]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-exp.y
* win32-low.c (win32_add_one_solib): If the dll name is
[thirdparty/binutils-gdb.git] / gdb / f-exp.y
1 /* YACC parser for Fortran expressions, for GDB.
2 Copyright (C) 1986, 1989, 1990, 1991, 1993, 1994, 1995, 1996, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C parser by Farooq Butt
7 (fmbutt@engage.sps.mot.com).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* This was blantantly ripped off the C expression parser, please
25 be aware of that as you look at its basic structure -FMB */
26
27 /* Parse a F77 expression from text in a string,
28 and return the result as a struct expression pointer.
29 That structure contains arithmetic operations in reverse polish,
30 with constants represented by operations that are followed by special data.
31 See expression.h for the details of the format.
32 What is important here is that it can be built up sequentially
33 during the process of parsing; the lower levels of the tree always
34 come first in the result.
35
36 Note that malloc's and realloc's in this file are transformed to
37 xmalloc and xrealloc respectively by the same sed command in the
38 makefile that remaps any other malloc/realloc inserted by the parser
39 generator. Doing this with #defines and trying to control the interaction
40 with include files (<malloc.h> and <stdlib.h> for example) just became
41 too messy, particularly when such includes can be inserted at random
42 times by the parser generator. */
43
44 %{
45
46 #include "defs.h"
47 #include "gdb_string.h"
48 #include "expression.h"
49 #include "value.h"
50 #include "parser-defs.h"
51 #include "language.h"
52 #include "f-lang.h"
53 #include "bfd.h" /* Required by objfiles.h. */
54 #include "symfile.h" /* Required by objfiles.h. */
55 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
56 #include "block.h"
57 #include <ctype.h>
58
59 #define parse_type builtin_type (parse_gdbarch)
60 #define parse_f_type builtin_f_type (parse_gdbarch)
61
62 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
63 as well as gratuitiously global symbol names, so we can have multiple
64 yacc generated parsers in gdb. Note that these are only the variables
65 produced by yacc. If other parser generators (bison, byacc, etc) produce
66 additional global names that conflict at link time, then those parser
67 generators need to be fixed instead of adding those names to this list. */
68
69 #define yymaxdepth f_maxdepth
70 #define yyparse f_parse
71 #define yylex f_lex
72 #define yyerror f_error
73 #define yylval f_lval
74 #define yychar f_char
75 #define yydebug f_debug
76 #define yypact f_pact
77 #define yyr1 f_r1
78 #define yyr2 f_r2
79 #define yydef f_def
80 #define yychk f_chk
81 #define yypgo f_pgo
82 #define yyact f_act
83 #define yyexca f_exca
84 #define yyerrflag f_errflag
85 #define yynerrs f_nerrs
86 #define yyps f_ps
87 #define yypv f_pv
88 #define yys f_s
89 #define yy_yys f_yys
90 #define yystate f_state
91 #define yytmp f_tmp
92 #define yyv f_v
93 #define yy_yyv f_yyv
94 #define yyval f_val
95 #define yylloc f_lloc
96 #define yyreds f_reds /* With YYDEBUG defined */
97 #define yytoks f_toks /* With YYDEBUG defined */
98 #define yyname f_name /* With YYDEBUG defined */
99 #define yyrule f_rule /* With YYDEBUG defined */
100 #define yylhs f_yylhs
101 #define yylen f_yylen
102 #define yydefred f_yydefred
103 #define yydgoto f_yydgoto
104 #define yysindex f_yysindex
105 #define yyrindex f_yyrindex
106 #define yygindex f_yygindex
107 #define yytable f_yytable
108 #define yycheck f_yycheck
109
110 #ifndef YYDEBUG
111 #define YYDEBUG 1 /* Default to yydebug support */
112 #endif
113
114 #define YYFPRINTF parser_fprintf
115
116 int yyparse (void);
117
118 static int yylex (void);
119
120 void yyerror (char *);
121
122 static void growbuf_by_size (int);
123
124 static int match_string_literal (void);
125
126 %}
127
128 /* Although the yacc "value" of an expression is not used,
129 since the result is stored in the structure being created,
130 other node types do have values. */
131
132 %union
133 {
134 LONGEST lval;
135 struct {
136 LONGEST val;
137 struct type *type;
138 } typed_val;
139 DOUBLEST dval;
140 struct symbol *sym;
141 struct type *tval;
142 struct stoken sval;
143 struct ttype tsym;
144 struct symtoken ssym;
145 int voidval;
146 struct block *bval;
147 enum exp_opcode opcode;
148 struct internalvar *ivar;
149
150 struct type **tvec;
151 int *ivec;
152 }
153
154 %{
155 /* YYSTYPE gets defined by %union */
156 static int parse_number (char *, int, int, YYSTYPE *);
157 %}
158
159 %type <voidval> exp type_exp start variable
160 %type <tval> type typebase
161 %type <tvec> nonempty_typelist
162 /* %type <bval> block */
163
164 /* Fancy type parsing. */
165 %type <voidval> func_mod direct_abs_decl abs_decl
166 %type <tval> ptype
167
168 %token <typed_val> INT
169 %token <dval> FLOAT
170
171 /* Both NAME and TYPENAME tokens represent symbols in the input,
172 and both convey their data as strings.
