]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/findvar.c
* findvar.c (write_register): Add sanity check for register size.
[thirdparty/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28
29 #if !defined (GET_SAVED_REGISTER)
30
31 /* Return the address in which frame FRAME's value of register REGNUM
32 has been saved in memory. Or return zero if it has not been saved.
33 If REGNUM specifies the SP, the value we return is actually
34 the SP value, not an address where it was saved. */
35
36 CORE_ADDR
37 find_saved_register (frame, regnum)
38 FRAME frame;
39 int regnum;
40 {
41 struct frame_info *fi;
42 struct frame_saved_regs saved_regs;
43
44 register FRAME frame1 = 0;
45 register CORE_ADDR addr = 0;
46
47 if (frame == 0) /* No regs saved if want current frame */
48 return 0;
49
50 #ifdef HAVE_REGISTER_WINDOWS
51 /* We assume that a register in a register window will only be saved
52 in one place (since the name changes and/or disappears as you go
53 towards inner frames), so we only call get_frame_saved_regs on
54 the current frame. This is directly in contradiction to the
55 usage below, which assumes that registers used in a frame must be
56 saved in a lower (more interior) frame. This change is a result
57 of working on a register window machine; get_frame_saved_regs
58 always returns the registers saved within a frame, within the
59 context (register namespace) of that frame. */
60
61 /* However, note that we don't want this to return anything if
62 nothing is saved (if there's a frame inside of this one). Also,
63 callers to this routine asking for the stack pointer want the
64 stack pointer saved for *this* frame; this is returned from the
65 next frame. */
66
67
68 if (REGISTER_IN_WINDOW_P(regnum))
69 {
70 frame1 = get_next_frame (frame);
71 if (!frame1) return 0; /* Registers of this frame are
72 active. */
73
74 /* Get the SP from the next frame in; it will be this
75 current frame. */
76 if (regnum != SP_REGNUM)
77 frame1 = frame;
78
79 fi = get_frame_info (frame1);
80 get_frame_saved_regs (fi, &saved_regs);
81 return saved_regs.regs[regnum]; /* ... which might be zero */
82 }
83 #endif /* HAVE_REGISTER_WINDOWS */
84
85 /* Note that this next routine assumes that registers used in
86 frame x will be saved only in the frame that x calls and
87 frames interior to it. This is not true on the sparc, but the
88 above macro takes care of it, so we should be all right. */
89 while (1)
90 {
91 QUIT;
92 frame1 = get_prev_frame (frame1);
93 if (frame1 == 0 || frame1 == frame)
94 break;
95 fi = get_frame_info (frame1);
96 get_frame_saved_regs (fi, &saved_regs);
97 if (saved_regs.regs[regnum])
98 addr = saved_regs.regs[regnum];
99 }
100
101 return addr;
102 }
103
104 /* Find register number REGNUM relative to FRAME and put its
105 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
106 was optimized out (and thus can't be fetched). Set *LVAL to
107 lval_memory, lval_register, or not_lval, depending on whether the
108 value was fetched from memory, from a register, or in a strange
109 and non-modifiable way (e.g. a frame pointer which was calculated
110 rather than fetched). Set *ADDRP to the address, either in memory
111 on as a REGISTER_BYTE offset into the registers array.
112
113 Note that this implementation never sets *LVAL to not_lval. But
114 it can be replaced by defining GET_SAVED_REGISTER and supplying
115 your own.
