]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
* ch-valprint.c (annotate.h): Include.
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2 Copyright 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
4 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "value.h"
28 #include "demangle.h"
29 #include "valprint.h"
30 #include "language.h"
31 #include "f-lang.h"
32 #include "frame.h"
33 #include "gdbcore.h"
34 #include "command.h"
35
36 extern unsigned int print_max; /* No of array elements to print */
37
38 extern int calc_f77_array_dims PARAMS ((struct type *));
39
40 int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];
41
42 /* Array which holds offsets to be applied to get a row's elements
43 for a given array. Array also holds the size of each subarray. */
44
45 /* The following macro gives us the size of the nth dimension, Where
46 n is 1 based. */
47
48 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
49
50 /* The following gives us the offset for row n where n is 1-based. */
51
52 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
53
54 int
55 f77_get_dynamic_lowerbound (type, lower_bound)
56 struct type *type;
57 int *lower_bound;
58 {
59 CORE_ADDR current_frame_addr;
60 CORE_ADDR ptr_to_lower_bound;
61
62 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
63 {
64 case BOUND_BY_VALUE_ON_STACK:
65 current_frame_addr = selected_frame->frame;
66 if (current_frame_addr > 0)
67 {
68 *lower_bound =
69 read_memory_integer (current_frame_addr +
70 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
71 4);
72 }
73 else
74 {
75 *lower_bound = DEFAULT_LOWER_BOUND;
76 return BOUND_FETCH_ERROR;
77 }
78 break;
79
80 case BOUND_SIMPLE:
81 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
82 break;
83
84 case BOUND_CANNOT_BE_DETERMINED:
85 error ("Lower bound may not be '*' in F77");
86 break;
87
88 case BOUND_BY_REF_ON_STACK:
89 current_frame_addr = selected_frame->frame;
90 if (current_frame_addr > 0)
91 {
92 ptr_to_lower_bound =
93 read_memory_integer (current_frame_addr +
94 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
95 4);
96 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
97 }
98 else
99 {
100 *lower_bound = DEFAULT_LOWER_BOUND;
101 return BOUND_FETCH_ERROR;
102 }
103 break;
104
105 case BOUND_BY_REF_IN_REG:
106 case BOUND_BY_VALUE_IN_REG:
107 default:
108 error ("??? unhandled dynamic array bound type ???");
109 break;
110 }
111 return BOUND_FETCH_OK;
112 }
113
114 int
115 f77_get_dynamic_upperbound (type, upper_bound)
116 struct type *type;
117 int *upper_bound;
118 {
119 CORE_ADDR current_frame_addr = 0;
120 CORE_ADDR ptr_to_upper_bound;
121
122 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
123 {
124 case BOUND_BY_VALUE_ON_STACK:
125 current_frame_addr = selected_frame->frame;
126 if (current_frame_addr > 0)
127 {
128 *upper_bound =
129 read_memory_integer (current_frame_addr +
130 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
131 4);
132 }
133 else
134 {
135 *upper_bound = DEFAULT_UPPER_BOUND;
136 return BOUND_FETCH_ERROR;
137 }
138 break;
139
140 case BOUND_SIMPLE:
141 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
142 break;
143
144 case BOUND_CANNOT_BE_DETERMINED:
145 /* we have an assumed size array on our hands. Assume that
146 upper_bound == lower_bound so that we show at least
147 1 element.If the user wants to see more elements, let
148 him manually ask for 'em and we'll subscript the
149 array and show him */
150 f77_get_dynamic_lowerbound (type, upper_bound);
151 break;
152
153 case BOUND_BY_REF_ON_STACK:
154 current_frame_addr = selected_frame->frame;
155 if (current_frame_addr > 0)
156 {
157 ptr_to_upper_bound =
158 read_memory_integer (current_frame_addr +
159 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
160 4);
161 *upper_bound = read_memory_integer(ptr_to_upper_bound, 4);
162 }
163 else
164 {
165 *upper_bound = DEFAULT_UPPER_BOUND;
166 return BOUND_FETCH_ERROR;
167 }
168 break;
169
170 case BOUND_BY_REF_IN_REG:
171 case BOUND_BY_VALUE_IN_REG:
172 default:
173 error ("??? unhandled dynamic array bound type ???");
174 break;
175 }
176 return BOUND_FETCH_OK;
177 }
178
179 /* Obtain F77 adjustable array dimensions */
180
181 void
182 f77_get_dynamic_length_of_aggregate (type)
183 struct type *type;
184 {
185 int upper_bound = -1;
186 int lower_bound = 1;
187 int retcode;
188
189 /* Recursively go all the way down into a possibly multi-dimensional
190 F77 array and get the bounds. For simple arrays, this is pretty
191 easy but when the bounds are dynamic, we must be very careful
192 to add up all the lengths correctly. Not doing this right
193 will lead to horrendous-looking arrays in parameter lists.
