]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/fbsd-nat.c
Remove unused "tmp" variable.
[thirdparty/binutils-gdb.git] / gdb / fbsd-nat.c
1 /* Native-dependent code for FreeBSD.
2
3 Copyright (C) 2002-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "byte-vector.h"
22 #include "gdbcore.h"
23 #include "inferior.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbcmd.h"
27 #include "gdbthread.h"
28 #include "gdb_wait.h"
29 #include "inf-ptrace.h"
30 #include <sys/types.h>
31 #include <sys/procfs.h>
32 #include <sys/ptrace.h>
33 #include <sys/signal.h>
34 #include <sys/sysctl.h>
35 #include <sys/user.h>
36 #if defined(HAVE_KINFO_GETFILE) || defined(HAVE_KINFO_GETVMMAP)
37 #include <libutil.h>
38 #endif
39 #if !defined(HAVE_KINFO_GETVMMAP)
40 #include "filestuff.h"
41 #endif
42
43 #include "elf-bfd.h"
44 #include "fbsd-nat.h"
45 #include "fbsd-tdep.h"
46
47 #include <list>
48
49 /* Return the name of a file that can be opened to get the symbols for
50 the child process identified by PID. */
51
52 char *
53 fbsd_nat_target::pid_to_exec_file (int pid)
54 {
55 ssize_t len;
56 static char buf[PATH_MAX];
57 char name[PATH_MAX];
58
59 #ifdef KERN_PROC_PATHNAME
60 size_t buflen;
61 int mib[4];
62
63 mib[0] = CTL_KERN;
64 mib[1] = KERN_PROC;
65 mib[2] = KERN_PROC_PATHNAME;
66 mib[3] = pid;
67 buflen = sizeof buf;
68 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
69 /* The kern.proc.pathname.<pid> sysctl returns a length of zero
70 for processes without an associated executable such as kernel
71 processes. */
72 return buflen == 0 ? NULL : buf;
73 #endif
74
75 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
76 len = readlink (name, buf, PATH_MAX - 1);
77 if (len != -1)
78 {
79 buf[len] = '\0';
80 return buf;
81 }
82
83 return NULL;
84 }
85
86 #ifdef HAVE_KINFO_GETVMMAP
87 /* Iterate over all the memory regions in the current inferior,
88 calling FUNC for each memory region. OBFD is passed as the last
89 argument to FUNC. */
90
91 int
92 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
93 void *obfd)
94 {
95 pid_t pid = inferior_ptid.pid ();
96 struct kinfo_vmentry *kve;
97 uint64_t size;
98 int i, nitems;
99
100 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
101 vmentl (kinfo_getvmmap (pid, &nitems));
102 if (vmentl == NULL)
103 perror_with_name (_("Couldn't fetch VM map entries."));
104
105 for (i = 0, kve = vmentl.get (); i < nitems; i++, kve++)
106 {
107 /* Skip unreadable segments and those where MAP_NOCORE has been set. */
108 if (!(kve->kve_protection & KVME_PROT_READ)
109 || kve->kve_flags & KVME_FLAG_NOCOREDUMP)
110 continue;
111
112 /* Skip segments with an invalid type. */
113 if (kve->kve_type != KVME_TYPE_DEFAULT
114 && kve->kve_type != KVME_TYPE_VNODE
115 && kve->kve_type != KVME_TYPE_SWAP
116 && kve->kve_type != KVME_TYPE_PHYS)
117 continue;
118
119 size = kve->kve_end - kve->kve_start;
120 if (info_verbose)
121 {
122 fprintf_filtered (gdb_stdout,
123 "Save segment, %ld bytes at %s (%c%c%c)\n",
124 (long) size,
125 paddress (target_gdbarch (), kve->kve_start),
126 kve->kve_protection & KVME_PROT_READ ? 'r' : '-',
127 kve->kve_protection & KVME_PROT_WRITE ? 'w' : '-',
128 kve->kve_protection & KVME_PROT_EXEC ? 'x' : '-');
129 }
130
131 /* Invoke the callback function to create the corefile segment.
132 Pass MODIFIED as true, we do not know the real modification state. */
133 func (kve->kve_start, size, kve->kve_protection & KVME_PROT_READ,
134 kve->kve_protection & KVME_PROT_WRITE,
135 kve->kve_protection & KVME_PROT_EXEC, 1, obfd);
136 }
137 return 0;
138 }
139 #else
140 static int
141 fbsd_read_mapping (FILE *mapfile, unsigned long *start, unsigned long *end,
142 char *protection)
143 {
144 /* FreeBSD 5.1-RELEASE uses a 256-byte buffer. */
145 char buf[256];
146 int resident, privateresident;
147 unsigned long obj;
148 int ret = EOF;
149
150 /* As of FreeBSD 5.0-RELEASE, the layout is described in
151 /usr/src/sys/fs/procfs/procfs_map.c. Somewhere in 5.1-CURRENT a
152 new column was added to the procfs map. Therefore we can't use
153 fscanf since we need to support older releases too. */
154 if (fgets (buf, sizeof buf, mapfile) != NULL)
155 ret = sscanf (buf, "%lx %lx %d %d %lx %s", start, end,
156 &resident, &privateresident, &obj, protection);
157
158 return (ret != 0 && ret != EOF);
159 }
160
161 /* Iterate over all the memory regions in the current inferior,
162 calling FUNC for each memory region. OBFD is passed as the last
163 argument to FUNC. */
164
165 int
166 fbsd_nat_target::find_memory_regions (find_memory_region_ftype func,
167 void *obfd)
168 {
169 pid_t pid = inferior_ptid.pid ();
170 unsigned long start, end, size;
171 char protection[4];
172 int read, write, exec;
173
174 std::string mapfilename = string_printf ("/proc/%ld/map", (long) pid);
175 gdb_file_up mapfile (fopen (mapfilename.c_str (), "r"));
176 if (mapfile == NULL)
177 error (_("Couldn't open %s."), mapfilename.c_str ());
178
179 if (info_verbose)
180 fprintf_filtered (gdb_stdout,
181 "Reading memory regions from %s\n", mapfilename.c_str ());
182
183 /* Now iterate until end-of-file. */
184 while (fbsd_read_mapping (mapfile.get (), &start, &end, &protection[0]))
185 {
186 size = end - start;
187
188 read = (strchr (protection, 'r') != 0);
189 write = (strchr (protection, 'w') != 0);
190 exec = (strchr (protection, 'x') != 0);
191
192 if (info_verbose)
193 {
194 fprintf_filtered (gdb_stdout,
195 "Save segment, %ld bytes at %s (%c%c%c)\n",
196 size, paddress (target_gdbarch (), start),
197 read ? 'r' : '-',
198 write ? 'w' : '-',
199 exec ? 'x' : '-');
200 }
201
202 /* Invoke the callback function to create the corefile segment.