116
117 The argument RAW_BUFFER must point to aligned memory. */
118 void
119 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
120 char *raw_buffer;
121 int *optimized;
122 CORE_ADDR *addrp;
123 FRAME frame;
124 int regnum;
125 enum lval_type *lval;
126 {
127 CORE_ADDR addr;
128 /* Normal systems don't optimize out things with register numbers. */
129 if (optimized != NULL)
130 *optimized = 0;
131 addr = find_saved_register (frame, regnum);
132 if (addr != 0)
133 {
134 if (lval != NULL)
135 *lval = lval_memory;
136 if (regnum == SP_REGNUM)
137 {
138 if (raw_buffer != NULL)
139 *(CORE_ADDR *)raw_buffer = addr;
140 if (addrp != NULL)
141 *addrp = 0;
142 return;
143 }
144 if (raw_buffer != NULL)
145 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
146 }
147 else
148 {
149 if (lval != NULL)
150 *lval = lval_register;
151 addr = REGISTER_BYTE (regnum);
152 if (raw_buffer != NULL)
153 read_register_gen (regnum, raw_buffer);
154 }
155 if (addrp != NULL)
156 *addrp = addr;
157 }
158 #endif /* GET_SAVED_REGISTER. */
159
160 /* Copy the bytes of register REGNUM, relative to the current stack frame,
161 into our memory at MYADDR, in target byte order.
162 The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
163
164 Returns 1 if could not be read, 0 if could. */
165
166 int
167 read_relative_register_raw_bytes (regnum, myaddr)
168 int regnum;
169 char *myaddr;
170 {
171 int optim;
172 if (regnum == FP_REGNUM && selected_frame)
173 {
174 memcpy (myaddr, &FRAME_FP(selected_frame), REGISTER_RAW_SIZE(FP_REGNUM));
175 SWAP_TARGET_AND_HOST (myaddr, REGISTER_RAW_SIZE(FP_REGNUM)); /* in target order */
176 return 0;
177 }
178
179 get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
180 regnum, (enum lval_type *)NULL);
181 return optim;
182 }
183
184 /* Return a `value' with the contents of register REGNUM
185 in its virtual format, with the type specified by
186 REGISTER_VIRTUAL_TYPE. */
187
188 value
189 value_of_register (regnum)
190 int regnum;
191 {
192 CORE_ADDR addr;
193 int optim;
194 register value val;
195 char raw_buffer[MAX_REGISTER_RAW_SIZE];
196 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
197 enum lval_type lval;
198
199 get_saved_register (raw_buffer, &optim, &addr,
200 selected_frame, regnum, &lval);
201
202 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
203 val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
204 memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer,
205 REGISTER_VIRTUAL_SIZE (regnum));
206 VALUE_LVAL (val) = lval;
207 VALUE_ADDRESS (val) = addr;
208 VALUE_REGNO (val) = regnum;
209 VALUE_OPTIMIZED_OUT (val) = optim;
210 return val;
211 }
212 \f
213 /* Low level examining and depositing of registers.
214
215 The caller is responsible for making
216 sure that the inferior is stopped before calling the fetching routines,
217 or it will get garbage. (a change from GDB version 3, in which
218 the caller got the value from the last stop). */
219
220 /* Contents of the registers in target byte order.
221 We allocate some extra slop since we do a lot of bcopy's around `registers',
222 and failing-soft is better than failing hard. */
223 char registers[REGISTER_BYTES + /* SLOP */ 256];
224
225 /* Nonzero if that register has been fetched. */
226 char register_valid[NUM_REGS];
227
228 /* Indicate that registers may have changed, so invalidate the cache. */
229 void
230 registers_changed ()
231 {
232 int i;
233 for (i = 0; i < NUM_REGS; i++)
234 register_valid[i] = 0;
235 }
236
237 /* Indicate that all registers have been fetched, so mark them all valid. */
238 void
239 registers_fetched ()
240 {
241 int i;
242 for (i = 0; i < NUM_REGS; i++)
243 register_valid[i] = 1;
244 }
245
246 /* Copy LEN bytes of consecutive data from registers
247 starting with the REGBYTE'th byte of register data
248 into memory at MYADDR. */
249
250 void
251 read_register_bytes (regbyte, myaddr, len)
252 int regbyte;
253 char *myaddr;
254 int len;
255 {
256 /* Fetch all registers. */
257 int i;
258 for (i = 0; i < NUM_REGS; i++)
259 if (!register_valid[i])
260 {
261 target_fetch_registers (-1);
262 break;
263 }
264 if (myaddr != NULL)
265 memcpy (myaddr, &registers[regbyte], len);
266 }
267
268 /* Read register REGNO into memory at MYADDR, which must be large enough
269 for REGISTER_RAW_BYTES (REGNO). Target byte-order.