173 But a TYPENAME is a string that happens to be defined as a typedef
174 or builtin type name (such as int or char)
175 and a NAME is any other symbol.
176 Contexts where this distinction is not important can use the
177 nonterminal "name", which matches either NAME or TYPENAME. */
178
179 %token <sval> STRING_LITERAL
180 %token <lval> BOOLEAN_LITERAL
181 %token <ssym> NAME
182 %token <tsym> TYPENAME
183 %type <sval> name
184 %type <ssym> name_not_typename
185
186 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
187 but which would parse as a valid number in the current input radix.
188 E.g. "c" when input_radix==16. Depending on the parse, it will be
189 turned into a name or into a number. */
190
191 %token <ssym> NAME_OR_INT
192
193 %token SIZEOF
194 %token ERROR
195
196 /* Special type cases, put in to allow the parser to distinguish different
197 legal basetypes. */
198 %token INT_KEYWORD INT_S2_KEYWORD LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD
199 %token LOGICAL_KEYWORD REAL_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD
200 %token COMPLEX_S8_KEYWORD COMPLEX_S16_KEYWORD COMPLEX_S32_KEYWORD
201 %token BOOL_AND BOOL_OR BOOL_NOT
202 %token <lval> CHARACTER
203
204 %token <voidval> VARIABLE
205
206 %token <opcode> ASSIGN_MODIFY
207
208 %left ','
209 %left ABOVE_COMMA
210 %right '=' ASSIGN_MODIFY
211 %right '?'
212 %left BOOL_OR
213 %right BOOL_NOT
214 %left BOOL_AND
215 %left '|'
216 %left '^'
217 %left '&'
218 %left EQUAL NOTEQUAL
219 %left LESSTHAN GREATERTHAN LEQ GEQ
220 %left LSH RSH
221 %left '@'
222 %left '+' '-'
223 %left '*' '/'
224 %right STARSTAR
225 %right '%'
226 %right UNARY
227 %right '('
228
229 \f
230 %%
231
232 start : exp
233 | type_exp
234 ;
235
236 type_exp: type
237 { write_exp_elt_opcode(OP_TYPE);
238 write_exp_elt_type($1);
239 write_exp_elt_opcode(OP_TYPE); }
240 ;
241
242 exp : '(' exp ')'
243 { }
244 ;
245
246 /* Expressions, not including the comma operator. */
247 exp : '*' exp %prec UNARY
248 { write_exp_elt_opcode (UNOP_IND); }
249 ;
250
251 exp : '&' exp %prec UNARY
252 { write_exp_elt_opcode (UNOP_ADDR); }
253 ;
254
255 exp : '-' exp %prec UNARY
256 { write_exp_elt_opcode (UNOP_NEG); }
257 ;
258
259 exp : BOOL_NOT exp %prec UNARY
260 { write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
261 ;
262
263 exp : '~' exp %prec UNARY
264 { write_exp_elt_opcode (UNOP_COMPLEMENT); }
265 ;
266
267 exp : SIZEOF exp %prec UNARY
268 { write_exp_elt_opcode (UNOP_SIZEOF); }
269 ;
270
271 /* No more explicit array operators, we treat everything in F77 as
272 a function call. The disambiguation as to whether we are
273 doing a subscript operation or a function call is done
274 later in eval.c. */
275
276 exp : exp '('
277 { start_arglist (); }
278 arglist ')'
279 { write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST);
280 write_exp_elt_longcst ((LONGEST) end_arglist ());
281 write_exp_elt_opcode (OP_F77_UNDETERMINED_ARGLIST); }
282 ;
283
284 arglist :
285 ;
286
287 arglist : exp
288 { arglist_len = 1; }
289 ;
290
291 arglist : subrange
292 { arglist_len = 1; }
293 ;
294
295 arglist : arglist ',' exp %prec ABOVE_COMMA
296 { arglist_len++; }
297 ;
298
299 /* There are four sorts of subrange types in F90. */
300
301 subrange: exp ':' exp %prec ABOVE_COMMA
302 { write_exp_elt_opcode (OP_F90_RANGE);
303 write_exp_elt_longcst (NONE_BOUND_DEFAULT);
304 write_exp_elt_opcode (OP_F90_RANGE); }
305 ;
306
307 subrange: exp ':' %prec ABOVE_COMMA
308 { write_exp_elt_opcode (OP_F90_RANGE);
309 write_exp_elt_longcst (HIGH_BOUND_DEFAULT);
310 write_exp_elt_opcode (OP_F90_RANGE); }
311 ;
312
313 subrange: ':' exp %prec ABOVE_COMMA
314 { write_exp_elt_opcode (OP_F90_RANGE);
315 write_exp_elt_longcst (LOW_BOUND_DEFAULT);
316 write_exp_elt_opcode (OP_F90_RANGE); }
317 ;
318
319 subrange: ':' %prec ABOVE_COMMA
320 { write_exp_elt_opcode (OP_F90_RANGE);
321 write_exp_elt_longcst (BOTH_BOUND_DEFAULT);
322 write_exp_elt_opcode (OP_F90_RANGE); }
323 ;
324
