]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/f-valprint.c
gdb
[thirdparty/binutils-gdb.git] / gdb / f-valprint.c
1 /* Support for printing Fortran values for GDB, the GNU debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2003, 2005, 2006,
4 2007, 2008 Free Software Foundation, Inc.
5
6 Contributed by Motorola. Adapted from the C definitions by Farooq Butt
7 (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "value.h"
30 #include "valprint.h"
31 #include "language.h"
32 #include "f-lang.h"
33 #include "frame.h"
34 #include "gdbcore.h"
35 #include "command.h"
36 #include "block.h"
37
38 #if 0
39 static int there_is_a_visible_common_named (char *);
40 #endif
41
42 extern void _initialize_f_valprint (void);
43 static void info_common_command (char *, int);
44 static void list_all_visible_commons (char *);
45 static void f77_create_arrayprint_offset_tbl (struct type *,
46 struct ui_file *);
47 static void f77_get_dynamic_length_of_aggregate (struct type *);
48
49 int f77_array_offset_tbl[MAX_FORTRAN_DIMS + 1][2];
50
51 /* Array which holds offsets to be applied to get a row's elements
52 for a given array. Array also holds the size of each subarray. */
53
54 /* The following macro gives us the size of the nth dimension, Where
55 n is 1 based. */
56
57 #define F77_DIM_SIZE(n) (f77_array_offset_tbl[n][1])
58
59 /* The following gives us the offset for row n where n is 1-based. */
60
61 #define F77_DIM_OFFSET(n) (f77_array_offset_tbl[n][0])
62
63 int
64 f77_get_lowerbound (struct type *type)
65 {
66 if (TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
67 error (_("Lower bound may not be '*' in F77"));
68
69 return TYPE_ARRAY_LOWER_BOUND_VALUE (type);
70 }
71
72 int
73 f77_get_upperbound (struct type *type)
74 {
75 if (TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
76 {
77 /* We have an assumed size array on our hands. Assume that
78 upper_bound == lower_bound so that we show at least 1 element.
79 If the user wants to see more elements, let him manually ask for 'em
80 and we'll subscript the array and show him. */
81
82 return f77_get_lowerbound (type);
83 }
84
85 return TYPE_ARRAY_UPPER_BOUND_VALUE (type);
86 }
87
88 /* Obtain F77 adjustable array dimensions */
89
90 static void
91 f77_get_dynamic_length_of_aggregate (struct type *type)
92 {
93 int upper_bound = -1;
94 int lower_bound = 1;
95 int retcode;
96
97 /* Recursively go all the way down into a possibly multi-dimensional
98 F77 array and get the bounds. For simple arrays, this is pretty
99 easy but when the bounds are dynamic, we must be very careful
100 to add up all the lengths correctly. Not doing this right
101 will lead to horrendous-looking arrays in parameter lists.
102
103 This function also works for strings which behave very
104 similarly to arrays. */
105
106 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY
107 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRING)
108 f77_get_dynamic_length_of_aggregate (TYPE_TARGET_TYPE (type));
109
110 /* Recursion ends here, start setting up lengths. */
111 lower_bound = f77_get_lowerbound (type);
112 upper_bound = f77_get_upperbound (type);
113
114 /* Patch in a valid length value. */
115
116 TYPE_LENGTH (type) =
117 (upper_bound - lower_bound + 1) * TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type)));
118 }
119
120 /* Function that sets up the array offset,size table for the array
