]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/eval.c
* win32-low.c (win32_add_one_solib): If the dll name is
[thirdparty/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "target.h"
29 #include "frame.h"
30 #include "language.h" /* For CAST_IS_CONVERSION */
31 #include "f-lang.h" /* for array bound stuff */
32 #include "cp-abi.h"
33 #include "infcall.h"
34 #include "objc-lang.h"
35 #include "block.h"
36 #include "parser-defs.h"
37 #include "cp-support.h"
38 #include "ui-out.h"
39 #include "exceptions.h"
40 #include "regcache.h"
41 #include "user-regs.h"
42 #include "valprint.h"
43 #include "gdb_obstack.h"
44 #include "objfiles.h"
45 #include "python/python.h"
46
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* This is defined in valops.c */
52 extern int overload_resolution;
53
54 /* Prototypes for local functions. */
55
56 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *);
57
58 static struct value *evaluate_subexp_for_address (struct expression *,
59 int *, enum noside);
60
61 static char *get_label (struct expression *, int *);
62
63 static struct value *evaluate_struct_tuple (struct value *,
64 struct expression *, int *,
65 enum noside, int);
66
67 static LONGEST init_array_element (struct value *, struct value *,
68 struct expression *, int *, enum noside,
69 LONGEST, LONGEST);
70
71 struct value *
72 evaluate_subexp (struct type *expect_type, struct expression *exp,
73 int *pos, enum noside noside)
74 {
75 return (*exp->language_defn->la_exp_desc->evaluate_exp)
76 (expect_type, exp, pos, noside);
77 }
78 \f
79 /* Parse the string EXP as a C expression, evaluate it,
80 and return the result as a number. */
81
82 CORE_ADDR
83 parse_and_eval_address (char *exp)
84 {
85 struct expression *expr = parse_expression (exp);
86 CORE_ADDR addr;
87 struct cleanup *old_chain =
88 make_cleanup (free_current_contents, &expr);
89
90 addr = value_as_address (evaluate_expression (expr));
91 do_cleanups (old_chain);
92 return addr;
93 }
94
95 /* Like parse_and_eval_address but takes a pointer to a char * variable
96 and advanced that variable across the characters parsed. */
97
98 CORE_ADDR
99 parse_and_eval_address_1 (char **expptr)
100 {
101 struct expression *expr = parse_exp_1 (expptr, (struct block *) 0, 0);
102 CORE_ADDR addr;
103 struct cleanup *old_chain =
104 make_cleanup (free_current_contents, &expr);
105
106 addr = value_as_address (evaluate_expression (expr));
107 do_cleanups (old_chain);
108 return addr;
109 }
110
111 /* Like parse_and_eval_address, but treats the value of the expression
112 as an integer, not an address, returns a LONGEST, not a CORE_ADDR */
113 LONGEST
114 parse_and_eval_long (char *exp)
115 {
116 struct expression *expr = parse_expression (exp);
117 LONGEST retval;
118 struct cleanup *old_chain =
119 make_cleanup (free_current_contents, &expr);
120
121 retval = value_as_long (evaluate_expression (expr));
122 do_cleanups (old_chain);
123 return (retval);
124 }
125
126 struct value *
127 parse_and_eval (char *exp)
128 {
129 struct expression *expr = parse_expression (exp);
130 struct value *val;
131 struct cleanup *old_chain =
132 make_cleanup (free_current_contents, &expr);
133
134 val = evaluate_expression (expr);
135 do_cleanups (old_chain);
136 return val;
137 }
138
139 /* Parse up to a comma (or to a closeparen)
140 in the string EXPP as an expression, evaluate it, and return the value.
141 EXPP is advanced to point to the comma. */
142
143 struct value *
144 parse_to_comma_and_eval (char **expp)
145 {
146 struct expression *expr = parse_exp_1 (expp, (struct block *) 0, 1);
147 struct value *val;
148 struct cleanup *old_chain =
149 make_cleanup (free_current_contents, &expr);
150
151 val = evaluate_expression (expr);
152 do_cleanups (old_chain);
153 return val;
154 }
155 \f
156 /* Evaluate an expression in internal prefix form
157 such as is constructed by parse.y.
158
159 See expression.h for info on the format of an expression. */
160
161 struct value *
162 evaluate_expression (struct expression *exp)
163 {
164 int pc = 0;
165 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
166 }
167
168 /* Evaluate an expression, avoiding all memory references
169 and getting a value whose type alone is correct. */
170
171 struct value *
172 evaluate_type (struct expression *exp)
173 {
174 int pc = 0;
175 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
176 }
177
178 /* Evaluate a subexpression, avoiding all memory references and
179 getting a value whose type alone is correct. */
180
181 struct value *
182 evaluate_subexpression_type (struct expression *exp, int subexp)
183 {
184 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
185 }
186
187 /* Extract a field operation from an expression. If the subexpression
188 of EXP starting at *SUBEXP is not a structure dereference
189 operation, return NULL. Otherwise, return the name of the
190 dereferenced field, and advance *SUBEXP to point to the
191 subexpression of the left-hand-side of the dereference. This is
192 used when completing field names. */
193
194 char *
195 extract_field_op (struct expression *exp, int *subexp)
196 {
197 int tem;
198 char *result;
199 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
200 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
201 return NULL;
202 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
203 result = &exp->elts[*subexp + 2].string;
204 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
205 return result;
206 }
207
208 /* If the next expression is an OP_LABELED, skips past it,
209 returning the label. Otherwise, does nothing and returns NULL. */
210
211 static char *
212 get_label (struct expression *exp, int *pos)
213 {
214 if (exp->elts[*pos].opcode == OP_LABELED)
215 {
216 int pc = (*pos)++;
217 char *name = &exp->elts[pc + 2].string;
218 int tem = longest_to_int (exp->elts[pc + 1].longconst);
219 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
220 return name;
221 }
222 else
223 return NULL;
224 }
225
226 /* This function evaluates tuples (in (the deleted) Chill) or
227 brace-initializers (in C/C++) for structure types. */
228
229 static struct value *
230 evaluate_struct_tuple (struct value *struct_val,
231 struct expression *exp,
232 int *pos, enum noside noside, int nargs)
233 {
234 struct type *struct_type = check_typedef (value_type (struct_val));
235 struct type *substruct_type = struct_type;
236 struct type *field_type;
237 int fieldno = -1;
238 int variantno = -1;
239 int subfieldno = -1;
240 while (--nargs >= 0)
241 {
242 int pc = *pos;
243 struct value *val = NULL;
244 int nlabels = 0;
245 int bitpos, bitsize;
246 bfd_byte *addr;
247
248 /* Skip past the labels, and count them. */
249 while (get_label (exp, pos) != NULL)
250 nlabels++;
251
252 do
253 {
254 char *label = get_label (exp, &pc);
255 if (label)
256 {
257 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
258 fieldno++)
259 {
260 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
261 if (field_name != NULL && strcmp (field_name, label) == 0)
262 {
263 variantno = -1;
264 subfieldno = fieldno;
265 substruct_type = struct_type;
266 goto found;
267 }
268 }
269 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type);
270 fieldno++)
271 {
272 char *field_name = TYPE_FIELD_NAME (struct_type, fieldno);
273 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
274 if ((field_name == 0 || *field_name == '\0')
275 && TYPE_CODE (field_type) == TYPE_CODE_UNION)
276 {
277 variantno = 0;
278 for (; variantno < TYPE_NFIELDS (field_type);
279 variantno++)
280 {
281 substruct_type
282 = TYPE_FIELD_TYPE (field_type, variantno);
283 if (TYPE_CODE (substruct_type) == TYPE_CODE_STRUCT)
284 {
285 for (subfieldno = 0;
286 subfieldno < TYPE_NFIELDS (substruct_type);
287 subfieldno++)
288 {
289 if (strcmp(TYPE_FIELD_NAME (substruct_type,
290 subfieldno),
291 label) == 0)
292 {
293 goto found;
294 }
295 }
296 }
297 }
298 }
299 }
300 error (_("there is no field named %s"), label);
301 found:
302 ;
303 }
304 else
305 {
306 /* Unlabelled tuple element - go to next field. */
307 if (variantno >= 0)
308 {
309 subfieldno++;
310 if (subfieldno >= TYPE_NFIELDS (substruct_type))
311 {
312 variantno = -1;
313 substruct_type = struct_type;
314 }
315 }
316 if (variantno < 0)
317 {
318 fieldno++;
319 /* Skip static fields. */
320 while (fieldno < TYPE_NFIELDS (struct_type)
321 && field_is_static (&TYPE_FIELD (struct_type,
322 fieldno)))
323 fieldno++;
324 subfieldno = fieldno;
325 if (fieldno >= TYPE_NFIELDS (struct_type))
326 error (_("too many initializers"));
327 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
328 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
329 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
330 error (_("don't know which variant you want to set"));
331 }
332 }
333
334 /* Here, struct_type is the type of the inner struct,
335 while substruct_type is the type of the inner struct.
336 These are the same for normal structures, but a variant struct
337 contains anonymous union fields that contain substruct fields.