203 Pass MODIFIED as true, we do not know the real modification state. */
204 func (start, size, read, write, exec, 1, obfd);
205 }
206
207 return 0;
208 }
209 #endif
210
211 /* Fetch the command line for a running process. */
212
213 static gdb::unique_xmalloc_ptr<char>
214 fbsd_fetch_cmdline (pid_t pid)
215 {
216 size_t len;
217 int mib[4];
218
219 len = 0;
220 mib[0] = CTL_KERN;
221 mib[1] = KERN_PROC;
222 mib[2] = KERN_PROC_ARGS;
223 mib[3] = pid;
224 if (sysctl (mib, 4, NULL, &len, NULL, 0) == -1)
225 return nullptr;
226
227 if (len == 0)
228 return nullptr;
229
230 gdb::unique_xmalloc_ptr<char> cmdline ((char *) xmalloc (len));
231 if (sysctl (mib, 4, cmdline.get (), &len, NULL, 0) == -1)
232 return nullptr;
233
234 return cmdline;
235 }
236
237 /* Fetch the external variant of the kernel's internal process
238 structure for the process PID into KP. */
239
240 static bool
241 fbsd_fetch_kinfo_proc (pid_t pid, struct kinfo_proc *kp)
242 {
243 size_t len;
244 int mib[4];
245
246 len = sizeof *kp;
247 mib[0] = CTL_KERN;
248 mib[1] = KERN_PROC;
249 mib[2] = KERN_PROC_PID;
250 mib[3] = pid;
251 return (sysctl (mib, 4, kp, &len, NULL, 0) == 0);
252 }
253
254 /* Implement the "info_proc" target_ops method. */
255
256 bool
257 fbsd_nat_target::info_proc (const char *args, enum info_proc_what what)
258 {
259 #ifdef HAVE_KINFO_GETFILE
260 gdb::unique_xmalloc_ptr<struct kinfo_file> fdtbl;
261 int nfd = 0;
262 #endif
263 struct kinfo_proc kp;
264 pid_t pid;
265 bool do_cmdline = false;
266 bool do_cwd = false;
267 bool do_exe = false;
268 #ifdef HAVE_KINFO_GETVMMAP
269 bool do_mappings = false;
270 #endif
271 bool do_status = false;
272
273 switch (what)
274 {
275 case IP_MINIMAL:
276 do_cmdline = true;
277 do_cwd = true;
278 do_exe = true;
279 break;
280 #ifdef HAVE_KINFO_GETVMMAP
281 case IP_MAPPINGS:
282 do_mappings = true;
283 break;
284 #endif
285 case IP_STATUS:
286 case IP_STAT:
287 do_status = true;
288 break;
289 case IP_CMDLINE:
290 do_cmdline = true;
291 break;
292 case IP_EXE:
293 do_exe = true;
294 break;
295 case IP_CWD:
296 do_cwd = true;
297 break;
298 case IP_ALL:
299 do_cmdline = true;
300 do_cwd = true;
301 do_exe = true;
302 #ifdef HAVE_KINFO_GETVMMAP
303 do_mappings = true;
304 #endif
305 do_status = true;
306 break;
307 default:
308 error (_("Not supported on this target."));
309 }
310
311 gdb_argv built_argv (args);
312 if (built_argv.count () == 0)
313 {
314 pid = inferior_ptid.pid ();
315 if (pid == 0)
316 error (_("No current process: you must name one."));
317 }
318 else if (built_argv.count () == 1 && isdigit (built_argv[0][0]))
319 pid = strtol (built_argv[0], NULL, 10);
320 else
321 error (_("Invalid arguments."));
322
323 printf_filtered (_("process %d\n"), pid);
324 #ifdef HAVE_KINFO_GETFILE
325 if (do_cwd || do_exe)
326 fdtbl.reset (kinfo_getfile (pid, &nfd));
327 #endif
328
329 if (do_cmdline)
330 {
331 gdb::unique_xmalloc_ptr<char> cmdline = fbsd_fetch_cmdline (pid);
332 if (cmdline != nullptr)
333 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
334 else
335 warning (_("unable to fetch command line"));
336 }
337 if (do_cwd)
338 {
339 const char *cwd = NULL;
340 #ifdef HAVE_KINFO_GETFILE
341 struct kinfo_file *kf = fdtbl.get ();
342 for (int i = 0; i < nfd; i++, kf++)
343 {
344 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_CWD)
345 {
346 cwd = kf->kf_path;
347 break;
348 }
349 }
350 #endif
351 if (cwd != NULL)
352 printf_filtered ("cwd = '%s'\n", cwd);
353 else
354 warning (_("unable to fetch current working directory"));
355 }
356 if (do_exe)
357 {
358 const char *exe = NULL;
359 #ifdef HAVE_KINFO_GETFILE
360 struct kinfo_file *kf = fdtbl.get ();
361 for (int i = 0; i < nfd; i++, kf++)
362 {
363 if (kf->kf_type == KF_TYPE_VNODE && kf->kf_fd == KF_FD_TYPE_TEXT)
364 {
365 exe = kf->kf_path;
366 break;
367 }
368 }
369 #endif
370 if (exe == NULL)
371 exe = pid_to_exec_file (pid);
372 if (exe != NULL)
373 printf_filtered ("exe = '%s'\n", exe);
374 else
375 warning (_("unable to fetch executable path name"));
376 }
377 #ifdef HAVE_KINFO_GETVMMAP
378 if (do_mappings)
379 {
380 int nvment;
381 gdb::unique_xmalloc_ptr<struct kinfo_vmentry>
382 vmentl (kinfo_getvmmap (pid, &nvment));
383
384 if (vmentl != nullptr)
385 {
386 printf_filtered (_("Mapped address spaces:\n\n"));
387 #ifdef __LP64__
388 printf_filtered (" %18s %18s %10s %10s %9s %s\n",
389 "Start Addr",
390 " End Addr",
391 " Size", " Offset", "Flags ", "File");
392 #else
393 printf_filtered ("\t%10s %10s %10s %10s %9s %s\n",
394 "Start Addr",
395 " End Addr",
396 " Size", " Offset", "Flags ", "File");
397 #endif
398
399 struct kinfo_vmentry *kve = vmentl.get ();
400 for (int i = 0; i < nvment; i++, kve++)
401 {
402 ULONGEST start, end;
403
404 start = kve->kve_start;
405 end = kve->kve_end;
406 #ifdef __LP64__
407 printf_filtered (" %18s %18s %10s %10s %9s %s\n",
408 hex_string (start),
409 hex_string (end),
410 hex_string (end - start),
411 hex_string (kve->kve_offset),
412 fbsd_vm_map_entry_flags (kve->kve_flags,
413 kve->kve_protection),
414 kve->kve_path);
415 #else
416 printf_filtered ("\t%10s %10s %10s %10s %9s %s\n",
417 hex_string (start),
418 hex_string (end),
419 hex_string (end - start),
420 hex_string (kve->kve_offset),
421 fbsd_vm_map_entry_flags (kve->kve_flags,
422 kve->kve_protection),
423 kve->kve_path);
424 #endif
425 }
426 }
427 else
428 warning (_("unable to fetch virtual memory map"));
429 }
430 #endif
431 if (do_status)
432 {
433 if (!fbsd_fetch_kinfo_proc (pid, &kp))
434 warning (_("Failed to fetch process information"));
435 else
436 {
437 const char *state;
438 int pgtok;
439
440 printf_filtered ("Name: %s\n", kp.ki_comm);
441 switch (kp.ki_stat)
442 {
443 case SIDL:
444 state = "I (idle)";
445 break;
446 case SRUN:
447 state = "R (running)";
448 break;
449 case SSTOP:
450 state = "T (stopped)";