121 type "type". */
122
123 static void
124 f77_create_arrayprint_offset_tbl (struct type *type, struct ui_file *stream)
125 {
126 struct type *tmp_type;
127 int eltlen;
128 int ndimen = 1;
129 int upper, lower, retcode;
130
131 tmp_type = type;
132
133 while ((TYPE_CODE (tmp_type) == TYPE_CODE_ARRAY))
134 {
135 upper = f77_get_upperbound (tmp_type);
136 lower = f77_get_lowerbound (tmp_type);
137
138 F77_DIM_SIZE (ndimen) = upper - lower + 1;
139
140 tmp_type = TYPE_TARGET_TYPE (tmp_type);
141 ndimen++;
142 }
143
144 /* Now we multiply eltlen by all the offsets, so that later we
145 can print out array elements correctly. Up till now we
146 know an offset to apply to get the item but we also
147 have to know how much to add to get to the next item */
148
149 ndimen--;
150 eltlen = TYPE_LENGTH (tmp_type);
151 F77_DIM_OFFSET (ndimen) = eltlen;
152 while (--ndimen > 0)
153 {
154 eltlen *= F77_DIM_SIZE (ndimen + 1);
155 F77_DIM_OFFSET (ndimen) = eltlen;
156 }
157 }
158
159
160
161 /* Actual function which prints out F77 arrays, Valaddr == address in
162 the superior. Address == the address in the inferior. */
163
164 static void
165 f77_print_array_1 (int nss, int ndimensions, struct type *type,
166 const gdb_byte *valaddr, CORE_ADDR address,
167 struct ui_file *stream, int recurse,
168 const struct value_print_options *options,
169 int *elts)
170 {
171 int i;
172
173 if (nss != ndimensions)
174 {
175 for (i = 0; (i < F77_DIM_SIZE (nss) && (*elts) < options->print_max); i++)
176 {
177 fprintf_filtered (stream, "( ");
178 f77_print_array_1 (nss + 1, ndimensions, TYPE_TARGET_TYPE (type),
179 valaddr + i * F77_DIM_OFFSET (nss),
180 address + i * F77_DIM_OFFSET (nss),
181 stream, recurse, options, elts);
182 fprintf_filtered (stream, ") ");
183 }
184 if (*elts >= options->print_max && i < F77_DIM_SIZE (nss))
185 fprintf_filtered (stream, "...");
186 }
187 else
188 {
189 for (i = 0; i < F77_DIM_SIZE (nss) && (*elts) < options->print_max;
190 i++, (*elts)++)
191 {
192 val_print (TYPE_TARGET_TYPE (type),
193 valaddr + i * F77_DIM_OFFSET (ndimensions),
194 0,
195 address + i * F77_DIM_OFFSET (ndimensions),
196 stream, recurse, options, current_language);
197
198 if (i != (F77_DIM_SIZE (nss) - 1))
199 fprintf_filtered (stream, ", ");
200
201 if ((*elts == options->print_max - 1)
202 && (i != (F77_DIM_SIZE (nss) - 1)))
203 fprintf_filtered (stream, "...");
204 }
205 }
206 }
207
208 /* This function gets called to print an F77 array, we set up some
209 stuff and then immediately call f77_print_array_1() */
210
211 static void
212 f77_print_array (struct type *type, const gdb_byte *valaddr,
213 CORE_ADDR address, struct ui_file *stream,
214 int recurse, const struct value_print_options *options)
215 {
216 int ndimensions;
217 int elts = 0;
218
219 ndimensions = calc_f77_array_dims (type);
220
221 if (ndimensions > MAX_FORTRAN_DIMS || ndimensions < 0)
222 error (_("Type node corrupt! F77 arrays cannot have %d subscripts (%d Max)"),
223 ndimensions, MAX_FORTRAN_DIMS);
224
225 /* Since F77 arrays are stored column-major, we set up an
226 offset table to get at the various row's elements. The
227 offset table contains entries for both offset and subarray size. */
228
229 f77_create_arrayprint_offset_tbl (type, stream);
230
231 f77_print_array_1 (1, ndimensions, type, valaddr, address, stream,
232 recurse, options, &elts);
