]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
2012-05-18 Sergio Durigan Junior <sergiodj@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993-1996, 1998-2000, 2003, 2005-2012 Free Software
4 Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (const char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions. */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95
96 /* Recursively go all the way down into a possibly multi-dimensional
97 F77 array and get the bounds. For simple arrays, this is pretty
98 easy but when the bounds are dynamic, we must be very careful
99 to add up all the lengths correctly. Not doing this right
100 will lead to horrendous-looking arrays in parameter lists.
101
102 This function also works for strings which behave very
103 similarly to arrays. */
104
105 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
106 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
107 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
108
109 /* Recursion ends here, start setting up lengths. */
110 lower_bound = f77_get_lowerbound (type);
111 upper_bound = f77_get_upperbound (type);
112
113 /* Patch in a valid length value. */
114
115 TYPE_LENGTH (type) =
116 (upper_bound - lower_bound + 1)
117 * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item. */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr,
167 int embedded_offset, CORE_ADDR address,
168 struct ui_file *stream, int recurse,
169 const struct value *val,
170 const struct value_print_options *options,
171 int *elts)
172 {
173 int i;
174
175 if (nss != ndimensions)
176 {
177 for (i = 0;
178 (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max);
179 i++)
180 {
181 fprintf_filtered (stream, "( ");
182 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
183 valaddr,
184 embedded_offset + i * F77_DIM_OFFSET (nss),
185 address,
186 stream, recurse, val, options, elts);
187 fprintf_filtered (stream, ") ");
188 }
189 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
190 fprintf_filtered (stream, "...");
191 }
192 else
193 {
194 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
195 i++, (*elts)++)
196 {
197 val_print (TYPE_TARGET_TYPE (type),
198 valaddr,
199 embedded_offset + i * F77_DIM_OFFSET (ndimensions),
200 address, stream, recurse,
201 val, options, current_language);
202
203 if (i != (F77_DIM_SIZE (nss) - 1))
204 fprintf_filtered (stream, ", ");
205
206 if ((*elts == options->print_max - 1)
207 && (i != (F77_DIM_SIZE (nss) - 1)))
208 fprintf_filtered (stream, "...");
209 }
210 }
211 }
212
213 /* This function gets called to print an F77 array, we set up some
214 stuff and then immediately call f77_print_array_1(). */
215
216 static void
217 f77_print_array (struct type *type, const gdb_byte *valaddr,
218 int embedded_offset,
219 CORE_ADDR address, struct ui_file *stream,
220 int recurse,
221 const struct value *val,
222 const struct value_print_options *options)
223 {
224 int ndimensions;
225 int elts = 0;
226
227 ndimensions = calc_f77_array_dims (type);
228
229 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
230 error (_("\
231 Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
232 ndimensions, MAX_FORTRAN_DIMS);
233
234 /* Since F77 arrays are stored column-major, we set up an
235 offset table to get at the various row's elements. The
236 offset table contains entries for both offset and subarray size. */
237
238 f77_create_arrayprint_offset_tbl (type, stream);
239
240 f77_print_array_1 (1, ndimensions, type, valaddr, embedded_offset,
241 address, stream, recurse, val, options, &elts);
242 }
243 \f
244
245 /* Decorations for Fortran. */
246
247 static const struct generic_val_print_decorations f_decorations =
248 {
249 "(",
250 ",",
251 ")",
252 ".TRUE.",
253 ".FALSE.",
254 "VOID",
255 };
256
257 /* See val_print for a description of the various parameters of this
258 function; they are identical. */
259
260 void
261 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
262 CORE_ADDR address, struct ui_file *stream, int recurse,
263 const struct value *original_value,
264 const struct value_print_options *options)
265 {
266 struct gdbarch *gdbarch = get_type_arch (type);
267 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
268 unsigned int i = 0; /* Number of characters printed. */
269 struct type *elttype;
270 CORE_ADDR addr;
271 int index;
272
273 CHECK_TYPEDEF (type);
274 switch (TYPE_CODE (type))
275 {
276 case TYPE_CODE_STRING:
277 f77_get_dynamic_length_of_aggregate (type);
278 LA_PRINT_STRING (stream, builtin_type (gdbarch)->builtin_char,
279 valaddr + embedded_offset,
280 TYPE_LENGTH (type), NULL, 0, options);
281 break;
282
283 case TYPE_CODE_ARRAY:
284 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_CHAR)
285 {
286 fprintf_filtered (stream, "(");
287 f77_print_array (type, valaddr, embedded_offset,
288 address, stream, recurse, original_value, options);
289 fprintf_filtered (stream, ")");
290 }
291 else
292 {
293 struct type *ch_type = TYPE_TARGET_TYPE (type);
294