451 break;
452 case SZOMB:
453 state = "Z (zombie)";
454 break;
455 case SSLEEP:
456 state = "S (sleeping)";
457 break;
458 case SWAIT:
459 state = "W (interrupt wait)";
460 break;
461 case SLOCK:
462 state = "L (blocked on lock)";
463 break;
464 default:
465 state = "? (unknown)";
466 break;
467 }
468 printf_filtered ("State: %s\n", state);
469 printf_filtered ("Parent process: %d\n", kp.ki_ppid);
470 printf_filtered ("Process group: %d\n", kp.ki_pgid);
471 printf_filtered ("Session id: %d\n", kp.ki_sid);
472 printf_filtered ("TTY: %ju\n", (uintmax_t) kp.ki_tdev);
473 printf_filtered ("TTY owner process group: %d\n", kp.ki_tpgid);
474 printf_filtered ("User IDs (real, effective, saved): %d %d %d\n",
475 kp.ki_ruid, kp.ki_uid, kp.ki_svuid);
476 printf_filtered ("Group IDs (real, effective, saved): %d %d %d\n",
477 kp.ki_rgid, kp.ki_groups[0], kp.ki_svgid);
478 printf_filtered ("Groups: ");
479 for (int i = 0; i < kp.ki_ngroups; i++)
480 printf_filtered ("%d ", kp.ki_groups[i]);
481 printf_filtered ("\n");
482 printf_filtered ("Minor faults (no memory page): %ld\n",
483 kp.ki_rusage.ru_minflt);
484 printf_filtered ("Minor faults, children: %ld\n",
485 kp.ki_rusage_ch.ru_minflt);
486 printf_filtered ("Major faults (memory page faults): %ld\n",
487 kp.ki_rusage.ru_majflt);
488 printf_filtered ("Major faults, children: %ld\n",
489 kp.ki_rusage_ch.ru_majflt);
490 printf_filtered ("utime: %jd.%06ld\n",
491 (intmax_t) kp.ki_rusage.ru_utime.tv_sec,
492 kp.ki_rusage.ru_utime.tv_usec);
493 printf_filtered ("stime: %jd.%06ld\n",
494 (intmax_t) kp.ki_rusage.ru_stime.tv_sec,
495 kp.ki_rusage.ru_stime.tv_usec);
496 printf_filtered ("utime, children: %jd.%06ld\n",
497 (intmax_t) kp.ki_rusage_ch.ru_utime.tv_sec,
498 kp.ki_rusage_ch.ru_utime.tv_usec);
499 printf_filtered ("stime, children: %jd.%06ld\n",
500 (intmax_t) kp.ki_rusage_ch.ru_stime.tv_sec,
501 kp.ki_rusage_ch.ru_stime.tv_usec);
502 printf_filtered ("'nice' value: %d\n", kp.ki_nice);
503 printf_filtered ("Start time: %jd.%06ld\n", kp.ki_start.tv_sec,
504 kp.ki_start.tv_usec);
505 pgtok = getpagesize () / 1024;
506 printf_filtered ("Virtual memory size: %ju kB\n",
507 (uintmax_t) kp.ki_size / 1024);
508 printf_filtered ("Data size: %ju kB\n",
509 (uintmax_t) kp.ki_dsize * pgtok);
510 printf_filtered ("Stack size: %ju kB\n",
511 (uintmax_t) kp.ki_ssize * pgtok);
512 printf_filtered ("Text size: %ju kB\n",
513 (uintmax_t) kp.ki_tsize * pgtok);
514 printf_filtered ("Resident set size: %ju kB\n",
515 (uintmax_t) kp.ki_rssize * pgtok);
516 printf_filtered ("Maximum RSS: %ju kB\n",
517 (uintmax_t) kp.ki_rusage.ru_maxrss);
518 printf_filtered ("Pending Signals: ");
519 for (int i = 0; i < _SIG_WORDS; i++)
520 printf_filtered ("%08x ", kp.ki_siglist.__bits[i]);
521 printf_filtered ("\n");
522 printf_filtered ("Ignored Signals: ");
523 for (int i = 0; i < _SIG_WORDS; i++)
524 printf_filtered ("%08x ", kp.ki_sigignore.__bits[i]);
525 printf_filtered ("\n");
526 printf_filtered ("Caught Signals: ");
527 for (int i = 0; i < _SIG_WORDS; i++)
528 printf_filtered ("%08x ", kp.ki_sigcatch.__bits[i]);
529 printf_filtered ("\n");
530 }
531 }
532
533 return true;
534 }
535
536 #ifdef KERN_PROC_AUXV
537
538 #ifdef PT_LWPINFO
539 /* Return the size of siginfo for the current inferior. */
540
541 #ifdef __LP64__
542 union sigval32 {
543 int sival_int;
544 uint32_t sival_ptr;
545 };
546
547 /* This structure matches the naming and layout of `siginfo_t' in
548 <sys/signal.h>. In particular, the `si_foo' macros defined in that
549 header can be used with both types to copy fields in the `_reason'
550 union. */
551
552 struct siginfo32
553 {
554 int si_signo;
555 int si_errno;
556 int si_code;
557 __pid_t si_pid;
558 __uid_t si_uid;
559 int si_status;
560 uint32_t si_addr;
561 union sigval32 si_value;
562 union
563 {
564 struct
565 {
566 int _trapno;
567 } _fault;
568 struct
569 {
570 int _timerid;
571 int _overrun;
572 } _timer;
573 struct
574 {
575 int _mqd;
576 } _mesgq;
577 struct
578 {
579 int32_t _band;
580 } _poll;
581 struct
582 {
583 int32_t __spare1__;
584 int __spare2__[7];
585 } __spare__;
586 } _reason;
587 };
588 #endif
589
590 static size_t
591 fbsd_siginfo_size ()
592 {
593 #ifdef __LP64__
594 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
595
596 /* Is the inferior 32-bit? If so, use the 32-bit siginfo size. */
597 if (gdbarch_long_bit (gdbarch) == 32)
598 return sizeof (struct siginfo32);
599 #endif
600 return sizeof (siginfo_t);
601 }
602
603 /* Convert a native 64-bit siginfo object to a 32-bit object. Note
604 that FreeBSD doesn't support writing to $_siginfo, so this only
605 needs to convert one way. */
606
607 static void
608 fbsd_convert_siginfo (siginfo_t *si)
609 {
610 #ifdef __LP64__
611 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
612
613 /* Is the inferior 32-bit? If not, nothing to do. */
614 if (gdbarch_long_bit (gdbarch) != 32)
615 return;
616
617 struct siginfo32 si32;
618
619 si32.si_signo = si->si_signo;
620 si32.si_errno = si->si_errno;
621 si32.si_code = si->si_code;
622 si32.si_pid = si->si_pid;
623 si32.si_uid = si->si_uid;
624 si32.si_status = si->si_status;
625 si32.si_addr = (uintptr_t) si->si_addr;
626
627 /* If sival_ptr is being used instead of sival_int on a big-endian
628 platform, then sival_int will be zero since it holds the upper
629 32-bits of the pointer value. */
630 #if _BYTE_ORDER == _BIG_ENDIAN
631 if (si->si_value.sival_int == 0)
632 si32.si_value.sival_ptr = (uintptr_t) si->si_value.sival_ptr;
633 else
634 si32.si_value.sival_int = si->si_value.sival_int;
635 #else
636 si32.si_value.sival_int = si->si_value.sival_int;
637 #endif
638
639 /* Always copy the spare fields and then possibly overwrite them for
640 signal-specific or code-specific fields. */
641 si32._reason.__spare__.__spare1__ = si->_reason.__spare__.__spare1__;