233 }
234 \f
235
236 /* Print data of type TYPE located at VALADDR (within GDB), which came from
237 the inferior at address ADDRESS, onto stdio stream STREAM according to
238 OPTIONS. The data at VALADDR is in target byte order.
239
240 If the data are a string pointer, returns the number of string characters
241 printed. */
242
243 int
244 f_val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset,
245 CORE_ADDR address, struct ui_file *stream, int recurse,
246 const struct value_print_options *options)
247 {
248 unsigned int i = 0; /* Number of characters printed */
249 struct type *elttype;
250 LONGEST val;
251 CORE_ADDR addr;
252 int index;
253
254 CHECK_TYPEDEF (type);
255 switch (TYPE_CODE (type))
256 {
257 case TYPE_CODE_STRING:
258 f77_get_dynamic_length_of_aggregate (type);
259 LA_PRINT_STRING (stream, valaddr, TYPE_LENGTH (type), 1, 0, options);
260 break;
261
262 case TYPE_CODE_ARRAY:
263 fprintf_filtered (stream, "(");
264 f77_print_array (type, valaddr, address, stream, recurse, options);
265 fprintf_filtered (stream, ")");
266 break;
267
268 case TYPE_CODE_PTR:
269 if (options->format && options->format != 's')
270 {
271 print_scalar_formatted (valaddr, type, options, 0, stream);
272 break;
273 }
274 else
275 {
276 addr = unpack_pointer (type, valaddr);
277 elttype = check_typedef (TYPE_TARGET_TYPE (type));
278
279 if (TYPE_CODE (elttype) == TYPE_CODE_FUNC)
280 {
281 /* Try to print what function it points to. */
282 print_address_demangle (addr, stream, demangle);
283 /* Return value is irrelevant except for string pointers. */
284 return 0;
285 }
286
287 if (options->addressprint && options->format != 's')
288 fputs_filtered (paddress (addr), stream);
289
290 /* For a pointer to char or unsigned char, also print the string
291 pointed to, unless pointer is null. */
292 if (TYPE_LENGTH (elttype) == 1
293 && TYPE_CODE (elttype) == TYPE_CODE_INT
294 && (options->format == 0 || options->format == 's')
295 && addr != 0)
296 i = val_print_string (addr, -1, TYPE_LENGTH (elttype), stream,
297 options);
298
299 /* Return number of characters printed, including the terminating
300 '\0' if we reached the end. val_print_string takes care including
301 the terminating '\0' if necessary. */
302 return i;
303 }
304 break;
305
306 case TYPE_CODE_REF:
307 elttype = check_typedef (TYPE_TARGET_TYPE (type));
308 if (options->addressprint)
309 {
310 CORE_ADDR addr
311 = extract_typed_address (valaddr + embedded_offset, type);
312 fprintf_filtered (stream, "@");
313 fputs_filtered (paddress (addr), stream);
314 if (options->deref_ref)
315 fputs_filtered (": ", stream);
316 }
317 /* De-reference the reference. */
318 if (options->deref_ref)
319 {
320 if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF)
321 {
322 struct value *deref_val =
323 value_at
324 (TYPE_TARGET_TYPE (type),
325 unpack_pointer (type, valaddr + embedded_offset));
326 common_val_print (deref_val, stream, recurse,
327 options, current_language);
328 }
329 else
330 fputs_filtered ("???", stream);
331 }
332 break;
333
334 case TYPE_CODE_FUNC:
335 if (options->format)
336 {
337 print_scalar_formatted (valaddr, type, options, 0, stream);
338 break;
339 }
340 /* FIXME, we should consider, at least for ANSI C language, eliminating
341 the distinction made between FUNCs and POINTERs to FUNCs. */
342 fprintf_filtered (stream, "{");
343 type_print (type, "", stream, -1);
344 fprintf_filtered (stream, "} ");
345 /* Try to print what function it points to, and its address. */
346 print_address_demangle (address, stream, demangle);
347 break;
348
349 case TYPE_CODE_INT:
350 if (options->format || options->output_format)
351 {
352 struct value_print_options opts = *options;
353 opts.format = (options->format ? options->format
354 : options->output_format);
355 print_scalar_formatted (valaddr, type, &opts, 0, stream);
356 }
357 else
358 {
359 val_print_type_code_int (type, valaddr, stream);
360 /* C and C++ has no single byte int type, char is used instead.