270 If the register is known to be the size of a CORE_ADDR or smaller,
271 read_register can be used instead. */
272 void
273 read_register_gen (regno, myaddr)
274 int regno;
275 char *myaddr;
276 {
277 if (!register_valid[regno])
278 target_fetch_registers (regno);
279 memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
280 REGISTER_RAW_SIZE (regno));
281 }
282
283 /* Copy LEN bytes of consecutive data from memory at MYADDR
284 into registers starting with the REGBYTE'th byte of register data. */
285
286 void
287 write_register_bytes (regbyte, myaddr, len)
288 int regbyte;
289 char *myaddr;
290 int len;
291 {
292 /* Make sure the entire registers array is valid. */
293 read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
294 memcpy (&registers[regbyte], myaddr, len);
295 target_store_registers (-1);
296 }
297
298 /* Return the contents of register REGNO, regarding it as an integer. */
299 /* FIXME, this loses when the REGISTER_VIRTUAL (REGNO) is true. Also,
300 why is the return type CORE_ADDR rather than some integer type? */
301
302 CORE_ADDR
303 read_register (regno)
304 int regno;
305 {
306 unsigned short sval;
307 unsigned long lval;
308
309 if (!register_valid[regno])
310 target_fetch_registers (regno);
311
312 switch (REGISTER_RAW_SIZE(regno))
313 {
314 case sizeof (unsigned char):
315 return registers[REGISTER_BYTE (regno)];
316 case sizeof (sval):
317 memcpy (&sval, &registers[REGISTER_BYTE (regno)], sizeof (sval));
318 SWAP_TARGET_AND_HOST (&sval, sizeof (sval));
319 return sval;
320 case sizeof (lval):
321 memcpy (&lval, &registers[REGISTER_BYTE (regno)], sizeof (lval));
322 SWAP_TARGET_AND_HOST (&lval, sizeof (lval));
323 return lval;
324 default:
325 error ("GDB Internal Error in read_register() for register %d, size %d",
326 regno, RAW_REGISTER_SIZE(regno));
327 }
328 }
329
330 /* Registers we shouldn't try to store. */
331 #if !defined (CANNOT_STORE_REGISTER)
332 #define CANNOT_STORE_REGISTER(regno) 0
333 #endif
334
335 /* Store VALUE in the register number REGNO, regarded as an integer. */
336 /* FIXME, this loses when REGISTER_VIRTUAL (REGNO) is true. Also,
337 shouldn't the val arg be a LONGEST or something? */
338
339 void
340 write_register (regno, val)
341 int regno, val;
342 {
343 unsigned short sval;
344 unsigned long lval;
345
346 /* On the sparc, writing %g0 is a no-op, so we don't even want to change
347 the registers array if something writes to this register. */
348 if (CANNOT_STORE_REGISTER (regno))
349 return;
350
351 target_prepare_to_store ();
352
353 register_valid [regno] = 1;
354
355 switch (REGISTER_RAW_SIZE(regno))
356 {
357 case sizeof (unsigned char):
358 registers[REGISTER_BYTE (regno)] = val;
359 break;
360 case sizeof (sval):
361 sval = val;
362 SWAP_TARGET_AND_HOST (&sval, sizeof (sval));
363 memcpy (&registers[REGISTER_BYTE (regno)], &sval, sizeof (sval));
364 break;
365 case sizeof (lval):
366 lval = val;
367 SWAP_TARGET_AND_HOST (&lval, sizeof (lval));
368 memcpy (&registers[REGISTER_BYTE (regno)], &lval, sizeof (lval));
369 break;
370 default:
371 error ("GDB Internal Error in write_register() for register %d, size %d",
372 regno, RAW_REGISTER_SIZE(regno));
373 }
374
375 target_store_registers (regno);
376 }
377
378 /* Record that register REGNO contains VAL.
