_resolve_addr,
1606 elf_gnu_ifunc_resolve_name,
1607 elf_gnu_ifunc_resolver_stop,
1608 elf_gnu_ifunc_resolver_return_stop
1609 };
1610
1611 void
1612 _initialize_elfread (void)
1613 {
1614 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1615 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1616
1617 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1618 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1619 }