]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
Replace some xmalloc-family functions with XNEW-family ones
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2015 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "elf-bfd.h"
25 #include "elf/common.h"
26 #include "elf/internal.h"
27 #include "elf/mips.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "buildsym.h"
32 #include "stabsread.h"
33 #include "gdb-stabs.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "psympriv.h"
37 #include "filenames.h"
38 #include "probe.h"
39 #include "arch-utils.h"
40 #include "gdbtypes.h"
41 #include "value.h"
42 #include "infcall.h"
43 #include "gdbthread.h"
44 #include "regcache.h"
45 #include "bcache.h"
46 #include "gdb_bfd.h"
47 #include "build-id.h"
48 #include "location.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 extern const struct sym_fns elf_sym_fns_gdb_index;
54 extern const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-BFD data for probe info. */
67
68 static const struct bfd_data *probe_key = NULL;
69
70 /* Minimal symbols located at the GOT entries for .plt - that is the real
71 pointer where the given entry will jump to. It gets updated by the real
72 function address during lazy ld.so resolving in the inferior. These
73 minimal symbols are indexed for <tab>-completion. */
74
75 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
76
77 /* Locate the segments in ABFD. */
78
79 static struct symfile_segment_data *
80 elf_symfile_segments (bfd *abfd)
81 {
82 Elf_Internal_Phdr *phdrs, **segments;
83 long phdrs_size;
84 int num_phdrs, num_segments, num_sections, i;
85 asection *sect;
86 struct symfile_segment_data *data;
87
88 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
89 if (phdrs_size == -1)
90 return NULL;
91
92 phdrs = alloca (phdrs_size);
93 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
94 if (num_phdrs == -1)
95 return NULL;
96
97 num_segments = 0;
98 segments = XALLOCAVEC (Elf_Internal_Phdr *, num_phdrs);
99 for (i = 0; i < num_phdrs; i++)
100 if (phdrs[i].p_type == PT_LOAD)
101 segments[num_segments++] = &phdrs[i];
102
103 if (num_segments == 0)
104 return NULL;
105
106 data = XCNEW (struct symfile_segment_data);
107 data->num_segments = num_segments;
108 data->segment_bases = XCNEWVEC (CORE_ADDR, num_segments);
109 data->segment_sizes = XCNEWVEC (CORE_ADDR, num_segments);
110
111 for (i = 0; i < num_segments; i++)
112 {
113 data->segment_bases[i] = segments[i]->p_vaddr;
114 data->segment_sizes[i] = segments[i]->p_memsz;
115 }
116
117 num_sections = bfd_count_sections (abfd);
118 data->segment_info = XCNEWVEC (int, num_sections);
119
120 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
121 {
122 int j;
123 CORE_ADDR vma;
124
125 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
126 continue;
127
128 vma = bfd_get_section_vma (abfd, sect);
129
130 for (j = 0; j < num_segments; j++)
131 if (segments[j]->p_memsz > 0
132 && vma >= segments[j]->p_vaddr
133 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
134 {
135 data->segment_info[i] = j + 1;
136 break;
137 }
138
139 /* We should have found a segment for every non-empty section.
140 If we haven't, we will not relocate this section by any
141 offsets we apply to the segments. As an exception, do not
142 warn about SHT_NOBITS sections; in normal ELF execution
143 environments, SHT_NOBITS means zero-initialized and belongs
144 in a segment, but in no-OS environments some tools (e.g. ARM
145 RealView) use SHT_NOBITS for uninitialized data. Since it is
146 uninitialized, it doesn't need a program header. Such
147 binaries are not relocatable. */
148 if (bfd_get_section_size (sect) > 0 && j == num_segments
149 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
150 warning (_("Loadable section \"%s\" outside of ELF segments"),
151 bfd_section_name (abfd, sect));
152 }
153
154 return data;
155 }
156
157 /* We are called once per section from elf_symfile_read. We
158 need to examine each section we are passed, check to see
159 if it is something we are interested in processing, and
160 if so, stash away some access information for the section.
161
162 For now we recognize the dwarf debug information sections and
163 line number sections from matching their section names. The
164 ELF definition is no real help here since it has no direct
165 knowledge of DWARF (by design, so any debugging format can be
166 used).
167
168 We also recognize the ".stab" sections used by the Sun compilers
169 released with Solaris 2.
170
171 FIXME: The section names should not be hardwired strings (what
172 should they be? I don't think most object file formats have enough
173 section flags to specify what kind of debug section it is.
174 -kingdon). */
175
176 static void
177 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
178 {
179 struct elfinfo *ei;
180
181 ei = (struct elfinfo *) eip;
182 if (strcmp (sectp->name, ".stab") == 0)
183 {
184 ei->stabsect = sectp;
185 }
186 else if (strcmp (sectp->name, ".mdebug") == 0)
187 {
188 ei->mdebugsect = sectp;
189 }
190 }
191
192 static struct minimal_symbol *
193 record_minimal_symbol (const char *name, int name_len, int copy_name,
194 CORE_ADDR address,
195 enum minimal_symbol_type ms_type,
196 asection *bfd_section, struct objfile *objfile)
197 {
198 struct gdbarch *gdbarch = get_objfile_arch (objfile);
199
200 if (ms_type == mst_text || ms_type == mst_file_text
201 || ms_type == mst_text_gnu_ifunc)
202 address = gdbarch_addr_bits_remove (gdbarch, address);
203
204 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
205 ms_type,
206 gdb_bfd_section_index (objfile->obfd,
207 bfd_section),
208 objfile);
209 }
210
211 /* Read the symbol table of an ELF file.