325 complexnum: exp ',' exp
326 { }
327 ;
328
329 exp : '(' complexnum ')'
330 { write_exp_elt_opcode(OP_COMPLEX);
331 write_exp_elt_type (parse_f_type->builtin_complex_s16);
332 write_exp_elt_opcode(OP_COMPLEX); }
333 ;
334
335 exp : '(' type ')' exp %prec UNARY
336 { write_exp_elt_opcode (UNOP_CAST);
337 write_exp_elt_type ($2);
338 write_exp_elt_opcode (UNOP_CAST); }
339 ;
340
341 exp : exp '%' name
342 { write_exp_elt_opcode (STRUCTOP_STRUCT);
343 write_exp_string ($3);
344 write_exp_elt_opcode (STRUCTOP_STRUCT); }
345 ;
346
347 /* Binary operators in order of decreasing precedence. */
348
349 exp : exp '@' exp
350 { write_exp_elt_opcode (BINOP_REPEAT); }
351 ;
352
353 exp : exp STARSTAR exp
354 { write_exp_elt_opcode (BINOP_EXP); }
355 ;
356
357 exp : exp '*' exp
358 { write_exp_elt_opcode (BINOP_MUL); }
359 ;
360
361 exp : exp '/' exp
362 { write_exp_elt_opcode (BINOP_DIV); }
363 ;
364
365 exp : exp '+' exp
366 { write_exp_elt_opcode (BINOP_ADD); }
367 ;
368
369 exp : exp '-' exp
370 { write_exp_elt_opcode (BINOP_SUB); }
371 ;
372
373 exp : exp LSH exp
374 { write_exp_elt_opcode (BINOP_LSH); }
375 ;
376
377 exp : exp RSH exp
378 { write_exp_elt_opcode (BINOP_RSH); }
379 ;
380
381 exp : exp EQUAL exp
382 { write_exp_elt_opcode (BINOP_EQUAL); }
383 ;
384
385 exp : exp NOTEQUAL exp
386 { write_exp_elt_opcode (BINOP_NOTEQUAL); }
387 ;
388
389 exp : exp LEQ exp
390 { write_exp_elt_opcode (BINOP_LEQ); }
391 ;
392
393 exp : exp GEQ exp
394 { write_exp_elt_opcode (BINOP_GEQ); }
395 ;
396
397 exp : exp LESSTHAN exp
398 { write_exp_elt_opcode (BINOP_LESS); }
399 ;
400
401 exp : exp GREATERTHAN exp
402 { write_exp_elt_opcode (BINOP_GTR); }
403 ;
404
405 exp : exp '&' exp
406 { write_exp_elt_opcode (BINOP_BITWISE_AND); }
407 ;
408
409 exp : exp '^' exp
410 { write_exp_elt_opcode (BINOP_BITWISE_XOR); }
411 ;
412
413 exp : exp '|' exp
414 { write_exp_elt_opcode (BINOP_BITWISE_IOR); }
415 ;
416
417 exp : exp BOOL_AND exp
418 { write_exp_elt_opcode (BINOP_LOGICAL_AND); }
419 ;
420
421
422 exp : exp BOOL_OR exp
423 { write_exp_elt_opcode (BINOP_LOGICAL_OR); }
424 ;
425
426 exp : exp '=' exp
427 { write_exp_elt_opcode (BINOP_ASSIGN); }
428 ;
429
430 exp : exp ASSIGN_MODIFY exp
431 { write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
432 write_exp_elt_opcode ($2);
433 write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
434 ;
435
436 exp : INT
437 { write_exp_elt_opcode (OP_LONG);
438 write_exp_elt_type ($1.type);
439 write_exp_elt_longcst ((LONGEST)($1.val));
440 write_exp_elt_opcode (OP_LONG); }
441 ;
442
443 exp : NAME_OR_INT
444 { YYSTYPE val;
445 parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
446 write_exp_elt_opcode (OP_LONG);
447 write_exp_elt_type (val.typed_val.type);
448 write_exp_elt_longcst ((LONGEST)val.typed_val.val);
449 write_exp_elt_opcode (OP_LONG); }
450 ;
451
452 exp : FLOAT
453 { write_exp_elt_opcode (OP_DOUBLE);
454 write_exp_elt_type (parse_f_type->builtin_real_s8);
455 write_exp_elt_dblcst ($1);
456 write_exp_elt_opcode (OP_DOUBLE); }
457 ;
458
459 exp : variable
460 ;
461
462 exp : VARIABLE
463 ;
464
465 exp : SIZEOF '(' type ')' %prec UNARY
466 { write_exp_elt_opcode (OP_LONG);
467 write_exp_elt_type (parse_f_type->builtin_integer);
468 CHECK_TYPEDEF ($3);
469 write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
470 write_exp_elt_opcode (OP_LONG); }
471 ;
472
473 exp : BOOLEAN_LITERAL
474 { write_exp_elt_opcode (OP_BOOL);
475 write_exp_elt_longcst ((LONGEST) $1);
476 write_exp_elt_opcode (OP_BOOL);
477 }
478 ;
479
480 exp : STRING_LITERAL
481 {
482 write_exp_elt_opcode (OP_STRING);
483 write_exp_string ($1);
484 write_exp_elt_opcode (OP_STRING);
485 }
486 ;
487
488 variable: name_not_typename
489 { struct symbol *sym = $1.sym;
490
491 if (sym)
492 {
493 if (symbol_read_needs_frame (sym))
494 {
495 if (innermost_block == 0
496 || contained_in (block_found,
497 innermost_block))
498 innermost_block = block_found;
499 }
500 write_exp_elt_opcode (OP_VAR_VALUE);