338 The value fieldno is the index of the top-level (normal or
339 anonymous union) field in struct_field, while the value
340 subfieldno is the index of the actual real (named inner) field
341 in substruct_type. */
342
343 field_type = TYPE_FIELD_TYPE (substruct_type, subfieldno);
344 if (val == 0)
345 val = evaluate_subexp (field_type, exp, pos, noside);
346
347 /* Now actually set the field in struct_val. */
348
349 /* Assign val to field fieldno. */
350 if (value_type (val) != field_type)
351 val = value_cast (field_type, val);
352
353 bitsize = TYPE_FIELD_BITSIZE (substruct_type, subfieldno);
354 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
355 if (variantno >= 0)
356 bitpos += TYPE_FIELD_BITPOS (substruct_type, subfieldno);
357 addr = value_contents_writeable (struct_val) + bitpos / 8;
358 if (bitsize)
359 modify_field (struct_type, addr,
360 value_as_long (val), bitpos % 8, bitsize);
361 else
362 memcpy (addr, value_contents (val),
363 TYPE_LENGTH (value_type (val)));
364 }
365 while (--nlabels > 0);
366 }
367 return struct_val;
368 }
369
370 /* Recursive helper function for setting elements of array tuples for
371 (the deleted) Chill. The target is ARRAY (which has bounds
372 LOW_BOUND to HIGH_BOUND); the element value is ELEMENT; EXP, POS
373 and NOSIDE are as usual. Evaluates index expresions and sets the
374 specified element(s) of ARRAY to ELEMENT. Returns last index
375 value. */
376
377 static LONGEST
378 init_array_element (struct value *array, struct value *element,
379 struct expression *exp, int *pos,
380 enum noside noside, LONGEST low_bound, LONGEST high_bound)
381 {
382 LONGEST index;
383 int element_size = TYPE_LENGTH (value_type (element));
384 if (exp->elts[*pos].opcode == BINOP_COMMA)
385 {
386 (*pos)++;
387 init_array_element (array, element, exp, pos, noside,
388 low_bound, high_bound);
389 return init_array_element (array, element,
390 exp, pos, noside, low_bound, high_bound);
391 }
392 else if (exp->elts[*pos].opcode == BINOP_RANGE)
393 {
394 LONGEST low, high;
395 (*pos)++;
396 low = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
397 high = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
398 if (low < low_bound || high > high_bound)
399 error (_("tuple range index out of range"));
400 for (index = low; index <= high; index++)
401 {
402 memcpy (value_contents_raw (array)
403 + (index - low_bound) * element_size,
404 value_contents (element), element_size);
405 }
406 }
407 else
408 {
409 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
410 if (index < low_bound || index > high_bound)
411 error (_("tuple index out of range"));
412 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
413 value_contents (element), element_size);
414 }
415 return index;
416 }
417
418 static struct value *
419 value_f90_subarray (struct value *array,
420 struct expression *exp, int *pos, enum noside noside)
421 {
422 int pc = (*pos) + 1;
423 LONGEST low_bound, high_bound;
424 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
425 enum f90_range_type range_type = longest_to_int (exp->elts[pc].longconst);
426
427 *pos += 3;
428
429 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
430 low_bound = TYPE_LOW_BOUND (range);
431 else
432 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
433
434 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
435 high_bound = TYPE_HIGH_BOUND (range);
436 else
437 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
438
439 return value_slice (array, low_bound, high_bound - low_bound + 1);
440 }
441
442
443 /* Promote value ARG1 as appropriate before performing a unary operation
444 on this argument.
445 If the result is not appropriate for any particular language then it
446 needs to patch this function. */
447
448 void
449 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
450 struct value **arg1)
451 {
452 struct type *type1;
453
454 *arg1 = coerce_ref (*arg1);
455 type1 = check_typedef (value_type (*arg1));
456
457 if (is_integral_type (type1))
458 {
459 switch (language->la_language)
460 {
461 default:
462 /* Perform integral promotion for ANSI C/C++.
463 If not appropropriate for any particular language
464 it needs to modify this function. */
465 {
466 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
467 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
468 *arg1 = value_cast (builtin_int, *arg1);
469 }
470 break;
471 }
472 }
473 }
474
475 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
476 operation on those two operands.
477 If the result is not appropriate for any particular language then it
478 needs to patch this function. */
479
480 void
481 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
482 struct value **arg1, struct value **arg2)
483 {
484 struct type *promoted_type = NULL;
485 struct type *type1;
486 struct type *type2;
487
488 *arg1 = coerce_ref (*arg1);
489 *arg2 = coerce_ref (*arg2);
490
491 type1 = check_typedef (value_type (*arg1));
492 type2 = check_typedef (value_type (*arg2));
493
494 if ((TYPE_CODE (type1) != TYPE_CODE_FLT
495 && TYPE_CODE (type1) != TYPE_CODE_DECFLOAT
496 && !is_integral_type (type1))
497 || (TYPE_CODE (type2) != TYPE_CODE_FLT
498 && TYPE_CODE (type2) != TYPE_CODE_DECFLOAT
499 && !is_integral_type (type2)))
500 return;
501
502 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT
503 || TYPE_CODE (type2) == TYPE_CODE_DECFLOAT)
504 {
505 /* No promotion required. */
506 }
507 else if (TYPE_CODE (type1) == TYPE_CODE_FLT
508 || TYPE_CODE (type2) == TYPE_CODE_FLT)
509 {
510 switch (language->la_language)
511 {
512 case language_c:
513 case language_cplus:
514 case language_asm:
515 case language_objc:
516 /* No promotion required. */
517 break;
518
519 default:
520 /* For other languages the result type is unchanged from gdb
521 version 6.7 for backward compatibility.
522 If either arg was long double, make sure that value is also long
523 double. Otherwise use double. */
524 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
525 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
526 promoted_type = builtin_type (gdbarch)->builtin_long_double;
527 else
528 promoted_type = builtin_type (gdbarch)->builtin_double;
529 break;
530 }
531 }
532 else if (TYPE_CODE (type1) == TYPE_CODE_BOOL
533 && TYPE_CODE (type2) == TYPE_CODE_BOOL)
534 {
535 /* No promotion required. */
536 }
537 else
538 /* Integral operations here. */
539 /* FIXME: Also mixed integral/booleans, with result an integer. */
540 {
541 const struct builtin_type *builtin = builtin_type (gdbarch);
542 unsigned int promoted_len1 = TYPE_LENGTH (type1);
543 unsigned int promoted_len2 = TYPE_LENGTH (type2);
544 int is_unsigned1 = TYPE_UNSIGNED (type1);
545 int is_unsigned2 = TYPE_UNSIGNED (type2);
546 unsigned int result_len;
547 int unsigned_operation;
548
549 /* Determine type length and signedness after promotion for
550 both operands. */
551 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
552 {
553 is_unsigned1 = 0;
554 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
555 }
556 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
557 {
558 is_unsigned2 = 0;
559 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
560 }
561
562 if (promoted_len1 > promoted_len2)
563 {
564 unsigned_operation = is_unsigned1;
565 result_len = promoted_len1;
566 }
567 else if (promoted_len2 > promoted_len1)
568 {
569 unsigned_operation = is_unsigned2;
570 result_len = promoted_len2;
571 }
572 else
573 {
574 unsigned_operation = is_unsigned1 || is_unsigned2;
575 result_len = promoted_len1;
576 }
577
578 switch (language->la_language)
579 {
580 case language_c:
581 case language_cplus:
582 case language_asm:
583 case language_objc:
584 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
585 {
586 promoted_type = (unsigned_operation
587 ? builtin->builtin_unsigned_int
588 : builtin->builtin_int);
589 }
590 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
591 {
592 promoted_type = (unsigned_operation
593 ? builtin->builtin_unsigned_long
594 : builtin->builtin_long);
595 }
596 else
597 {
598 promoted_type = (unsigned_operation
599 ? builtin->builtin_unsigned_long_long
600 : builtin->builtin_long_long);
601 }
602 break;
603
604 default:
605 /* For other languages the result type is unchanged from gdb
606 version 6.7 for backward compatibility.
607 If either arg was long long, make sure that value is also long
608 long. Otherwise use long. */
609 if (unsigned_operation)
610 {
611 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
612 promoted_type = builtin->builtin_unsigned_long_long;
613 else
614 promoted_type = builtin->builtin_unsigned_long;
615 }
616 else
617 {
618 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
619 promoted_type = builtin->builtin_long_long;
620 else
621 promoted_type = builtin->builtin_long;
622 }
623 break;
624 }
625 }
626
627 if (promoted_type)
628 {
629 /* Promote both operands to common type. */
630 *arg1 = value_cast (promoted_type, *arg1);
631 *arg2 = value_cast (promoted_type, *arg2);
632 }
633 }
634
635 static int
636 ptrmath_type_p (struct type *type)
637 {
638 type = check_typedef (type);
639 if (TYPE_CODE (type) == TYPE_CODE_REF)
640 type = TYPE_TARGET_TYPE (type);
641
642 switch (TYPE_CODE (type))
643 {
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_FUNC:
646 return 1;
647
648 case TYPE_CODE_ARRAY:
649 return current_language->c_style_arrays;
650
651 default:
652 return 0;
653 }
654 }
655
656 /* Constructs a fake method with the given parameter types.
657 This function is used by the parser to construct an "expected"
658 type for method overload resolution. */
659
660 static struct type *
661 make_params (int num_types, struct type **param_types)
662 {
663 struct type *type = XZALLOC (struct type);
664 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
665 TYPE_LENGTH (type) = 1;
666 TYPE_CODE (type) = TYPE_CODE_METHOD;
667 TYPE_VPTR_FIELDNO (type) = -1;
668 TYPE_CHAIN (type) = type;
669 TYPE_NFIELDS (type) = num_types;
670 TYPE_FIELDS (type) = (struct field *)
671 TYPE_ZALLOC (type, sizeof (struct field) * num_types);
672
673 while (num_types-- > 0)
674 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
675
676 return type;
677 }
678
679 struct value *
680 evaluate_subexp_standard (struct type *expect_type,
681 struct expression *exp, int *pos,
682 enum noside noside)
683 {
684 enum exp_opcode op;
685 int tem, tem2, tem3;
686 int pc, pc2 = 0, oldpos;
687 struct value *arg1 = NULL;
688 struct value *arg2 = NULL;
689 struct value *arg3;
690 struct type *type;
691 int nargs;
692 struct value **argvec;
693 int upper, lower, retcode;
694 int code;
695 int ix;
696 long mem_offset;
697 struct type **arg_types;
698 int save_pos1;
699
700 pc = (*pos)++;
701 op = exp->elts[pc].opcode;
702
703 switch (op)
704 {
705 case OP_SCOPE:
706 tem = longest_to_int (exp->elts[pc + 2].longconst);
707 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
708 if (noside == EVAL_SKIP)
709 goto nosideret;
710 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
711 &exp->elts[pc + 3].string,
712 expect_type, 0, noside);
713 if (arg1 == NULL)
714 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
715 return arg1;
716
717 case OP_LONG:
718 (*pos) += 3;
719 return value_from_longest (exp->elts[pc + 1].type,
720 exp->elts[pc + 2].longconst);
721
722 case OP_DOUBLE:
723 (*pos) += 3;
724 return value_from_double (exp->elts[pc + 1].type,
725 exp->elts[pc + 2].doubleconst);
726
727 case OP_DECFLOAT:
728 (*pos) += 3;
729 return value_from_decfloat (exp->elts[pc + 1].type,
730 exp->elts[pc + 2].decfloatconst);
731
732 case OP_VAR_VALUE:
733 (*pos) += 3;
734 if (noside == EVAL_SKIP)
735 goto nosideret;
736
737 /* JYG: We used to just return value_zero of the symbol type
738 if we're asked to avoid side effects. Otherwise we return
739 value_of_variable (...). However I'm not sure if
740 value_of_variable () has any side effect.