212
213 Given an objfile, a symbol table, and a flag indicating whether the
214 symbol table contains regular, dynamic, or synthetic symbols, add all
215 the global function and data symbols to the minimal symbol table.
216
217 In stabs-in-ELF, as implemented by Sun, there are some local symbols
218 defined in the ELF symbol table, which can be used to locate
219 the beginnings of sections from each ".o" file that was linked to
220 form the executable objfile. We gather any such info and record it
221 in data structures hung off the objfile's private data. */
222
223 #define ST_REGULAR 0
224 #define ST_DYNAMIC 1
225 #define ST_SYNTHETIC 2
226
227 static void
228 elf_symtab_read (struct objfile *objfile, int type,
229 long number_of_symbols, asymbol **symbol_table,
230 int copy_names)
231 {
232 struct gdbarch *gdbarch = get_objfile_arch (objfile);
233 asymbol *sym;
234 long i;
235 CORE_ADDR symaddr;
236 CORE_ADDR offset;
237 enum minimal_symbol_type ms_type;
238 /* Name of the last file symbol. This is either a constant string or is
239 saved on the objfile's filename cache. */
240 const char *filesymname = "";
241 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
242 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
243 int elf_make_msymbol_special_p
244 = gdbarch_elf_make_msymbol_special_p (gdbarch);
245
246 for (i = 0; i < number_of_symbols; i++)
247 {
248 sym = symbol_table[i];
249 if (sym->name == NULL || *sym->name == '\0')
250 {
251 /* Skip names that don't exist (shouldn't happen), or names
252 that are null strings (may happen). */
253 continue;
254 }
255
256 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
257 symbols which do not correspond to objects in the symbol table,
258 but have some other target-specific meaning. */
259 if (bfd_is_target_special_symbol (objfile->obfd, sym))
260 {
261 if (gdbarch_record_special_symbol_p (gdbarch))
262 gdbarch_record_special_symbol (gdbarch, objfile, sym);
263 continue;
264 }
265
266 offset = ANOFFSET (objfile->section_offsets,
267 gdb_bfd_section_index (objfile->obfd, sym->section));
268 if (type == ST_DYNAMIC
269 && sym->section == bfd_und_section_ptr
270 && (sym->flags & BSF_FUNCTION))
271 {
272 struct minimal_symbol *msym;
273 bfd *abfd = objfile->obfd;
274 asection *sect;
275
276 /* Symbol is a reference to a function defined in
277 a shared library.
278 If its value is non zero then it is usually the address
279 of the corresponding entry in the procedure linkage table,
280 plus the desired section offset.
281 If its value is zero then the dynamic linker has to resolve
282 the symbol. We are unable to find any meaningful address
283 for this symbol in the executable file, so we skip it. */
284 symaddr = sym->value;
285 if (symaddr == 0)
286 continue;
287
288 /* sym->section is the undefined section. However, we want to
289 record the section where the PLT stub resides with the
290 minimal symbol. Search the section table for the one that
291 covers the stub's address. */
292 for (sect = abfd->sections; sect != NULL; sect = sect->next)
293 {
294 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
295 continue;
296
297 if (symaddr >= bfd_get_section_vma (abfd, sect)
298 && symaddr < bfd_get_section_vma (abfd, sect)
299 + bfd_get_section_size (sect))
300 break;
301 }
302 if (!sect)
303 continue;
304
305 /* On ia64-hpux, we have discovered that the system linker
306 adds undefined symbols with nonzero addresses that cannot
307 be right (their address points inside the code of another
308 function in the .text section). This creates problems
309 when trying to determine which symbol corresponds to
310 a given address.
311
312 We try to detect those buggy symbols by checking which
313 section we think they correspond to. Normally, PLT symbols
314 are stored inside their own section, and the typical name
315 for that section is ".plt". So, if there is a ".plt"
316 section, and yet the section name of our symbol does not
317 start with ".plt", we ignore that symbol. */
318 if (!startswith (sect->name, ".plt")
319 && bfd_get_section_by_name (abfd, ".plt") != NULL)
320 continue;
321
322 msym = record_minimal_symbol
323 (sym->name, strlen (sym->name), copy_names,
324 symaddr, mst_solib_trampoline, sect, objfile);
325 if (msym != NULL)
326 {
327 msym->filename = filesymname;
328 if (elf_make_msymbol_special_p)
329 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
330 }
331 continue;
332 }
333
334 /* If it is a nonstripped executable, do not enter dynamic
335 symbols, as the dynamic symbol table is usually a subset
336 of the main symbol table. */
337 if (type == ST_DYNAMIC && !stripped)
338 continue;
339 if (sym->flags & BSF_FILE)
340 {
341 filesymname = bcache (sym->name, strlen (sym->name) + 1,
342 objfile->per_bfd->filename_cache);
343 }
344 else if (sym->flags & BSF_SECTION_SYM)
345 continue;
346 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
347 | BSF_GNU_UNIQUE))
348 {
349 struct minimal_symbol *msym;
350
351 /* Select global/local/weak symbols. Note that bfd puts abs
352 symbols in their own section, so all symbols we are
353 interested in will have a section. */
354 /* Bfd symbols are section relative. */
355 symaddr = sym->value + sym->section->vma;
356 /* For non-absolute symbols, use the type of the section
357 they are relative to, to intuit text/data. Bfd provides
358 no way of figuring this out for absolute symbols. */
359 if (sym->section == bfd_abs_section_ptr)
360 {
361 /* This is a hack to get the minimal symbol type
362 right for Irix 5, which has absolute addresses
363 with special section indices for dynamic symbols.