501 /* We want to use the selected frame, not
502 another more inner frame which happens to
503 be in the same block. */
504 write_exp_elt_block (NULL);
505 write_exp_elt_sym (sym);
506 write_exp_elt_opcode (OP_VAR_VALUE);
507 break;
508 }
509 else
510 {
511 struct minimal_symbol *msymbol;
512 char *arg = copy_name ($1.stoken);
513
514 msymbol =
515 lookup_minimal_symbol (arg, NULL, NULL);
516 if (msymbol != NULL)
517 write_exp_msymbol (msymbol);
518 else if (!have_full_symbols () && !have_partial_symbols ())
519 error ("No symbol table is loaded. Use the \"file\" command.");
520 else
521 error ("No symbol \"%s\" in current context.",
522 copy_name ($1.stoken));
523 }
524 }
525 ;
526
527
528 type : ptype
529 ;
530
531 ptype : typebase
532 | typebase abs_decl
533 {
534 /* This is where the interesting stuff happens. */
535 int done = 0;
536 int array_size;
537 struct type *follow_type = $1;
538 struct type *range_type;
539
540 while (!done)
541 switch (pop_type ())
542 {
543 case tp_end:
544 done = 1;
545 break;
546 case tp_pointer:
547 follow_type = lookup_pointer_type (follow_type);
548 break;
549 case tp_reference:
550 follow_type = lookup_reference_type (follow_type);
551 break;
552 case tp_array:
553 array_size = pop_type_int ();
554 if (array_size != -1)
555 {
556 range_type =
557 create_range_type ((struct type *) NULL,
558 parse_f_type->builtin_integer,
559 0, array_size - 1);
560 follow_type =
561 create_array_type ((struct type *) NULL,
562 follow_type, range_type);
563 }
564 else
565 follow_type = lookup_pointer_type (follow_type);
566 break;
567 case tp_function:
568 follow_type = lookup_function_type (follow_type);
569 break;
570 }
571 $$ = follow_type;
572 }
573 ;
574
575 abs_decl: '*'
576 { push_type (tp_pointer); $$ = 0; }
577 | '*' abs_decl
578 { push_type (tp_pointer); $$ = $2; }
579 | '&'
580 { push_type (tp_reference); $$ = 0; }
581 | '&' abs_decl
582 { push_type (tp_reference); $$ = $2; }
583 | direct_abs_decl
584 ;
585
586 direct_abs_decl: '(' abs_decl ')'
587 { $$ = $2; }
588 | direct_abs_decl func_mod
589 { push_type (tp_function); }
590 | func_mod
591 { push_type (tp_function); }
592 ;
593
594 func_mod: '(' ')'
595 { $$ = 0; }
596 | '(' nonempty_typelist ')'
597 { free ($2); $$ = 0; }
598 ;
599
600 typebase /* Implements (approximately): (type-qualifier)* type-specifier */
601 : TYPENAME
602 { $$ = $1.type; }
603 | INT_KEYWORD
604 { $$ = parse_f_type->builtin_integer; }
605 | INT_S2_KEYWORD
606 { $$ = parse_f_type->builtin_integer_s2; }
607 | CHARACTER
608 { $$ = parse_f_type->builtin_character; }
609 | LOGICAL_KEYWORD
610 { $$ = parse_f_type->builtin_logical; }
611 | LOGICAL_S2_KEYWORD
612 { $$ = parse_f_type->builtin_logical_s2; }
613 | LOGICAL_S1_KEYWORD
614 { $$ = parse_f_type->builtin_logical_s1; }
615 | REAL_KEYWORD
616 { $$ = parse_f_type->builtin_real; }
617 | REAL_S8_KEYWORD
618 { $$ = parse_f_type->builtin_real_s8; }
619 | REAL_S16_KEYWORD
620 { $$ = parse_f_type->builtin_real_s16; }
621 | COMPLEX_S8_KEYWORD
622 { $$ = parse_f_type->builtin_complex_s8; }
623 | COMPLEX_S16_KEYWORD
624 { $$ = parse_f_type->builtin_complex_s16; }
625 | COMPLEX_S32_KEYWORD
626 { $$ = parse_f_type->builtin_complex_s32; }
627 ;
628
629 nonempty_typelist
630 : type
631 { $$ = (struct type **) malloc (sizeof (struct type *) * 2);
632 $<ivec>$[0] = 1; /* Number of types in vector */
633 $$[1] = $1;
634 }
635 | nonempty_typelist ',' type
636 { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
637 $$ = (struct type **) realloc ((char *) $1, len);
638 $$[$<ivec>$[0]] = $3;
639 }
640 ;
641
642 name : NAME
643 { $$ = $1.stoken; }
644 ;
645
646 name_not_typename : NAME
647 /* These would be useful if name_not_typename was useful, but it is just
648 a fake for "variable", so these cause reduce/reduce conflicts because
649 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
650 =exp) or just an exp. If name_not_typename was ever used in an lvalue
651 context where only a name could occur, this might be useful.