379 This is used when the value is obtained from the inferior or core dump,
380 so there is no need to store the value there. */
381
382 void
383 supply_register (regno, val)
384 int regno;
385 char *val;
386 {
387 register_valid[regno] = 1;
388 memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
389
390 /* On some architectures, e.g. HPPA, there are a few stray bits in some
391 registers, that the rest of the code would like to ignore. */
392 #ifdef CLEAN_UP_REGISTER_VALUE
393 CLEAN_UP_REGISTER_VALUE(regno, &registers[REGISTER_BYTE(regno)]);
394 #endif
395 }
396 \f
397 /* Given a struct symbol for a variable,
398 and a stack frame id, read the value of the variable
399 and return a (pointer to a) struct value containing the value.
400 If the variable cannot be found, return a zero pointer.
401 If FRAME is NULL, use the selected_frame. */
402
403 value
404 read_var_value (var, frame)
405 register struct symbol *var;
406 FRAME frame;
407 {
408 register value v;
409 struct frame_info *fi;
410 struct type *type = SYMBOL_TYPE (var);
411 CORE_ADDR addr;
412 register int len;
413
414 v = allocate_value (type);
415 VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
416 len = TYPE_LENGTH (type);
417
418 if (frame == 0) frame = selected_frame;
419
420 switch (SYMBOL_CLASS (var))
421 {
422 case LOC_CONST:
423 memcpy (VALUE_CONTENTS_RAW (v), &SYMBOL_VALUE (var), len);
424 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
425 VALUE_LVAL (v) = not_lval;
426 return v;
427
428 case LOC_LABEL:
429 addr = SYMBOL_VALUE_ADDRESS (var);
430 memcpy (VALUE_CONTENTS_RAW (v), &addr, len);
431 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
432 VALUE_LVAL (v) = not_lval;
433 return v;
434
435 case LOC_CONST_BYTES:
436 {
437 char *bytes_addr;
438 bytes_addr = SYMBOL_VALUE_BYTES (var);
439 memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
440 VALUE_LVAL (v) = not_lval;
441 return v;
442 }
443
444 case LOC_STATIC:
445 addr = SYMBOL_VALUE_ADDRESS (var);
446 break;
447
448 case LOC_ARG:
449 if (SYMBOL_BASEREG_VALID (var))
450 {
451 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
452 }
453 else
454 {
455 fi = get_frame_info (frame);
456 if (fi == NULL)
457 return 0;
458 addr = FRAME_ARGS_ADDRESS (fi);
459 }
460 if (!addr)
461 {
462 return 0;
463 }
464 addr += SYMBOL_VALUE (var);
465 break;
466
467 case LOC_REF_ARG:
468 if (SYMBOL_BASEREG_VALID (var))
469 {
470 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
471 }
472 else
473 {
474 fi = get_frame_info (frame);
475 if (fi == NULL)
476 return 0;
477 addr = FRAME_ARGS_ADDRESS (fi);
478 }
479 if (!addr)
480 {
481 return 0;
482 }
483 addr += SYMBOL_VALUE (var);
484 read_memory (addr, (char *) &addr, sizeof (CORE_ADDR));
485 break;
486
487 case LOC_LOCAL:
488 case LOC_LOCAL_ARG:
489 if (SYMBOL_BASEREG_VALID (var))
490 {
491 addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
492 }
493 else
494 {
495 fi = get_frame_info (frame);
496 if (fi == NULL)
497 return 0;
498 addr = FRAME_LOCALS_ADDRESS (fi);
499 }
500 addr += SYMBOL_VALUE (var);
501 break;
502
503 case LOC_TYPEDEF:
504 error ("Cannot look up value of a typedef");
505 break;
506
507 case LOC_BLOCK:
508 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
509 return v;
510
511 case LOC_REGISTER:
512 case LOC_REGPARM:
513 case LOC_REGPARM_ADDR:
514 {
515 struct block *b;
516
517 if (frame == NULL)
518 return 0;
519 b = get_frame_block (frame);
520
521 v = value_from_register (type, SYMBOL_VALUE (var), frame);
522
523 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
524 {
525 addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
526 VALUE_LVAL (v) = lval_memory;
527 }
528 else
529 return v;
