]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
gdb:
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003, 2005, 2006,
4 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95 int retcode;
96
97 /* Recursively go all the way down into a possibly multi-dimensional
98 F77 array and get the bounds. For simple arrays, this is pretty
99 easy but when the bounds are dynamic, we must be very careful
100 to add up all the lengths correctly. Not doing this right
101 will lead to horrendous-looking arrays in parameter lists.
102
103 This function also works for strings which behave very
104 similarly to arrays. */
105
106 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
107 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
108 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
109
110 /* Recursion ends here, start setting up lengths. */
111 lower_bound = f77_get_lowerbound (type);
112 upper_bound = f77_get_upperbound (type);
113
114 /* Patch in a valid length value. */
115
116 TYPE_LENGTH (type) =
117 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower, retcode;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr, CORE_ADDR address,
167 struct ui_file *stream, int recurse,
168 const struct value_print_options *options,
169 int *elts)
170 {
171 int i;
172
173 if (nss != ndimensions)
174 {
175 for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max); i++)
176 {
177 fprintf_filtered (stream, "( ");
178 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
179 valaddr + i * F77_DIM_OFFSET (nss),
180 address + i * F77_DIM_OFFSET (nss),
181 stream, recurse, options, elts);
182 fprintf_filtered (stream, ") ");
183 }
184 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
185 fprintf_filtered (stream, "...");
186 }
187 else
188 {
189 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
190 i++, (*elts)++)
191 {
192 val_print (TYPE_TARGET_TYPE (type),
193 valaddr + i * F77_DIM_OFFSET (ndimensions),
194 0,
195 address + i * F77_DIM_OFFSET (ndimensions),
196 stream, recurse, options, current_language);
197
198 if (i != (F77_DIM_SIZE (nss) - 1))
199 fprintf_filtered (stream, ", ");
200
201 if ((*elts == options->print_max - 1)
202 && (i != (F77_DIM_SIZE (nss) - 1)))
203 fprintf_filtered (stream, "...");
204 }
205 }
206 }
207
208 /* This function gets called to print an F77 array, we set up some
209 stuff and then immediately call f77_print_array_1() */
210
211 static void
212 f77_print_array (struct type *type, const gdb_byte *valaddr,
213 CORE_ADDR address, struct ui_file *stream,
214 int recurse, const struct value_print_options *options)
215 {
216 int ndimensions;
217 int elts = 0;
218
219 ndimensions = calc_f77_array_dims (type);
220
221 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
222 error (_("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
223 ndimensions, MAX_FORTRAN_DIMS);
224
225 /* Since F77 arrays are stored column-major, we set up an
226 offset table to get at the various row's elements. The
227 offset table contains entries for both offset and subarray size. */
228
229 f77_create_arrayprint_offset_tbl (type, stream);
230
231 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream,
232 recurse, options, &elts);
