]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
Copyright year update in most files of the GDB Project.
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993-1996, 1998-2000, 2003, 2005-2012 Free Software
4 Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions. */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95
96 /* Recursively go all the way down into a possibly multi-dimensional
97 F77 array and get the bounds. For simple arrays, this is pretty
98 easy but when the bounds are dynamic, we must be very careful
99 to add up all the lengths correctly. Not doing this right
100 will lead to horrendous-looking arrays in parameter lists.
101
102 This function also works for strings which behave very
103 similarly to arrays. */
104
105 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
106 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
107 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
108
109 /* Recursion ends here, start setting up lengths. */
110 lower_bound = f77_get_lowerbound (type);
111 upper_bound = f77_get_upperbound (type);
112
113 /* Patch in a valid length value. */
114
115 TYPE_LENGTH (type) =
116 (upper_bound - lower_bound + 1)
117 * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item. */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr,
167 int embedded_offset, CORE_ADDR address,
168 struct ui_file *stream, int recurse,
169 const struct value *val,
170 const struct value_print_options *options,
171 int *elts)
172 {
173 int i;
174
175 if (nss != ndimensions)
176 {
177 for (i = 0;
178 (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
179 i++)
180 {
181 fprintf_filtered (stream, "( ");
182 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
183 valaddr,
184 embedded_offset + i * F77_DIM_OFFSET (nss),
185 address,
186 stream, recurse, val, options, elts);
187 fprintf_filtered (stream, ") ");
188 }
189 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
190 fprintf_filtered (stream, "...");
191 }
192 else
193 {
194 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
195 i++, (*elts)++)
196 {
197 val_print (TYPE_TARGET_TYPE (type),
198 valaddr,
199 embedded_offset + i * F77_DIM_OFFSET (ndimensions),
200 address, stream, recurse,
201 val, options, current_language);
202
203 if (i != (F77_DIM_SIZE (nss) - 1))
204 fprintf_filtered (stream, ", ");
205
206 if ((*elts == options->print_max - 1)
207 && (i != (F77_DIM_SIZE (nss) - 1)))
208 fprintf_filtered (stream, "...");
209 }
210 }
211 }
212
213 /* This function gets called to print an F77 array, we set up some
214 stuff and then immediately call f77_print_array_1(). */
215
216 static void
217 f77_print_array (struct type *type, const gdb_byte *valaddr,
218 int embedded_offset,
219 CORE_ADDR address, struct ui_file *stream,
220 int recurse,
221 const struct value *val,
222 const struct value_print_options *options)
223 {
224 int ndimensions;
225 int elts = 0;
226
227 ndimensions = calc_f77_array_dims (type);
228
229 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
230 error (_("\
231 Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
232 ndimensions, MAX_FORTRAN_DIMS);
233
234 /* Since F77 arrays are stored column-major, we set up an
235 offset table to get at the various row's elements. The
236 offset table contains entries for both offset and subarray size. */
237
238 f77_create_arrayprint_offset_tbl (type, stream);
239
240 f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
241 address, stream, recurse, val, options, &elts);
242 }
243 \f
244
245 /* See val_print for a description of the various parameters of this
246 function; they are identical. The semantics of the return value is
247 also identical to val_print. */
248
249 int
250 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
251 CORE_ADDR address, struct ui_file *stream, int recurse,
252 const struct value *original_value,
253 const struct value_print_options *options)
254 {
255 struct gdbarch *gdbarch = get_type_arch (type);
256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
257 unsigned int i = 0; /* Number of characters printed. */
258 struct type *elttype;
259 LONGEST val;
260 CORE_ADDR addr;
261 int index;
262
263 CHECK_TYPEDEF (type);