642 for (int i = 0; i < 7; i++)
643 si32._reason.__spare__.__spare2__[i] = si->_reason.__spare__.__spare2__[i];
644 switch (si->si_signo) {
645 case SIGILL:
646 case SIGFPE:
647 case SIGSEGV:
648 case SIGBUS:
649 si32.si_trapno = si->si_trapno;
650 break;
651 }
652 switch (si->si_code) {
653 case SI_TIMER:
654 si32.si_timerid = si->si_timerid;
655 si32.si_overrun = si->si_overrun;
656 break;
657 case SI_MESGQ:
658 si32.si_mqd = si->si_mqd;
659 break;
660 }
661
662 memcpy(si, &si32, sizeof (si32));
663 #endif
664 }
665 #endif
666
667 /* Implement the "xfer_partial" target_ops method. */
668
669 enum target_xfer_status
670 fbsd_nat_target::xfer_partial (enum target_object object,
671 const char *annex, gdb_byte *readbuf,
672 const gdb_byte *writebuf,
673 ULONGEST offset, ULONGEST len,
674 ULONGEST *xfered_len)
675 {
676 pid_t pid = inferior_ptid.pid ();
677
678 switch (object)
679 {
680 #ifdef PT_LWPINFO
681 case TARGET_OBJECT_SIGNAL_INFO:
682 {
683 struct ptrace_lwpinfo pl;
684 size_t siginfo_size;
685
686 /* FreeBSD doesn't support writing to $_siginfo. */
687 if (writebuf != NULL)
688 return TARGET_XFER_E_IO;
689
690 if (inferior_ptid.lwp_p ())
691 pid = inferior_ptid.lwp ();
692
693 siginfo_size = fbsd_siginfo_size ();
694 if (offset > siginfo_size)
695 return TARGET_XFER_E_IO;
696
697 if (ptrace (PT_LWPINFO, pid, (PTRACE_TYPE_ARG3) &pl, sizeof (pl)) == -1)
698 return TARGET_XFER_E_IO;
699
700 if (!(pl.pl_flags & PL_FLAG_SI))
701 return TARGET_XFER_E_IO;
702
703 fbsd_convert_siginfo (&pl.pl_siginfo);
704 if (offset + len > siginfo_size)
705 len = siginfo_size - offset;
706
707 memcpy (readbuf, ((gdb_byte *) &pl.pl_siginfo) + offset, len);
708 *xfered_len = len;
709 return TARGET_XFER_OK;
710 }
711 #endif
712 case TARGET_OBJECT_AUXV:
713 {
714 gdb::byte_vector buf_storage;
715 gdb_byte *buf;
716 size_t buflen;
717 int mib[4];
718
719 if (writebuf != NULL)
720 return TARGET_XFER_E_IO;
721 mib[0] = CTL_KERN;
722 mib[1] = KERN_PROC;
723 mib[2] = KERN_PROC_AUXV;
724 mib[3] = pid;
725 if (offset == 0)
726 {
727 buf = readbuf;
728 buflen = len;
729 }
730 else
731 {
732 buflen = offset + len;
733 buf_storage.resize (buflen);
734 buf = buf_storage.data ();
735 }
736 if (sysctl (mib, 4, buf, &buflen, NULL, 0) == 0)
737 {
738 if (offset != 0)
739 {
740 if (buflen > offset)
741 {
742 buflen -= offset;
743 memcpy (readbuf, buf + offset, buflen);
744 }
745 else
746 buflen = 0;
747 }
748 *xfered_len = buflen;
749 return (buflen == 0) ? TARGET_XFER_EOF : TARGET_XFER_OK;
750 }
751 return TARGET_XFER_E_IO;
752 }
753 case TARGET_OBJECT_FREEBSD_VMMAP:
754 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
755 {
756 gdb::byte_vector buf_storage;
757 gdb_byte *buf;
758 size_t buflen;
759 int mib[4];
760
761 int proc_target;
762 uint32_t struct_size;
763 switch (object)
764 {
765 case TARGET_OBJECT_FREEBSD_VMMAP:
766 proc_target = KERN_PROC_VMMAP;
767 struct_size = sizeof (struct kinfo_vmentry);
768 break;
769 case TARGET_OBJECT_FREEBSD_PS_STRINGS:
770 proc_target = KERN_PROC_PS_STRINGS;
771 struct_size = sizeof (void *);
772 break;
773 }
774
775 if (writebuf != NULL)
776 return TARGET_XFER_E_IO;
777
778 mib[0] = CTL_KERN;
779 mib[1] = KERN_PROC;
780 mib[2] = proc_target;
781 mib[3] = pid;
782
783 if (sysctl (mib, 4, NULL, &buflen, NULL, 0) != 0)
784 return TARGET_XFER_E_IO;
785 buflen += sizeof (struct_size);
786
787 if (offset >= buflen)
788 {
789 *xfered_len = 0;
790 return TARGET_XFER_EOF;
791 }
792
793 buf_storage.resize (buflen);
794 buf = buf_storage.data ();
795
796 memcpy (buf, &struct_size, sizeof (struct_size));
797 buflen -= sizeof (struct_size);
798 if (sysctl (mib, 4, buf + sizeof (struct_size), &buflen, NULL, 0) != 0)
799 return TARGET_XFER_E_IO;
800 buflen += sizeof (struct_size);
801
802 if (buflen - offset < len)
803 len = buflen - offset;
804 memcpy (readbuf, buf + offset, len);
805 *xfered_len = len;
806 return TARGET_XFER_OK;
807 }
808 default:
809 return inf_ptrace_target::xfer_partial (object, annex,
810 readbuf, writebuf, offset,
811 len, xfered_len);
812 }
813 }
814 #endif
815
816 #ifdef PT_LWPINFO
817 static int debug_fbsd_lwp;
818 static int debug_fbsd_nat;
819
820 static void
821 show_fbsd_lwp_debug (struct ui_file *file, int from_tty,
822 struct cmd_list_element *c, const char *value)
823 {
824 fprintf_filtered (file, _("Debugging of FreeBSD lwp module is %s.\n"), value);
825 }
826
827 static void
828 show_fbsd_nat_debug (struct ui_file *file, int from_tty,
829 struct cmd_list_element *c, const char *value)
830 {
831 fprintf_filtered (file, _("Debugging of FreeBSD native target is %s.\n"),
832 value);
833 }
834
835 /*
836 FreeBSD's first thread support was via a "reentrant" version of libc
837 (libc_r) that first shipped in 2.2.7. This library multiplexed all
838 of the threads in a process onto a single kernel thread. This
839 library was supported via the bsd-uthread target.
840
841 FreeBSD 5.1 introduced two new threading libraries that made use of
842 multiple kernel threads. The first (libkse) scheduled M user
843 threads onto N (<= M) kernel threads (LWPs). The second (libthr)
844 bound each user thread to a dedicated kernel thread. libkse shipped
845 as the default threading library (libpthread).
846
847 FreeBSD 5.3 added a libthread_db to abstract the interface across
848 the various thread libraries (libc_r, libkse, and libthr).
849
850 FreeBSD 7.0 switched the default threading library from from libkse
851 to libpthread and removed libc_r.
852
853 FreeBSD 8.0 removed libkse and the in-kernel support for it. The
854 only threading library supported by 8.0 and later is libthr which
855 ties each user thread directly to an LWP. To simplify the
856 implementation, this target only supports LWP-backed threads using
857 ptrace directly rather than libthread_db.