530 }
531 break;
532
533 case LOC_OPTIMIZED_OUT:
534 VALUE_LVAL (v) = not_lval;
535 VALUE_OPTIMIZED_OUT (v) = 1;
536 return v;
537
538 default:
539 error ("Cannot look up value of a botched symbol.");
540 break;
541 }
542
543 VALUE_ADDRESS (v) = addr;
544 VALUE_LAZY (v) = 1;
545 return v;
546 }
547
548 /* Return a value of type TYPE, stored in register REGNUM, in frame
549 FRAME. */
550
551 value
552 value_from_register (type, regnum, frame)
553 struct type *type;
554 int regnum;
555 FRAME frame;
556 {
557 char raw_buffer [MAX_REGISTER_RAW_SIZE];
558 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
559 CORE_ADDR addr;
560 int optim;
561 value v = allocate_value (type);
562 int len = TYPE_LENGTH (type);
563 char *value_bytes = 0;
564 int value_bytes_copied = 0;
565 int num_storage_locs;
566 enum lval_type lval;
567
568 VALUE_REGNO (v) = regnum;
569
570 num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
571 ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
572 1);
573
574 if (num_storage_locs > 1
575 #ifdef GDB_TARGET_IS_H8500
576 || TYPE_CODE (type) == TYPE_CODE_PTR
577 #endif
578 )
579 {
580 /* Value spread across multiple storage locations. */
581
582 int local_regnum;
583 int mem_stor = 0, reg_stor = 0;
584 int mem_tracking = 1;
585 CORE_ADDR last_addr = 0;
586 CORE_ADDR first_addr;
587
588 value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
589
590 /* Copy all of the data out, whereever it may be. */
591
592 #ifdef GDB_TARGET_IS_H8500
593 /* This piece of hideosity is required because the H8500 treats registers
594 differently depending upon whether they are used as pointers or not. As a
595 pointer, a register needs to have a page register tacked onto the front.
596 An alternate way to do this would be to have gcc output different register
597 numbers for the pointer & non-pointer form of the register. But, it
598 doesn't, so we're stuck with this. */
599
600 if (TYPE_CODE (type) == TYPE_CODE_PTR
601 && len > 2)
602 {
603 int page_regnum;
604
605 switch (regnum)
606 {
607 case R0_REGNUM: case R1_REGNUM: case R2_REGNUM: case R3_REGNUM:
608 page_regnum = SEG_D_REGNUM;
609 break;
610 case R4_REGNUM: case R5_REGNUM:
611 page_regnum = SEG_E_REGNUM;
612 break;
613 case R6_REGNUM: case R7_REGNUM:
614 page_regnum = SEG_T_REGNUM;
615 break;
616 }
617
618 value_bytes[0] = 0;
619 get_saved_register (value_bytes + 1,
620 &optim,
621 &addr,
622 frame,
623 page_regnum,
624 &lval);
625
626 if (lval == lval_register)
627 reg_stor++;
628 else
629 {
630 mem_stor++;
631 first_addr = addr;
632 }
633 last_addr = addr;
634
635 get_saved_register (value_bytes + 2,
636 &optim,
637 &addr,
638 frame,
639 regnum,
640 &lval);
641
642 if (lval == lval_register)
643 reg_stor++;
644 else
645 {
646 mem_stor++;
647 mem_tracking = mem_tracking && (addr == last_addr);
648 }
649 last_addr = addr;
650 }
651 else
652 #endif /* GDB_TARGET_IS_H8500 */
653 for (local_regnum = regnum;
654 value_bytes_copied < len;
655 (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
656 ++local_regnum))
657 {
658 get_saved_register (value_bytes + value_bytes_copied,
659 &optim,
660 &addr,
661 frame,
662 local_regnum,
663 &lval);
664 if (lval == lval_register)
665 reg_stor++;
666 else
667 {
668 mem_stor++;
669
670 if (regnum == local_regnum)
671 first_addr = addr;
672
673 mem_tracking =
674 (mem_tracking
675 && (regnum == local_regnum
676 || addr == last_addr));
677 }
678 last_addr = addr;
679 }
680
681 if ((reg_stor && mem_stor)
682 || (mem_stor && !mem_tracking))
683 /* Mixed storage; all of the hassle we just went through was
684 for some good purpose. */
685 {
686 VALUE_LVAL (v) = lval_reg_frame_relative;
687 VALUE_FRAME (v) = FRAME_FP (frame);