264 switch (TYPE_CODE (type))
265 {
266 case TYPE_CODE_STRING:
267 f77_get_dynamic_length_of_aggregate (type);
268 LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
269 valaddr + embedded_offset,
270 TYPE_LENGTH (type), NULL, 0, options);
271 break;
272
273 case TYPE_CODE_ARRAY:
274 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
275 {
276 fprintf_filtered (stream, "(");
277 f77_print_array (type, valaddr, embedded_offset,
278 address, stream, recurse, original_value, options);
279 fprintf_filtered (stream, ")");
280 }
281 else
282 {
283 struct type *ch_type = TYPE_TARGET_TYPE (type);
284
285 f77_get_dynamic_length_of_aggregate (type);
286 LA_PRINT_STRING (stream, ch_type,
287 valaddr + embedded_offset,
288 TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
289 NULL, 0, options);
290 }
291 break;
292
293 case TYPE_CODE_PTR:
294 if (options->format && options->format != 's')
295 {
296 val_print_scalar_formatted (type, valaddr, embedded_offset,
297 original_value, options, 0, stream);
298 break;
299 }
300 else
301 {
302 addr = unpack_pointer (type, valaddr + embedded_offset);
303 elttype = check_typedef (TYPE_TARGET_TYPE (type));
304
305 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
306 {
307 /* Try to print what function it points to. */
308 print_address_demangle (gdbarch, addr, stream, demangle);
309 /* Return value is irrelevant except for string pointers. */
310 return 0;
311 }
312
313 if (options->addressprint && options->format != 's')
314 fputs_filtered (paddress (gdbarch, addr), stream);
315
316 /* For a pointer to char or unsigned char, also print the string
317 pointed to, unless pointer is null. */
318 if (TYPE_LENGTH (elttype) == 1
319 && TYPE_CODE (elttype) == TYPE_CODE_INT
320 && (options->format == 0 || options->format == 's')
321 && addr != 0)
322 i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
323 stream, options);
324
325 /* Return number of characters printed, including the terminating
326 '\0' if we reached the end. val_print_string takes care including
327 the terminating '\0' if necessary. */
328 return i;
329 }
330 break;
331
332 case TYPE_CODE_REF:
333 elttype = check_typedef (TYPE_TARGET_TYPE (type));
334 if (options->addressprint)
335 {
336 CORE_ADDR addr
337 = extract_typed_address (valaddr + embedded_offset, type);
338
339 fprintf_filtered (stream, "@");
340 fputs_filtered (paddress (gdbarch, addr), stream);
341 if (options->deref_ref)
342 fputs_filtered (": ", stream);
343 }
344 /* De-reference the reference. */
345 if (options->deref_ref)
346 {
347 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
348 {
349 struct value *deref_val;
350
351 deref_val = coerce_ref_if_computed (original_value);
352 if (deref_val != NULL)
353 {
354 /* More complicated computed references are not supported. */
355 gdb_assert (embedded_offset == 0);
356 }
357 else
358 deref_val = value_at (TYPE_TARGET_TYPE (type),
359 unpack_pointer (type,
360 (valaddr
361 + embedded_offset)));
362
363 common_val_print (deref_val, stream, recurse,
364 options, current_language);
365 }
366 else
367 fputs_filtered ("???", stream);
368 }
369 break;
370
371 case TYPE_CODE_FUNC:
372 if (options->format)
373 {
374 val_print_scalar_formatted (type, valaddr, embedded_offset,
375 original_value, options, 0, stream);
376 break;
377 }
378 /* FIXME, we should consider, at least for ANSI C language, eliminating
379 the distinction made between FUNCs and POINTERs to FUNCs. */
380 fprintf_filtered (stream, "{");
381 type_print (type, "", stream, -1);
382 fprintf_filtered (stream, "} ");
383 /* Try to print what function it points to, and its address. */
384 print_address_demangle (gdbarch, address, stream, demangle);
385 break;
386
387 case TYPE_CODE_INT:
388 case TYPE_CODE_CHAR:
389 if (options->format || options->output_format)
390 {
391 struct value_print_options opts = *options;
392
393 opts.format = (options->format ? options->format
394 : options->output_format);
395 val_print_scalar_formatted (type, valaddr, embedded_offset,
396 original_value, options, 0, stream);
397 }
398 else
399 {
400 val_print_type_code_int (type, valaddr + embedded_offset, stream);
401 /* C and C++ has no single byte int type, char is used instead.