295 f77_get_dynamic_length_of_aggregate (type);
296 LA_PRINT_STRING (stream, ch_type,
297 valaddr + embedded_offset,
298 TYPE_LENGTH (type) / TYPE_LENGTH (ch_type),
299 NULL, 0, options);
300 }
301 break;
302
303 case TYPE_CODE_PTR:
304 if (options->format && options->format != 's')
305 {
306 val_print_scalar_formatted (type, valaddr, embedded_offset,
307 original_value, options, 0, stream);
308 break;
309 }
310 else
311 {
312 int want_space = 0;
313
314 addr = unpack_pointer (type, valaddr + embedded_offset);
315 elttype = check_typedef (TYPE_TARGET_TYPE (type));
316
317 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
318 {
319 /* Try to print what function it points to. */
320 print_function_pointer_address (options, gdbarch, addr, stream);
321 return;
322 }
323
324 if (options->symbol_print)
325 want_space = print_address_demangle (options, gdbarch, addr,
326 stream, demangle);
327 else if (options->addressprint && options->format != 's')
328 {
329 fputs_filtered (paddress (gdbarch, addr), stream);
330 want_space = 1;
331 }
332
333 /* For a pointer to char or unsigned char, also print the string
334 pointed to, unless pointer is null. */
335 if (TYPE_LENGTH (elttype) == 1
336 && TYPE_CODE (elttype) == TYPE_CODE_INT
337 && (options->format == 0 || options->format == 's')
338 && addr != 0)
339 {
340 if (want_space)
341 fputs_filtered (" ", stream);
342 i = val_print_string (TYPE_TARGET_TYPE (type), NULL, addr, -1,
343 stream, options);
344 }
345 return;
346 }
347 break;
348
349 case TYPE_CODE_INT:
350 if (options->format || options->output_format)
351 {
352 struct value_print_options opts = *options;
353
354 opts.format = (options->format ? options->format
355 : options->output_format);
356 val_print_scalar_formatted (type, valaddr, embedded_offset,
357 original_value, options, 0, stream);
358 }
359 else
360 {
361 val_print_type_code_int (type, valaddr + embedded_offset, stream);
362 /* C and C++ has no single byte int type, char is used instead.
363 Since we don't know whether the value is really intended to
364 be used as an integer or a character, print the character
365 equivalent as well. */
366 if (TYPE_LENGTH (type) == 1)
367 {
368 LONGEST c;
369
370 fputs_filtered (" ", stream);
371 c = unpack_long (type, valaddr + embedded_offset);
372 LA_PRINT_CHAR ((unsigned char) c, type, stream);
373 }
374 }
375 break;
376
377 case TYPE_CODE_STRUCT:
378 case TYPE_CODE_UNION:
379 /* Starting from the Fortran 90 standard, Fortran supports derived
380 types. */
381 fprintf_filtered (stream, "( ");
382 for (index = 0; index < TYPE_NFIELDS (type); index++)
383 {
384 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
385
386 val_print (TYPE_FIELD_TYPE (type, index), valaddr,
387 embedded_offset + offset,
388 address, stream, recurse + 1,
389 original_value, options, current_language);
390 if (index != TYPE_NFIELDS (type) - 1)
391 fputs_filtered (", ", stream);
392 }
393 fprintf_filtered (stream, " )");
394 break;
395
396 case TYPE_CODE_REF:
397 case TYPE_CODE_FUNC:
398 case TYPE_CODE_FLAGS:
399 case TYPE_CODE_FLT:
400 case TYPE_CODE_VOID:
401 case TYPE_CODE_ERROR:
402 case TYPE_CODE_RANGE:
403 case TYPE_CODE_UNDEF:
404 case TYPE_CODE_COMPLEX:
405 case TYPE_CODE_BOOL:
406 case TYPE_CODE_CHAR:
407 default:
408 generic_val_print (type, valaddr, embedded_offset, address,
409 stream, recurse, original_value, options,
410 &f_decorations);
411 break;
412 }
413 gdb_flush (stream);
414 }
415
416 static void
417 list_all_visible_commons (const char *funname)
418 {
419 SAVED_F77_COMMON_PTR tmp;
420
421 tmp = head_common_list;
422
423 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
424
425 while (tmp != NULL)
426 {
427 if (strcmp (tmp->owning_function, funname) == 0)
428 printf_filtered ("%s\n", tmp->name);
429
430 tmp = tmp->next;
431 }
432 }
433
434 /* This function is used to print out the values in a given COMMON
435 block. It will always use the most local common block of the
436 given name. */
437
438 static void
439 info_common_command (char *comname, int from_tty)
440 {
441 SAVED_F77_COMMON_PTR the_common;
442 COMMON_ENTRY_PTR entry;
443 struct frame_info *fi;
444 const char *funname = 0;
445 struct symbol *func;
446
447 /* We have been told to display the contents of F77 COMMON
448 block supposedly visible in this function. Let us
449 first make sure that it is visible and if so, let
450 us display its contents. */
451
452 fi = get_selected_frame (_("No frame selected"));
453
454 /* The following is generally ripped off from stack.c's routine
455 print_frame_info(). */
456
457 func = find_pc_function (get_frame_pc (fi));
458 if (func)
459 {
460 /* In certain pathological cases, the symtabs give the wrong
461 function (when we are in the first function in a file which
462 is compiled without debugging symbols, the previous function
463 is compiled with debugging symbols, and the "foo.o" symbol
464 that is supposed to tell us where the file with debugging symbols
465 ends has been truncated by ar because it is longer than 15
466 characters).