858
859 FreeBSD 11.0 introduced LWP event reporting via PT_LWP_EVENTS.
860 */
861
862 /* Return true if PTID is still active in the inferior. */
863
864 bool
865 fbsd_nat_target::thread_alive (ptid_t ptid)
866 {
867 if (ptid.lwp_p ())
868 {
869 struct ptrace_lwpinfo pl;
870
871 if (ptrace (PT_LWPINFO, ptid.lwp (), (caddr_t) &pl, sizeof pl)
872 == -1)
873 return false;
874 #ifdef PL_FLAG_EXITED
875 if (pl.pl_flags & PL_FLAG_EXITED)
876 return false;
877 #endif
878 }
879
880 return true;
881 }
882
883 /* Convert PTID to a string. Returns the string in a static
884 buffer. */
885
886 const char *
887 fbsd_nat_target::pid_to_str (ptid_t ptid)
888 {
889 lwpid_t lwp;
890
891 lwp = ptid.lwp ();
892 if (lwp != 0)
893 {
894 static char buf[64];
895 int pid = ptid.pid ();
896
897 xsnprintf (buf, sizeof buf, "LWP %d of process %d", lwp, pid);
898 return buf;
899 }
900
901 return normal_pid_to_str (ptid);
902 }
903
904 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_TDNAME
905 /* Return the name assigned to a thread by an application. Returns
906 the string in a static buffer. */
907
908 const char *
909 fbsd_nat_target::thread_name (struct thread_info *thr)
910 {
911 struct ptrace_lwpinfo pl;
912 struct kinfo_proc kp;
913 int pid = thr->ptid.pid ();
914 long lwp = thr->ptid.lwp ();
915 static char buf[sizeof pl.pl_tdname + 1];
916
917 /* Note that ptrace_lwpinfo returns the process command in pl_tdname
918 if a name has not been set explicitly. Return a NULL name in
919 that case. */
920 if (!fbsd_fetch_kinfo_proc (pid, &kp))
921 perror_with_name (_("Failed to fetch process information"));
922 if (ptrace (PT_LWPINFO, lwp, (caddr_t) &pl, sizeof pl) == -1)
923 perror_with_name (("ptrace"));
924 if (strcmp (kp.ki_comm, pl.pl_tdname) == 0)
925 return NULL;
926 xsnprintf (buf, sizeof buf, "%s", pl.pl_tdname);
927 return buf;
928 }
929 #endif
930
931 /* Enable additional event reporting on new processes.
932
933 To catch fork events, PTRACE_FORK is set on every traced process
934 to enable stops on returns from fork or vfork. Note that both the
935 parent and child will always stop, even if system call stops are
936 not enabled.
937
938 To catch LWP events, PTRACE_EVENTS is set on every traced process.
939 This enables stops on the birth for new LWPs (excluding the "main" LWP)
940 and the death of LWPs (excluding the last LWP in a process). Note
941 that unlike fork events, the LWP that creates a new LWP does not
942 report an event. */
943
944 static void
945 fbsd_enable_proc_events (pid_t pid)
946 {
947 #ifdef PT_GET_EVENT_MASK
948 int events;
949
950 if (ptrace (PT_GET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
951 sizeof (events)) == -1)
952 perror_with_name (("ptrace"));
953 events |= PTRACE_FORK | PTRACE_LWP;
954 #ifdef PTRACE_VFORK
955 events |= PTRACE_VFORK;
956 #endif
957 if (ptrace (PT_SET_EVENT_MASK, pid, (PTRACE_TYPE_ARG3)&events,
958 sizeof (events)) == -1)
959 perror_with_name (("ptrace"));
960 #else
961 #ifdef TDP_RFPPWAIT
962 if (ptrace (PT_FOLLOW_FORK, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
963 perror_with_name (("ptrace"));
964 #endif
965 #ifdef PT_LWP_EVENTS
966 if (ptrace (PT_LWP_EVENTS, pid, (PTRACE_TYPE_ARG3)0, 1) == -1)
967 perror_with_name (("ptrace"));
968 #endif
969 #endif
970 }
971
972 /* Add threads for any new LWPs in a process.
973
974 When LWP events are used, this function is only used to detect existing
975 threads when attaching to a process. On older systems, this function is
976 called to discover new threads each time the thread list is updated. */
977
978 static void
979 fbsd_add_threads (pid_t pid)
980 {
981 int i, nlwps;
982
983 gdb_assert (!in_thread_list (ptid_t (pid)));
984 nlwps = ptrace (PT_GETNUMLWPS, pid, NULL, 0);
985 if (nlwps == -1)
986 perror_with_name (("ptrace"));
987
988 gdb::unique_xmalloc_ptr<lwpid_t[]> lwps (XCNEWVEC (lwpid_t, nlwps));
989
990 nlwps = ptrace (PT_GETLWPLIST, pid, (caddr_t) lwps.get (), nlwps);
991 if (nlwps == -1)
992 perror_with_name (("ptrace"));
993
994 for (i = 0; i < nlwps; i++)
995 {
996 ptid_t ptid = ptid_t (pid, lwps[i], 0);
997
998 if (!in_thread_list (ptid))
999 {
1000 #ifdef PT_LWP_EVENTS
1001 struct ptrace_lwpinfo pl;
1002
1003 /* Don't add exited threads. Note that this is only called
1004 when attaching to a multi-threaded process. */
1005 if (ptrace (PT_LWPINFO, lwps[i], (caddr_t) &pl, sizeof pl) == -1)
1006 perror_with_name (("ptrace"));
1007 if (pl.pl_flags & PL_FLAG_EXITED)
1008 continue;
1009 #endif
1010 if (debug_fbsd_lwp)
1011 fprintf_unfiltered (gdb_stdlog,
1012 "FLWP: adding thread for LWP %u\n",
1013 lwps[i]);
1014 add_thread (ptid);
1015 }
1016 }
1017 }
1018
1019 /* Implement the "update_thread_list" target_ops method. */
1020
1021 void
1022 fbsd_nat_target::update_thread_list ()
1023 {
1024 #ifdef PT_LWP_EVENTS
1025 /* With support for thread events, threads are added/deleted from the
1026 list as events are reported, so just try deleting exited threads. */
1027 delete_exited_threads ();
1028 #else
1029 prune_threads ();
1030
1031 fbsd_add_threads (inferior_ptid.pid ());
1032 #endif
1033 }
1034
1035 #ifdef TDP_RFPPWAIT
1036 /*
1037 To catch fork events, PT_FOLLOW_FORK is set on every traced process
1038 to enable stops on returns from fork or vfork. Note that both the
1039 parent and child will always stop, even if system call stops are not
1040 enabled.
1041
1042 After a fork, both the child and parent process will stop and report
1043 an event. However, there is no guarantee of order. If the parent
1044 reports its stop first, then fbsd_wait explicitly waits for the new
1045 child before returning. If the child reports its stop first, then
1046 the event is saved on a list and ignored until the parent's stop is
1047 reported. fbsd_wait could have been changed to fetch the parent PID
1048 of the new child and used that to wait for the parent explicitly.
1049 However, if two threads in the parent fork at the same time, then
1050 the wait on the parent might return the "wrong" fork event.
1051
1052 The initial version of PT_FOLLOW_FORK did not set PL_FLAG_CHILD for
1053 the new child process. This flag could be inferred by treating any
1054 events for an unknown pid as a new child.