233 }
234 \f
235
236 /* Print data of type TYPE located at VALADDR (within GDB), which came from
237 the inferior at address ADDRESS, onto stdio stream STREAM according to
238 OPTIONS. The data at VALADDR is in target byte order.
239
240 If the data are a string pointer, returns the number of string characters
241 printed. */
242
243 int
244 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
245 CORE_ADDR address, struct ui_file *stream, int recurse,
246 const struct value_print_options *options)
247 {
248 unsigned int i = 0; /* Number of characters printed */
249 struct type *elttype;
250 LONGEST val;
251 CORE_ADDR addr;
252 int index;
253
254 CHECK_TYPEDEF (type);
255 switch (TYPE_CODE (type))
256 {
257 case TYPE_CODE_STRING:
258 f77_get_dynamic_length_of_aggregate (type);
259 LA_PRINT_STRING (stream, builtin_type (current_gdbarch)->builtin_char,
260 valaddr, TYPE_LENGTH (type), 0, options);
261 break;
262
263 case TYPE_CODE_ARRAY:
264 fprintf_filtered (stream, "(");
265 f77_print_array (type, valaddr, address, stream, recurse, options);
266 fprintf_filtered (stream, ")");
267 break;
268
269 case TYPE_CODE_PTR:
270 if (options->format && options->format != 's')
271 {
272 print_scalar_formatted (valaddr, type, options, 0, stream);
273 break;
274 }
275 else
276 {
277 addr = unpack_pointer (type, valaddr);
278 elttype = check_typedef (TYPE_TARGET_TYPE (type));
279
280 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
281 {
282 /* Try to print what function it points to. */
283 print_address_demangle (addr, stream, demangle);
284 /* Return value is irrelevant except for string pointers. */
285 return 0;
286 }
287
288 if (options->addressprint && options->format != 's')
289 fputs_filtered (paddress (addr), stream);
290
291 /* For a pointer to char or unsigned char, also print the string
292 pointed to, unless pointer is null. */
293 if (TYPE_LENGTH (elttype) == 1
294 && TYPE_CODE (elttype) == TYPE_CODE_INT
295 && (options->format == 0 || options->format == 's')
296 && addr != 0)
297 i = val_print_string (TYPE_TARGET_TYPE (type), addr, -1, stream,
298 options);
299
300 /* Return number of characters printed, including the terminating
301 '\0' if we reached the end. val_print_string takes care including
302 the terminating '\0' if necessary. */
303 return i;
304 }
305 break;
306
307 case TYPE_CODE_REF:
308 elttype = check_typedef (TYPE_TARGET_TYPE (type));
309 if (options->addressprint)
310 {
311 CORE_ADDR addr
312 = extract_typed_address (valaddr + embedded_offset, type);
313 fprintf_filtered (stream, "@");
314 fputs_filtered (paddress (addr), stream);
315 if (options->deref_ref)
316 fputs_filtered (": ", stream);
317 }
318 /* De-reference the reference. */
319 if (options->deref_ref)
320 {
321 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
322 {
323 struct value *deref_val =
324 value_at
325 (TYPE_TARGET_TYPE (type),
326 unpack_pointer (type, valaddr + embedded_offset));
327 common_val_print (deref_val, stream, recurse,
328 options, current_language);
329 }
330 else
331 fputs_filtered ("???", stream);
332 }
333 break;
334
335 case TYPE_CODE_FUNC:
336 if (options->format)
337 {
338 print_scalar_formatted (valaddr, type, options, 0, stream);
339 break;
340 }
341 /* FIXME, we should consider, at least for ANSI C language, eliminating
342 the distinction made between FUNCs and POINTERs to FUNCs. */
343 fprintf_filtered (stream, "{");
344 type_print (type, "", stream, -1);
345 fprintf_filtered (stream, "} ");
346 /* Try to print what function it points to, and its address. */
347 print_address_demangle (address, stream, demangle);
348 break;
349
350 case TYPE_CODE_INT:
351 if (options->format || options->output_format)
352 {
353 struct value_print_options opts = *options;
354 opts.format = (options->format ? options->format
355 : options->output_format);
356 print_scalar_formatted (valaddr, type, &opts, 0, stream);
357 }
358 else
359 {
360 val_print_type_code_int (type, valaddr, stream);
361 /* C and C++ has no single byte int type, char is used instead.