402 Since we don't know whether the value is really intended to
403 be used as an integer or a character, print the character
404 equivalent as well. */
405 if (TYPE_LENGTH (type) == 1 || TYPE_CODE (type) == TYPE_CODE_CHAR)
406 {
407 LONGEST c;
408
409 fputs_filtered (" ", stream);
410 c = unpack_long (type, valaddr + embedded_offset);
411 LA_PRINT_CHAR ((unsigned char) c, type, stream);
412 }
413 }
414 break;
415
416 case TYPE_CODE_FLAGS:
417 if (options->format)
418 val_print_scalar_formatted (type, valaddr, embedded_offset,
419 original_value, options, 0, stream);
420 else
421 val_print_type_code_flags (type, valaddr + embedded_offset, stream);
422 break;
423
424 case TYPE_CODE_FLT:
425 if (options->format)
426 val_print_scalar_formatted (type, valaddr, embedded_offset,
427 original_value, options, 0, stream);
428 else
429 print_floating (valaddr + embedded_offset, type, stream);
430 break;
431
432 case TYPE_CODE_VOID:
433 fprintf_filtered (stream, "VOID");
434 break;
435
436 case TYPE_CODE_ERROR:
437 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
438 break;
439
440 case TYPE_CODE_RANGE:
441 /* FIXME, we should not ever have to print one of these yet. */
442 fprintf_filtered (stream, "<range type>");
443 break;
444
445 case TYPE_CODE_BOOL:
446 if (options->format || options->output_format)
447 {
448 struct value_print_options opts = *options;
449
450 opts.format = (options->format ? options->format
451 : options->output_format);
452 val_print_scalar_formatted (type, valaddr, embedded_offset,
453 original_value, &opts, 0, stream);
454 }
455 else
456 {
457 val = extract_unsigned_integer (valaddr + embedded_offset,
458 TYPE_LENGTH (type), byte_order);
459 if (val == 0)
460 fprintf_filtered (stream, ".FALSE.");
461 else if (val == 1)
462 fprintf_filtered (stream, ".TRUE.");
463 else
464 /* Not a legitimate logical type, print as an integer. */
465 {
466 /* Bash the type code temporarily. */
467 TYPE_CODE (type) = TYPE_CODE_INT;
468 val_print (type, valaddr, embedded_offset,
469 address, stream, recurse,
470 original_value, options, current_language);
471 /* Restore the type code so later uses work as intended. */
472 TYPE_CODE (type) = TYPE_CODE_BOOL;
473 }
474 }
475 break;
476
477 case TYPE_CODE_COMPLEX:
478 type = TYPE_TARGET_TYPE (type);
479 fputs_filtered ("(", stream);
480 print_floating (valaddr + embedded_offset, type, stream);
481 fputs_filtered (",", stream);
482 print_floating (valaddr + embedded_offset + TYPE_LENGTH (type),
483 type, stream);
484 fputs_filtered (")", stream);
485 break;
486
487 case TYPE_CODE_UNDEF:
488 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
489 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
490 and no complete type for struct foo in that file. */
491 fprintf_filtered (stream, "<incomplete type>");
492 break;
493
494 case TYPE_CODE_STRUCT:
495 case TYPE_CODE_UNION:
496 /* Starting from the Fortran 90 standard, Fortran supports derived
497 types. */
498 fprintf_filtered (stream, "( ");
499 for (index = 0; index < TYPE_NFIELDS (type); index++)
500 {
501 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
502
503 val_print (TYPE_FIELD_TYPE (type, index), valaddr,
504 embedded_offset + offset,
505 address, stream, recurse + 1,
506 original_value, options, current_language);
507 if (index != TYPE_NFIELDS (type) - 1)
508 fputs_filtered (", ", stream);
509 }
510 fprintf_filtered (stream, " )");
511 break;
512
513 default:
514 error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type));
515 }
516 gdb_flush (stream);
517 return 0;
518 }
519
520 static void
521 list_all_visible_commons (char *funname)
522 {
523 SAVED_F77_COMMON_PTR tmp;
524
525 tmp = head_common_list;
526
527 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
528
529 while (tmp != NULL)
530 {
531 if (strcmp (tmp->owning_function, funname) == 0)
532 printf_filtered ("%s\n", tmp->name);
533
534 tmp = tmp->next;
535 }
536 }
537
538 /* This function is used to print out the values in a given COMMON
539 block. It will always use the most local common block of the
540 given name. */
541
542 static void
543 info_common_command (char *comname, int from_tty)
544 {
545 SAVED_F77_COMMON_PTR the_common;
546 COMMON_ENTRY_PTR entry;
547 struct frame_info *fi;
548 char *funname = 0;
549 struct symbol *func;
550
551 /* We have been told to display the contents of F77 COMMON
552 block supposedly visible in this function. Let us
553 first make sure that it is visible and if so, let
554 us display its contents. */
555
556 fi = get_selected_frame (_("No frame selected"));
557
558 /* The following is generally ripped off from stack.c's routine
559 print_frame_info(). */
560
561 func = find_pc_function (get_frame_pc (fi));
562 if (func)
563 {
564 /* In certain pathological cases, the symtabs give the wrong
565 function (when we are in the first function in a file which
566 is compiled without debugging symbols, the previous function
567 is compiled with debugging symbols, and the "foo.o" symbol
568 that is supposed to tell us where the file with debugging symbols
569 ends has been truncated by ar because it is longer than 15
570 characters).