1055
1056 In addition, the initial version of PT_FOLLOW_FORK did not report a
1057 stop event for the parent process of a vfork until after the child
1058 process executed a new program or exited. The kernel was changed to
1059 defer the wait for exit or exec of the child until after posting the
1060 stop event shortly after the change to introduce PL_FLAG_CHILD.
1061 This could be worked around by reporting a vfork event when the
1062 child event posted and ignoring the subsequent event from the
1063 parent.
1064
1065 This implementation requires both of these fixes for simplicity's
1066 sake. FreeBSD versions newer than 9.1 contain both fixes.
1067 */
1068
1069 static std::list<ptid_t> fbsd_pending_children;
1070
1071 /* Record a new child process event that is reported before the
1072 corresponding fork event in the parent. */
1073
1074 static void
1075 fbsd_remember_child (ptid_t pid)
1076 {
1077 fbsd_pending_children.push_front (pid);
1078 }
1079
1080 /* Check for a previously-recorded new child process event for PID.
1081 If one is found, remove it from the list and return the PTID. */
1082
1083 static ptid_t
1084 fbsd_is_child_pending (pid_t pid)
1085 {
1086 for (auto it = fbsd_pending_children.begin ();
1087 it != fbsd_pending_children.end (); it++)
1088 if (it->pid () == pid)
1089 {
1090 ptid_t ptid = *it;
1091 fbsd_pending_children.erase (it);
1092 return ptid;
1093 }
1094 return null_ptid;
1095 }
1096
1097 #ifndef PTRACE_VFORK
1098 static std::forward_list<ptid_t> fbsd_pending_vfork_done;
1099
1100 /* Record a pending vfork done event. */
1101
1102 static void
1103 fbsd_add_vfork_done (ptid_t pid)
1104 {
1105 fbsd_pending_vfork_done.push_front (pid);
1106 }
1107
1108 /* Check for a pending vfork done event for a specific PID. */
1109
1110 static int
1111 fbsd_is_vfork_done_pending (pid_t pid)
1112 {
1113 for (auto it = fbsd_pending_vfork_done.begin ();
1114 it != fbsd_pending_vfork_done.end (); it++)
1115 if (it->pid () == pid)
1116 return 1;
1117 return 0;
1118 }
1119
1120 /* Check for a pending vfork done event. If one is found, remove it
1121 from the list and return the PTID. */
1122
1123 static ptid_t
1124 fbsd_next_vfork_done (void)
1125 {
1126 if (!fbsd_pending_vfork_done.empty ())
1127 {
1128 ptid_t ptid = fbsd_pending_vfork_done.front ();
1129 fbsd_pending_vfork_done.pop_front ();
1130 return ptid;
1131 }
1132 return null_ptid;
1133 }
1134 #endif
1135 #endif
1136
1137 /* Implement the "resume" target_ops method. */
1138
1139 void
1140 fbsd_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1141 {
1142 #if defined(TDP_RFPPWAIT) && !defined(PTRACE_VFORK)
1143 pid_t pid;
1144
1145 /* Don't PT_CONTINUE a process which has a pending vfork done event. */
1146 if (minus_one_ptid == ptid)
1147 pid = inferior_ptid.pid ();
1148 else
1149 pid = ptid.pid ();
1150 if (fbsd_is_vfork_done_pending (pid))
1151 return;
1152 #endif
1153
1154 if (debug_fbsd_lwp)
1155 fprintf_unfiltered (gdb_stdlog,
1156 "FLWP: fbsd_resume for ptid (%d, %ld, %ld)\n",
1157 ptid.pid (), ptid.lwp (),
1158 ptid.tid ());
1159 if (ptid.lwp_p ())
1160 {
1161 /* If ptid is a specific LWP, suspend all other LWPs in the process. */
1162 struct thread_info *tp;
1163 int request;
1164
1165 ALL_NON_EXITED_THREADS (tp)
1166 {
1167 if (tp->ptid.pid () != ptid.pid ())
1168 continue;
1169
1170 if (tp->ptid.lwp () == ptid.lwp ())
1171 request = PT_RESUME;
1172 else
1173 request = PT_SUSPEND;
1174
1175 if (ptrace (request, tp->ptid.lwp (), NULL, 0) == -1)
1176 perror_with_name (("ptrace"));
1177 }
1178 }
1179 else
1180 {
1181 /* If ptid is a wildcard, resume all matching threads (they won't run
1182 until the process is continued however). */
1183 struct thread_info *tp;
1184
1185 ALL_NON_EXITED_THREADS (tp)
1186 {
1187 if (!tp->ptid.matches (ptid))
1188 continue;
1189
1190 if (ptrace (PT_RESUME, tp->ptid.lwp (), NULL, 0) == -1)
1191 perror_with_name (("ptrace"));
1192 }
1193 ptid = inferior_ptid;
1194 }
1195
1196 #if __FreeBSD_version < 1200052
1197 /* When multiple threads within a process wish to report STOPPED
1198 events from wait(), the kernel picks one thread event as the
1199 thread event to report. The chosen thread event is retrieved via
1200 PT_LWPINFO by passing the process ID as the request pid. If
1201 multiple events are pending, then the subsequent wait() after
1202 resuming a process will report another STOPPED event after
1203 resuming the process to handle the next thread event and so on.