364
365 NOTE: uweigand-20071112: Synthetic symbols do not
366 have an ELF-private part, so do not touch those. */
367 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
368 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
369
370 switch (shndx)
371 {
372 case SHN_MIPS_TEXT:
373 ms_type = mst_text;
374 break;
375 case SHN_MIPS_DATA:
376 ms_type = mst_data;
377 break;
378 case SHN_MIPS_ACOMMON:
379 ms_type = mst_bss;
380 break;
381 default:
382 ms_type = mst_abs;
383 }
384
385 /* If it is an Irix dynamic symbol, skip section name
386 symbols, relocate all others by section offset. */
387 if (ms_type != mst_abs)
388 {
389 if (sym->name[0] == '.')
390 continue;
391 }
392 }
393 else if (sym->section->flags & SEC_CODE)
394 {
395 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
396 {
397 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
398 ms_type = mst_text_gnu_ifunc;
399 else
400 ms_type = mst_text;
401 }
402 /* The BSF_SYNTHETIC check is there to omit ppc64 function
403 descriptors mistaken for static functions starting with 'L'.
404 */
405 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
406 && (sym->flags & BSF_SYNTHETIC) == 0)
407 || ((sym->flags & BSF_LOCAL)
408 && sym->name[0] == '$'
409 && sym->name[1] == 'L'))
410 /* Looks like a compiler-generated label. Skip
411 it. The assembler should be skipping these (to
412 keep executables small), but apparently with
413 gcc on the (deleted) delta m88k SVR4, it loses.
414 So to have us check too should be harmless (but
415 I encourage people to fix this in the assembler
416 instead of adding checks here). */
417 continue;
418 else
419 {
420 ms_type = mst_file_text;
421 }
422 }
423 else if (sym->section->flags & SEC_ALLOC)
424 {
425 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
426 {
427 if (sym->section->flags & SEC_LOAD)
428 {
429 ms_type = mst_data;
430 }
431 else
432 {
433 ms_type = mst_bss;
434 }
435 }
436 else if (sym->flags & BSF_LOCAL)
437 {
438 if (sym->section->flags & SEC_LOAD)
439 {
440 ms_type = mst_file_data;
441 }
442 else
443 {
444 ms_type = mst_file_bss;
445 }
446 }
447 else
448 {
449 ms_type = mst_unknown;
450 }
451 }
452 else
453 {
454 /* FIXME: Solaris2 shared libraries include lots of
455 odd "absolute" and "undefined" symbols, that play
456 hob with actions like finding what function the PC
457 is in. Ignore them if they aren't text, data, or bss. */
458 /* ms_type = mst_unknown; */
459 continue; /* Skip this symbol. */
460 }
461 msym = record_minimal_symbol
462 (sym->name, strlen (sym->name), copy_names, symaddr,
463 ms_type, sym->section, objfile);
464
465 if (msym)
466 {
467 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
468 ELF-private part. */
469 if (type != ST_SYNTHETIC)
470 {
471 /* Pass symbol size field in via BFD. FIXME!!! */
472 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
473 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
474 }
475
476 msym->filename = filesymname;
477 if (elf_make_msymbol_special_p)
478 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
479 }
480
481 /* If we see a default versioned symbol, install it under
482 its version-less name. */
483 if (msym != NULL)
484 {
485 const char *atsign = strchr (sym->name, '@');
486
487 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
488 {
489 int len = atsign - sym->name;
490
491 record_minimal_symbol (sym->name, len, 1, symaddr,
492 ms_type, sym->section, objfile);
493 }
494 }
495
496 /* For @plt symbols, also record a trampoline to the
497 destination symbol. The @plt symbol will be used in
498 disassembly, and the trampoline will be used when we are
499 trying to find the target. */
500 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
501 {
502 int len = strlen (sym->name);
503
504 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
505 {
506 struct minimal_symbol *mtramp;
507
508 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
509 symaddr,
510 mst_solib_trampoline,
511 sym->section, objfile);
512 if (mtramp)
513 {
514 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
515 mtramp->created_by_gdb = 1;
516 mtramp->filename = filesymname;
517 if (elf_make_msymbol_special_p)
518 gdbarch_elf_make_msymbol_special (gdbarch,
519 sym, mtramp);
520 }
521 }
522 }
523 }
524 }
525 }
526
527 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
528 for later look ups of which function to call when user requests
529 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
530 library defining `function' we cannot yet know while reading OBJFILE which
531 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
532 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
533
534 static void
535 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
536 {
537 bfd *obfd = objfile->obfd;
538 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
539 asection *plt, *relplt, *got_plt;
540 int plt_elf_idx;
541 bfd_size_type reloc_count, reloc;
542 char *string_buffer = NULL;
543 size_t string_buffer_size = 0;
544 struct cleanup *back_to;
545 struct gdbarch *gdbarch = get_objfile_arch (objfile);
546 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
547 size_t ptr_size = TYPE_LENGTH (ptr_type);
548
549 if (objfile->separate_debug_objfile_backlink)
550 return;
551
552 plt = bfd_get_section_by_name (obfd, ".plt");
553 if (plt == NULL)
554 return;
555 plt_elf_idx = elf_section_data (plt)->this_idx;
556
557 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
558 if (got_plt == NULL)
559 {