361 Since we don't know whether the value is really intended to
362 be used as an integer or a character, print the character
363 equivalent as well. */
364 if (TYPE_LENGTH (type) == 1)
365 {
366 fputs_filtered (" ", stream);
367 LA_PRINT_CHAR ((unsigned char) unpack_long (type, valaddr),
368 stream);
369 }
370 }
371 break;
372
373 case TYPE_CODE_FLAGS:
374 if (options->format)
375 print_scalar_formatted (valaddr, type, options, 0, stream);
376 else
377 val_print_type_code_flags (type, valaddr, stream);
378 break;
379
380 case TYPE_CODE_FLT:
381 if (options->format)
382 print_scalar_formatted (valaddr, type, options, 0, stream);
383 else
384 print_floating (valaddr, type, stream);
385 break;
386
387 case TYPE_CODE_VOID:
388 fprintf_filtered (stream, "VOID");
389 break;
390
391 case TYPE_CODE_ERROR:
392 fprintf_filtered (stream, "<error type>");
393 break;
394
395 case TYPE_CODE_RANGE:
396 /* FIXME, we should not ever have to print one of these yet. */
397 fprintf_filtered (stream, "<range type>");
398 break;
399
400 case TYPE_CODE_BOOL:
401 if (options->format || options->output_format)
402 {
403 struct value_print_options opts = *options;
404 opts.format = (options->format ? options->format
405 : options->output_format);
406 print_scalar_formatted (valaddr, type, &opts, 0, stream);
407 }
408 else
409 {
410 val = extract_unsigned_integer (valaddr, TYPE_LENGTH (type));
411
412 if (val == 0)
413 fprintf_filtered (stream, ".FALSE.");
414 else if (val == 1)
415 fprintf_filtered (stream, ".TRUE.");
416 else
417 /* Not a legitimate logical type, print as an integer. */
418 {
419 /* Bash the type code temporarily. */
420 TYPE_CODE (type) = TYPE_CODE_INT;
421 f_val_print (type, valaddr, 0, address, stream, recurse, options);
422 /* Restore the type code so later uses work as intended. */
423 TYPE_CODE (type) = TYPE_CODE_BOOL;
424 }
425 }
426 break;
427
428 case TYPE_CODE_COMPLEX:
429 type = TYPE_TARGET_TYPE (type);
430 fputs_filtered ("(", stream);
431 print_floating (valaddr, type, stream);
432 fputs_filtered (",", stream);
433 print_floating (valaddr + TYPE_LENGTH (type), type, stream);
434 fputs_filtered (")", stream);
435 break;
436
437 case TYPE_CODE_UNDEF:
438 /* This happens (without TYPE_FLAG_STUB set) on systems which don't use
439 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
440 and no complete type for struct foo in that file. */
441 fprintf_filtered (stream, "<incomplete type>");
442 break;
443
444 case TYPE_CODE_STRUCT:
445 case TYPE_CODE_UNION:
446 /* Starting from the Fortran 90 standard, Fortran supports derived
447 types. */
448 fprintf_filtered (stream, "( ");
449 for (index = 0; index < TYPE_NFIELDS (type); index++)
450 {
451 int offset = TYPE_FIELD_BITPOS (type, index) / 8;
452 f_val_print (TYPE_FIELD_TYPE (type, index), valaddr + offset,
453 embedded_offset, address, stream, recurse, options);
454 if (index != TYPE_NFIELDS (type) - 1)
455 fputs_filtered (", ", stream);
456 }
457 fprintf_filtered (stream, " )");
458 break;
459
460 default:
461 error (_("Invalid F77 type code %d in symbol table."), TYPE_CODE (type));
462 }
463 gdb_flush (stream);
464 return 0;
465 }
466
467 static void
468 list_all_visible_commons (char *funname)
469 {
470 SAVED_F77_COMMON_PTR tmp;
471
472 tmp = head_common_list;
473
474 printf_filtered (_("All COMMON blocks visible at this level:\n\n"));
475
476 while (tmp != NULL)
477 {
478 if (strcmp (tmp->owning_function, funname) == 0)
479 printf_filtered ("%s\n", tmp->name);
480
481 tmp = tmp->next;
482 }
483 }
484
485 /* This function is used to print out the values in a given COMMON
486 block. It will always use the most local common block of the
487 given name */
488
489 static void
490 info_common_command (char *comname, int from_tty)
491 {
492 SAVED_F77_COMMON_PTR the_common;
493 COMMON_ENTRY_PTR entry;
494 struct frame_info *fi;
495 char *funname = 0;
496 struct symbol *func;
497
498 /* We have been told to display the contents of F77 COMMON
499 block supposedly visible in this function. Let us
500 first make sure that it is visible and if so, let
501 us display its contents */
502
503 fi = get_selected_frame (_("No frame selected"));
504
505 /* The following is generally ripped off from stack.c's routine
506 print_frame_info() */
507
508 func = find_pc_function (get_frame_pc (fi));
509 if (func)
510 {
511 /* In certain pathological cases, the symtabs give the wrong
512 function (when we are in the first function in a file which
513 is compiled without debugging symbols, the previous function
514 is compiled with debugging symbols, and the "foo.o" symbol
515 that is supposed to tell us where the file with debugging symbols
516 ends has been truncated by ar because it is longer than 15
517 characters).
518
519 So look in the minimal symbol tables as well, and if it comes
520 up with a larger address for the function use that instead.