194
195 This function also works for strings which behave very
196 similarly to arrays. */
197
198 if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
199 || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
200 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
201
202 /* Recursion ends here, start setting up lengths. */
203 retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
204 if (retcode == BOUND_FETCH_ERROR)
205 error ("Cannot obtain valid array lower bound");
206
207 retcode = f77_get_dynamic_upperbound (type, &upper_bound);
208 if (retcode == BOUND_FETCH_ERROR)
209 error ("Cannot obtain valid array upper bound");
210
211 /* Patch in a valid length value. */
212
213 TYPE_LENGTH (type) =
214 (upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
215 }
216
217 /* Function that sets up the array offset,size table for the array
218 type "type". */
219
220 void
221 f77_create_arrayprint_offset_tbl (type, stream)
222 struct type *type;
223 FILE *stream;
224 {
225 struct type *tmp_type;
226 int eltlen;
227 int ndimen = 1;
228 int upper, lower, retcode;
229
230 tmp_type = type;
231
232 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
233 {
234 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
235 fprintf_filtered (stream, "<assumed size array> ");
236
237 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
238 if (retcode == BOUND_FETCH_ERROR)
239 error ("Cannot obtain dynamic upper bound");
240
241 retcode = f77_get_dynamic_lowerbound(tmp_type,&lower);
242 if (retcode == BOUND_FETCH_ERROR)
243 error("Cannot obtain dynamic lower bound");
244
245 F77_DIM_SIZE (ndimen) = upper - lower + 1;
246
247 tmp_type = TYPE_TARGET_TYPE (tmp_type);
248 ndimen++;
249 }
250
251 /* Now we multiply eltlen by all the offsets, so that later we
252 can print out array elements correctly. Up till now we
253 know an offset to apply to get the item but we also
254 have to know how much to add to get to the next item */
255
256 ndimen--;
257 eltlen = TYPE_LENGTH (tmp_type);
258 F77_DIM_OFFSET (ndimen) = eltlen;
259 while (--ndimen > 0)
260 {
261 eltlen *= F77_DIM_SIZE (ndimen + 1);
262 F77_DIM_OFFSET (ndimen) = eltlen;
263 }
264 }
265
266 /* Actual function which prints out F77 arrays, Valaddr == address in
267 the superior. Address == the address in the inferior. */
268
269 void
270 f77_print_array_1 (nss, ndimensions, type, valaddr, address,
271 stream, format, deref_ref, recurse, pretty)
272 int nss;
273 int ndimensions;
274 char *valaddr;
275 struct type *type;
276 CORE_ADDR address;
277 FILE *stream;
278 int format;
279 int deref_ref;
280 int recurse;
281 enum val_prettyprint pretty;
282 {
283 int i;
284
285 if (nss != ndimensions)
286 {
287 for (i = 0; i< F77_DIM_SIZE(nss); i++)
288 {
289 fprintf_filtered (stream, "( ");
290 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
291 valaddr + i * F77_DIM_OFFSET (nss),
292 address + i * F77_DIM_OFFSET (nss),
293 stream, format, deref_ref, recurse, pretty, i);
294 fprintf_filtered (stream, ") ");
295 }
296 }
297 else
298 {
299 for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
300 {
301 val_print (TYPE_TARGET_TYPE (type),
302 valaddr + i * F77_DIM_OFFSET (ndimensions),
303 address + i * F77_DIM_OFFSET (ndimensions),
304 stream, format, deref_ref, recurse, pretty);
305
306 if (i != (F77_DIM_SIZE (nss) - 1))
307 fprintf_filtered (stream, ", ");
308
309 if (i == print_max - 1)
310 fprintf_filtered (stream, "...");
311 }
312 }
313 }
314
315 /* This function gets called to print an F77 array, we set up some
316 stuff and then immediately call f77_print_array_1() */
317
318 void
319 f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
320 pretty)
321 struct type *type;
322 char *valaddr;
323 CORE_ADDR address;
324 FILE *stream;
325 int format;
326 int deref_ref;
327 int recurse;
328 enum val_prettyprint pretty;
329 {
330 int ndimensions;
331
332 ndimensions = calc_f77_array_dims (type);
333
334 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
335 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
336 ndimensions, MAX_FORTRAN_DIMS);
337
338 /* Since F77 arrays are stored column-major, we set up an
339 offset table to get at the various row's elements. The
340 offset table contains entries for both offset and subarray size. */
341
342 f77_create_arrayprint_offset_tbl (type, stream);
343
344 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
345 deref_ref, recurse, pretty);
346 }
347
348 \f
349 /* Print data of type TYPE located at VALADDR (within GDB), which came from
350 the inferior at address ADDRESS, onto stdio stream STREAM according to
351 FORMAT (a letter or 0 for natural format). The data at VALADDR is in
352 target byte order.