571
572 So look in the minimal symbol tables as well, and if it comes
573 up with a larger address for the function use that instead.
574 I don't think this can ever cause any problems; there shouldn't
575 be any minimal symbols in the middle of a function.
576 FIXME: (Not necessarily true. What about text labels?) */
577
578 struct minimal_symbol *msymbol =
579 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
580
581 if (msymbol != NULL
582 && (SYMBOL_VALUE_ADDRESS (msymbol)
583 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
584 funname = SYMBOL_LINKAGE_NAME (msymbol);
585 else
586 funname = SYMBOL_LINKAGE_NAME (func);
587 }
588 else
589 {
590 struct minimal_symbol *msymbol =
591 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
592
593 if (msymbol != NULL)
594 funname = SYMBOL_LINKAGE_NAME (msymbol);
595 else /* Got no 'funname', code below will fail. */
596 error (_("No function found for frame."));
597 }
598
599 /* If comname is NULL, we assume the user wishes to see the
600 which COMMON blocks are visible here and then return. */
601
602 if (comname == 0)
603 {
604 list_all_visible_commons (funname);
605 return;
606 }
607
608 the_common = find_common_for_function (comname, funname);
609
610 if (the_common)
611 {
612 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
613 printf_filtered (_("Contents of blank COMMON block:\n"));
614 else
615 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
616
617 printf_filtered ("\n");
618 entry = the_common->entries;
619
620 while (entry != NULL)
621 {
622 print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
623 entry = entry->next;
624 }
625 }
626 else
627 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
628 comname, funname);
629 }
630
631 /* This function is used to determine whether there is a
632 F77 common block visible at the current scope called 'comname'. */
633
634 #if 0
635 static int
636 there_is_a_visible_common_named (char *comname)
637 {
638 SAVED_F77_COMMON_PTR the_common;
639 struct frame_info *fi;
640 char *funname = 0;
641 struct symbol *func;
642
643 if (comname == NULL)
644 error (_("Cannot deal with NULL common name!"));
645
646 fi = get_selected_frame (_("No frame selected"));
647
648 /* The following is generally ripped off from stack.c's routine
649 print_frame_info(). */
650
651 func = find_pc_function (fi->pc);
652 if (func)
653 {
654 /* In certain pathological cases, the symtabs give the wrong
655 function (when we are in the first function in a file which
656 is compiled without debugging symbols, the previous function
657 is compiled with debugging symbols, and the "foo.o" symbol
658 that is supposed to tell us where the file with debugging symbols
659 ends has been truncated by ar because it is longer than 15
660 characters).
661
662 So look in the minimal symbol tables as well, and if it comes
663 up with a larger address for the function use that instead.
664 I don't think this can ever cause any problems; there shouldn't
665 be any minimal symbols in the middle of a function.
666 FIXME: (Not necessarily true. What about text labels?) */
667
668 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
669
670 if (msymbol != NULL
671 && (SYMBOL_VALUE_ADDRESS (msymbol)
672 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
673 funname = SYMBOL_LINKAGE_NAME (msymbol);
674 else
675 funname = SYMBOL_LINKAGE_NAME (func);
676 }
677 else
678 {
679 struct minimal_symbol *msymbol =
680 lookup_minimal_symbol_by_pc (fi->pc);
681
682 if (msymbol != NULL)
683 funname = SYMBOL_LINKAGE_NAME (msymbol);
684 }
685
686 the_common = find_common_for_function (comname, funname);
687
688 return (the_common ? 1 : 0);
689 }
690 #endif
691
692 void
693 _initialize_f_valprint (void)
694 {
695 add_info ("common", info_common_command,
696 _("Print out the values contained in a Fortran COMMON block."));
697 if (xdb_commands)
698 add_com ("lc", class_info, info_common_command,
699 _("Print out the values contained in a Fortran COMMON block."));
700 }