560 /* For platforms where there is no separate .got.plt. */
561 got_plt = bfd_get_section_by_name (obfd, ".got");
562 if (got_plt == NULL)
563 return;
564 }
565
566 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
567 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
568 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
569 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
570 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
571 break;
572 if (relplt == NULL)
573 return;
574
575 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
576 return;
577
578 back_to = make_cleanup (free_current_contents, &string_buffer);
579
580 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
581 for (reloc = 0; reloc < reloc_count; reloc++)
582 {
583 const char *name;
584 struct minimal_symbol *msym;
585 CORE_ADDR address;
586 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
587 size_t name_len;
588
589 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
590 name_len = strlen (name);
591 address = relplt->relocation[reloc].address;
592
593 /* Does the pointer reside in the .got.plt section? */
594 if (!(bfd_get_section_vma (obfd, got_plt) <= address
595 && address < bfd_get_section_vma (obfd, got_plt)
596 + bfd_get_section_size (got_plt)))
597 continue;
598
599 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
600 OBJFILE the symbol is undefined and the objfile having NAME defined
601 may not yet have been loaded. */
602
603 if (string_buffer_size < name_len + got_suffix_len + 1)
604 {
605 string_buffer_size = 2 * (name_len + got_suffix_len);
606 string_buffer = xrealloc (string_buffer, string_buffer_size);
607 }
608 memcpy (string_buffer, name, name_len);
609 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
610 got_suffix_len + 1);
611
612 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
613 1, address, mst_slot_got_plt, got_plt,
614 objfile);
615 if (msym)
616 SET_MSYMBOL_SIZE (msym, ptr_size);
617 }
618
619 do_cleanups (back_to);
620 }
621
622 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
623
624 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
625
626 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
627
628 struct elf_gnu_ifunc_cache
629 {
630 /* This is always a function entry address, not a function descriptor. */
631 CORE_ADDR addr;
632
633 char name[1];
634 };
635
636 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
637
638 static hashval_t
639 elf_gnu_ifunc_cache_hash (const void *a_voidp)
640 {
641 const struct elf_gnu_ifunc_cache *a = a_voidp;
642
643 return htab_hash_string (a->name);
644 }
645
646 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
647
648 static int
649 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
650 {
651 const struct elf_gnu_ifunc_cache *a = a_voidp;
652 const struct elf_gnu_ifunc_cache *b = b_voidp;
653
654 return strcmp (a->name, b->name) == 0;
655 }
656
657 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
658 function entry address ADDR. Return 1 if NAME and ADDR are considered as
659 valid and therefore they were successfully recorded, return 0 otherwise.
660
661 Function does not expect a duplicate entry. Use
662 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
663 exists. */
664
665 static int
666 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
667 {
668 struct bound_minimal_symbol msym;
669 asection *sect;
670 struct objfile *objfile;
671 htab_t htab;
672 struct elf_gnu_ifunc_cache entry_local, *entry_p;
673 void **slot;
674
675 msym = lookup_minimal_symbol_by_pc (addr);
676 if (msym.minsym == NULL)
677 return 0;
678 if (BMSYMBOL_VALUE_ADDRESS (msym) != addr)
679 return 0;
680 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
681 sect = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
682 objfile = msym.objfile;
683
684 /* If .plt jumps back to .plt the symbol is still deferred for later
685 resolution and it has no use for GDB. Besides ".text" this symbol can
686 reside also in ".opd" for ppc64 function descriptor. */
687 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
688 return 0;
689
690 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
691 if (htab == NULL)
692 {
693 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
694 elf_gnu_ifunc_cache_eq,
695 NULL, &objfile->objfile_obstack,
696 hashtab_obstack_allocate,
697 dummy_obstack_deallocate);
698 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
699 }
700
701 entry_local.addr = addr;
702 obstack_grow (&objfile->objfile_obstack, &entry_local,
703 offsetof (struct elf_gnu_ifunc_cache, name));
704 obstack_grow_str0 (&objfile->objfile_obstack, name);
705 entry_p = obstack_finish (&objfile->objfile_obstack);
706
707 slot = htab_find_slot (htab, entry_p, INSERT);
708 if (*slot != NULL)
709 {
710 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
711 struct gdbarch *gdbarch = get_objfile_arch (objfile);
712
713 if (entry_found_p->addr != addr)
714 {
715 /* This case indicates buggy inferior program, the resolved address
716 should never change. */
717
718 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
719 "function_address from %s to %s"),
720 name, paddress (gdbarch, entry_found_p->addr),
721 paddress (gdbarch, addr));
722 }
723
724 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
725 }
726 *slot = entry_p;
727
728 return 1;
729 }
730
731 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
732 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
733 is not NULL) and the function returns 1. It returns 0 otherwise.