353
354 If the data are a string pointer, returns the number of string characters
355 printed.
356
357 If DEREF_REF is nonzero, then dereference references, otherwise just print
358 them like pointers.
359
360 The PRETTY parameter controls prettyprinting. */
361
362 int
363 f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
364 pretty)
365 struct type *type;
366 char *valaddr;
367 CORE_ADDR address;
368 FILE *stream;
369 int format;
370 int deref_ref;
371 int recurse;
372 enum val_prettyprint pretty;
373 {
374 register unsigned int i = 0; /* Number of characters printed */
375 struct type *elttype;
376 LONGEST val;
377 char *straddr;
378 CORE_ADDR addr;
379
380 switch (TYPE_CODE (type))
381 {
382 case TYPE_CODE_STRING:
383 f77_get_dynamic_length_of_aggregate (type);
384 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 0);
385 break;
386
387 case TYPE_CODE_ARRAY:
388 fprintf_filtered (stream, "(");
389 f77_print_array (type, valaddr, address, stream, format,
390 deref_ref, recurse, pretty);
391 fprintf_filtered (stream, ")");
392 break;
393 #if 0
394 /* Array of unspecified length: treat like pointer to first elt. */
395 valaddr = (char *) &address;
396 /* FALL THROUGH */
397 #endif
398 case TYPE_CODE_PTR:
399 if (format && format != 's')
400 {
401 print_scalar_formatted (valaddr, type, format, 0, stream);
402 break;
403 }
404 else
405 {
406 addr = unpack_pointer (type, valaddr);
407 elttype = TYPE_TARGET_TYPE (type);
408
409 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
410 {
411 /* Try to print what function it points to. */
412 print_address_demangle (addr, stream, demangle);
413 /* Return value is irrelevant except for string pointers. */
414 return 0;
415 }
416
417 if (addressprint && format != 's')
418 fprintf_filtered (stream, "0x%x", addr);
419
420 /* For a pointer to char or unsigned char, also print the string
421 pointed to, unless pointer is null. */
422 if (TYPE_LENGTH (elttype) == 1
423 && TYPE_CODE (elttype) == TYPE_CODE_INT
424 && (format == 0 || format == 's')
425 && addr != 0)
426 i = val_print_string (addr, 0, stream);
427
428 /* Return number of characters printed, plus one for the
429 terminating null if we have "reached the end". */
430 return (i + (print_max && i != print_max));
431 }
432 break;
433
434 case TYPE_CODE_FUNC:
435 if (format)
436 {
437 print_scalar_formatted (valaddr, type, format, 0, stream);
438 break;
439 }
440 /* FIXME, we should consider, at least for ANSI C language, eliminating
441 the distinction made between FUNCs and POINTERs to FUNCs. */
442 fprintf_filtered (stream, "{");
443 type_print (type, "", stream, -1);
444 fprintf_filtered (stream, "} ");
445 /* Try to print what function it points to, and its address. */
446 print_address_demangle (address, stream, demangle);
447 break;
448
449 case TYPE_CODE_INT:
450 format = format ? format : output_format;
451 if (format)
452 print_scalar_formatted (valaddr, type, format, 0, stream);
453 else
454 {
455 val_print_type_code_int (type, valaddr, stream);
456 /* C and C++ has no single byte int type, char is used instead.