1204
1205 A single thread event is cleared as a side effect of resuming the
1206 process with PT_CONTINUE, PT_STEP, etc. In older kernels,
1207 however, the request pid was used to select which thread's event
1208 was cleared rather than always clearing the event that was just
1209 reported. To avoid clearing the event of the wrong LWP, always
1210 pass the process ID instead of an LWP ID to PT_CONTINUE or
1211 PT_SYSCALL.
1212
1213 In the case of stepping, the process ID cannot be used with
1214 PT_STEP since it would step the thread that reported an event
1215 which may not be the thread indicated by PTID. For stepping, use
1216 PT_SETSTEP to enable stepping on the desired thread before
1217 resuming the process via PT_CONTINUE instead of using
1218 PT_STEP. */
1219 if (step)
1220 {
1221 if (ptrace (PT_SETSTEP, get_ptrace_pid (ptid), NULL, 0) == -1)
1222 perror_with_name (("ptrace"));
1223 step = 0;
1224 }
1225 ptid = ptid_t (ptid.pid ());
1226 #endif
1227 inf_ptrace_target::resume (ptid, step, signo);
1228 }
1229
1230 #ifdef USE_SIGTRAP_SIGINFO
1231 /* Handle breakpoint and trace traps reported via SIGTRAP. If the
1232 trap was a breakpoint or trace trap that should be reported to the
1233 core, return true. */
1234
1235 static bool
1236 fbsd_handle_debug_trap (ptid_t ptid, const struct ptrace_lwpinfo &pl)
1237 {
1238
1239 /* Ignore traps without valid siginfo or for signals other than
1240 SIGTRAP. */
1241 if (! (pl.pl_flags & PL_FLAG_SI) || pl.pl_siginfo.si_signo != SIGTRAP)
1242 return false;
1243
1244 /* Trace traps are either a single step or a hardware watchpoint or
1245 breakpoint. */
1246 if (pl.pl_siginfo.si_code == TRAP_TRACE)
1247 {
1248 if (debug_fbsd_nat)
1249 fprintf_unfiltered (gdb_stdlog,
1250 "FNAT: trace trap for LWP %ld\n", ptid.lwp ());
1251 return true;
1252 }
1253
1254 if (pl.pl_siginfo.si_code == TRAP_BRKPT)
1255 {
1256 /* Fixup PC for the software breakpoint. */
1257 struct regcache *regcache = get_thread_regcache (ptid);
1258 struct gdbarch *gdbarch = regcache->arch ();
1259 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1260
1261 if (debug_fbsd_nat)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "FNAT: sw breakpoint trap for LWP %ld\n",
1264 ptid.lwp ());
1265 if (decr_pc != 0)
1266 {
1267 CORE_ADDR pc;
1268
1269 pc = regcache_read_pc (regcache);
1270 regcache_write_pc (regcache, pc - decr_pc);
1271 }
1272 return true;
1273 }
1274
1275 return false;
1276 }
1277 #endif
1278
1279 /* Wait for the child specified by PTID to do something. Return the
1280 process ID of the child, or MINUS_ONE_PTID in case of error; store
1281 the status in *OURSTATUS. */
1282
1283 ptid_t
1284 fbsd_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
1285 int target_options)
1286 {
1287 ptid_t wptid;
1288
1289 while (1)
1290 {
1291 #ifndef PTRACE_VFORK
1292 wptid = fbsd_next_vfork_done ();
1293 if (wptid != null_ptid)
1294 {
1295 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1296 return wptid;
1297 }
1298 #endif
1299 wptid = inf_ptrace_target::wait (ptid, ourstatus, target_options);
1300 if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
1301 {
1302 struct ptrace_lwpinfo pl;
1303 pid_t pid;
1304 int status;
1305
1306 pid = wptid.pid ();
1307 if (ptrace (PT_LWPINFO, pid, (caddr_t) &pl, sizeof pl) == -1)
1308 perror_with_name (("ptrace"));
1309
1310 wptid = ptid_t (pid, pl.pl_lwpid, 0);
1311
1312 if (debug_fbsd_nat)
1313 {
1314 fprintf_unfiltered (gdb_stdlog,
1315 "FNAT: stop for LWP %u event %d flags %#x\n",
1316 pl.pl_lwpid, pl.pl_event, pl.pl_flags);
1317 if (pl.pl_flags & PL_FLAG_SI)
1318 fprintf_unfiltered (gdb_stdlog,
1319 "FNAT: si_signo %u si_code %u\n",
1320 pl.pl_siginfo.si_signo,
1321 pl.pl_siginfo.si_code);
1322 }
1323
1324 #ifdef PT_LWP_EVENTS
1325 if (pl.pl_flags & PL_FLAG_EXITED)
1326 {
1327 /* If GDB attaches to a multi-threaded process, exiting
1328 threads might be skipped during post_attach that
1329 have not yet reported their PL_FLAG_EXITED event.
1330 Ignore EXITED events for an unknown LWP. */
1331 thread_info *thr = find_thread_ptid (wptid);
1332 if (thr != nullptr)
1333 {
1334 if (debug_fbsd_lwp)
1335 fprintf_unfiltered (gdb_stdlog,
1336 "FLWP: deleting thread for LWP %u\n",
1337 pl.pl_lwpid);
1338 if (print_thread_events)
1339 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str
1340 (wptid));
1341 delete_thread (thr);
1342 }
1343 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1344 perror_with_name (("ptrace"));
1345 continue;
1346 }
1347 #endif
1348
1349 /* Switch to an LWP PTID on the first stop in a new process.
1350 This is done after handling PL_FLAG_EXITED to avoid
1351 switching to an exited LWP. It is done before checking
1352 PL_FLAG_BORN in case the first stop reported after
1353 attaching to an existing process is a PL_FLAG_BORN
1354 event. */
1355 if (in_thread_list (ptid_t (pid)))
1356 {
1357 if (debug_fbsd_lwp)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "FLWP: using LWP %u for first thread\n",
1360 pl.pl_lwpid);
1361 thread_change_ptid (ptid_t (pid), wptid);
1362 }
1363
1364 #ifdef PT_LWP_EVENTS
1365 if (pl.pl_flags & PL_FLAG_BORN)
1366 {
1367 /* If GDB attaches to a multi-threaded process, newborn
1368 threads might be added by fbsd_add_threads that have
1369 not yet reported their PL_FLAG_BORN event. Ignore
1370 BORN events for an already-known LWP. */
1371 if (!in_thread_list (wptid))
1372 {
1373 if (debug_fbsd_lwp)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "FLWP: adding thread for LWP %u\n",
1376 pl.pl_lwpid);
1377 add_thread (wptid);
1378 }
1379 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1380 return wptid;
1381 }
1382 #endif
1383
1384 #ifdef TDP_RFPPWAIT
1385 if (pl.pl_flags & PL_FLAG_FORKED)
1386 {
1387 #ifndef PTRACE_VFORK
1388 struct kinfo_proc kp;
1389 #endif
1390 ptid_t child_ptid;
1391 pid_t child;
1392
1393 child = pl.pl_child_pid;
1394 ourstatus->kind = TARGET_WAITKIND_FORKED;
1395 #ifdef PTRACE_VFORK
1396 if (pl.pl_flags & PL_FLAG_VFORKED)
1397 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1398 #endif
1399
1400 /* Make sure the other end of the fork is stopped too. */
1401 child_ptid = fbsd_is_child_pending (child);
1402 if (child_ptid == null_ptid)
1403 {
1404 pid = waitpid (child, &status, 0);
1405 if (pid == -1)
1406 perror_with_name (("waitpid"));
1407
1408 gdb_assert (pid == child);
1409
1410 if (ptrace (PT_LWPINFO, child, (caddr_t)&pl, sizeof pl) == -1)
1411 perror_with_name (("ptrace"));
1412
1413 gdb_assert (pl.pl_flags & PL_FLAG_CHILD);
1414 child_ptid = ptid_t (child, pl.pl_lwpid, 0);
1415 }
1416
1417 /* Enable additional events on the child process. */
1418 fbsd_enable_proc_events (child_ptid.pid ());
1419
1420 #ifndef PTRACE_VFORK
1421 /* For vfork, the child process will have the P_PPWAIT
1422 flag set. */
1423 if (fbsd_fetch_kinfo_proc (child, &kp))
1424 {
1425 if (kp.ki_flag & P_PPWAIT)
1426 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1427 }
1428 else
1429 warning (_("Failed to fetch process information"));