734
735 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
736 function. */
737
738 static int
739 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
740 {
741 struct objfile *objfile;
742
743 ALL_PSPACE_OBJFILES (current_program_space, objfile)
744 {
745 htab_t htab;
746 struct elf_gnu_ifunc_cache *entry_p;
747 void **slot;
748
749 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
750 if (htab == NULL)
751 continue;
752
753 entry_p = alloca (sizeof (*entry_p) + strlen (name));
754 strcpy (entry_p->name, name);
755
756 slot = htab_find_slot (htab, entry_p, NO_INSERT);
757 if (slot == NULL)
758 continue;
759 entry_p = *slot;
760 gdb_assert (entry_p != NULL);
761
762 if (addr_p)
763 *addr_p = entry_p->addr;
764 return 1;
765 }
766
767 return 0;
768 }
769
770 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
771 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
772 is not NULL) and the function returns 1. It returns 0 otherwise.
773
774 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
775 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
776 prevent cache entries duplicates. */
777
778 static int
779 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
780 {
781 char *name_got_plt;
782 struct objfile *objfile;
783 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
784
785 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
786 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
787
788 ALL_PSPACE_OBJFILES (current_program_space, objfile)
789 {
790 bfd *obfd = objfile->obfd;
791 struct gdbarch *gdbarch = get_objfile_arch (objfile);
792 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
793 size_t ptr_size = TYPE_LENGTH (ptr_type);
794 CORE_ADDR pointer_address, addr;
795 asection *plt;
796 gdb_byte *buf = alloca (ptr_size);
797 struct bound_minimal_symbol msym;
798
799 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
800 if (msym.minsym == NULL)
801 continue;
802 if (MSYMBOL_TYPE (msym.minsym) != mst_slot_got_plt)
803 continue;
804 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
805
806 plt = bfd_get_section_by_name (obfd, ".plt");
807 if (plt == NULL)
808 continue;
809
810 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
811 continue;
812 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
813 continue;
814 addr = extract_typed_address (buf, ptr_type);
815 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
816 &current_target);
817 addr = gdbarch_addr_bits_remove (gdbarch, addr);
818
819 if (addr_p)
820 *addr_p = addr;
821 if (elf_gnu_ifunc_record_cache (name, addr))
822 return 1;
823 }
824
825 return 0;
826 }
827
828 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
829 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
830 is not NULL) and the function returns 1. It returns 0 otherwise.
831
832 Both the elf_objfile_gnu_ifunc_cache_data hash table and
833 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
834
835 static int
836 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
837 {
838 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
839 return 1;
840
841 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
842 return 1;
843
844 return 0;
845 }
846
847 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
848 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
849 is the entry point of the resolved STT_GNU_IFUNC target function to call.
850 */
851
852 static CORE_ADDR
853 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
854 {
855 const char *name_at_pc;
856 CORE_ADDR start_at_pc, address;
857 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
858 struct value *function, *address_val;
859
860 /* Try first any non-intrusive methods without an inferior call. */
861
862 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
863 && start_at_pc == pc)
864 {
865 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
866 return address;
867 }
868 else
869 name_at_pc = NULL;
870
871 function = allocate_value (func_func_type);
872 set_value_address (function, pc);
873
874 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
875 function entry address. ADDRESS may be a function descriptor. */
876
877 address_val = call_function_by_hand (function, 0, NULL);
878 address = value_as_address (address_val);
879 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
880 &current_target);
881 address = gdbarch_addr_bits_remove (gdbarch, address);
882
883 if (name_at_pc)
884 elf_gnu_ifunc_record_cache (name_at_pc, address);
885
886 return address;
887 }
888
889 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
890
891 static void
892 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
893 {
894 struct breakpoint *b_return;
895 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
896 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
897 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
898 int thread_id = pid_to_thread_id (inferior_ptid);
899
900 gdb_assert (b->type == bp_gnu_ifunc_resolver);
901
902 for (b_return = b->related_breakpoint; b_return != b;
903 b_return = b_return->related_breakpoint)
904 {
905 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
906 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
907 gdb_assert (frame_id_p (b_return->frame_id));
908
909 if (b_return->thread == thread_id
910 && b_return->loc->requested_address == prev_pc
911 && frame_id_eq (b_return->frame_id, prev_frame_id))
912 break;
913 }
914
915 if (b_return == b)
916 {
917 struct symtab_and_line sal;
918
919 /* No need to call find_pc_line for symbols resolving as this is only
920 a helper breakpointer never shown to the user. */
921
922 init_sal (&sal);
923 sal.pspace = current_inferior ()->pspace;
924 sal.pc = prev_pc;
925 sal.section = find_pc_overlay (sal.pc);
926 sal.explicit_pc = 1;
927 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
928 prev_frame_id,
929 bp_gnu_ifunc_resolver_return);
930
931 /* set_momentary_breakpoint invalidates PREV_FRAME. */
932 prev_frame = NULL;
933
934 /* Add new b_return to the ring list b->related_breakpoint. */
935 gdb_assert (b_return->related_breakpoint == b_return);
936 b_return->related_breakpoint = b->related_breakpoint;
937 b->related_breakpoint = b_return;
938 }
939 }
940
941 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
942
943 static void
944 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
945 {
946 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
947 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
948 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
949 struct regcache *regcache = get_thread_regcache (inferior_ptid);
950 struct value *func_func;
951 struct value *value;
