]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
* dache.c (struct dcache_block): Change data member from unsigned char
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2 Copyright 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
4 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "expression.h"
27 #include "value.h"
28 #include "demangle.h"
29 #include "valprint.h"
30 #include "language.h"
31 #include "f-lang.h"
32 #include "frame.h"
33 #include "gdbcore.h"
34 #include "command.h"
35
36 extern unsigned int print_max; /* No of array elements to print */
37
38 extern int calc_f77_array_dims PARAMS ((struct type *));
39
40 int f77_array_offset_tbl[MAX_FORTRAN_DIMS+1][2];
41
42 /* Array which holds offsets to be applied to get a row's elements
43 for a given array. Array also holds the size of each subarray. */
44
45 /* The following macro gives us the size of the nth dimension, Where
46 n is 1 based. */
47
48 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
49
50 /* The following gives us the offset for row n where n is 1-based. */
51
52 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
53
54 int
55 f77_get_dynamic_lowerbound (type, lower_bound)
56 struct type *type;
57 int *lower_bound;
58 {
59 CORE_ADDR current_frame_addr;
60 CORE_ADDR ptr_to_lower_bound;
61
62 switch (TYPE_ARRAY_LOWER_BOUND_TYPE (type))
63 {
64 case BOUND_BY_VALUE_ON_STACK:
65 current_frame_addr = selected_frame->frame;
66 if (current_frame_addr > 0)
67 {
68 *lower_bound =
69 read_memory_integer (current_frame_addr +
70 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
71 4);
72 }
73 else
74 {
75 *lower_bound = DEFAULT_LOWER_BOUND;
76 return BOUND_FETCH_ERROR;
77 }
78 break;
79
80 case BOUND_SIMPLE:
81 *lower_bound = TYPE_ARRAY_LOWER_BOUND_VALUE (type);
82 break;
83
84 case BOUND_CANNOT_BE_DETERMINED:
85 error ("Lower bound may not be '*' in F77");
86 break;
87
88 case BOUND_BY_REF_ON_STACK:
89 current_frame_addr = selected_frame->frame;
90 if (current_frame_addr > 0)
91 {
92 ptr_to_lower_bound =
93 read_memory_integer (current_frame_addr +
94 TYPE_ARRAY_LOWER_BOUND_VALUE (type),
95 4);
96 *lower_bound = read_memory_integer (ptr_to_lower_bound, 4);
97 }
98 else
99 {
100 *lower_bound = DEFAULT_LOWER_BOUND;
101 return BOUND_FETCH_ERROR;
102 }
103 break;
104
105 case BOUND_BY_REF_IN_REG:
106 case BOUND_BY_VALUE_IN_REG:
107 default:
108 error ("??? unhandled dynamic array bound type ???");
109 break;
110 }
111 return BOUND_FETCH_OK;
112 }
113
114 int
115 f77_get_dynamic_upperbound (type, upper_bound)
116 struct type *type;
117 int *upper_bound;
118 {
119 CORE_ADDR current_frame_addr = 0;
120 CORE_ADDR ptr_to_upper_bound;
121
122 switch (TYPE_ARRAY_UPPER_BOUND_TYPE (type))
123 {
124 case BOUND_BY_VALUE_ON_STACK:
125 current_frame_addr = selected_frame->frame;
126 if (current_frame_addr > 0)
127 {
128 *upper_bound =
129 read_memory_integer (current_frame_addr +
130 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
131 4);
132 }
133 else
134 {
135 *upper_bound = DEFAULT_UPPER_BOUND;
136 return BOUND_FETCH_ERROR;
137 }
138 break;
139
140 case BOUND_SIMPLE:
141 *upper_bound = TYPE_ARRAY_UPPER_BOUND_VALUE (type);
142 break;
143
144 case BOUND_CANNOT_BE_DETERMINED:
145 /* we have an assumed size array on our hands. Assume that
146 upper_bound == lower_bound so that we show at least
147 1 element.If the user wants to see more elements, let
148 him manually ask for 'em and we'll subscript the
149 array and show him */
150 f77_get_dynamic_lowerbound (type, upper_bound);
151 break;
152
153 case BOUND_BY_REF_ON_STACK:
154 current_frame_addr = selected_frame->frame;
155 if (current_frame_addr > 0)
156 {
157 ptr_to_upper_bound =
158 read_memory_integer (current_frame_addr +
159 TYPE_ARRAY_UPPER_BOUND_VALUE (type),
160 4);
161 *upper_bound = read_memory_integer(ptr_to_upper_bound, 4);
162 }
163 else
164 {
165 *upper_bound = DEFAULT_UPPER_BOUND;
166 return BOUND_FETCH_ERROR;
167 }
168 break;
169
170 case BOUND_BY_REF_IN_REG:
171 case BOUND_BY_VALUE_IN_REG:
172 default:
173 error ("??? unhandled dynamic array bound type ???");
174 break;
175 }
176 return BOUND_FETCH_OK;
177 }
178
179 /* Obtain F77 adjustable array dimensions */
180
181 void
182 f77_get_dynamic_length_of_aggregate (type)
183 struct type *type;
184 {
185 int upper_bound = -1;
186 int lower_bound = 1;
187 int retcode;
188
189 /* Recursively go all the way down into a possibly multi-dimensional
190 F77 array and get the bounds. For simple arrays, this is pretty
191 easy but when the bounds are dynamic, we must be very careful
192 to add up all the lengths correctly. Not doing this right
193 will lead to horrendous-looking arrays in parameter lists.