457 Since we don't know whether the value is really intended to
458 be used as an integer or a character, print the character
459 equivalent as well. */
460 if (TYPE_LENGTH (type) == 1)
461 {
462 fputs_filtered (" ", stream);
463 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
464 stream);
465 }
466 }
467 break;
468
469 case TYPE_CODE_FLT:
470 if (format)
471 print_scalar_formatted (valaddr, type, format, 0, stream);
472 else
473 print_floating (valaddr, type, stream);
474 break;
475
476 case TYPE_CODE_VOID:
477 fprintf_filtered (stream, "VOID");
478 break;
479
480 case TYPE_CODE_ERROR:
481 fprintf_filtered (stream, "<error type>");
482 break;
483
484 case TYPE_CODE_RANGE:
485 /* FIXME, we should not ever have to print one of these yet. */
486 fprintf_filtered (stream, "<range type>");
487 break;
488
489 case TYPE_CODE_BOOL:
490 format = format ? format : output_format;
491 if (format)
492 print_scalar_formatted (valaddr, type, format, 0, stream);
493 else
494 {
495 val = 0;
496 switch (TYPE_LENGTH(type))
497 {
498 case 1:
499 val = unpack_long (builtin_type_f_logical_s1, valaddr);
500 break ;
501
502 case 2:
503 val = unpack_long (builtin_type_f_logical_s2, valaddr);
504 break ;
505
506 case 4:
507 val = unpack_long (builtin_type_f_logical, valaddr);
508 break ;
509
510 default:
511 error ("Logicals of length %d bytes not supported",
512 TYPE_LENGTH (type));
513
514 }
515
516 if (val == 0)
517 fprintf_filtered (stream, ".FALSE.");
518 else
519 if (val == 1)
520 fprintf_filtered (stream, ".TRUE.");
521 else
522 /* Not a legitimate logical type, print as an integer. */
523 {
524 /* Bash the type code temporarily. */
525 TYPE_CODE (type) = TYPE_CODE_INT;
526 f_val_print (type, valaddr, address, stream, format,
527 deref_ref, recurse, pretty);
528 /* Restore the type code so later uses work as intended. */
529 TYPE_CODE (type) = TYPE_CODE_BOOL;
530 }
531 }
532 break;
533
534 case TYPE_CODE_COMPLEX:
535 switch (TYPE_LENGTH (type))
536 {
537 case 8: type = builtin_type_f_real; break;
538 case 16: type = builtin_type_f_real_s8; break;
539 case 32: type = builtin_type_f_real_s16; break;
540 default:
541 error ("Cannot print out complex*%d variables", TYPE_LENGTH(type));
542 }
543 fputs_filtered ("(", stream);
544 print_floating (valaddr, type, stream);
545 fputs_filtered (",", stream);
546 print_floating (valaddr, type, stream);
547 fputs_filtered (")", stream);
548 break;
549
550 case TYPE_CODE_UNDEF:
551 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
552 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
553 and no complete type for struct foo in that file. */
554 fprintf_filtered (stream, "<incomplete type>");
555 break;
556
557 default:
558 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
559 }
560 fflush (stream);
561 return 0;
562 }
563
564 void
565 list_all_visible_commons (funname)
566 char *funname;
567 {
568 SAVED_F77_COMMON_PTR tmp;
569
570 tmp = head_common_list;
571
572 printf_filtered ("All COMMON blocks visible at this level:\n\n");
573
574 while (tmp != NULL)
575 {
576 if (STREQ(tmp->owning_function,funname))
577 printf_filtered ("%s\n", tmp->name);
578
579 tmp = tmp->next;
580 }
581 }
582
583 /* This function is used to print out the values in a given COMMON
584 block. It will always use the most local common block of the
585 given name */
586
587 static void
588 info_common_command (comname, from_tty)
589 char *comname;
590 int from_tty;
591 {
592 SAVED_F77_COMMON_PTR the_common;
593 COMMON_ENTRY_PTR entry;
594 struct frame_info *fi;
595 register char *funname = 0;
596 struct symbol *func;
597
598 /* We have been told to display the contents of F77 COMMON
599 block supposedly visible in this function. Let us
600 first make sure that it is visible and if so, let
601 us display its contents */
602
603 fi = selected_frame;
604
605 if (fi == NULL)
606 error ("No frame selected");
607
608 /* The following is generally ripped off from stack.c's routine
609 print_frame_info() */
610
611 func = find_pc_function (fi->pc);
612 if (func)
613 {
614 /* In certain pathological cases, the symtabs give the wrong
615 function (when we are in the first function in a file which
616 is compiled without debugging symbols, the previous function
617 is compiled with debugging symbols, and the "foo.o" symbol
618 that is supposed to tell us where the file with debugging symbols
619 ends has been truncated by ar because it is longer than 15
620 characters).