952 CORE_ADDR resolved_address, resolved_pc;
953 struct symtab_and_line sal;
954 struct symtabs_and_lines sals, sals_end;
955
956 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
957
958 while (b->related_breakpoint != b)
959 {
960 struct breakpoint *b_next = b->related_breakpoint;
961
962 switch (b->type)
963 {
964 case bp_gnu_ifunc_resolver:
965 break;
966 case bp_gnu_ifunc_resolver_return:
967 delete_breakpoint (b);
968 break;
969 default:
970 internal_error (__FILE__, __LINE__,
971 _("handle_inferior_event: Invalid "
972 "gnu-indirect-function breakpoint type %d"),
973 (int) b->type);
974 }
975 b = b_next;
976 }
977 gdb_assert (b->type == bp_gnu_ifunc_resolver);
978 gdb_assert (b->loc->next == NULL);
979
980 func_func = allocate_value (func_func_type);
981 set_value_address (func_func, b->loc->related_address);
982
983 value = allocate_value (value_type);
984 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
985 value_contents_raw (value), NULL);
986 resolved_address = value_as_address (value);
987 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
988 resolved_address,
989 &current_target);
990 resolved_pc = gdbarch_addr_bits_remove (gdbarch, resolved_pc);
991
992 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
993 elf_gnu_ifunc_record_cache (event_location_to_string (b->location),
994 resolved_pc);
995
996 sal = find_pc_line (resolved_pc, 0);
997 sals.nelts = 1;
998 sals.sals = &sal;
999 sals_end.nelts = 0;
1000
1001 b->type = bp_breakpoint;
1002 update_breakpoint_locations (b, sals, sals_end);
1003 }
1004
1005 /* A helper function for elf_symfile_read that reads the minimal
1006 symbols. */
1007
1008 static void
1009 elf_read_minimal_symbols (struct objfile *objfile, int symfile_flags,
1010 const struct elfinfo *ei)
1011 {
1012 bfd *synth_abfd, *abfd = objfile->obfd;
1013 struct cleanup *back_to;
1014 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1015 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1016 asymbol *synthsyms;
1017 struct dbx_symfile_info *dbx;
1018
1019 if (symtab_create_debug)
1020 {
1021 fprintf_unfiltered (gdb_stdlog,
1022 "Reading minimal symbols of objfile %s ...\n",
1023 objfile_name (objfile));
1024 }
1025
1026 /* If we already have minsyms, then we can skip some work here.
1027 However, if there were stabs or mdebug sections, we go ahead and
1028 redo all the work anyway, because the psym readers for those
1029 kinds of debuginfo need extra information found here. This can
1030 go away once all types of symbols are in the per-BFD object. */
1031 if (objfile->per_bfd->minsyms_read
1032 && ei->stabsect == NULL
1033 && ei->mdebugsect == NULL)
1034 {
1035 if (symtab_create_debug)
1036 fprintf_unfiltered (gdb_stdlog,
1037 "... minimal symbols previously read\n");
1038 return;
1039 }
1040
1041 init_minimal_symbol_collection ();
1042 back_to = make_cleanup_discard_minimal_symbols ();
1043
1044 /* Allocate struct to keep track of the symfile. */
1045 dbx = XCNEW (struct dbx_symfile_info);
1046 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1047
1048 /* Process the normal ELF symbol table first. */
1049
1050 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1051 if (storage_needed < 0)
1052 error (_("Can't read symbols from %s: %s"),
1053 bfd_get_filename (objfile->obfd),
1054 bfd_errmsg (bfd_get_error ()));
1055
1056 if (storage_needed > 0)
1057 {
1058 /* Memory gets permanently referenced from ABFD after
1059 bfd_canonicalize_symtab so it must not get freed before ABFD gets. */
1060
1061 symbol_table = bfd_alloc (abfd, storage_needed);
1062 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1063
1064 if (symcount < 0)
1065 error (_("Can't read symbols from %s: %s"),
1066 bfd_get_filename (objfile->obfd),
1067 bfd_errmsg (bfd_get_error ()));
1068
1069 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1070 }
1071
1072 /* Add the dynamic symbols. */
1073
1074 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1075
1076 if (storage_needed > 0)
1077 {
1078 /* Memory gets permanently referenced from ABFD after
1079 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1080 It happens only in the case when elf_slurp_reloc_table sees
1081 asection->relocation NULL. Determining which section is asection is
1082 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1083 implementation detail, though. */
1084
1085 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1086 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1087 dyn_symbol_table);
1088
1089 if (dynsymcount < 0)
1090 error (_("Can't read symbols from %s: %s"),
1091 bfd_get_filename (objfile->obfd),
1092 bfd_errmsg (bfd_get_error ()));
1093
1094 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1095
1096 elf_rel_plt_read (objfile, dyn_symbol_table);
1097 }
1098
1099 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1100 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1101
1102 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1103 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1104 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1105 read the code address from .opd while it reads the .symtab section from
1106 a separate debug info file as the .opd section is SHT_NOBITS there.
1107
1108 With SYNTH_ABFD the .opd section will be read from the original
1109 backlinked binary where it is valid. */
1110
1111 if (objfile->separate_debug_objfile_backlink)
1112 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1113 else
1114 synth_abfd = abfd;
1115
1116 /* Add synthetic symbols - for instance, names for any PLT entries. */
1117
1118 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1119 dynsymcount, dyn_symbol_table,
1120 &synthsyms);
1121 if (synthcount > 0)
1122 {
1123 asymbol **synth_symbol_table;
1124 long i;
1125
1126 make_cleanup (xfree, synthsyms);
1127 synth_symbol_table = XNEWVEC (asymbol *, synthcount);
1128 for (i = 0; i < synthcount; i++)
1129 synth_symbol_table[i] = synthsyms + i;
1130 make_cleanup (xfree, synth_symbol_table);
1131 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1132 synth_symbol_table, 1);
1133 }
1134
1135 /* Install any minimal symbols that have been collected as the current
1136 minimal symbols for this objfile. The debug readers below this point
1137 should not generate new minimal symbols; if they do it's their
1138 responsibility to install them. "mdebug" appears to be the only one
1139 which will do this. */
1140
1141 install_minimal_symbols (objfile);
1142 do_cleanups (back_to);
1143
1144 if (symtab_create_debug)
1145 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1146 }
1147
1148 /* Scan and build partial symbols for a symbol file.