362 Since we don't know whether the value is really intended to
363 be used as an integer or a character, print the character
364 equivalent as well. */
365 if (TYPE_LENGTH (type) == 1)
366 {
367 fputs_filtered (" ", stream);
368 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
369 type, stream);
370 }
371 }
372 break;
373
374 case TYPE_CODE_FLAGS:
375 if (options->format)
376 print_scalar_formatted (valaddr, type, options, 0, stream);
377 else
378 val_print_type_code_flags (type, valaddr, stream);
379 break;
380
381 case TYPE_CODE_FLT:
382 if (options->format)
383 print_scalar_formatted (valaddr, type, options, 0, stream);
384 else
385 print_floating (valaddr, type, stream);
386 break;
387
388 case TYPE_CODE_VOID:
389 fprintf_filtered (stream, "VOID");
390 break;
391
392 case TYPE_CODE_ERROR:
393 fprintf_filtered (stream, "<error type>");
394 break;
395
396 case TYPE_CODE_RANGE:
397 /* FIXME, we should not ever have to print one of these yet. */
398 fprintf_filtered (stream, "<range type>");
399 break;
400
401 case TYPE_CODE_BOOL:
402 if (options->format || options->output_format)
403 {
404 struct value_print_options opts = *options;
405 opts.format = (options->format ? options->format
406 : options->output_format);
407 print_scalar_formatted (valaddr, type, &opts, 0, stream);
408 }
409 else
410 {
411 val = extract_unsigned_integer (valaddr, TYPE_LENGTH (type));
412
413 if (val == 0)
414 fprintf_filtered (stream, ".FALSE.");
415 else if (val == 1)
416 fprintf_filtered (stream, ".TRUE.");
417 else
418 /* Not a legitimate logical type, print as an integer. */
419 {
420 /* Bash the type code temporarily. */
421 TYPE_CODE (type) = TYPE_CODE_INT;
422 f_val_print (type, valaddr, 0, address, stream, recurse, options);
423 /* Restore the type code so later uses work as intended. */
424 TYPE_CODE (type) = TYPE_CODE_BOOL;
425 }
426 }
427 break;
428
429 case TYPE_CODE_COMPLEX:
430 type = TYPE_TARGET_TYPE (type);
431 fputs_filtered ("(", stream);
432 print_floating (valaddr, type, stream);
433 fputs_filtered (",", stream);
434 print_floating (valaddr + TYPE_LENGTH (type), type, stream);
435 fputs_filtered (")", stream);
436 break;
437
438 case TYPE_CODE_UNDEF:
439 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
440 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
441 and no complete type for struct foo in that file. */
442 fprintf_filtered (stream, "<incomplete type>");
443 break;
444
445 case TYPE_CODE_STRUCT:
446 case TYPE_CODE_UNION:
447 /* Starting from the Fortran 90 standard, Fortran supports derived
448 types. */
449 fprintf_filtered (stream, "( ");
450 for (index = 0; index < TYPE_NFIELDS (type); index++)
451 {
452 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
453 f_val_print (TYPE_FIELD_TYPE (type, index), valaddr + offset,
454 embedded_offset, address, stream, recurse, options);
455 if (index != TYPE_NFIELDS (type) - 1)
456 fputs_filtered (", ", stream);
457 }
458 fprintf_filtered (stream, " )");
459 break;
460
461 default:
462 error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type));
463 }
464 gdb_flush (stream);
465 return 0;
466 }
467
468 static void
469 list_all_visible_commons (char *funname)
470 {
471 SAVED_F77_COMMON_PTR tmp;
472
473 tmp = head_common_list;
474
475 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
476
477 while (tmp != NULL)
478 {
479 if (strcmp (tmp->owning_function, funname) == 0)
480 printf_filtered ("%s\n", tmp->name);
481
482 tmp = tmp->next;
483 }
484 }
485
486 /* This function is used to print out the values in a given COMMON
487 block. It will always use the most local common block of the
488 given name */
489
490 static void
491 info_common_command (char *comname, int from_tty)
492 {
493 SAVED_F77_COMMON_PTR the_common;
494 COMMON_ENTRY_PTR entry;
495 struct frame_info *fi;
496 char *funname = 0;
497 struct symbol *func;
498
499 /* We have been told to display the contents of F77 COMMON
500 block supposedly visible in this function. Let us
501 first make sure that it is visible and if so, let
502 us display its contents */
503
504 fi = get_selected_frame (_("No frame selected"));
505
506 /* The following is generally ripped off from stack.c's routine
507 print_frame_info() */
508
509 func = find_pc_function (get_frame_pc (fi));
510 if (func)
511 {
512 /* In certain pathological cases, the symtabs give the wrong
513 function (when we are in the first function in a file which
514 is compiled without debugging symbols, the previous function
515 is compiled with debugging symbols, and the "foo.o" symbol
516 that is supposed to tell us where the file with debugging symbols
517 ends has been truncated by ar because it is longer than 15
518 characters).