741 We need a full value object returned here for whatis_exp ()
742 to call evaluate_type () and then pass the full value to
743 value_rtti_target_type () if we are dealing with a pointer
744 or reference to a base class and print object is on. */
745
746 {
747 volatile struct gdb_exception except;
748 struct value *ret = NULL;
749
750 TRY_CATCH (except, RETURN_MASK_ERROR)
751 {
752 ret = value_of_variable (exp->elts[pc + 2].symbol,
753 exp->elts[pc + 1].block);
754 }
755
756 if (except.reason < 0)
757 {
758 if (noside == EVAL_AVOID_SIDE_EFFECTS)
759 ret = value_zero (SYMBOL_TYPE (exp->elts[pc + 2].symbol), not_lval);
760 else
761 throw_exception (except);
762 }
763
764 return ret;
765 }
766
767 case OP_LAST:
768 (*pos) += 2;
769 return
770 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
771
772 case OP_REGISTER:
773 {
774 const char *name = &exp->elts[pc + 2].string;
775 int regno;
776 struct value *val;
777
778 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
779 regno = user_reg_map_name_to_regnum (exp->gdbarch,
780 name, strlen (name));
781 if (regno == -1)
782 error (_("Register $%s not available."), name);
783
784 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
785 a value with the appropriate register type. Unfortunately,
786 we don't have easy access to the type of user registers.
787 So for these registers, we fetch the register value regardless
788 of the evaluation mode. */
789 if (noside == EVAL_AVOID_SIDE_EFFECTS
790 && regno < gdbarch_num_regs (exp->gdbarch)
791 + gdbarch_num_pseudo_regs (exp->gdbarch))
792 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
793 else
794 val = value_of_register (regno, get_selected_frame (NULL));
795 if (val == NULL)
796 error (_("Value of register %s not available."), name);
797 else
798 return val;
799 }
800 case OP_BOOL:
801 (*pos) += 2;
802 type = language_bool_type (exp->language_defn, exp->gdbarch);
803 return value_from_longest (type, exp->elts[pc + 1].longconst);
804
805 case OP_INTERNALVAR:
806 (*pos) += 2;
807 return value_of_internalvar (exp->gdbarch,
808 exp->elts[pc + 1].internalvar);
809
810 case OP_STRING:
811 tem = longest_to_int (exp->elts[pc + 1].longconst);
812 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
813 if (noside == EVAL_SKIP)
814 goto nosideret;
815 type = language_string_char_type (exp->language_defn, exp->gdbarch);
816 return value_string (&exp->elts[pc + 2].string, tem, type);
817
818 case OP_OBJC_NSSTRING: /* Objective C Foundation Class NSString constant. */
819 tem = longest_to_int (exp->elts[pc + 1].longconst);
820 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
821 if (noside == EVAL_SKIP)
822 {
823 goto nosideret;
824 }
825 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
826
827 case OP_BITSTRING:
828 tem = longest_to_int (exp->elts[pc + 1].longconst);
829 (*pos)
830 += 3 + BYTES_TO_EXP_ELEM ((tem + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT);
831 if (noside == EVAL_SKIP)
832 goto nosideret;
833 return value_bitstring (&exp->elts[pc + 2].string, tem,
834 builtin_type (exp->gdbarch)->builtin_int);
835 break;
836
837 case OP_ARRAY:
838 (*pos) += 3;
839 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
840 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
841 nargs = tem3 - tem2 + 1;
842 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
843
844 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
845 && TYPE_CODE (type) == TYPE_CODE_STRUCT)
846 {
847 struct value *rec = allocate_value (expect_type);
848 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
849 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
850 }
851
852 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
853 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
854 {
855 struct type *range_type = TYPE_INDEX_TYPE (type);
856 struct type *element_type = TYPE_TARGET_TYPE (type);
857 struct value *array = allocate_value (expect_type);
858 int element_size = TYPE_LENGTH (check_typedef (element_type));
859 LONGEST low_bound, high_bound, index;
860 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
861 {
862 low_bound = 0;
863 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
864 }
865 index = low_bound;
866 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
867 for (tem = nargs; --nargs >= 0;)
868 {
869 struct value *element;
870 int index_pc = 0;
871 if (exp->elts[*pos].opcode == BINOP_RANGE)
872 {
873 index_pc = ++(*pos);
874 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
875 }
876 element = evaluate_subexp (element_type, exp, pos, noside);
877 if (value_type (element) != element_type)
878 element = value_cast (element_type, element);
879 if (index_pc)
880 {
881 int continue_pc = *pos;
882 *pos = index_pc;
883 index = init_array_element (array, element, exp, pos, noside,
884 low_bound, high_bound);
885 *pos = continue_pc;
886 }
887 else
888 {
889 if (index > high_bound)
890 /* to avoid memory corruption */
891 error (_("Too many array elements"));
892 memcpy (value_contents_raw (array)
893 + (index - low_bound) * element_size,
894 value_contents (element),
895 element_size);
896 }
897 index++;
898 }
899 return array;
900 }
901
902 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
903 && TYPE_CODE (type) == TYPE_CODE_SET)
904 {
905 struct value *set = allocate_value (expect_type);
906 gdb_byte *valaddr = value_contents_raw (set);
907 struct type *element_type = TYPE_INDEX_TYPE (type);
908 struct type *check_type = element_type;
909 LONGEST low_bound, high_bound;
910
911 /* get targettype of elementtype */
912 while (TYPE_CODE (check_type) == TYPE_CODE_RANGE
913 || TYPE_CODE (check_type) == TYPE_CODE_TYPEDEF)
914 check_type = TYPE_TARGET_TYPE (check_type);
915
916 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
917 error (_("(power)set type with unknown size"));
918 memset (valaddr, '\0', TYPE_LENGTH (type));
919 for (tem = 0; tem < nargs; tem++)
920 {
921 LONGEST range_low, range_high;
922 struct type *range_low_type, *range_high_type;
923 struct value *elem_val;
924 if (exp->elts[*pos].opcode == BINOP_RANGE)
925 {
926 (*pos)++;
927 elem_val = evaluate_subexp (element_type, exp, pos, noside);
928 range_low_type = value_type (elem_val);
929 range_low = value_as_long (elem_val);
930 elem_val = evaluate_subexp (element_type, exp, pos, noside);
931 range_high_type = value_type (elem_val);
932 range_high = value_as_long (elem_val);
933 }
934 else
935 {
936 elem_val = evaluate_subexp (element_type, exp, pos, noside);
937 range_low_type = range_high_type = value_type (elem_val);
938 range_low = range_high = value_as_long (elem_val);
939 }
940 /* check types of elements to avoid mixture of elements from
941 different types. Also check if type of element is "compatible"
942 with element type of powerset */
943 if (TYPE_CODE (range_low_type) == TYPE_CODE_RANGE)
944 range_low_type = TYPE_TARGET_TYPE (range_low_type);
945 if (TYPE_CODE (range_high_type) == TYPE_CODE_RANGE)
946 range_high_type = TYPE_TARGET_TYPE (range_high_type);
947 if ((TYPE_CODE (range_low_type) != TYPE_CODE (range_high_type))
948 || (TYPE_CODE (range_low_type) == TYPE_CODE_ENUM
949 && (range_low_type != range_high_type)))
950 /* different element modes */
951 error (_("POWERSET tuple elements of different mode"));
952 if ((TYPE_CODE (check_type) != TYPE_CODE (range_low_type))
953 || (TYPE_CODE (check_type) == TYPE_CODE_ENUM
954 && range_low_type != check_type))
955 error (_("incompatible POWERSET tuple elements"));
956 if (range_low > range_high)
957 {
958 warning (_("empty POWERSET tuple range"));
959 continue;
960 }
961 if (range_low < low_bound || range_high > high_bound)
962 error (_("POWERSET tuple element out of range"));
963 range_low -= low_bound;
964 range_high -= low_bound;
965 for (; range_low <= range_high; range_low++)
966 {
967 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
968 if (gdbarch_bits_big_endian (exp->gdbarch))
969 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
970 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
971 |= 1 << bit_index;
972 }
973 }
974 return set;
975 }
976
977 argvec = (struct value **) alloca (sizeof (struct value *) * nargs);
978 for (tem = 0; tem < nargs; tem++)
979 {
980 /* Ensure that array expressions are coerced into pointer objects. */
981 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
982 }
983 if (noside == EVAL_SKIP)
984 goto nosideret;
985 return value_array (tem2, tem3, argvec);
986
987 case TERNOP_SLICE:
988 {
989 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
990 int lowbound
991 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
992 int upper
993 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
994 if (noside == EVAL_SKIP)
995 goto nosideret;
996 return value_slice (array, lowbound, upper - lowbound + 1);
997 }
998
999 case TERNOP_SLICE_COUNT:
1000 {
1001 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1002 int lowbound
1003 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1004 int length
1005 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1006 return value_slice (array, lowbound, length);
1007 }
1008
1009 case TERNOP_COND:
1010 /* Skip third and second args to evaluate the first one. */
1011 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1012 if (value_logical_not (arg1))
1013 {
1014 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1015 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1016 }
1017 else
1018 {
1019 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1020 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1021 return arg2;
1022 }
1023
1024 case OP_OBJC_SELECTOR:
1025 { /* Objective C @selector operator. */
1026 char *sel = &exp->elts[pc + 2].string;
1027 int len = longest_to_int (exp->elts[pc + 1].longconst);
1028 struct type *selector_type;
1029
1030 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1031 if (noside == EVAL_SKIP)
1032 goto nosideret;
1033
1034 if (sel[len] != 0)
1035 sel[len] = 0; /* Make sure it's terminated. */
1036
1037 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1038 return value_from_longest (selector_type,
1039 lookup_child_selector (exp->gdbarch, sel));
1040 }
1041
1042 case OP_OBJC_MSGCALL:
1043 { /* Objective C message (method) call. */
1044
1045 CORE_ADDR responds_selector = 0;
1046 CORE_ADDR method_selector = 0;
1047
1048 CORE_ADDR selector = 0;
1049
1050 int struct_return = 0;
1051 int sub_no_side = 0;
1052
1053 struct value *msg_send = NULL;
1054 struct value *msg_send_stret = NULL;
1055 int gnu_runtime = 0;
1056
1057 struct value *target = NULL;
1058 struct value *method = NULL;
1059 struct value *called_method = NULL;
1060
1061 struct type *selector_type = NULL;
1062 struct type *long_type;
1063
1064 struct value *ret = NULL;
1065 CORE_ADDR addr = 0;
1066
1067 selector = exp->elts[pc + 1].longconst;
1068 nargs = exp->elts[pc + 2].longconst;
1069 argvec = (struct value **) alloca (sizeof (struct value *)
1070 * (nargs + 5));