652 | NAME_OR_INT
653 */
654 ;
655
656 %%
657
658 /* Take care of parsing a number (anything that starts with a digit).
659 Set yylval and return the token type; update lexptr.
660 LEN is the number of characters in it. */
661
662 /*** Needs some error checking for the float case ***/
663
664 static int
665 parse_number (p, len, parsed_float, putithere)
666 char *p;
667 int len;
668 int parsed_float;
669 YYSTYPE *putithere;
670 {
671 LONGEST n = 0;
672 LONGEST prevn = 0;
673 int c;
674 int base = input_radix;
675 int unsigned_p = 0;
676 int long_p = 0;
677 ULONGEST high_bit;
678 struct type *signed_type;
679 struct type *unsigned_type;
680
681 if (parsed_float)
682 {
683 /* It's a float since it contains a point or an exponent. */
684 /* [dD] is not understood as an exponent by atof, change it to 'e'. */
685 char *tmp, *tmp2;
686
687 tmp = xstrdup (p);
688 for (tmp2 = tmp; *tmp2; ++tmp2)
689 if (*tmp2 == 'd' || *tmp2 == 'D')
690 *tmp2 = 'e';
691 putithere->dval = atof (tmp);
692 free (tmp);
693 return FLOAT;
694 }
695
696 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
697 if (p[0] == '0')
698 switch (p[1])
699 {
700 case 'x':
701 case 'X':
702 if (len >= 3)
703 {
704 p += 2;
705 base = 16;
706 len -= 2;
707 }
708 break;
709
710 case 't':
711 case 'T':
712 case 'd':
713 case 'D':
714 if (len >= 3)
715 {
716 p += 2;
717 base = 10;
718 len -= 2;
719 }
720 break;
721
722 default:
723 base = 8;
724 break;
725 }
726
727 while (len-- > 0)
728 {
729 c = *p++;
730 if (isupper (c))
731 c = tolower (c);
732 if (len == 0 && c == 'l')
733 long_p = 1;
734 else if (len == 0 && c == 'u')
735 unsigned_p = 1;
736 else
737 {
738 int i;
739 if (c >= '0' && c <= '9')
740 i = c - '0';
741 else if (c >= 'a' && c <= 'f')
742 i = c - 'a' + 10;
743 else
744 return ERROR; /* Char not a digit */
745 if (i >= base)
746 return ERROR; /* Invalid digit in this base */
747 n *= base;
748 n += i;
749 }
750 /* Portably test for overflow (only works for nonzero values, so make
751 a second check for zero). */
752 if ((prevn >= n) && n != 0)
753 unsigned_p=1; /* Try something unsigned */
754 /* If range checking enabled, portably test for unsigned overflow. */
755 if (RANGE_CHECK && n != 0)
756 {
757 if ((unsigned_p && (unsigned)prevn >= (unsigned)n))
758 range_error("Overflow on numeric constant.");
759 }
760 prevn = n;
761 }
762
763 /* If the number is too big to be an int, or it's got an l suffix
764 then it's a long. Work out if this has to be a long by
765 shifting right and and seeing if anything remains, and the
766 target int size is different to the target long size.