1149 We have been initialized by a call to elf_symfile_init, which
1150 currently does nothing.
1151
1152 This function only does the minimum work necessary for letting the
1153 user "name" things symbolically; it does not read the entire symtab.
1154 Instead, it reads the external and static symbols and puts them in partial
1155 symbol tables. When more extensive information is requested of a
1156 file, the corresponding partial symbol table is mutated into a full
1157 fledged symbol table by going back and reading the symbols
1158 for real.
1159
1160 We look for sections with specific names, to tell us what debug
1161 format to look for: FIXME!!!
1162
1163 elfstab_build_psymtabs() handles STABS symbols;
1164 mdebug_build_psymtabs() handles ECOFF debugging information.
1165
1166 Note that ELF files have a "minimal" symbol table, which looks a lot
1167 like a COFF symbol table, but has only the minimal information necessary
1168 for linking. We process this also, and use the information to
1169 build gdb's minimal symbol table. This gives us some minimal debugging
1170 capability even for files compiled without -g. */
1171
1172 static void
1173 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1174 {
1175 bfd *abfd = objfile->obfd;
1176 struct elfinfo ei;
1177
1178 memset ((char *) &ei, 0, sizeof (ei));
1179 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1180
1181 elf_read_minimal_symbols (objfile, symfile_flags, &ei);
1182
1183 /* ELF debugging information is inserted into the psymtab in the
1184 order of least informative first - most informative last. Since
1185 the psymtab table is searched `most recent insertion first' this
1186 increases the probability that more detailed debug information
1187 for a section is found.
1188
1189 For instance, an object file might contain both .mdebug (XCOFF)
1190 and .debug_info (DWARF2) sections then .mdebug is inserted first
1191 (searched last) and DWARF2 is inserted last (searched first). If
1192 we don't do this then the XCOFF info is found first - for code in
1193 an included file XCOFF info is useless. */
1194
1195 if (ei.mdebugsect)
1196 {
1197 const struct ecoff_debug_swap *swap;
1198
1199 /* .mdebug section, presumably holding ECOFF debugging
1200 information. */
1201 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1202 if (swap)
1203 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1204 }
1205 if (ei.stabsect)
1206 {
1207 asection *str_sect;
1208
1209 /* Stab sections have an associated string table that looks like
1210 a separate section. */
1211 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1212
1213 /* FIXME should probably warn about a stab section without a stabstr. */
1214 if (str_sect)
1215 elfstab_build_psymtabs (objfile,
1216 ei.stabsect,
1217 str_sect->filepos,
1218 bfd_section_size (abfd, str_sect));
1219 }
1220
1221 if (dwarf2_has_info (objfile, NULL))
1222 {
1223 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1224 information present in OBJFILE. If there is such debug info present
1225 never use .gdb_index. */
1226
1227 if (!objfile_has_partial_symbols (objfile)
1228 && dwarf2_initialize_objfile (objfile))
1229 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1230 else
1231 {
1232 /* It is ok to do this even if the stabs reader made some
1233 partial symbols, because OBJF_PSYMTABS_READ has not been
1234 set, and so our lazy reader function will still be called
1235 when needed. */
1236 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1237 }
1238 }
1239 /* If the file has its own symbol tables it has no separate debug
1240 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1241 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1242 `.note.gnu.build-id'.
1243
1244 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1245 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1246 an objfile via find_separate_debug_file_in_section there was no separate
1247 debug info available. Therefore do not attempt to search for another one,
1248 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1249 be NULL and we would possibly violate it. */
1250
1251 else if (!objfile_has_partial_symbols (objfile)
1252 && objfile->separate_debug_objfile == NULL
1253 && objfile->separate_debug_objfile_backlink == NULL)
1254 {
1255 char *debugfile;
1256
1257 debugfile = find_separate_debug_file_by_buildid (objfile);
1258
1259 if (debugfile == NULL)
1260 debugfile = find_separate_debug_file_by_debuglink (objfile);
1261
1262 if (debugfile)
1263 {
1264 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1265 bfd *abfd = symfile_bfd_open (debugfile);
1266
1267 make_cleanup_bfd_unref (abfd);
1268 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1269 do_cleanups (cleanup);
1270 }
1271 }
1272 }
1273
1274 /* Callback to lazily read psymtabs. */
1275
1276 static void
1277 read_psyms (struct objfile *objfile)
1278 {
1279 if (dwarf2_has_info (objfile, NULL))
1280 dwarf2_build_psymtabs (objfile);
1281 }
1282
1283 /* Initialize anything that needs initializing when a completely new symbol
1284 file is specified (not just adding some symbols from another file, e.g. a
1285 shared library).
