]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/findvar.c
Fix internal error on DW_OP_bregx(-1)
[thirdparty/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "floatformat.h"
29 #include "symfile.h" /* for overlay functions */
30 #include "regcache.h"
31 #include "user-regs.h"
32 #include "block.h"
33 #include "objfiles.h"
34 #include "language.h"
35 #include "dwarf2loc.h"
36
37 /* Basic byte-swapping routines. All 'extract' functions return a
38 host-format integer from a target-format integer at ADDR which is
39 LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 LONGEST
50 extract_signed_integer (const gdb_byte *addr, int len,
51 enum bfd_endian byte_order)
52 {
53 LONGEST retval;
54 const unsigned char *p;
55 const unsigned char *startaddr = addr;
56 const unsigned char *endaddr = startaddr + len;
57
58 if (len > (int) sizeof (LONGEST))
59 error (_("\
60 That operation is not available on integers of more than %d bytes."),
61 (int) sizeof (LONGEST));
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 if (byte_order == BFD_ENDIAN_BIG)
66 {
67 p = startaddr;
68 /* Do the sign extension once at the start. */
69 retval = ((LONGEST) * p ^ 0x80) - 0x80;
70 for (++p; p < endaddr; ++p)
71 retval = (retval << 8) | *p;
72 }
73 else
74 {
75 p = endaddr - 1;
76 /* Do the sign extension once at the start. */
77 retval = ((LONGEST) * p ^ 0x80) - 0x80;
78 for (--p; p >= startaddr; --p)
79 retval = (retval << 8) | *p;
80 }
81 return retval;
82 }
83
84 ULONGEST
85 extract_unsigned_integer (const gdb_byte *addr, int len,
86 enum bfd_endian byte_order)
87 {
88 ULONGEST retval;
89 const unsigned char *p;
90 const unsigned char *startaddr = addr;
91 const unsigned char *endaddr = startaddr + len;
92
93 if (len > (int) sizeof (ULONGEST))
94 error (_("\
95 That operation is not available on integers of more than %d bytes."),
96 (int) sizeof (ULONGEST));
97
98 /* Start at the most significant end of the integer, and work towards
99 the least significant. */
100 retval = 0;
101 if (byte_order == BFD_ENDIAN_BIG)
102 {
103 for (p = startaddr; p < endaddr; ++p)
104 retval = (retval << 8) | *p;
105 }
106 else
107 {
108 for (p = endaddr - 1; p >= startaddr; --p)
109 retval = (retval << 8) | *p;
110 }
111 return retval;
112 }
113
114 /* Sometimes a long long unsigned integer can be extracted as a
115 LONGEST value. This is done so that we can print these values
116 better. If this integer can be converted to a LONGEST, this
117 function returns 1 and sets *PVAL. Otherwise it returns 0. */
118
119 int
120 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
121 enum bfd_endian byte_order, LONGEST *pval)
122 {
123 const gdb_byte *p;
124 const gdb_byte *first_addr;
125 int len;
126
127 len = orig_len;
128 if (byte_order == BFD_ENDIAN_BIG)
129 {
130 for (p = addr;
131 len > (int) sizeof (LONGEST) && p < addr + orig_len;
132 p++)
133 {
134 if (*p == 0)
135 len--;
136 else
137 break;
138 }
139 first_addr = p;
140 }
141 else
142 {
143 first_addr = addr;
144 for (p = addr + orig_len - 1;
145 len > (int) sizeof (LONGEST) && p >= addr;
146 p--)
147 {
148 if (*p == 0)
149 len--;
150 else
151 break;
152 }
153 }
154
155 if (len <= (int) sizeof (LONGEST))
156 {
157 *pval = (LONGEST) extract_unsigned_integer (first_addr,
158 sizeof (LONGEST),
159 byte_order);
160 return 1;
161 }
162
163 return 0;
164 }
165
166
167 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
168 address it represents. */
169 CORE_ADDR
170 extract_typed_address (const gdb_byte *buf, struct type *type)
171 {
172 if (TYPE_CODE (type) != TYPE_CODE_PTR
173 && TYPE_CODE (type) != TYPE_CODE_REF)
174 internal_error (__FILE__, __LINE__,
175 _("extract_typed_address: "
176 "type is not a pointer or reference"));
177
178 return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
179 }
180
181 /* All 'store' functions accept a host-format integer and store a