767
768 In the expression below, we could have tested
769 (n >> gdbarch_int_bit (parse_gdbarch))
770 to see if it was zero,
771 but too many compilers warn about that, when ints and longs
772 are the same size. So we shift it twice, with fewer bits
773 each time, for the same result. */
774
775 if ((gdbarch_int_bit (parse_gdbarch) != gdbarch_long_bit (parse_gdbarch)
776 && ((n >> 2)
777 >> (gdbarch_int_bit (parse_gdbarch)-2))) /* Avoid shift warning */
778 || long_p)
779 {
780 high_bit = ((ULONGEST)1) << (gdbarch_long_bit (parse_gdbarch)-1);
781 unsigned_type = parse_type->builtin_unsigned_long;
782 signed_type = parse_type->builtin_long;
783 }
784 else
785 {
786 high_bit = ((ULONGEST)1) << (gdbarch_int_bit (parse_gdbarch)-1);
787 unsigned_type = parse_type->builtin_unsigned_int;
788 signed_type = parse_type->builtin_int;
789 }
790
791 putithere->typed_val.val = n;
792
793 /* If the high bit of the worked out type is set then this number
794 has to be unsigned. */
795
796 if (unsigned_p || (n & high_bit))
797 putithere->typed_val.type = unsigned_type;
798 else
799 putithere->typed_val.type = signed_type;
800
801 return INT;
802 }
803
804 struct token
805 {
806 char *operator;
807 int token;
808 enum exp_opcode opcode;
809 };
810
811 static const struct token dot_ops[] =
812 {
813 { ".and.", BOOL_AND, BINOP_END },
814 { ".AND.", BOOL_AND, BINOP_END },
815 { ".or.", BOOL_OR, BINOP_END },
816 { ".OR.", BOOL_OR, BINOP_END },
817 { ".not.", BOOL_NOT, BINOP_END },
818 { ".NOT.", BOOL_NOT, BINOP_END },
819 { ".eq.", EQUAL, BINOP_END },
820 { ".EQ.", EQUAL, BINOP_END },
821 { ".eqv.", EQUAL, BINOP_END },
822 { ".NEQV.", NOTEQUAL, BINOP_END },
823 { ".neqv.", NOTEQUAL, BINOP_END },
824 { ".EQV.", EQUAL, BINOP_END },
825 { ".ne.", NOTEQUAL, BINOP_END },
826 { ".NE.", NOTEQUAL, BINOP_END },
827 { ".le.", LEQ, BINOP_END },
828 { ".LE.", LEQ, BINOP_END },
829 { ".ge.", GEQ, BINOP_END },
830 { ".GE.", GEQ, BINOP_END },
831 { ".gt.", GREATERTHAN, BINOP_END },
832 { ".GT.", GREATERTHAN, BINOP_END },
833 { ".lt.", LESSTHAN, BINOP_END },
834 { ".LT.", LESSTHAN, BINOP_END },
835 { NULL, 0, 0 }
836 };
837
838 struct f77_boolean_val
839 {
840 char *name;
841 int value;
842 };
843
844 static const struct f77_boolean_val boolean_values[] =
845 {
846 { ".true.", 1 },
847 { ".TRUE.", 1 },
848 { ".false.", 0 },
849 { ".FALSE.", 0 },
850 { NULL, 0 }
851 };
852
853 static const struct token f77_keywords[] =
854 {
855 { "complex_16", COMPLEX_S16_KEYWORD, BINOP_END },
856 { "complex_32", COMPLEX_S32_KEYWORD, BINOP_END },
857 { "character", CHARACTER, BINOP_END },
858 { "integer_2", INT_S2_KEYWORD, BINOP_END },
859 { "logical_1", LOGICAL_S1_KEYWORD, BINOP_END },
860 { "logical_2", LOGICAL_S2_KEYWORD, BINOP_END },
861 { "complex_8", COMPLEX_S8_KEYWORD, BINOP_END },
862 { "integer", INT_KEYWORD, BINOP_END },
863 { "logical", LOGICAL_KEYWORD, BINOP_END },
864 { "real_16", REAL_S16_KEYWORD, BINOP_END },
865 { "complex", COMPLEX_S8_KEYWORD, BINOP_END },
866 { "sizeof", SIZEOF, BINOP_END },
867 { "real_8", REAL_S8_KEYWORD, BINOP_END },
868 { "real", REAL_KEYWORD, BINOP_END },
869 { NULL, 0, 0 }
870 };
871
872 /* Implementation of a dynamically expandable buffer for processing input
873 characters acquired through lexptr and building a value to return in
874 yylval. Ripped off from ch-exp.y */
875
876 static char *tempbuf; /* Current buffer contents */
877 static int tempbufsize; /* Size of allocated buffer */
878 static int tempbufindex; /* Current index into buffer */
879
880 #define GROWBY_MIN_SIZE 64 /* Minimum amount to grow buffer by */
881
882 #define CHECKBUF(size) \
883 do { \
884 if (tempbufindex + (size) >= tempbufsize) \
885 { \
886 growbuf_by_size (size); \
887 } \
888 } while (0);
889
890
891 /* Grow the static temp buffer if necessary, including allocating the first one
892 on demand. */
893
894 static void
895 growbuf_by_size (count)
896 int count;
897 {
898 int growby;
899
900 growby = max (count, GROWBY_MIN_SIZE);
901 tempbufsize += growby;
902 if (tempbuf == NULL)
903 tempbuf = (char *) malloc (tempbufsize);
904 else
905 tempbuf = (char *) realloc (tempbuf, tempbufsize);
906 }
907
908 /* Blatantly ripped off from ch-exp.y. This routine recognizes F77
909 string-literals.