194
195 This function also works for strings which behave very
196 similarly to arrays. */
197
198 if (TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
199 || TYPE_CODE(TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
200 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
201
202 /* Recursion ends here, start setting up lengths. */
203 retcode = f77_get_dynamic_lowerbound (type, &lower_bound);
204 if (retcode == BOUND_FETCH_ERROR)
205 error ("Cannot obtain valid array lower bound");
206
207 retcode = f77_get_dynamic_upperbound (type, &upper_bound);
208 if (retcode == BOUND_FETCH_ERROR)
209 error ("Cannot obtain valid array upper bound");
210
211 /* Patch in a valid length value. */
212
213 TYPE_LENGTH (type) =
214 (upper_bound - lower_bound + 1) * TYPE_LENGTH (TYPE_TARGET_TYPE (type));
215 }
216
217 /* Function that sets up the array offset,size table for the array
218 type "type". */
219
220 void
221 f77_create_arrayprint_offset_tbl (type, stream)
222 struct type *type;
223 FILE *stream;
224 {
225 struct type *tmp_type;
226 int eltlen;
227 int ndimen = 1;
228 int upper, lower, retcode;
229
230 tmp_type = type;
231
232 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
233 {
234 if (TYPE_ARRAY_UPPER_BOUND_TYPE (tmp_type) == BOUND_CANNOT_BE_DETERMINED)
235 fprintf_filtered (stream, "<assumed size array> ");
236
237 retcode = f77_get_dynamic_upperbound (tmp_type, &upper);
238 if (retcode == BOUND_FETCH_ERROR)
239 error ("Cannot obtain dynamic upper bound");
240
241 retcode = f77_get_dynamic_lowerbound(tmp_type,&lower);
242 if (retcode == BOUND_FETCH_ERROR)
243 error("Cannot obtain dynamic lower bound");
244
245 F77_DIM_SIZE (ndimen) = upper - lower + 1;
246
247 tmp_type = TYPE_TARGET_TYPE (tmp_type);
248 ndimen++;
249 }
250
251 /* Now we multiply eltlen by all the offsets, so that later we
252 can print out array elements correctly. Up till now we
253 know an offset to apply to get the item but we also
254 have to know how much to add to get to the next item */
255
256 ndimen--;
257 eltlen = TYPE_LENGTH (tmp_type);
258 F77_DIM_OFFSET (ndimen) = eltlen;
259 while (--ndimen > 0)
260 {
261 eltlen *= F77_DIM_SIZE (ndimen + 1);
262 F77_DIM_OFFSET (ndimen) = eltlen;
263 }
264 }
265
266 /* Actual function which prints out F77 arrays, Valaddr == address in
267 the superior. Address == the address in the inferior. */
268
269 void
270 f77_print_array_1 (nss, ndimensions, type, valaddr, address,
271 stream, format, deref_ref, recurse, pretty)
272 int nss;
273 int ndimensions;
274 char *valaddr;
275 struct type *type;
276 CORE_ADDR address;
277 FILE *stream;
278 int format;
279 int deref_ref;
280 int recurse;
281 enum val_prettyprint pretty;
282 {
283 int i;
284
285 if (nss != ndimensions)
286 {
287 for (i = 0; i< F77_DIM_SIZE(nss); i++)
288 {
289 fprintf_filtered (stream, "( ");
290 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
291 valaddr + i * F77_DIM_OFFSET (nss),
292 address + i * F77_DIM_OFFSET (nss),
293 stream, format, deref_ref, recurse, pretty, i);
294 fprintf_filtered (stream, ") ");
295 }
296 }
297 else
298 {
299 for (i = 0; (i < F77_DIM_SIZE (nss) && i < print_max); i++)
300 {
301 val_print (TYPE_TARGET_TYPE (type),
302 valaddr + i * F77_DIM_OFFSET (ndimensions),
303 address + i * F77_DIM_OFFSET (ndimensions),
304 stream, format, deref_ref, recurse, pretty);
305
306 if (i != (F77_DIM_SIZE (nss) - 1))
307 fprintf_filtered (stream, ", ");
308
309 if (i == print_max - 1)
310 fprintf_filtered (stream, "...");
311 }
312 }
313 }
314
315 /* This function gets called to print an F77 array, we set up some
316 stuff and then immediately call f77_print_array_1() */
317
318 void
319 f77_print_array (type, valaddr, address, stream, format, deref_ref, recurse,
320 pretty)
321 struct type *type;
322 char *valaddr;
323 CORE_ADDR address;
324 FILE *stream;
325 int format;
326 int deref_ref;
327 int recurse;
328 enum val_prettyprint pretty;
329 {
330 int ndimensions;