1286
1287 We reinitialize buildsym, since we may be reading stabs from an ELF
1288 file. */
1289
1290 static void
1291 elf_new_init (struct objfile *ignore)
1292 {
1293 stabsread_new_init ();
1294 buildsym_new_init ();
1295 }
1296
1297 /* Perform any local cleanups required when we are done with a particular
1298 objfile. I.E, we are in the process of discarding all symbol information
1299 for an objfile, freeing up all memory held for it, and unlinking the
1300 objfile struct from the global list of known objfiles. */
1301
1302 static void
1303 elf_symfile_finish (struct objfile *objfile)
1304 {
1305 dwarf2_free_objfile (objfile);
1306 }
1307
1308 /* ELF specific initialization routine for reading symbols. */
1309
1310 static void
1311 elf_symfile_init (struct objfile *objfile)
1312 {
1313 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1314 find this causes a significant slowdown in gdb then we could
1315 set it in the debug symbol readers only when necessary. */
1316 objfile->flags |= OBJF_REORDERED;
1317 }
1318
1319 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1320
1321 static VEC (probe_p) *
1322 elf_get_probes (struct objfile *objfile)
1323 {
1324 VEC (probe_p) *probes_per_bfd;
1325
1326 /* Have we parsed this objfile's probes already? */
1327 probes_per_bfd = bfd_data (objfile->obfd, probe_key);
1328
1329 if (!probes_per_bfd)
1330 {
1331 int ix;
1332 const struct probe_ops *probe_ops;
1333
1334 /* Here we try to gather information about all types of probes from the
1335 objfile. */
1336 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1337 ix++)
1338 probe_ops->get_probes (&probes_per_bfd, objfile);
1339
1340 if (probes_per_bfd == NULL)
1341 {
1342 VEC_reserve (probe_p, probes_per_bfd, 1);
1343 gdb_assert (probes_per_bfd != NULL);
1344 }
1345
1346 set_bfd_data (objfile->obfd, probe_key, probes_per_bfd);
1347 }
1348
1349 return probes_per_bfd;
1350 }
1351
1352 /* Helper function used to free the space allocated for storing SystemTap
1353 probe information. */
1354
1355 static void
1356 probe_key_free (bfd *abfd, void *d)
1357 {
1358 int ix;
1359 VEC (probe_p) *probes = d;
1360 struct probe *probe;
1361
1362 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1363 probe->pops->destroy (probe);
1364
1365 VEC_free (probe_p, probes);
1366 }
1367
1368 \f
1369
1370 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1371
1372 static const struct sym_probe_fns elf_probe_fns =
1373 {
1374 elf_get_probes, /* sym_get_probes */
1375 };
1376
1377 /* Register that we are able to handle ELF object file formats. */
1378
1379 static const struct sym_fns elf_sym_fns =
1380 {
1381 elf_new_init, /* init anything gbl to entire symtab */
1382 elf_symfile_init, /* read initial info, setup for sym_read() */
1383 elf_symfile_read, /* read a symbol file into symtab */
1384 NULL, /* sym_read_psymbols */
1385 elf_symfile_finish, /* finished with file, cleanup */
1386 default_symfile_offsets, /* Translate ext. to int. relocation */
1387 elf_symfile_segments, /* Get segment information from a file. */
1388 NULL,
1389 default_symfile_relocate, /* Relocate a debug section. */
1390 &elf_probe_fns, /* sym_probe_fns */
1391 &psym_functions
1392 };
1393
1394 /* The same as elf_sym_fns, but not registered and lazily reads
1395 psymbols. */
1396
1397 const struct sym_fns elf_sym_fns_lazy_psyms =
1398 {
1399 elf_new_init, /* init anything gbl to entire symtab */
1400 elf_symfile_init, /* read initial info, setup for sym_read() */
1401 elf_symfile_read, /* read a symbol file into symtab */
1402 read_psyms, /* sym_read_psymbols */
1403 elf_symfile_finish, /* finished with file, cleanup */
1404 default_symfile_offsets, /* Translate ext. to int. relocation */
1405 elf_symfile_segments, /* Get segment information from a file. */
1406 NULL,
1407 default_symfile_relocate, /* Relocate a debug section. */
1408 &elf_probe_fns, /* sym_probe_fns */
1409 &psym_functions
1410 };
1411
1412 /* The same as elf_sym_fns, but not registered and uses the
1413 DWARF-specific GNU index rather than psymtab. */
1414 const struct sym_fns elf_sym_fns_gdb_index =
1415 {
1416 elf_new_init, /* init anything gbl to entire symab */
1417 elf_symfile_init, /* read initial info, setup for sym_red() */
1418 elf_symfile_read, /* read a symbol file into symtab */
1419 NULL, /* sym_read_psymbols */
1420 elf_symfile_finish, /* finished with file, cleanup */
1421 default_symfile_offsets, /* Translate ext. to int. relocatin */
1422 elf_symfile_segments, /* Get segment information from a file. */
1423 NULL,
1424 default_symfile_relocate, /* Relocate a debug section. */
1425 &elf_probe_fns, /* sym_probe_fns */
1426 &dwarf2_gdb_index_functions
1427 };
1428
1429 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1430
1431 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1432 {
1433 elf_gnu_ifunc_resolve_addr,
1434 elf_gnu_ifunc_resolve_name,
1435 elf_gnu_ifunc_resolver_stop,
1436 elf_gnu_ifunc_resolver_return_stop
1437 };
1438
1439 void
1440 _initialize_elfread (void)
1441 {
1442 probe_key = register_bfd_data_with_cleanup (NULL, probe_key_free);
1443 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1444
1445 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1446 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1447 }