910
911 Recognize a string literal. A string literal is a nonzero sequence
912 of characters enclosed in matching single quotes, except that
913 a single character inside single quotes is a character literal, which
914 we reject as a string literal. To embed the terminator character inside
915 a string, it is simply doubled (I.E. 'this''is''one''string') */
916
917 static int
918 match_string_literal ()
919 {
920 char *tokptr = lexptr;
921
922 for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++)
923 {
924 CHECKBUF (1);
925 if (*tokptr == *lexptr)
926 {
927 if (*(tokptr + 1) == *lexptr)
928 tokptr++;
929 else
930 break;
931 }
932 tempbuf[tempbufindex++] = *tokptr;
933 }
934 if (*tokptr == '\0' /* no terminator */
935 || tempbufindex == 0) /* no string */
936 return 0;
937 else
938 {
939 tempbuf[tempbufindex] = '\0';
940 yylval.sval.ptr = tempbuf;
941 yylval.sval.length = tempbufindex;
942 lexptr = ++tokptr;
943 return STRING_LITERAL;
944 }
945 }
946
947 /* Read one token, getting characters through lexptr. */
948
949 static int
950 yylex ()
951 {
952 int c;
953 int namelen;
954 unsigned int i,token;
955 char *tokstart;
956
957 retry:
958
959 prev_lexptr = lexptr;
960
961 tokstart = lexptr;
962
963 /* First of all, let us make sure we are not dealing with the
964 special tokens .true. and .false. which evaluate to 1 and 0. */
965
966 if (*lexptr == '.')
967 {
968 for (i = 0; boolean_values[i].name != NULL; i++)
969 {
970 if (strncmp (tokstart, boolean_values[i].name,
971 strlen (boolean_values[i].name)) == 0)
972 {
973 lexptr += strlen (boolean_values[i].name);
974 yylval.lval = boolean_values[i].value;
975 return BOOLEAN_LITERAL;
976 }
977 }
978 }
979
980 /* See if it is a special .foo. operator. */
981
982 for (i = 0; dot_ops[i].operator != NULL; i++)
983 if (strncmp (tokstart, dot_ops[i].operator, strlen (dot_ops[i].operator)) == 0)
984 {
985 lexptr += strlen (dot_ops[i].operator);
986 yylval.opcode = dot_ops[i].opcode;
987 return dot_ops[i].token;
988 }
989
990 /* See if it is an exponentiation operator. */
991
992 if (strncmp (tokstart, "**", 2) == 0)
993 {
994 lexptr += 2;
995 yylval.opcode = BINOP_EXP;
996 return STARSTAR;
997 }
998
999 switch (c = *tokstart)
1000 {
1001 case 0:
1002 return 0;
1003
1004 case ' ':
1005 case '\t':
1006 case '\n':
1007 lexptr++;
1008 goto retry;
1009
1010 case '\'':
1011 token = match_string_literal ();
1012 if (token != 0)
1013 return (token);
1014 break;
1015
1016 case '(':
1017 paren_depth++;
1018 lexptr++;
1019 return c;
1020
1021 case ')':
1022 if (paren_depth == 0)
1023 return 0;
1024 paren_depth--;
1025 lexptr++;
1026 return c;
1027
1028 case ',':
1029 if (comma_terminates && paren_depth == 0)
1030 return 0;
1031 lexptr++;
1032 return c;
1033
1034 case '.':
1035 /* Might be a floating point number. */
1036 if (lexptr[1] < '0' || lexptr[1] > '9')
1037 goto symbol; /* Nope, must be a symbol. */
1038 /* FALL THRU into number case. */
1039
1040 case '0':
1041 case '1':
1042 case '2':
1043 case '3':
1044 case '4':
1045 case '5':
1046 case '6':
1047 case '7':
1048 case '8':
1049 case '9':
1050 {
1051 /* It's a number. */
1052 int got_dot = 0, got_e = 0, got_d = 0, toktype;
1053 char *p = tokstart;
1054 int hex = input_radix > 10;
1055
1056 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
1057 {
1058 p += 2;
1059 hex = 1;
1060 }
1061 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
1062 {
1063 p += 2;
1064 hex = 0;
1065 }
1066
1067 for (;; ++p)
1068 {
1069 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
1070 got_dot = got_e = 1;
1071 else if (!hex && !got_d && (*p == 'd' || *p == 'D'))
1072 got_dot = got_d = 1;
1073 else if (!hex && !got_dot && *p == '.')