519
520 So look in the minimal symbol tables as well, and if it comes
521 up with a larger address for the function use that instead.
522 I don't think this can ever cause any problems; there shouldn't
523 be any minimal symbols in the middle of a function.
524 FIXME: (Not necessarily true. What about text labels) */
525
526 struct minimal_symbol *msymbol =
527 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
528
529 if (msymbol != NULL
530 && (SYMBOL_VALUE_ADDRESS (msymbol)
531 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
532 funname = SYMBOL_LINKAGE_NAME (msymbol);
533 else
534 funname = SYMBOL_LINKAGE_NAME (func);
535 }
536 else
537 {
538 struct minimal_symbol *msymbol =
539 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
540
541 if (msymbol != NULL)
542 funname = SYMBOL_LINKAGE_NAME (msymbol);
543 else /* Got no 'funname', code below will fail. */
544 error (_("No function found for frame."));
545 }
546
547 /* If comname is NULL, we assume the user wishes to see the
548 which COMMON blocks are visible here and then return */
549
550 if (comname == 0)
551 {
552 list_all_visible_commons (funname);
553 return;
554 }
555
556 the_common = find_common_for_function (comname, funname);
557
558 if (the_common)
559 {
560 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
561 printf_filtered (_("Contents of blank COMMON block:\n"));
562 else
563 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
564
565 printf_filtered ("\n");
566 entry = the_common->entries;
567
568 while (entry != NULL)
569 {
570 print_variable_and_value (NULL, entry->symbol, fi, gdb_stdout, 0);
571 entry = entry->next;
572 }
573 }
574 else
575 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
576 comname, funname);
577 }
578
579 /* This function is used to determine whether there is a
580 F77 common block visible at the current scope called 'comname'. */
581
582 #if 0
583 static int
584 there_is_a_visible_common_named (char *comname)
585 {
586 SAVED_F77_COMMON_PTR the_common;
587 struct frame_info *fi;
588 char *funname = 0;
589 struct symbol *func;
590
591 if (comname == NULL)
592 error (_("Cannot deal with NULL common name!"));
593
594 fi = get_selected_frame (_("No frame selected"));
595
596 /* The following is generally ripped off from stack.c's routine
597 print_frame_info() */
598
599 func = find_pc_function (fi->pc);
600 if (func)
601 {
602 /* In certain pathological cases, the symtabs give the wrong
603 function (when we are in the first function in a file which
604 is compiled without debugging symbols, the previous function
605 is compiled with debugging symbols, and the "foo.o" symbol
606 that is supposed to tell us where the file with debugging symbols
607 ends has been truncated by ar because it is longer than 15
608 characters).
609
610 So look in the minimal symbol tables as well, and if it comes
611 up with a larger address for the function use that instead.
612 I don't think this can ever cause any problems; there shouldn't
613 be any minimal symbols in the middle of a function.
614 FIXME: (Not necessarily true. What about text labels) */
615
616 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
617
618 if (msymbol != NULL
619 && (SYMBOL_VALUE_ADDRESS (msymbol)
620 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
621 funname = SYMBOL_LINKAGE_NAME (msymbol);
622 else
623 funname = SYMBOL_LINKAGE_NAME (func);
624 }
625 else
626 {
627 struct minimal_symbol *msymbol =
628 lookup_minimal_symbol_by_pc (fi->pc);
629
630 if (msymbol != NULL)
631 funname = SYMBOL_LINKAGE_NAME (msymbol);
632 }
633
634 the_common = find_common_for_function (comname, funname);
635
636 return (the_common ? 1 : 0);
637 }
638 #endif
639
640 void
641 _initialize_f_valprint (void)
642 {
643 add_info ("common", info_common_command,
644 _("Print out the values contained in a Fortran COMMON block."));
645 if (xdb_commands)
646 add_com ("lc", class_info, info_common_command,
647 _("Print out the values contained in a Fortran COMMON block."));
648 }