331
332 ndimensions = calc_f77_array_dims (type);
333
334 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
335 error ("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)",
336 ndimensions, MAX_FORTRAN_DIMS);
337
338 /* Since F77 arrays are stored column-major, we set up an
339 offset table to get at the various row's elements. The
340 offset table contains entries for both offset and subarray size. */
341
342 f77_create_arrayprint_offset_tbl (type, stream);
343
344 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream, format,
345 deref_ref, recurse, pretty);
346 }
347
348 \f
349 /* Print data of type TYPE located at VALADDR (within GDB), which came from
350 the inferior at address ADDRESS, onto stdio stream STREAM according to
351 FORMAT (a letter or 0 for natural format). The data at VALADDR is in
352 target byte order.
353
354 If the data are a string pointer, returns the number of string characters
355 printed.
356
357 If DEREF_REF is nonzero, then dereference references, otherwise just print
358 them like pointers.
359
360 The PRETTY parameter controls prettyprinting. */
361
362 int
363 f_val_print (type, valaddr, address, stream, format, deref_ref, recurse,
364 pretty)
365 struct type *type;
366 char *valaddr;
367 CORE_ADDR address;
368 FILE *stream;
369 int format;
370 int deref_ref;
371 int recurse;
372 enum val_prettyprint pretty;
373 {
374 register unsigned int i = 0; /* Number of characters printed */
375 struct type *elttype;
376 LONGEST val;
377 CORE_ADDR addr;
378
379 switch (TYPE_CODE (type))
380 {
381 case TYPE_CODE_STRING:
382 f77_get_dynamic_length_of_aggregate (type);
383 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 0);
384 break;
385
386 case TYPE_CODE_ARRAY:
387 fprintf_filtered (stream, "(");
388 f77_print_array (type, valaddr, address, stream, format,
389 deref_ref, recurse, pretty);
390 fprintf_filtered (stream, ")");
391 break;
392 #if 0
393 /* Array of unspecified length: treat like pointer to first elt. */
394 valaddr = (char *) &address;
395 /* FALL THROUGH */
396 #endif
397 case TYPE_CODE_PTR:
398 if (format && format != 's')
399 {
400 print_scalar_formatted (valaddr, type, format, 0, stream);
401 break;
402 }
403 else
404 {
405 addr = unpack_pointer (type, valaddr);
406 elttype = TYPE_TARGET_TYPE (type);
407
408 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
409 {
410 /* Try to print what function it points to. */
411 print_address_demangle (addr, stream, demangle);
412 /* Return value is irrelevant except for string pointers. */
413 return 0;
414 }
415
416 if (addressprint && format != 's')
417 fprintf_filtered (stream, "0x%x", addr);
418
419 /* For a pointer to char or unsigned char, also print the string
420 pointed to, unless pointer is null. */
421 if (TYPE_LENGTH (elttype) == 1
422 && TYPE_CODE (elttype) == TYPE_CODE_INT
423 && (format == 0 || format == 's')
424 && addr != 0)
425 i = val_print_string (addr, 0, stream);
426
427 /* Return number of characters printed, plus one for the
428 terminating null if we have "reached the end". */
429 return (i + (print_max && i != print_max));
430 }
431 break;
432
433 case TYPE_CODE_FUNC:
434 if (format)
435 {
436 print_scalar_formatted (valaddr, type, format, 0, stream);
437 break;
438 }
439 /* FIXME, we should consider, at least for ANSI C language, eliminating
440 the distinction made between FUNCs and POINTERs to FUNCs. */
441 fprintf_filtered (stream, "{");
442 type_print (type, "", stream, -1);
443 fprintf_filtered (stream, "} ");
444 /* Try to print what function it points to, and its address. */
445 print_address_demangle (address, stream, demangle);
446 break;
447
448 case TYPE_CODE_INT:
449 format = format ? format : output_format;
450 if (format)
451 print_scalar_formatted (valaddr, type, format, 0, stream);
452 else
453 {
454 val_print_type_code_int (type, valaddr, stream);
455 /* C and C++ has no single byte int type, char is used instead.