688 VALUE_FRAME_REGNUM (v) = regnum;
689 }
690 else if (mem_stor)
691 {
692 VALUE_LVAL (v) = lval_memory;
693 VALUE_ADDRESS (v) = first_addr;
694 }
695 else if (reg_stor)
696 {
697 VALUE_LVAL (v) = lval_register;
698 VALUE_ADDRESS (v) = first_addr;
699 }
700 else
701 fatal ("value_from_register: Value not stored anywhere!");
702
703 VALUE_OPTIMIZED_OUT (v) = optim;
704
705 /* Any structure stored in more than one register will always be
706 an integral number of registers. Otherwise, you'd need to do
707 some fiddling with the last register copied here for little
708 endian machines. */
709
710 /* Copy into the contents section of the value. */
711 memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
712
713 return v;
714 }
715
716 /* Data is completely contained within a single register. Locate the
717 register's contents in a real register or in core;
718 read the data in raw format. */
719
720 get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
721 VALUE_OPTIMIZED_OUT (v) = optim;
722 VALUE_LVAL (v) = lval;
723 VALUE_ADDRESS (v) = addr;
724
725 /* Convert the raw contents to virtual contents.
726 (Just copy them if the formats are the same.) */
727
728 REGISTER_CONVERT_TO_VIRTUAL (regnum, raw_buffer, virtual_buffer);
729
730 if (REGISTER_CONVERTIBLE (regnum))
731 {
732 /* When the raw and virtual formats differ, the virtual format
733 corresponds to a specific data type. If we want that type,
734 copy the data into the value.
735 Otherwise, do a type-conversion. */
736
737 if (type != REGISTER_VIRTUAL_TYPE (regnum))
738 {
739 /* eg a variable of type `float' in a 68881 register
740 with raw type `extended' and virtual type `double'.
741 Fetch it as a `double' and then convert to `float'. */
742 v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
743 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
744 v = value_cast (type, v);
745 }
746 else
747 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
748 }
749 else
750 {
751 /* Raw and virtual formats are the same for this register. */
752
753 #if TARGET_BYTE_ORDER == BIG_ENDIAN
754 if (len < REGISTER_RAW_SIZE (regnum))
755 {
756 /* Big-endian, and we want less than full size. */
757 VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
758 }
759 #endif
760
761 memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v), len);
762 }
763
764 return v;
765 }
766 \f
767 /* Given a struct symbol for a variable or function,
768 and a stack frame id,
769 return a (pointer to a) struct value containing the properly typed
770 address. */
771
772 value
773 locate_var_value (var, frame)
774 register struct symbol *var;
775 FRAME frame;
776 {
777 CORE_ADDR addr = 0;
778 struct type *type = SYMBOL_TYPE (var);
779 value lazy_value;
780
781 /* Evaluate it first; if the result is a memory address, we're fine.
782 Lazy evaluation pays off here. */
783
784 lazy_value = read_var_value (var, frame);
785 if (lazy_value == 0)
786 error ("Address of \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
787
788 if (VALUE_LAZY (lazy_value)
789 || TYPE_CODE (type) == TYPE_CODE_FUNC)
790 {
791 addr = VALUE_ADDRESS (lazy_value);
792 return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
793 }
794
795 /* Not a memory address; check what the problem was. */
796 switch (VALUE_LVAL (lazy_value))
797 {
798 case lval_register:
799 case lval_reg_frame_relative:
800 error ("Address requested for identifier \"%s\" which is in a register.",
801 SYMBOL_SOURCE_NAME (var));
802 break;
803
804 default:
805 error ("Can't take address of \"%s\" which isn't an lvalue.",
806 SYMBOL_SOURCE_NAME (var));
807 break;
808 }
809 return 0; /* For lint -- never reached */
810 }