521 I don't think this can ever cause any problems; there shouldn't
522 be any minimal symbols in the middle of a function.
523 FIXME: (Not necessarily true. What about text labels) */
524
525 struct minimal_symbol *msymbol =
526 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
527
528 if (msymbol != NULL
529 && (SYMBOL_VALUE_ADDRESS (msymbol)
530 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
531 funname = SYMBOL_LINKAGE_NAME (msymbol);
532 else
533 funname = SYMBOL_LINKAGE_NAME (func);
534 }
535 else
536 {
537 struct minimal_symbol *msymbol =
538 lookup_minimal_symbol_by_pc (get_frame_pc (fi));
539
540 if (msymbol != NULL)
541 funname = SYMBOL_LINKAGE_NAME (msymbol);
542 else /* Got no 'funname', code below will fail. */
543 error (_("No function found for frame."));
544 }
545
546 /* If comname is NULL, we assume the user wishes to see the
547 which COMMON blocks are visible here and then return */
548
549 if (comname == 0)
550 {
551 list_all_visible_commons (funname);
552 return;
553 }
554
555 the_common = find_common_for_function (comname, funname);
556
557 if (the_common)
558 {
559 if (strcmp (comname, BLANK_COMMON_NAME_LOCAL) == 0)
560 printf_filtered (_("Contents of blank COMMON block:\n"));
561 else
562 printf_filtered (_("Contents of F77 COMMON block '%s':\n"), comname);
563
564 printf_filtered ("\n");
565 entry = the_common->entries;
566
567 while (entry != NULL)
568 {
569 printf_filtered ("%s = ", SYMBOL_PRINT_NAME (entry->symbol));
570 print_variable_value (entry->symbol, fi, gdb_stdout);
571 printf_filtered ("\n");
572 entry = entry->next;
573 }
574 }
575 else
576 printf_filtered (_("Cannot locate the common block %s in function '%s'\n"),
577 comname, funname);
578 }
579
580 /* This function is used to determine whether there is a
581 F77 common block visible at the current scope called 'comname'. */
582
583 #if 0
584 static int
585 there_is_a_visible_common_named (char *comname)
586 {
587 SAVED_F77_COMMON_PTR the_common;
588 struct frame_info *fi;
589 char *funname = 0;
590 struct symbol *func;
591
592 if (comname == NULL)
593 error (_("Cannot deal with NULL common name!"));
594
595 fi = get_selected_frame (_("No frame selected"));
596
597 /* The following is generally ripped off from stack.c's routine
598 print_frame_info() */
599
600 func = find_pc_function (fi->pc);
601 if (func)
602 {
603 /* In certain pathological cases, the symtabs give the wrong
604 function (when we are in the first function in a file which
605 is compiled without debugging symbols, the previous function
606 is compiled with debugging symbols, and the "foo.o" symbol
607 that is supposed to tell us where the file with debugging symbols
608 ends has been truncated by ar because it is longer than 15
609 characters).
610
611 So look in the minimal symbol tables as well, and if it comes
612 up with a larger address for the function use that instead.
613 I don't think this can ever cause any problems; there shouldn't
614 be any minimal symbols in the middle of a function.
615 FIXME: (Not necessarily true. What about text labels) */
616
617 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (fi->pc);
618
619 if (msymbol != NULL
620 && (SYMBOL_VALUE_ADDRESS (msymbol)
621 > BLOCK_START (SYMBOL_BLOCK_VALUE (func))))
622 funname = SYMBOL_LINKAGE_NAME (msymbol);
623 else
624 funname = SYMBOL_LINKAGE_NAME (func);
625 }
626 else
627 {
628 struct minimal_symbol *msymbol =
629 lookup_minimal_symbol_by_pc (fi->pc);
630
631 if (msymbol != NULL)
632 funname = SYMBOL_LINKAGE_NAME (msymbol);
633 }
634
635 the_common = find_common_for_function (comname, funname);
636
637 return (the_common ? 1 : 0);
638 }
639 #endif
640
641 void
642 _initialize_f_valprint (void)
643 {
644 add_info ("common", info_common_command,
645 _("Print out the values contained in a Fortran COMMON block."));
646 if (xdb_commands)
647 add_com ("lc", class_info, info_common_command,
648 _("Print out the values contained in a Fortran COMMON block."));
649 }