467
468 So look in the minimal symbol tables as well, and if it comes
469 up with a larger address for the function use that instead.
470 I don't think this can ever cause any problems; there shouldn't
471 be any minimal symbols in the middle of a function.
472 FIXME: (Not necessarily true. What about text labels?) */
473
474 struct minimal_symbol *msymbol =
475 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
476
477 if (msymbol != NULL
478 && (SYMBOL_VALUE_ADDRESS (msymbol)
479 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
480 funname = SYMBOL_LINKAGE_NAME (msymbol);
481 else
482 funname = SYMBOL_LINKAGE_NAME (func);
483 }
484 else
485 {
486 struct minimal_symbol *msymbol =
487 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
488
489 if (msymbol != NULL)
490 funname = SYMBOL_LINKAGE_NAME (msymbol);
491 else /* Got no 'funname', code below will fail. */
492 error (_("No function found for frame."));
493 }
494
495 /* If comname is NULL, we assume the user wishes to see the
496 which COMMON blocks are visible here and then return. */
497
498 if (comname == 0)
499 {
500 list_all_visible_commons (funname);
501 return;
502 }
503
504 the_common = find_common_for_function (comname, funname);
505
506 if (the_common)
507 {
508 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
509 printf_filtered (_("Contents of blank COMMON block:\n"));
510 else
511 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
512
513 printf_filtered ("\n");
514 entry = the_common->entries;
515
516 while (entry != NULL)
517 {
518 print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
519 entry = entry->next;
520 }
521 }
522 else
523 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
524 comname, funname);
525 }
526
527 /* This function is used to determine whether there is a
528 F77 common block visible at the current scope called 'comname'. */
529
530 #if 0
531 static int
532 there_is_a_visible_common_named (char *comname)
533 {
534 SAVED_F77_COMMON_PTR the_common;
535 struct frame_info *fi;
536 char *funname = 0;
537 struct symbol *func;
538
539 if (comname == NULL)
540 error (_("Cannot deal with NULL common name!"));
541
542 fi = get_selected_frame (_("No frame selected"));
543
544 /* The following is generally ripped off from stack.c's routine
545 print_frame_info(). */
546
547 func = find_pc_function (fi->pc);
548 if (func)
549 {
550 /* In certain pathological cases, the symtabs give the wrong
551 function (when we are in the first function in a file which
552 is compiled without debugging symbols, the previous function
553 is compiled with debugging symbols, and the "foo.o" symbol
554 that is supposed to tell us where the file with debugging symbols
555 ends has been truncated by ar because it is longer than 15
556 characters).
557
558 So look in the minimal symbol tables as well, and if it comes
559 up with a larger address for the function use that instead.
560 I don't think this can ever cause any problems; there shouldn't
561 be any minimal symbols in the middle of a function.
562 FIXME: (Not necessarily true. What about text labels?) */
563
564 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
565
566 if (msymbol != NULL
567 && (SYMBOL_VALUE_ADDRESS (msymbol)
568 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
569 funname = SYMBOL_LINKAGE_NAME (msymbol);
570 else
571 funname = SYMBOL_LINKAGE_NAME (func);
572 }
573 else
574 {
575 struct minimal_symbol *msymbol =
576 lookup_minimal_symbol_by_pc (fi->pc);
577
578 if (msymbol != NULL)
579 funname = SYMBOL_LINKAGE_NAME (msymbol);
580 }
581
582 the_common = find_common_for_function (comname, funname);
583
584 return (the_common ? 1 : 0);
585 }
586 #endif
587
588 void
589 _initialize_f_valprint (void)
590 {
591 add_info ("common", info_common_command,
592 _("Print out the values contained in a Fortran COMMON block."));
593 if (xdb_commands)
594 add_com ("lc", class_info, info_common_command,
595 _("Print out the values contained in a Fortran COMMON block."));
596 }