1430 #endif
1431 ourstatus->value.related_pid = child_ptid;
1432
1433 return wptid;
1434 }
1435
1436 if (pl.pl_flags & PL_FLAG_CHILD)
1437 {
1438 /* Remember that this child forked, but do not report it
1439 until the parent reports its corresponding fork
1440 event. */
1441 fbsd_remember_child (wptid);
1442 continue;
1443 }
1444
1445 #ifdef PTRACE_VFORK
1446 if (pl.pl_flags & PL_FLAG_VFORK_DONE)
1447 {
1448 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
1449 return wptid;
1450 }
1451 #endif
1452 #endif
1453
1454 #ifdef PL_FLAG_EXEC
1455 if (pl.pl_flags & PL_FLAG_EXEC)
1456 {
1457 ourstatus->kind = TARGET_WAITKIND_EXECD;
1458 ourstatus->value.execd_pathname
1459 = xstrdup (pid_to_exec_file (pid));
1460 return wptid;
1461 }
1462 #endif
1463
1464 #ifdef USE_SIGTRAP_SIGINFO
1465 if (fbsd_handle_debug_trap (wptid, pl))
1466 return wptid;
1467 #endif
1468
1469 /* Note that PL_FLAG_SCE is set for any event reported while
1470 a thread is executing a system call in the kernel. In
1471 particular, signals that interrupt a sleep in a system
1472 call will report this flag as part of their event. Stops
1473 explicitly for system call entry and exit always use
1474 SIGTRAP, so only treat SIGTRAP events as system call
1475 entry/exit events. */
1476 if (pl.pl_flags & (PL_FLAG_SCE | PL_FLAG_SCX)
1477 && ourstatus->value.sig == SIGTRAP)
1478 {
1479 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1480 if (catch_syscall_enabled ())
1481 {
1482 if (catching_syscall_number (pl.pl_syscall_code))
1483 {
1484 if (pl.pl_flags & PL_FLAG_SCE)
1485 ourstatus->kind = TARGET_WAITKIND_SYSCALL_ENTRY;
1486 else
1487 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
1488 ourstatus->value.syscall_number = pl.pl_syscall_code;
1489 return wptid;
1490 }
1491 }
1492 #endif
1493 /* If the core isn't interested in this event, just
1494 continue the process explicitly and wait for another
1495 event. Note that PT_SYSCALL is "sticky" on FreeBSD
1496 and once system call stops are enabled on a process
1497 it stops for all system call entries and exits. */
1498 if (ptrace (PT_CONTINUE, pid, (caddr_t) 1, 0) == -1)
1499 perror_with_name (("ptrace"));
1500 continue;
1501 }
1502 }
1503 return wptid;
1504 }
1505 }
1506
1507 #ifdef USE_SIGTRAP_SIGINFO
1508 /* Implement the "stopped_by_sw_breakpoint" target_ops method. */
1509
1510 bool
1511 fbsd_nat_target::stopped_by_sw_breakpoint ()
1512 {
1513 struct ptrace_lwpinfo pl;
1514
1515 if (ptrace (PT_LWPINFO, get_ptrace_pid (inferior_ptid), (caddr_t) &pl,
1516 sizeof pl) == -1)
1517 return false;
1518
1519 return ((pl.pl_flags & PL_FLAG_SI)
1520 && pl.pl_siginfo.si_signo == SIGTRAP
1521 && pl.pl_siginfo.si_code == TRAP_BRKPT);
1522 }
1523
1524 /* Implement the "supports_stopped_by_sw_breakpoint" target_ops
1525 method. */
1526
1527 bool
1528 fbsd_nat_target::supports_stopped_by_sw_breakpoint ()
1529 {
1530 return true;
1531 }
1532 #endif
1533
1534 #ifdef TDP_RFPPWAIT
1535 /* Target hook for follow_fork. On entry and at return inferior_ptid is
1536 the ptid of the followed inferior. */
1537
1538 int
1539 fbsd_nat_target::follow_fork (int follow_child, int detach_fork)
1540 {
1541 if (!follow_child && detach_fork)
1542 {
1543 struct thread_info *tp = inferior_thread ();
1544 pid_t child_pid = tp->pending_follow.value.related_pid.pid ();
1545
1546 /* Breakpoints have already been detached from the child by
1547 infrun.c. */
1548
1549 if (ptrace (PT_DETACH, child_pid, (PTRACE_TYPE_ARG3)1, 0) == -1)
1550 perror_with_name (("ptrace"));
1551
1552 #ifndef PTRACE_VFORK
1553 if (tp->pending_follow.kind == TARGET_WAITKIND_VFORKED)
1554 {
1555 /* We can't insert breakpoints until the child process has
1556 finished with the shared memory region. The parent
1557 process doesn't wait for the child process to exit or
1558 exec until after it has been resumed from the ptrace stop
1559 to report the fork. Once it has been resumed it doesn't
1560 stop again before returning to userland, so there is no
1561 reliable way to wait on the parent.
1562
1563 We can't stay attached to the child to wait for an exec
1564 or exit because it may invoke ptrace(PT_TRACE_ME)
1565 (e.g. if the parent process is a debugger forking a new
1566 child process).
1567
1568 In the end, the best we can do is to make sure it runs
1569 for a little while. Hopefully it will be out of range of
1570 any breakpoints we reinsert. Usually this is only the
1571 single-step breakpoint at vfork's return point. */
1572
1573 usleep (10000);
1574
1575 /* Schedule a fake VFORK_DONE event to report on the next
1576 wait. */
1577 fbsd_add_vfork_done (inferior_ptid);
1578 }
1579 #endif
1580 }
1581
1582 return 0;
1583 }
1584
1585 int
1586 fbsd_nat_target::insert_fork_catchpoint (int pid)
1587 {
1588 return 0;
1589 }
1590
1591 int
1592 fbsd_nat_target::remove_fork_catchpoint (int pid)
1593 {
1594 return 0;
1595 }
1596
1597 int
1598 fbsd_nat_target::insert_vfork_catchpoint (int pid)
1599 {
1600 return 0;
1601 }
1602
1603 int
1604 fbsd_nat_target::remove_vfork_catchpoint (int pid)
1605 {
1606 return 0;
1607 }
1608 #endif
1609
1610 /* Implement the "post_startup_inferior" target_ops method. */
1611
1612 void
1613 fbsd_nat_target::post_startup_inferior (ptid_t pid)
1614 {
1615 fbsd_enable_proc_events (pid.pid ());
1616 }
1617
1618 /* Implement the "post_attach" target_ops method. */
1619
1620 void
1621 fbsd_nat_target::post_attach (int pid)
1622 {
1623 fbsd_enable_proc_events (pid);
1624 fbsd_add_threads (pid);
1625 }
1626
1627 #ifdef PL_FLAG_EXEC
1628 /* If the FreeBSD kernel supports PL_FLAG_EXEC, then traced processes
1629 will always stop after exec. */
1630
1631 int
1632 fbsd_nat_target::insert_exec_catchpoint (int pid)
1633 {
1634 return 0;
1635 }
1636
1637 int
1638 fbsd_nat_target::remove_exec_catchpoint (int pid)
1639 {
1640 return 0;
1641 }
1642 #endif
1643
1644 #ifdef HAVE_STRUCT_PTRACE_LWPINFO_PL_SYSCALL_CODE
1645 int
1646 fbsd_nat_target::set_syscall_catchpoint (int pid, bool needed,
1647 int any_count,
1648 gdb::array_view<const int> syscall_counts)
1649 {
1650
1651 /* Ignore the arguments. inf-ptrace.c will use PT_SYSCALL which
1652 will catch all system call entries and exits. The system calls
1653 are filtered by GDB rather than the kernel. */
1654 return 0;
1655 }
1656 #endif
1657 #endif
1658
1659 void
1660 _initialize_fbsd_nat (void)
1661 {
1662 #ifdef PT_LWPINFO
1663 add_setshow_boolean_cmd ("fbsd-lwp", class_maintenance,
1664 &debug_fbsd_lwp, _("\
1665 Set debugging of FreeBSD lwp module."), _("\
1666 Show debugging of FreeBSD lwp module."), _("\
1667 Enables printf debugging output."),
1668 NULL,
1669 &show_fbsd_lwp_debug,
1670 &setdebuglist, &showdebuglist);
1671 add_setshow_boolean_cmd ("fbsd-nat", class_maintenance,
1672 &debug_fbsd_nat, _("\
1673 Set debugging of FreeBSD native target."), _("\
1674 Show debugging of FreeBSD native target."), _("\
1675 Enables printf debugging output."),
1676 NULL,
1677 &show_fbsd_nat_debug,
1678 &setdebuglist, &showdebuglist);
1679 #endif
1680 }