1071
1072 (*pos) += 3;
1073
1074 long_type = builtin_type (exp->gdbarch)->builtin_long;
1075 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1076
1077 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1078 sub_no_side = EVAL_NORMAL;
1079 else
1080 sub_no_side = noside;
1081
1082 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1083
1084 if (value_as_long (target) == 0)
1085 return value_from_longest (long_type, 0);
1086
1087 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0))
1088 gnu_runtime = 1;
1089
1090 /* Find the method dispatch (Apple runtime) or method lookup
1091 (GNU runtime) function for Objective-C. These will be used
1092 to lookup the symbol information for the method. If we
1093 can't find any symbol information, then we'll use these to
1094 call the method, otherwise we can call the method
1095 directly. The msg_send_stret function is used in the special
1096 case of a method that returns a structure (Apple runtime
1097 only). */
1098 if (gnu_runtime)
1099 {
1100 struct type *type = selector_type;
1101 type = lookup_function_type (type);
1102 type = lookup_pointer_type (type);
1103 type = lookup_function_type (type);
1104 type = lookup_pointer_type (type);
1105
1106 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1107 msg_send_stret
1108 = find_function_in_inferior ("objc_msg_lookup", NULL);
1109
1110 msg_send = value_from_pointer (type, value_as_address (msg_send));
1111 msg_send_stret = value_from_pointer (type,
1112 value_as_address (msg_send_stret));
1113 }
1114 else
1115 {
1116 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1117 /* Special dispatcher for methods returning structs */
1118 msg_send_stret
1119 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1120 }
1121
1122 /* Verify the target object responds to this method. The
1123 standard top-level 'Object' class uses a different name for
1124 the verification method than the non-standard, but more
1125 often used, 'NSObject' class. Make sure we check for both. */
1126
1127 responds_selector
1128 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1129 if (responds_selector == 0)
1130 responds_selector
1131 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1132
1133 if (responds_selector == 0)
1134 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1135
1136 method_selector
1137 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1138 if (method_selector == 0)
1139 method_selector
1140 = lookup_child_selector (exp->gdbarch, "methodFor:");
1141
1142 if (method_selector == 0)
1143 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1144
1145 /* Call the verification method, to make sure that the target
1146 class implements the desired method. */
1147
1148 argvec[0] = msg_send;
1149 argvec[1] = target;
1150 argvec[2] = value_from_longest (long_type, responds_selector);
1151 argvec[3] = value_from_longest (long_type, selector);
1152 argvec[4] = 0;
1153
1154 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1155 if (gnu_runtime)
1156 {
1157 /* Function objc_msg_lookup returns a pointer. */
1158 argvec[0] = ret;
1159 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1160 }
1161 if (value_as_long (ret) == 0)
1162 error (_("Target does not respond to this message selector."));
1163
1164 /* Call "methodForSelector:" method, to get the address of a
1165 function method that implements this selector for this
1166 class. If we can find a symbol at that address, then we
1167 know the return type, parameter types etc. (that's a good
1168 thing). */
1169
1170 argvec[0] = msg_send;
1171 argvec[1] = target;
1172 argvec[2] = value_from_longest (long_type, method_selector);
1173 argvec[3] = value_from_longest (long_type, selector);
1174 argvec[4] = 0;
1175
1176 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1177 if (gnu_runtime)
1178 {
1179 argvec[0] = ret;
1180 ret = call_function_by_hand (argvec[0], 3, argvec + 1);
1181 }
1182
1183 /* ret should now be the selector. */
1184
1185 addr = value_as_long (ret);
1186 if (addr)
1187 {
1188 struct symbol *sym = NULL;
1189
1190 /* The address might point to a function descriptor;
1191 resolve it to the actual code address instead. */
1192 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1193 &current_target);
1194
1195 /* Is it a high_level symbol? */
1196 sym = find_pc_function (addr);
1197 if (sym != NULL)
1198 method = value_of_variable (sym, 0);
1199 }
1200
1201 /* If we found a method with symbol information, check to see
1202 if it returns a struct. Otherwise assume it doesn't. */
1203
1204 if (method)
1205 {
1206 struct block *b;
1207 CORE_ADDR funaddr;
1208 struct type *val_type;
1209
1210 funaddr = find_function_addr (method, &val_type);
1211
1212 b = block_for_pc (funaddr);
1213
1214 CHECK_TYPEDEF (val_type);
1215
1216 if ((val_type == NULL)
1217 || (TYPE_CODE(val_type) == TYPE_CODE_ERROR))
1218 {
1219 if (expect_type != NULL)
1220 val_type = expect_type;
1221 }
1222
1223 struct_return = using_struct_return (exp->gdbarch,
1224 value_type (method), val_type);
1225 }
1226 else if (expect_type != NULL)
1227 {
1228 struct_return = using_struct_return (exp->gdbarch, NULL,
1229 check_typedef (expect_type));
1230 }
1231
1232 /* Found a function symbol. Now we will substitute its
1233 value in place of the message dispatcher (obj_msgSend),
1234 so that we call the method directly instead of thru
1235 the dispatcher. The main reason for doing this is that
1236 we can now evaluate the return value and parameter values
1237 according to their known data types, in case we need to
1238 do things like promotion, dereferencing, special handling
1239 of structs and doubles, etc.
1240
1241 We want to use the type signature of 'method', but still
1242 jump to objc_msgSend() or objc_msgSend_stret() to better
1243 mimic the behavior of the runtime. */
1244
1245 if (method)
1246 {
1247 if (TYPE_CODE (value_type (method)) != TYPE_CODE_FUNC)
1248 error (_("method address has symbol information with non-function type; skipping"));
1249
1250 /* Create a function pointer of the appropriate type, and replace
1251 its value with the value of msg_send or msg_send_stret. We must
1252 use a pointer here, as msg_send and msg_send_stret are of pointer
1253 type, and the representation may be different on systems that use
1254 function descriptors. */
1255 if (struct_return)
1256 called_method
1257 = value_from_pointer (lookup_pointer_type (value_type (method)),
1258 value_as_address (msg_send_stret));
1259 else
1260 called_method
1261 = value_from_pointer (lookup_pointer_type (value_type (method)),
1262 value_as_address (msg_send));
1263 }
1264 else
1265 {
1266 if (struct_return)
1267 called_method = msg_send_stret;
1268 else
1269 called_method = msg_send;
1270 }
1271
1272 if (noside == EVAL_SKIP)
1273 goto nosideret;
1274
1275 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1276 {
1277 /* If the return type doesn't look like a function type,
1278 call an error. This can happen if somebody tries to
1279 turn a variable into a function call. This is here
1280 because people often want to call, eg, strcmp, which
1281 gdb doesn't know is a function. If gdb isn't asked for
1282 it's opinion (ie. through "whatis"), it won't offer
1283 it. */
1284
1285 struct type *type = value_type (called_method);
1286 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1287 type = TYPE_TARGET_TYPE (type);
1288 type = TYPE_TARGET_TYPE (type);
1289
1290 if (type)
1291 {
1292 if ((TYPE_CODE (type) == TYPE_CODE_ERROR) && expect_type)
1293 return allocate_value (expect_type);
1294 else
1295 return allocate_value (type);
1296 }
1297 else
1298 error (_("Expression of type other than \"method returning ...\" used as a method"));
1299 }
1300
1301 /* Now depending on whether we found a symbol for the method,
1302 we will either call the runtime dispatcher or the method
1303 directly. */
1304
1305 argvec[0] = called_method;
1306 argvec[1] = target;
1307 argvec[2] = value_from_longest (long_type, selector);
1308 /* User-supplied arguments. */
1309 for (tem = 0; tem < nargs; tem++)
1310 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1311 argvec[tem + 3] = 0;
1312
1313 if (gnu_runtime && (method != NULL))
1314 {
1315 /* Function objc_msg_lookup returns a pointer. */
1316 deprecated_set_value_type (argvec[0],
1317 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1318 argvec[0] = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1319 }
1320
1321 ret = call_function_by_hand (argvec[0], nargs + 2, argvec + 1);
1322 return ret;
1323 }
1324 break;
1325
1326 case OP_FUNCALL:
1327 (*pos) += 2;
1328 op = exp->elts[*pos].opcode;
1329 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1330 /* Allocate arg vector, including space for the function to be
1331 called in argvec[0] and a terminating NULL */
1332 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 3));
1333 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1334 {
1335 nargs++;
1336 /* First, evaluate the structure into arg2 */
1337 pc2 = (*pos)++;
1338
1339 if (noside == EVAL_SKIP)
1340 goto nosideret;
1341
1342 if (op == STRUCTOP_MEMBER)
1343 {
1344 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1345 }
1346 else
1347 {
1348 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1349 }
1350
1351 /* If the function is a virtual function, then the
1352 aggregate value (providing the structure) plays
1353 its part by providing the vtable. Otherwise,
1354 it is just along for the ride: call the function
1355 directly. */
1356
1357 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1358
1359 if (TYPE_CODE (check_typedef (value_type (arg1)))
1360 != TYPE_CODE_METHODPTR)
1361 error (_("Non-pointer-to-member value used in pointer-to-member "
1362 "construct"));
1363
1364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1365 {
1366 struct type *method_type = check_typedef (value_type (arg1));
1367 arg1 = value_zero (method_type, not_lval);
1368 }
1369 else
1370 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
1371
1372 /* Now, say which argument to start evaluating from */
1373 tem = 2;
1374 }
1375 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1376 {
1377 /* Hair for method invocations */
1378 int tem2;
1379
1380 nargs++;
1381 /* First, evaluate the structure into arg2 */
1382 pc2 = (*pos)++;
1383 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
1384 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
1385 if (noside == EVAL_SKIP)
1386 goto nosideret;
1387
1388 if (op == STRUCTOP_STRUCT)
1389 {
1390 /* If v is a variable in a register, and the user types
1391 v.method (), this will produce an error, because v has
1392 no address.
1393
1394 A possible way around this would be to allocate a
1395 copy of the variable on the stack, copy in the
1396 contents, call the function, and copy out the
1397 contents. I.e. convert this from call by reference
1398 to call by copy-return (or whatever it's called).