456 Since we don't know whether the value is really intended to
457 be used as an integer or a character, print the character
458 equivalent as well. */
459 if (TYPE_LENGTH (type) == 1)
460 {
461 fputs_filtered (" ", stream);
462 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
463 stream);
464 }
465 }
466 break;
467
468 case TYPE_CODE_FLT:
469 if (format)
470 print_scalar_formatted (valaddr, type, format, 0, stream);
471 else
472 print_floating (valaddr, type, stream);
473 break;
474
475 case TYPE_CODE_VOID:
476 fprintf_filtered (stream, "VOID");
477 break;
478
479 case TYPE_CODE_ERROR:
480 fprintf_filtered (stream, "<error type>");
481 break;
482
483 case TYPE_CODE_RANGE:
484 /* FIXME, we should not ever have to print one of these yet. */
485 fprintf_filtered (stream, "<range type>");
486 break;
487
488 case TYPE_CODE_BOOL:
489 format = format ? format : output_format;
490 if (format)
491 print_scalar_formatted (valaddr, type, format, 0, stream);
492 else
493 {
494 val = 0;
495 switch (TYPE_LENGTH(type))
496 {
497 case 1:
498 val = unpack_long (builtin_type_f_logical_s1, valaddr);
499 break ;
500
501 case 2:
502 val = unpack_long (builtin_type_f_logical_s2, valaddr);
503 break ;
504
505 case 4:
506 val = unpack_long (builtin_type_f_logical, valaddr);
507 break ;
508
509 default:
510 error ("Logicals of length %d bytes not supported",
511 TYPE_LENGTH (type));
512
513 }
514
515 if (val == 0)
516 fprintf_filtered (stream, ".FALSE.");
517 else
518 if (val == 1)
519 fprintf_filtered (stream, ".TRUE.");
520 else
521 /* Not a legitimate logical type, print as an integer. */
522 {
523 /* Bash the type code temporarily. */
524 TYPE_CODE (type) = TYPE_CODE_INT;
525 f_val_print (type, valaddr, address, stream, format,
526 deref_ref, recurse, pretty);
527 /* Restore the type code so later uses work as intended. */
528 TYPE_CODE (type) = TYPE_CODE_BOOL;
529 }
530 }
531 break;
532
533 case TYPE_CODE_COMPLEX:
534 switch (TYPE_LENGTH (type))
535 {
536 case 8: type = builtin_type_f_real; break;
537 case 16: type = builtin_type_f_real_s8; break;
538 case 32: type = builtin_type_f_real_s16; break;
539 default:
540 error ("Cannot print out complex*%d variables", TYPE_LENGTH(type));
541 }
542 fputs_filtered ("(", stream);
543 print_floating (valaddr, type, stream);
544 fputs_filtered (",", stream);
545 print_floating (valaddr, type, stream);
546 fputs_filtered (")", stream);
547 break;
548
549 case TYPE_CODE_UNDEF:
550 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
551 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
552 and no complete type for struct foo in that file. */
553 fprintf_filtered (stream, "<incomplete type>");
554 break;
555
556 default:
557 error ("Invalid F77 type code %d in symbol table.", TYPE_CODE (type));
558 }
559 fflush (stream);
560 return 0;
561 }
562
563 void
564 list_all_visible_commons (funname)
565 char *funname;
566 {
567 SAVED_F77_COMMON_PTR tmp;
568
569 tmp = head_common_list;
570
571 printf_filtered ("All COMMON blocks visible at this level:\n\n");
572
573 while (tmp != NULL)
574 {
575 if (STREQ(tmp->owning_function,funname))
576 printf_filtered ("%s\n", tmp->name);
577
578 tmp = tmp->next;
579 }
580 }
581
582 /* This function is used to print out the values in a given COMMON
583 block. It will always use the most local common block of the
584 given name */
585
586 static void
587 info_common_command (comname, from_tty)
588 char *comname;
589 int from_tty;
590 {
591 SAVED_F77_COMMON_PTR the_common;
592 COMMON_ENTRY_PTR entry;
593 struct frame_info *fi;
594 register char *funname = 0;
595 struct symbol *func;
596
597 /* We have been told to display the contents of F77 COMMON
598 block supposedly visible in this function. Let us
599 first make sure that it is visible and if so, let
600 us display its contents */
601
602 fi = selected_frame;
603
604 if (fi == NULL)
605 error ("No frame selected");
606
607 /* The following is generally ripped off from stack.c's routine
608 print_frame_info() */
609
610 func = find_pc_function (fi->pc);
611 if (func)
612 {
613 /* In certain pathological cases, the symtabs give the wrong
614 function (when we are in the first function in a file which
615 is compiled without debugging symbols, the previous function
616 is compiled with debugging symbols, and the "foo.o" symbol
617 that is supposed to tell us where the file with debugging symbols
618 ends has been truncated by ar because it is longer than 15
619 characters).