621
622 So look in the minimal symbol tables as well, and if it comes
623 up with a larger address for the function use that instead.
624 I don't think this can ever cause any problems; there shouldn't
625 be any minimal symbols in the middle of a function.
626 FIXME: (Not necessarily true. What about text labels) */
627
628 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
629
630 if (msymbol != NULL
631 && (SYMBOL_VALUE_ADDRESS (msymbol)
632 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
633 funname = SYMBOL_NAME (msymbol);
634 else
635 funname = SYMBOL_NAME (func);
636 }
637 else
638 {
639 register struct minimal_symbol *msymbol =
640 lookup_minimal_symbol_by_pc (fi->pc);
641
642 if (msymbol != NULL)
643 funname = SYMBOL_NAME (msymbol);
644 }
645
646 /* If comname is NULL, we assume the user wishes to see the
647 which COMMON blocks are visible here and then return */
648
649 if (comname == 0)
650 {
651 list_all_visible_commons (funname);
652 return;
653 }
654
655 the_common = find_common_for_function (comname,funname);
656
657 if (the_common)
658 {
659 if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
660 printf_filtered ("Contents of blank COMMON block:\n");
661 else
662 printf_filtered ("Contents of F77 COMMON block '%s':\n",comname);
663
664 printf_filtered ("\n");
665 entry = the_common->entries;
666
667 while (entry != NULL)
668 {
669 printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol));
670 print_variable_value (entry->symbol,fi,stdout);
671 printf_filtered ("\n");
672 entry = entry->next;
673 }
674 }
675 else
676 printf_filtered ("Cannot locate the common block %s in function '%s'\n",
677 comname, funname);
678 }
679
680 /* This function is used to determine whether there is a
681 F77 common block visible at the current scope called 'comname'. */
682
683 int
684 there_is_a_visible_common_named (comname)
685 char *comname;
686 {
687 SAVED_F77_COMMON_PTR the_common;
688 struct frame_info *fi;
689 register char *funname = 0;
690 struct symbol *func;
691
692 if (comname == NULL)
693 error ("Cannot deal with NULL common name!");
694
695 fi = selected_frame;
696
697 if (fi == NULL)
698 error ("No frame selected");
699
700 /* The following is generally ripped off from stack.c's routine
701 print_frame_info() */
702
703 func = find_pc_function (fi->pc);
704 if (func)
705 {
706 /* In certain pathological cases, the symtabs give the wrong
707 function (when we are in the first function in a file which
708 is compiled without debugging symbols, the previous function
709 is compiled with debugging symbols, and the "foo.o" symbol
710 that is supposed to tell us where the file with debugging symbols
711 ends has been truncated by ar because it is longer than 15
712 characters).
713
714 So look in the minimal symbol tables as well, and if it comes
715 up with a larger address for the function use that instead.
716 I don't think this can ever cause any problems; there shouldn't
717 be any minimal symbols in the middle of a function.
718 FIXME: (Not necessarily true. What about text labels) */
719
720 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
721
722 if (msymbol != NULL
723 && (SYMBOL_VALUE_ADDRESS (msymbol)
724 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
725 funname = SYMBOL_NAME (msymbol);
726 else
727 funname = SYMBOL_NAME (func);
728 }
729 else
730 {
731 register struct minimal_symbol *msymbol =
732 lookup_minimal_symbol_by_pc (fi->pc);
733
734 if (msymbol != NULL)
735 funname = SYMBOL_NAME (msymbol);
736 }
737
738 the_common = find_common_for_function (comname, funname);
739
740 return (the_common ? 1 : 0);
741 }
742
743 void
744 _initialize_f_valprint ()
745 {
746 add_info ("common", info_common_command,
747 "Print out the values contained in a Fortran COMMON block.");
748 }