1399 However, this does not work because it is not the
1400 same: the method being called could stash a copy of
1401 the address, and then future uses through that address
1402 (after the method returns) would be expected to
1403 use the variable itself, not some copy of it. */
1404 arg2 = evaluate_subexp_for_address (exp, pos, noside);
1405 }
1406 else
1407 {
1408 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1409 }
1410 /* Now, say which argument to start evaluating from */
1411 tem = 2;
1412 }
1413 else
1414 {
1415 /* Non-method function call */
1416 save_pos1 = *pos;
1417 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1418 tem = 1;
1419 type = value_type (argvec[0]);
1420 if (type && TYPE_CODE (type) == TYPE_CODE_PTR)
1421 type = TYPE_TARGET_TYPE (type);
1422 if (type && TYPE_CODE (type) == TYPE_CODE_FUNC)
1423 {
1424 for (; tem <= nargs && tem <= TYPE_NFIELDS (type); tem++)
1425 {
1426 /* pai: FIXME This seems to be coercing arguments before
1427 * overload resolution has been done! */
1428 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type, tem - 1),
1429 exp, pos, noside);
1430 }
1431 }
1432 }
1433
1434 /* Evaluate arguments */
1435 for (; tem <= nargs; tem++)
1436 {
1437 /* Ensure that array expressions are coerced into pointer objects. */
1438 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1439 }
1440
1441 /* signal end of arglist */
1442 argvec[tem] = 0;
1443
1444 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
1445 {
1446 int static_memfuncp;
1447 char tstr[256];
1448
1449 /* Method invocation : stuff "this" as first parameter */
1450 argvec[1] = arg2;
1451 /* Name of method from expression */
1452 strcpy (tstr, &exp->elts[pc2 + 2].string);
1453
1454 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1455 {
1456 /* Language is C++, do some overload resolution before evaluation */
1457 struct value *valp = NULL;
1458
1459 /* Prepare list of argument types for overload resolution */
1460 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1461 for (ix = 1; ix <= nargs; ix++)
1462 arg_types[ix - 1] = value_type (argvec[ix]);
1463
1464 (void) find_overload_match (arg_types, nargs, tstr,
1465 1 /* method */ , 0 /* strict match */ ,
1466 &arg2 /* the object */ , NULL,
1467 &valp, NULL, &static_memfuncp);
1468
1469
1470 argvec[1] = arg2; /* the ``this'' pointer */
1471 argvec[0] = valp; /* use the method found after overload resolution */
1472 }
1473 else
1474 /* Non-C++ case -- or no overload resolution */
1475 {
1476 struct value *temp = arg2;
1477 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1478 &static_memfuncp,
1479 op == STRUCTOP_STRUCT
1480 ? "structure" : "structure pointer");
1481 /* value_struct_elt updates temp with the correct value
1482 of the ``this'' pointer if necessary, so modify argvec[1] to
1483 reflect any ``this'' changes. */
1484 arg2 = value_from_longest (lookup_pointer_type(value_type (temp)),
1485 value_address (temp)
1486 + value_embedded_offset (temp));
1487 argvec[1] = arg2; /* the ``this'' pointer */
1488 }
1489
1490 if (static_memfuncp)
1491 {
1492 argvec[1] = argvec[0];
1493 nargs--;
1494 argvec++;
1495 }
1496 }
1497 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1498 {
1499 argvec[1] = arg2;
1500 argvec[0] = arg1;
1501 }
1502 else if (op == OP_VAR_VALUE)
1503 {
1504 /* Non-member function being called */
1505 /* fn: This can only be done for C++ functions. A C-style function
1506 in a C++ program, for instance, does not have the fields that
1507 are expected here */
1508
1509 if (overload_resolution && (exp->language_defn->la_language == language_cplus))
1510 {
1511 /* Language is C++, do some overload resolution before evaluation */
1512 struct symbol *symp;
1513
1514 /* Prepare list of argument types for overload resolution */
1515 arg_types = (struct type **) alloca (nargs * (sizeof (struct type *)));
1516 for (ix = 1; ix <= nargs; ix++)
1517 arg_types[ix - 1] = value_type (argvec[ix]);
1518
1519 (void) find_overload_match (arg_types, nargs, NULL /* no need for name */ ,
1520 0 /* not method */ , 0 /* strict match */ ,
1521 NULL, exp->elts[save_pos1+2].symbol /* the function */ ,
1522 NULL, &symp, NULL);
1523
1524 /* Now fix the expression being evaluated */
1525 exp->elts[save_pos1+2].symbol = symp;
1526 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1527 }
1528 else
1529 {
1530 /* Not C++, or no overload resolution allowed */
1531 /* nothing to be done; argvec already correctly set up */
1532 }
1533 }
1534 else
1535 {
1536 /* It is probably a C-style function */
1537 /* nothing to be done; argvec already correctly set up */
1538 }
1539
1540 do_call_it:
1541
1542 if (noside == EVAL_SKIP)
1543 goto nosideret;
1544 if (argvec[0] == NULL)
1545 error (_("Cannot evaluate function -- may be inlined"));
1546 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1547 {
1548 /* If the return type doesn't look like a function type, call an
1549 error. This can happen if somebody tries to turn a variable into
1550 a function call. This is here because people often want to
1551 call, eg, strcmp, which gdb doesn't know is a function. If
1552 gdb isn't asked for it's opinion (ie. through "whatis"),
1553 it won't offer it. */
1554
1555 struct type *ftype = value_type (argvec[0]);
1556
1557 if (TYPE_CODE (ftype) == TYPE_CODE_INTERNAL_FUNCTION)
1558 {
1559 /* We don't know anything about what the internal
1560 function might return, but we have to return
1561 something. */
1562 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
1563 not_lval);
1564 }
1565 else if (TYPE_TARGET_TYPE (ftype))
1566 return allocate_value (TYPE_TARGET_TYPE (ftype));
1567 else
1568 error (_("Expression of type other than \"Function returning ...\" used as function"));
1569 }
1570 if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_INTERNAL_FUNCTION)
1571 return call_internal_function (exp->gdbarch, exp->language_defn,
1572 argvec[0], nargs, argvec + 1);
1573
1574 return call_function_by_hand (argvec[0], nargs, argvec + 1);
1575 /* pai: FIXME save value from call_function_by_hand, then adjust pc by adjust_fn_pc if +ve */
1576
1577 case OP_F77_UNDETERMINED_ARGLIST:
1578
1579 /* Remember that in F77, functions, substring ops and
1580 array subscript operations cannot be disambiguated
1581 at parse time. We have made all array subscript operations,
1582 substring operations as well as function calls come here
1583 and we now have to discover what the heck this thing actually was.
1584 If it is a function, we process just as if we got an OP_FUNCALL. */
1585
1586 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1587 (*pos) += 2;
1588
1589 /* First determine the type code we are dealing with. */
1590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1591 type = check_typedef (value_type (arg1));
1592 code = TYPE_CODE (type);
1593
1594 if (code == TYPE_CODE_PTR)
1595 {
1596 /* Fortran always passes variable to subroutines as pointer.
1597 So we need to look into its target type to see if it is
1598 array, string or function. If it is, we need to switch
1599 to the target value the original one points to. */
1600 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1601
1602 if (TYPE_CODE (target_type) == TYPE_CODE_ARRAY
1603 || TYPE_CODE (target_type) == TYPE_CODE_STRING
1604 || TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1605 {
1606 arg1 = value_ind (arg1);
1607 type = check_typedef (value_type (arg1));
1608 code = TYPE_CODE (type);
1609 }
1610 }
1611
1612 switch (code)
1613 {
1614 case TYPE_CODE_ARRAY:
1615 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1616 return value_f90_subarray (arg1, exp, pos, noside);
1617 else
1618 goto multi_f77_subscript;
1619
1620 case TYPE_CODE_STRING:
1621 if (exp->elts[*pos].opcode == OP_F90_RANGE)
1622 return value_f90_subarray (arg1, exp, pos, noside);
1623 else
1624 {
1625 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1626 return value_subscript (arg1, value_as_long (arg2));
1627 }
1628
1629 case TYPE_CODE_PTR:
1630 case TYPE_CODE_FUNC:
1631 /* It's a function call. */
1632 /* Allocate arg vector, including space for the function to be
1633 called in argvec[0] and a terminating NULL */
1634 argvec = (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
1635 argvec[0] = arg1;
1636 tem = 1;
1637 for (; tem <= nargs; tem++)
1638 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1639 argvec[tem] = 0; /* signal end of arglist */
1640 goto do_call_it;
1641
1642 default:
1643 error (_("Cannot perform substring on this type"));
1644 }
1645
1646 case OP_COMPLEX:
1647 /* We have a complex number, There should be 2 floating
1648 point numbers that compose it */
1649 (*pos) += 2;
1650 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1651 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1652
1653 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
1654
1655 case STRUCTOP_STRUCT:
1656 tem = longest_to_int (exp->elts[pc + 1].longconst);
1657 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1659 if (noside == EVAL_SKIP)
1660 goto nosideret;
1661 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1662 return value_zero (lookup_struct_elt_type (value_type (arg1),
1663 &exp->elts[pc + 2].string,
1664 0),
1665 lval_memory);
1666 else
1667 {
1668 struct value *temp = arg1;
1669 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1670 NULL, "structure");
1671 }
1672
1673 case STRUCTOP_PTR:
1674 tem = longest_to_int (exp->elts[pc + 1].longconst);
1675 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1677 if (noside == EVAL_SKIP)
1678 goto nosideret;
1679
1680 /* JYG: if print object is on we need to replace the base type
1681 with rtti type in order to continue on with successful
1682 lookup of member / method only available in the rtti type. */
1683 {
1684 struct type *type = value_type (arg1);
1685 struct type *real_type;
1686 int full, top, using_enc;
1687 struct value_print_options opts;
1688
1689 get_user_print_options (&opts);
1690 if (opts.objectprint && TYPE_TARGET_TYPE(type)
1691 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_CLASS))
1692 {
1693 real_type = value_rtti_target_type (arg1, &full, &top, &using_enc);
1694 if (real_type)
1695 {
1696 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1697 real_type = lookup_pointer_type (real_type);
1698 else
1699 real_type = lookup_reference_type (real_type);
1700
1701 arg1 = value_cast (real_type, arg1);
1702 }
1703 }
1704 }
1705
1706 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1707 return value_zero (lookup_struct_elt_type (value_type (arg1),
1708 &exp->elts[pc + 2].string,
1709 0),
1710 lval_memory);
1711 else
1712 {
1713 struct value *temp = arg1;
1714 return value_struct_elt (&temp, NULL, &exp->elts[pc + 2].string,
1715 NULL, "structure pointer");
1716 }
1717
1718 case STRUCTOP_MEMBER:
1719 case STRUCTOP_MPTR:
1720 if (op == STRUCTOP_MEMBER)
1721 arg1 = evaluate_subexp_for_address (exp, pos, noside);
1722 else
1723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1724
1725 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1726
1727 if (noside == EVAL_SKIP)
1728 goto nosideret;
1729
1730 type = check_typedef (value_type (arg2));
1731 switch (TYPE_CODE (type))
1732 {
1733 case TYPE_CODE_METHODPTR:
1734 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1735 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
1736 else
1737 {
1738 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
1739 gdb_assert (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR);
1740 return value_ind (arg2);
1741 }
1742
1743 case TYPE_CODE_MEMBERPTR:
1744 /* Now, convert these values to an address. */
1745 arg1 = value_cast (lookup_pointer_type (TYPE_DOMAIN_TYPE (type)),
1746 arg1);
1747
1748 mem_offset = value_as_long (arg2);
1749
1750 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1751 value_as_long (arg1) + mem_offset);
1752 return value_ind (arg3);
1753
1754 default:
1755 error (_("non-pointer-to-member value used in pointer-to-member construct"));
1756 }
1757
1758 case TYPE_INSTANCE:
1759 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1760 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
1761 for (ix = 0; ix < nargs; ++ix)
1762 arg_types[ix] = exp->elts[pc + 1 + ix + 1].type;
1763
1764 expect_type = make_params (nargs, arg_types);
1765 *(pos) += 3 + nargs;
1766 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
1767 xfree (TYPE_FIELDS (expect_type));
1768 xfree (TYPE_MAIN_TYPE (expect_type));
1769 xfree (expect_type);
1770 return arg1;
1771
1772 case BINOP_CONCAT:
1773 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1774 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1775 if (noside == EVAL_SKIP)
1776 goto nosideret;
1777 if (binop_user_defined_p (op, arg1, arg2))
1778 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1779 else
1780 return value_concat (arg1, arg2);
1781
1782 case BINOP_ASSIGN:
1783 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1784 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1785
1786 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1787 return arg1;
1788 if (binop_user_defined_p (op, arg1, arg2))
1789 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1790 else
1791 return value_assign (arg1, arg2);
1792
1793 case BINOP_ASSIGN_MODIFY:
1794 (*pos) += 2;
1795 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1796 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
1797 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
1798 return arg1;
1799 op = exp->elts[pc + 1].opcode;
1800 if (binop_user_defined_p (op, arg1, arg2))
1801 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
1802 else if (op == BINOP_ADD && ptrmath_type_p (value_type (arg1))
1803 && is_integral_type (value_type (arg2)))
1804 arg2 = value_ptradd (arg1, value_as_long (arg2));
1805 else if (op == BINOP_SUB && ptrmath_type_p (value_type (arg1))
1806 && is_integral_type (value_type (arg2)))
1807 arg2 = value_ptradd (arg1, - value_as_long (arg2));
1808 else
1809 {
1810 struct value *tmp = arg1;
1811
1812 /* For shift and integer exponentiation operations,
1813 only promote the first argument. */
1814 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1815 && is_integral_type (value_type (arg2)))
1816 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
1817 else
1818 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
1819
1820 arg2 = value_binop (tmp, arg2, op);
1821 }
1822 return value_assign (arg1, arg2);
1823
1824 case BINOP_ADD:
1825 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1826 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1827 if (noside == EVAL_SKIP)
1828 goto nosideret;
1829 if (binop_user_defined_p (op, arg1, arg2))
1830 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1831 else if (ptrmath_type_p (value_type (arg1))
1832 && is_integral_type (value_type (arg2)))
1833 return value_ptradd (arg1, value_as_long (arg2));
1834 else if (ptrmath_type_p (value_type (arg2))
1835 && is_integral_type (value_type (arg1)))
1836 return value_ptradd (arg2, value_as_long (arg1));
1837 else
1838 {
1839 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1840 return value_binop (arg1, arg2, BINOP_ADD);
1841 }
1842
1843 case BINOP_SUB:
1844 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1845 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1846 if (noside == EVAL_SKIP)
1847 goto nosideret;
1848 if (binop_user_defined_p (op, arg1, arg2))
1849 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1850 else if (ptrmath_type_p (value_type (arg1))
1851 && ptrmath_type_p (value_type (arg2)))
1852 {
1853 /* FIXME -- should be ptrdiff_t */
1854 type = builtin_type (exp->gdbarch)->builtin_long;
1855 return value_from_longest (type, value_ptrdiff (arg1, arg2));
1856 }
1857 else if (ptrmath_type_p (value_type (arg1))
1858 && is_integral_type (value_type (arg2)))
1859 return value_ptradd (arg1, - value_as_long (arg2));
1860 else
1861 {
1862 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1863 return value_binop (arg1, arg2, BINOP_SUB);
1864 }
1865
1866 case BINOP_EXP:
1867 case BINOP_MUL:
1868 case BINOP_DIV:
1869 case BINOP_INTDIV:
1870 case BINOP_REM:
1871 case BINOP_MOD:
1872 case BINOP_LSH:
1873 case BINOP_RSH:
1874 case BINOP_BITWISE_AND:
1875 case BINOP_BITWISE_IOR:
1876 case BINOP_BITWISE_XOR:
1877 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1878 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1879 if (noside == EVAL_SKIP)
1880 goto nosideret;
1881 if (binop_user_defined_p (op, arg1, arg2))
1882 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1883 else
1884 {
1885 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
1886 fudge arg2 to avoid division-by-zero, the caller is
1887 (theoretically) only looking for the type of the result. */
1888 if (noside == EVAL_AVOID_SIDE_EFFECTS
1889 /* ??? Do we really want to test for BINOP_MOD here?
1890 The implementation of value_binop gives it a well-defined
1891 value. */
1892 && (op == BINOP_DIV
1893 || op == BINOP_INTDIV
1894 || op == BINOP_REM
1895 || op == BINOP_MOD)
1896 && value_logical_not (arg2))
1897 {
1898 struct value *v_one, *retval;
1899
1900 v_one = value_one (value_type (arg2), not_lval);
1901 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
1902 retval = value_binop (arg1, v_one, op);
1903 return retval;
1904 }
1905 else
1906 {
1907 /* For shift and integer exponentiation operations,
1908 only promote the first argument. */
1909 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
1910 && is_integral_type (value_type (arg2)))
1911 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
1912 else
1913 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
1914
1915 return value_binop (arg1, arg2, op);
1916 }
1917 }
1918
1919 case BINOP_RANGE:
1920 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1921 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1922 if (noside == EVAL_SKIP)
1923 goto nosideret;
1924 error (_("':' operator used in invalid context"));
1925
1926 case BINOP_SUBSCRIPT:
1927 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1928 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1929 if (noside == EVAL_SKIP)
1930 goto nosideret;
1931 if (binop_user_defined_p (op, arg1, arg2))
1932 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
1933 else
1934 {
1935 /* If the user attempts to subscript something that is not an
1936 array or pointer type (like a plain int variable for example),
1937 then report this as an error. */
1938
1939 arg1 = coerce_ref (arg1);
1940 type = check_typedef (value_type (arg1));
1941 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1942 && TYPE_CODE (type) != TYPE_CODE_PTR)
1943 {
1944 if (TYPE_NAME (type))
1945 error (_("cannot subscript something of type `%s'"),
1946 TYPE_NAME (type));
1947 else
1948 error (_("cannot subscript requested type"));
1949 }
1950
1951 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1952 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
1953 else
1954 return value_subscript (arg1, value_as_long (arg2));
1955 }
1956
1957 case BINOP_IN:
1958 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1959 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1960 if (noside == EVAL_SKIP)
1961 goto nosideret;
1962 type = language_bool_type (exp->language_defn, exp->gdbarch);
1963 return value_from_longest (type, (LONGEST) value_in (arg1, arg2));
1964
1965 case MULTI_SUBSCRIPT:
1966 (*pos) += 2;
1967 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1968 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
1969 while (nargs-- > 0)
1970 {
1971 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1972 /* FIXME: EVAL_SKIP handling may not be correct. */
1973 if (noside == EVAL_SKIP)
1974 {
1975 if (nargs > 0)
1976 {
1977 continue;
1978 }
1979 else
1980 {
1981 goto nosideret;
1982 }
1983 }
1984 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
1985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1986 {
1987 /* If the user attempts to subscript something that has no target
1988 type (like a plain int variable for example), then report this
1989 as an error. */
1990
1991 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
1992 if (type != NULL)
1993 {
1994 arg1 = value_zero (type, VALUE_LVAL (arg1));
1995 noside = EVAL_SKIP;
1996 continue;
1997 }
1998 else
1999 {
2000 error (_("cannot subscript something of type `%s'"),
2001 TYPE_NAME (value_type (arg1)));
2002 }
2003 }
2004
2005 if (binop_user_defined_p (op, arg1, arg2))
2006 {
2007 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2008 }
2009 else
2010 {
2011 arg1 = coerce_ref (arg1);
2012 type = check_typedef (value_type (arg1));
2013
2014 switch (TYPE_CODE (type))
2015 {
2016 case TYPE_CODE_PTR:
2017 case TYPE_CODE_ARRAY:
2018 case TYPE_CODE_STRING:
2019 arg1 = value_subscript (arg1, value_as_long (arg2));
2020 break;
2021
2022 case TYPE_CODE_BITSTRING:
2023 type = language_bool_type (exp->language_defn, exp->gdbarch);
2024 arg1 = value_bitstring_subscript (type, arg1,
2025 value_as_long (arg2));
2026 break;
2027
2028 default:
2029 if (TYPE_NAME (type))
2030 error (_("cannot subscript something of type `%s'"),
2031 TYPE_NAME (type));
2032 else
2033 error (_("cannot subscript requested type"));
2034 }
2035 }
2036 }
2037 return (arg1);
2038
2039 multi_f77_subscript:
2040 {
2041 int subscript_array[MAX_FORTRAN_DIMS];
2042 int array_size_array[MAX_FORTRAN_DIMS];
2043 int ndimensions = 1, i;
2044 struct type *tmp_type;
2045 int offset_item; /* The array offset where the item lives */
2046
2047 if (nargs > MAX_FORTRAN_DIMS)
2048 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2049