620
621 So look in the minimal symbol tables as well, and if it comes
622 up with a larger address for the function use that instead.
623 I don't think this can ever cause any problems; there shouldn't
624 be any minimal symbols in the middle of a function.
625 FIXME: (Not necessarily true. What about text labels) */
626
627 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
628
629 if (msymbol != NULL
630 && (SYMBOL_VALUE_ADDRESS (msymbol)
631 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
632 funname = SYMBOL_NAME (msymbol);
633 else
634 funname = SYMBOL_NAME (func);
635 }
636 else
637 {
638 register struct minimal_symbol *msymbol =
639 lookup_minimal_symbol_by_pc (fi->pc);
640
641 if (msymbol != NULL)
642 funname = SYMBOL_NAME (msymbol);
643 }
644
645 /* If comname is NULL, we assume the user wishes to see the
646 which COMMON blocks are visible here and then return */
647
648 if (comname == 0)
649 {
650 list_all_visible_commons (funname);
651 return;
652 }
653
654 the_common = find_common_for_function (comname,funname);
655
656 if (the_common)
657 {
658 if (STREQ(comname,BLANK_COMMON_NAME_LOCAL))
659 printf_filtered ("Contents of blank COMMON block:\n");
660 else
661 printf_filtered ("Contents of F77 COMMON block '%s':\n",comname);
662
663 printf_filtered ("\n");
664 entry = the_common->entries;
665
666 while (entry != NULL)
667 {
668 printf_filtered ("%s = ",SYMBOL_NAME(entry->symbol));
669 print_variable_value (entry->symbol,fi,stdout);
670 printf_filtered ("\n");
671 entry = entry->next;
672 }
673 }
674 else
675 printf_filtered ("Cannot locate the common block %s in function '%s'\n",
676 comname, funname);
677 }
678
679 /* This function is used to determine whether there is a
680 F77 common block visible at the current scope called 'comname'. */
681
682 int
683 there_is_a_visible_common_named (comname)
684 char *comname;
685 {
686 SAVED_F77_COMMON_PTR the_common;
687 struct frame_info *fi;
688 register char *funname = 0;
689 struct symbol *func;
690
691 if (comname == NULL)
692 error ("Cannot deal with NULL common name!");
693
694 fi = selected_frame;
695
696 if (fi == NULL)
697 error ("No frame selected");
698
699 /* The following is generally ripped off from stack.c's routine
700 print_frame_info() */
701
702 func = find_pc_function (fi->pc);
703 if (func)
704 {
705 /* In certain pathological cases, the symtabs give the wrong
706 function (when we are in the first function in a file which
707 is compiled without debugging symbols, the previous function
708 is compiled with debugging symbols, and the "foo.o" symbol
709 that is supposed to tell us where the file with debugging symbols
710 ends has been truncated by ar because it is longer than 15
711 characters).
712
713 So look in the minimal symbol tables as well, and if it comes
714 up with a larger address for the function use that instead.
715 I don't think this can ever cause any problems; there shouldn't
716 be any minimal symbols in the middle of a function.
717 FIXME: (Not necessarily true. What about text labels) */
718
719 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
720
721 if (msymbol != NULL
722 && (SYMBOL_VALUE_ADDRESS (msymbol)
723 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
724 funname = SYMBOL_NAME (msymbol);
725 else
726 funname = SYMBOL_NAME (func);
727 }
728 else
729 {
730 register struct minimal_symbol *msymbol =
731 lookup_minimal_symbol_by_pc (fi->pc);
732
733 if (msymbol != NULL)
734 funname = SYMBOL_NAME (msymbol);
735 }
736
737 the_common = find_common_for_function (comname, funname);
738
739 return (the_common ? 1 : 0);
740 }
741
742 void
743 _initialize_f_valprint ()
744 {
745 add_info ("common", info_common_command,
746 "Print out the values contained in a Fortran COMMON block.");
747 }