1074 got_dot = 1;
1075 else if (((got_e && (p[-1] == 'e' || p[-1] == 'E'))
1076 || (got_d && (p[-1] == 'd' || p[-1] == 'D')))
1077 && (*p == '-' || *p == '+'))
1078 /* This is the sign of the exponent, not the end of the
1079 number. */
1080 continue;
1081 /* We will take any letters or digits. parse_number will
1082 complain if past the radix, or if L or U are not final. */
1083 else if ((*p < '0' || *p > '9')
1084 && ((*p < 'a' || *p > 'z')
1085 && (*p < 'A' || *p > 'Z')))
1086 break;
1087 }
1088 toktype = parse_number (tokstart, p - tokstart, got_dot|got_e|got_d,
1089 &yylval);
1090 if (toktype == ERROR)
1091 {
1092 char *err_copy = (char *) alloca (p - tokstart + 1);
1093
1094 memcpy (err_copy, tokstart, p - tokstart);
1095 err_copy[p - tokstart] = 0;
1096 error ("Invalid number \"%s\".", err_copy);
1097 }
1098 lexptr = p;
1099 return toktype;
1100 }
1101
1102 case '+':
1103 case '-':
1104 case '*':
1105 case '/':
1106 case '%':
1107 case '|':
1108 case '&':
1109 case '^':
1110 case '~':
1111 case '!':
1112 case '@':
1113 case '<':
1114 case '>':
1115 case '[':
1116 case ']':
1117 case '?':
1118 case ':':
1119 case '=':
1120 case '{':
1121 case '}':
1122 symbol:
1123 lexptr++;
1124 return c;
1125 }
1126
1127 if (!(c == '_' || c == '$'
1128 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
1129 /* We must have come across a bad character (e.g. ';'). */
1130 error ("Invalid character '%c' in expression.", c);
1131
1132 namelen = 0;
1133 for (c = tokstart[namelen];
1134 (c == '_' || c == '$' || (c >= '0' && c <= '9')
1135 || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
1136 c = tokstart[++namelen]);
1137
1138 /* The token "if" terminates the expression and is NOT
1139 removed from the input stream. */
1140
1141 if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
1142 return 0;
1143
1144 lexptr += namelen;
1145
1146 /* Catch specific keywords. */
1147
1148 for (i = 0; f77_keywords[i].operator != NULL; i++)
1149 if (strncmp (tokstart, f77_keywords[i].operator,
1150 strlen(f77_keywords[i].operator)) == 0)
1151 {
1152 /* lexptr += strlen(f77_keywords[i].operator); */
1153 yylval.opcode = f77_keywords[i].opcode;
1154 return f77_keywords[i].token;
1155 }
1156
1157 yylval.sval.ptr = tokstart;
1158 yylval.sval.length = namelen;
1159
1160 if (*tokstart == '$')
1161 {
1162 write_dollar_variable (yylval.sval);
1163 return VARIABLE;
1164 }
1165
1166 /* Use token-type TYPENAME for symbols that happen to be defined
1167 currently as names of types; NAME for other symbols.
1168 The caller is not constrained to care about the distinction. */
1169 {
1170 char *tmp = copy_name (yylval.sval);
1171 struct symbol *sym;
1172 int is_a_field_of_this = 0;
1173 int hextype;
1174
1175 sym = lookup_symbol (tmp, expression_context_block,
1176 VAR_DOMAIN,
1177 parse_language->la_language == language_cplus
1178 ? &is_a_field_of_this : NULL);
1179 if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1180 {
1181 yylval.tsym.type = SYMBOL_TYPE (sym);
1182 return TYPENAME;
1183 }
1184 yylval.tsym.type
1185 = language_lookup_primitive_type_by_name (parse_language,
1186 parse_gdbarch, tmp);
1187 if (yylval.tsym.type != NULL)
1188 return TYPENAME;
1189
1190 /* Input names that aren't symbols but ARE valid hex numbers,
1191 when the input radix permits them, can be names or numbers
1192 depending on the parse. Note we support radixes > 16 here. */
1193 if (!sym
1194 && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
1195 || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
1196 {
1197 YYSTYPE newlval; /* Its value is ignored. */
1198 hextype = parse_number (tokstart, namelen, 0, &newlval);
1199 if (hextype == INT)
1200 {
1201 yylval.ssym.sym = sym;
1202 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1203 return NAME_OR_INT;
1204 }
1205 }
1206
1207 /* Any other kind of symbol */
1208 yylval.ssym.sym = sym;
1209 yylval.ssym.is_a_field_of_this = is_a_field_of_this;
1210 return NAME;
1211 }
1212 }
1213
1214 void
1215 yyerror (msg)
1216 char *msg;
1217 {
1218 if (prev_lexptr)
1219 lexptr = prev_lexptr;
1220
1221 error ("A %s in expression, near `%s'.", (msg ? msg : "error"), lexptr);
1222 }