2050 tmp_type = check_typedef (value_type (arg1));
2051 ndimensions = calc_f77_array_dims (type);
2052
2053 if (nargs != ndimensions)
2054 error (_("Wrong number of subscripts"));
2055
2056 gdb_assert (nargs > 0);
2057
2058 /* Now that we know we have a legal array subscript expression
2059 let us actually find out where this element exists in the array. */
2060
2061 offset_item = 0;
2062 /* Take array indices left to right */
2063 for (i = 0; i < nargs; i++)
2064 {
2065 /* Evaluate each subscript, It must be a legal integer in F77 */
2066 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2067
2068 /* Fill in the subscript and array size arrays */
2069
2070 subscript_array[i] = value_as_long (arg2);
2071 }
2072
2073 /* Internal type of array is arranged right to left */
2074 for (i = 0; i < nargs; i++)
2075 {
2076 upper = f77_get_upperbound (tmp_type);
2077 lower = f77_get_lowerbound (tmp_type);
2078
2079 array_size_array[nargs - i - 1] = upper - lower + 1;
2080
2081 /* Zero-normalize subscripts so that offsetting will work. */
2082
2083 subscript_array[nargs - i - 1] -= lower;
2084
2085 /* If we are at the bottom of a multidimensional
2086 array type then keep a ptr to the last ARRAY
2087 type around for use when calling value_subscript()
2088 below. This is done because we pretend to value_subscript
2089 that we actually have a one-dimensional array
2090 of base element type that we apply a simple
2091 offset to. */
2092
2093 if (i < nargs - 1)
2094 tmp_type = check_typedef (TYPE_TARGET_TYPE (tmp_type));
2095 }
2096
2097 /* Now let us calculate the offset for this item */
2098
2099 offset_item = subscript_array[ndimensions - 1];
2100
2101 for (i = ndimensions - 1; i > 0; --i)
2102 offset_item =
2103 array_size_array[i - 1] * offset_item + subscript_array[i - 1];
2104
2105 /* Let us now play a dirty trick: we will take arg1
2106 which is a value node pointing to the topmost level
2107 of the multidimensional array-set and pretend
2108 that it is actually a array of the final element
2109 type, this will ensure that value_subscript()
2110 returns the correct type value */
2111
2112 deprecated_set_value_type (arg1, tmp_type);
2113 return value_subscripted_rvalue (arg1, offset_item, 0);
2114 }
2115
2116 case BINOP_LOGICAL_AND:
2117 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2118 if (noside == EVAL_SKIP)
2119 {
2120 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2121 goto nosideret;
2122 }
2123
2124 oldpos = *pos;
2125 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2126 *pos = oldpos;
2127
2128 if (binop_user_defined_p (op, arg1, arg2))
2129 {
2130 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2131 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2132 }
2133 else
2134 {
2135 tem = value_logical_not (arg1);
2136 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2137 (tem ? EVAL_SKIP : noside));
2138 type = language_bool_type (exp->language_defn, exp->gdbarch);
2139 return value_from_longest (type,
2140 (LONGEST) (!tem && !value_logical_not (arg2)));
2141 }
2142
2143 case BINOP_LOGICAL_OR:
2144 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2145 if (noside == EVAL_SKIP)
2146 {
2147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2148 goto nosideret;
2149 }
2150
2151 oldpos = *pos;
2152 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2153 *pos = oldpos;
2154
2155 if (binop_user_defined_p (op, arg1, arg2))
2156 {
2157 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2158 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2159 }
2160 else
2161 {
2162 tem = value_logical_not (arg1);
2163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2164 (!tem ? EVAL_SKIP : noside));
2165 type = language_bool_type (exp->language_defn, exp->gdbarch);
2166 return value_from_longest (type,
2167 (LONGEST) (!tem || !value_logical_not (arg2)));
2168 }
2169
2170 case BINOP_EQUAL:
2171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2172 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2173 if (noside == EVAL_SKIP)
2174 goto nosideret;
2175 if (binop_user_defined_p (op, arg1, arg2))
2176 {
2177 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2178 }
2179 else
2180 {
2181 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2182 tem = value_equal (arg1, arg2);
2183 type = language_bool_type (exp->language_defn, exp->gdbarch);
2184 return value_from_longest (type, (LONGEST) tem);
2185 }
2186
2187 case BINOP_NOTEQUAL:
2188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2189 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2190 if (noside == EVAL_SKIP)
2191 goto nosideret;
2192 if (binop_user_defined_p (op, arg1, arg2))
2193 {
2194 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2195 }
2196 else
2197 {
2198 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2199 tem = value_equal (arg1, arg2);
2200 type = language_bool_type (exp->language_defn, exp->gdbarch);
2201 return value_from_longest (type, (LONGEST) ! tem);
2202 }
2203
2204 case BINOP_LESS:
2205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2206 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2207 if (noside == EVAL_SKIP)
2208 goto nosideret;
2209 if (binop_user_defined_p (op, arg1, arg2))
2210 {
2211 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2212 }
2213 else
2214 {
2215 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2216 tem = value_less (arg1, arg2);
2217 type = language_bool_type (exp->language_defn, exp->gdbarch);
2218 return value_from_longest (type, (LONGEST) tem);
2219 }
2220
2221 case BINOP_GTR:
2222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2223 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2224 if (noside == EVAL_SKIP)
2225 goto nosideret;
2226 if (binop_user_defined_p (op, arg1, arg2))
2227 {
2228 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2229 }
2230 else
2231 {
2232 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2233 tem = value_less (arg2, arg1);
2234 type = language_bool_type (exp->language_defn, exp->gdbarch);
2235 return value_from_longest (type, (LONGEST) tem);
2236 }
2237
2238 case BINOP_GEQ:
2239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2240 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2241 if (noside == EVAL_SKIP)
2242 goto nosideret;
2243 if (binop_user_defined_p (op, arg1, arg2))
2244 {
2245 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2246 }
2247 else
2248 {
2249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2250 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2251 type = language_bool_type (exp->language_defn, exp->gdbarch);
2252 return value_from_longest (type, (LONGEST) tem);
2253 }
2254
2255 case BINOP_LEQ:
2256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2257 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2258 if (noside == EVAL_SKIP)
2259 goto nosideret;
2260 if (binop_user_defined_p (op, arg1, arg2))
2261 {
2262 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2263 }
2264 else
2265 {
2266 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2267 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2268 type = language_bool_type (exp->language_defn, exp->gdbarch);
2269 return value_from_longest (type, (LONGEST) tem);
2270 }
2271
2272 case BINOP_REPEAT:
2273 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2274 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2275 if (noside == EVAL_SKIP)
2276 goto nosideret;
2277 type = check_typedef (value_type (arg2));
2278 if (TYPE_CODE (type) != TYPE_CODE_INT)
2279 error (_("Non-integral right operand for \"@\" operator."));
2280 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2281 {
2282 return allocate_repeat_value (value_type (arg1),
2283 longest_to_int (value_as_long (arg2)));
2284 }
2285 else
2286 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2287
2288 case BINOP_COMMA:
2289 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2290 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2291
2292 case UNOP_PLUS:
2293 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2294 if (noside == EVAL_SKIP)
2295 goto nosideret;
2296 if (unop_user_defined_p (op, arg1))
2297 return value_x_unop (arg1, op, noside);
2298 else
2299 {
2300 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2301 return value_pos (arg1);
2302 }
2303
2304 case UNOP_NEG:
2305 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2306 if (noside == EVAL_SKIP)
2307 goto nosideret;
2308 if (unop_user_defined_p (op, arg1))
2309 return value_x_unop (arg1, op, noside);
2310 else
2311 {
2312 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2313 return value_neg (arg1);
2314 }
2315
2316 case UNOP_COMPLEMENT:
2317 /* C++: check for and handle destructor names. */
2318 op = exp->elts[*pos].opcode;
2319
2320 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2321 if (noside == EVAL_SKIP)
2322 goto nosideret;
2323 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2324 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2325 else
2326 {
2327 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2328 return value_complement (arg1);
2329 }
2330
2331 case UNOP_LOGICAL_NOT:
2332 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2333 if (noside == EVAL_SKIP)
2334 goto nosideret;
2335 if (unop_user_defined_p (op, arg1))
2336 return value_x_unop (arg1, op, noside);
2337 else
2338 {
2339 type = language_bool_type (exp->language_defn, exp->gdbarch);
2340 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2341 }
2342
2343 case UNOP_IND:
2344 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
2345 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2346 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2347 type = check_typedef (value_type (arg1));
2348 if (TYPE_CODE (type) == TYPE_CODE_METHODPTR
2349 || TYPE_CODE (type) == TYPE_CODE_MEMBERPTR)
2350 error (_("Attempt to dereference pointer to member without an object"));
2351 if (noside == EVAL_SKIP)
2352 goto nosideret;
2353 if (unop_user_defined_p (op, arg1))
2354 return value_x_unop (arg1, op, noside);
2355 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2356 {
2357 type = check_typedef (value_type (arg1));
2358 if (TYPE_CODE (type) == TYPE_CODE_PTR
2359 || TYPE_CODE (type) == TYPE_CODE_REF
2360 /* In C you can dereference an array to get the 1st elt. */
2361 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2362 )
2363 return value_zero (TYPE_TARGET_TYPE (type),
2364 lval_memory);
2365 else if (TYPE_CODE (type) == TYPE_CODE_INT)
2366 /* GDB allows dereferencing an int. */
2367 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2368 lval_memory);
2369 else
2370 error (_("Attempt to take contents of a non-pointer value."));
2371 }
2372
2373 /* Allow * on an integer so we can cast it to whatever we want.
2374 This returns an int, which seems like the most C-like thing to
2375 do. "long long" variables are rare enough that
2376 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2377 if (TYPE_CODE (type) == TYPE_CODE_INT)
2378 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2379 (CORE_ADDR) value_as_address (arg1));
2380 return value_ind (arg1);
2381
2382 case UNOP_ADDR:
2383 /* C++: check for and handle pointer to members. */
2384
2385 op = exp->elts[*pos].opcode;
2386
2387 if (noside == EVAL_SKIP)
2388 {
2389 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2390 goto nosideret;
2391 }
2392 else
2393 {
2394 struct value *retvalp = evaluate_subexp_for_address (exp, pos, noside);
2395 return retvalp;
2396 }
2397
2398 case UNOP_SIZEOF:
2399 if (noside == EVAL_SKIP)
2400 {
2401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2402 goto nosideret;
2403 }
2404 return evaluate_subexp_for_sizeof (exp, pos);
2405
2406 case UNOP_CAST:
2407 (*pos) += 2;
2408 type = exp->elts[pc + 1].type;
2409 arg1 = evaluate_subexp (type, exp, pos, noside);
2410 if (noside == EVAL_SKIP)
2411 goto nosideret;
2412 if (type != value_type (arg1))
2413 arg1 = value_cast (type, arg1);
2414 return arg1;
2415
2416 case UNOP_MEMVAL:
2417 (*pos) += 2;
2418 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2419 if (noside == EVAL_SKIP)
2420 goto nosideret;
2421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2422 return value_zero (exp->elts[pc + 1].type, lval_memory);
2423 else
2424 return value_at_lazy (exp->elts[pc + 1].type,
2425 value_as_address (arg1));
2426
2427 case UNOP_MEMVAL_TLS:
2428 (*pos) += 3;
2429 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2430 if (noside == EVAL_SKIP)
2431 goto nosideret;
2432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2433 return value_zero (exp->elts[pc + 2].type, lval_memory);
2434 else
2435 {
2436 CORE_ADDR tls_addr;
2437 tls_addr = target_translate_tls_address (exp->elts[pc + 1].objfile,
2438 value_as_address (arg1));
2439 return value_at_lazy (exp->elts[pc + 2].type, tls_addr);
2440 }
2441
2442 case UNOP_PREINCREMENT:
2443 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2444 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2445 return arg1;
2446 else if (unop_user_defined_p (op, arg1))
2447 {
2448 return value_x_unop (arg1, op, noside);
2449 }
2450 else
2451 {
2452 if (ptrmath_type_p (value_type (arg1)))
2453 arg2 = value_ptradd (arg1, 1);
2454 else
2455 {
2456 struct value *tmp = arg1;
2457 arg2 = value_one (value_type (arg1), not_lval);
2458 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2459 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2460 }
2461
2462 return value_assign (arg1, arg2);
2463 }
2464
2465 case UNOP_PREDECREMENT:
2466 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2467 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2468 return arg1;
2469 else if (unop_user_defined_p (op, arg1))
2470 {
2471 return value_x_unop (arg1, op, noside);
2472 }
2473 else
2474 {
2475 if (ptrmath_type_p (value_type (arg1)))
2476 arg2 = value_ptradd (arg1, -1);
2477 else
2478 {
2479 struct value *tmp = arg1;
2480 arg2 = value_one (value_type (arg1), not_lval);
2481 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2482 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2483 }
2484
2485 return value_assign (arg1, arg2);
2486 }
2487
2488 case UNOP_POSTINCREMENT:
2489 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2490 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2491 return arg1;
2492 else if (unop_user_defined_p (op, arg1))
2493 {
2494 return value_x_unop (arg1, op, noside);
2495 }
2496 else
2497 {
2498 if (ptrmath_type_p (value_type (arg1)))
2499 arg2 = value_ptradd (arg1, 1);
2500 else
2501 {
2502 struct value *tmp = arg1;
2503 arg2 = value_one (value_type (arg1), not_lval);
2504 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2505 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2506 }
2507
2508 value_assign (arg1, arg2);
2509 return arg1;
2510 }
2511
2512 case UNOP_POSTDECREMENT:
2513 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2514 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2515 return arg1;
2516 else if (unop_user_defined_p (op, arg1))
2517 {
2518 return value_x_unop (arg1, op, noside);
2519 }
2520 else
2521 {
2522 if (ptrmath_type_p (value_type (arg1)))
2523 arg2 = value_ptradd (arg1, -1);
2524 else
2525 {
2526 struct value *tmp = arg1;
2527 arg2 = value_one (value_type (arg1), not_lval);
2528 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2529 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2530 }
2531
2532 value_assign (arg1, arg2);
2533 return arg1;
2534 }
2535
2536 case OP_THIS:
2537 (*pos) += 1;
2538 return value_of_this (1);
2539
2540 case OP_OBJC_SELF:
2541 (*pos) += 1;
2542 return value_of_local ("self", 1);
2543
2544 case OP_TYPE:
2545 /* The value is not supposed to be used. This is here to make it
2546 easier to accommodate expressions that contain types. */
2547 (*pos) += 2;
2548 if (noside == EVAL_SKIP)
2549 goto nosideret;
2550 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2551 {
2552 struct type *type = exp->elts[pc + 1].type;
2553 /* If this is a typedef, then find its immediate target. We
2554 use check_typedef to resolve stubs, but we ignore its
2555 result because we do not want to dig past all
2556 typedefs. */
2557 check_typedef (type);
2558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2559 type = TYPE_TARGET_TYPE (type);
2560 return allocate_value (type);
2561 }
2562 else
2563 error (_("Attempt to use a type name as an expression"));
2564
2565 default:
2566 /* Removing this case and compiling with gcc -Wall reveals that
2567 a lot of cases are hitting this case. Some of these should
2568 probably be removed from expression.h; others are legitimate
2569 expressions which are (apparently) not fully implemented.
2570
2571 If there are any cases landing here which mean a user error,
2572 then they should be separate cases, with more descriptive
2573 error messages. */
2574
2575 error (_("\
2576 GDB does not (yet) know how to evaluate that kind of expression"));
2577 }
2578
2579 nosideret:
2580 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
2581 }
2582 \f
2583 /* Evaluate a subexpression of EXP, at index *POS,
2584 and return the address of that subexpression.
2585 Advance *POS over the subexpression.
2586 If the subexpression isn't an lvalue, get an error.
2587 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2588 then only the type of the result need be correct. */
2589
2590 static struct value *
2591 evaluate_subexp_for_address (struct expression *exp, int *pos,
2592 enum noside noside)
2593 {
2594 enum exp_opcode op;
2595 int pc;
2596 struct symbol *var;
2597 struct value *x;
2598 int tem;
2599
2600 pc = (*pos);
2601 op = exp->elts[pc].opcode;
2602
2603 switch (op)
2604 {
2605 case UNOP_IND:
2606 (*pos)++;
2607 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2608
2609 /* We can't optimize out "&*" if there's a user-defined operator*. */
2610 if (unop_user_defined_p (op, x))
2611 {
2612 x = value_x_unop (x, op, noside);
2613 goto default_case_after_eval;
2614 }
2615
2616 return x;
2617
2618 case UNOP_MEMVAL:
2619 (*pos) += 3;
2620 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
2621 evaluate_subexp (NULL_TYPE, exp, pos, noside));
2622
2623 case OP_VAR_VALUE:
2624 var = exp->elts[pc + 2].symbol;
2625
2626 /* C++: The "address" of a reference should yield the address
2627 * of the object pointed to. Let value_addr() deal with it. */
2628 if (TYPE_CODE (SYMBOL_TYPE (var)) == TYPE_CODE_REF)
2629 goto default_case;
2630
2631 (*pos) += 4;
2632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2633 {
2634 struct type *type =
2635 lookup_pointer_type (SYMBOL_TYPE (var));
2636 enum address_class sym_class = SYMBOL_CLASS (var);
2637
2638 if (sym_class == LOC_CONST
2639 || sym_class == LOC_CONST_BYTES
2640 || sym_class == LOC_REGISTER)
2641 error (_("Attempt to take address of register or constant."));
2642
2643 return
2644 value_zero (type, not_lval);
2645 }
2646 else
2647 return address_of_variable (var, exp->elts[pc + 1].block);
2648
2649 case OP_SCOPE:
2650 tem = longest_to_int (exp->elts[pc + 2].longconst);
2651 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
2652 x = value_aggregate_elt (exp->elts[pc + 1].type,
2653 &exp->elts[pc + 3].string,
2654 NULL, 1, noside);
2655 if (x == NULL)
2656 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
2657 return x;
2658
2659 default:
2660 default_case:
2661 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2662 default_case_after_eval:
2663 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2664 {
2665 struct type *type = check_typedef (value_type (x));
2666
2667 if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
2668 return value_zero (lookup_pointer_type (value_type (x)),
2669 not_lval);
2670 else if (TYPE_CODE (type) == TYPE_CODE_REF)
2671 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2672 not_lval);
2673 else
2674 error (_("Attempt to take address of value not located in memory."));
2675 }
2676 return value_addr (x);
2677 }
2678 }
2679
2680 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
2681 When used in contexts where arrays will be coerced anyway, this is
2682 equivalent to `evaluate_subexp' but much faster because it avoids
2683 actually fetching array contents (perhaps obsolete now that we have
2684 value_lazy()).
2685
2686 Note that we currently only do the coercion for C expressions, where
2687 arrays are zero based and the coercion is correct. For other languages,
2688 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
2689 to decide if coercion is appropriate.
2690
2691 */
2692
2693 struct value *
2694 evaluate_subexp_with_coercion (struct expression *exp,
2695 int *pos, enum noside noside)
2696 {
2697 enum exp_opcode op;
2698 int pc;
2699 struct value *val;
2700 struct symbol *var;
2701 struct type *type;
2702
2703 pc = (*pos);
2704 op = exp->elts[pc].opcode;
2705
2706 switch (op)
2707 {
2708 case OP_VAR_VALUE:
2709 var = exp->elts[pc + 2].symbol;
2710 type = check_typedef (SYMBOL_TYPE (var));
2711 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2712 && CAST_IS_CONVERSION)
2713 {
2714 (*pos) += 4;
2715 val = address_of_variable (var, exp->elts[pc + 1].block);
2716 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2717 val);
2718 }
2719 /* FALLTHROUGH */
2720
2721 default:
2722 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2723 }
2724 }
2725
2726 /* Evaluate a subexpression of EXP, at index *POS,
2727 and return a value for the size of that subexpression.
2728 Advance *POS over the subexpression. */
2729
2730 static struct value *
2731 evaluate_subexp_for_sizeof (struct expression *exp, int *pos)
2732 {
2733 /* FIXME: This should be size_t. */
2734 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2735 enum exp_opcode op;
2736 int pc;
2737 struct type *type;
2738 struct value *val;
2739
2740 pc = (*pos);
2741 op = exp->elts[pc].opcode;
2742
2743 switch (op)
2744 {
2745 /* This case is handled specially
2746 so that we avoid creating a value for the result type.
2747 If the result type is very big, it's desirable not to
2748 create a value unnecessarily. */
2749 case UNOP_IND:
2750 (*pos)++;
2751 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2752 type = check_typedef (value_type (val));
2753 if (TYPE_CODE (type) != TYPE_CODE_PTR
2754 && TYPE_CODE (type) != TYPE_CODE_REF
2755 && TYPE_CODE (type) != TYPE_CODE_ARRAY)
2756 error (_("Attempt to take contents of a non-pointer value."));
2757 type = check_typedef (TYPE_TARGET_TYPE (type));
2758 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2759
2760 case UNOP_MEMVAL:
2761 (*pos) += 3;
2762 type = check_typedef (exp->elts[pc + 1].type);
2763 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2764
2765 case OP_VAR_VALUE:
2766 (*pos) += 4;
2767 type = check_typedef (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
2768 return
2769 value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
2770
2771 default:
2772 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2773 return value_from_longest (size_type,
2774 (LONGEST) TYPE_LENGTH (value_type (val)));
2775 }
2776 }
2777
2778 /* Parse a type expression in the string [P..P+LENGTH). */
2779
2780 struct type *
2781 parse_and_eval_type (char *p, int length)
2782 {
2783 char *tmp = (char *) alloca (length + 4);
2784 struct expression *expr;
2785 tmp[0] = '(';
2786 memcpy (tmp + 1, p, length);
2787 tmp[length + 1] = ')';
2788 tmp[length + 2] = '0';
2789 tmp[length + 3] = '\0';
2790 expr = parse_expression (tmp);
2791 if (expr->elts[0].opcode != UNOP_CAST)
2792 error (_("Internal error in eval_type."));
2793 return expr->elts[1].type;
2794 }
2795
2796 int
2797 calc_f77_array_dims (struct type *array_type)
2798 {
2799 int ndimen = 1;
2800 struct type *tmp_type;
2801
2802 if ((TYPE_CODE (array_type) != TYPE_CODE_ARRAY))
2803 error (_("Can't get dimensions for a non-array type"));
2804
2805 tmp_type = array_type;
2806
2807 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
2808 {
2809 if (TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY)
2810 ++ndimen;
2811 }
2812 return ndimen;
2813 }