182 target-format integer at ADDR which is LEN bytes long. */
183
184 void
185 store_signed_integer (gdb_byte *addr, int len,
186 enum bfd_endian byte_order, LONGEST val)
187 {
188 gdb_byte *p;
189 gdb_byte *startaddr = addr;
190 gdb_byte *endaddr = startaddr + len;
191
192 /* Start at the least significant end of the integer, and work towards
193 the most significant. */
194 if (byte_order == BFD_ENDIAN_BIG)
195 {
196 for (p = endaddr - 1; p >= startaddr; --p)
197 {
198 *p = val & 0xff;
199 val >>= 8;
200 }
201 }
202 else
203 {
204 for (p = startaddr; p < endaddr; ++p)
205 {
206 *p = val & 0xff;
207 val >>= 8;
208 }
209 }
210 }
211
212 void
213 store_unsigned_integer (gdb_byte *addr, int len,
214 enum bfd_endian byte_order, ULONGEST val)
215 {
216 unsigned char *p;
217 unsigned char *startaddr = (unsigned char *) addr;
218 unsigned char *endaddr = startaddr + len;
219
220 /* Start at the least significant end of the integer, and work towards
221 the most significant. */
222 if (byte_order == BFD_ENDIAN_BIG)
223 {
224 for (p = endaddr - 1; p >= startaddr; --p)
225 {
226 *p = val & 0xff;
227 val >>= 8;
228 }
229 }
230 else
231 {
232 for (p = startaddr; p < endaddr; ++p)
233 {
234 *p = val & 0xff;
235 val >>= 8;
236 }
237 }
238 }
239
240 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
241 form. */
242 void
243 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
244 {
245 if (TYPE_CODE (type) != TYPE_CODE_PTR
246 && TYPE_CODE (type) != TYPE_CODE_REF)
247 internal_error (__FILE__, __LINE__,
248 _("store_typed_address: "
249 "type is not a pointer or reference"));
250
251 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
252 }
253
254
255
256 /* Return a `value' with the contents of (virtual or cooked) register
257 REGNUM as found in the specified FRAME. The register's type is
258 determined by register_type(). */
259
260 struct value *
261 value_of_register (int regnum, struct frame_info *frame)
262 {
263 struct gdbarch *gdbarch = get_frame_arch (frame);
264 struct value *reg_val;
265
266 /* User registers lie completely outside of the range of normal
267 registers. Catch them early so that the target never sees them. */
268 if (regnum >= gdbarch_num_regs (gdbarch)
269 + gdbarch_num_pseudo_regs (gdbarch))
270 return value_of_user_reg (regnum, frame);
271
272 reg_val = value_of_register_lazy (frame, regnum);
273 value_fetch_lazy (reg_val);
274 return reg_val;
275 }
276
277 /* Return a `value' with the contents of (virtual or cooked) register
278 REGNUM as found in the specified FRAME. The register's type is
279 determined by register_type(). The value is not fetched. */
280
281 struct value *
282 value_of_register_lazy (struct frame_info *frame, int regnum)
283 {
284 struct gdbarch *gdbarch = get_frame_arch (frame);
285 struct value *reg_val;
286
287 gdb_assert (regnum < (gdbarch_num_regs (gdbarch)
288 + gdbarch_num_pseudo_regs (gdbarch)));
289
290 /* We should have a valid (i.e. non-sentinel) frame. */
291 gdb_assert (frame_id_p (get_frame_id (frame)));
292
293 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
294 VALUE_LVAL (reg_val) = lval_register;
295 VALUE_REGNUM (reg_val) = regnum;
296 VALUE_FRAME_ID (reg_val) = get_frame_id (frame);
297 return reg_val;
298 }
299
300 /* Given a pointer of type TYPE in target form in BUF, return the
301 address it represents. */
302 CORE_ADDR
303 unsigned_pointer_to_address (struct gdbarch *gdbarch,
304 struct type *type, const gdb_byte *buf)
305 {
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
307
308 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
309 }
310
311 CORE_ADDR
312 signed_pointer_to_address (struct gdbarch *gdbarch,
313 struct type *type, const gdb_byte *buf)
314 {
315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
316
317 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
318 }
319
320 /* Given an address, store it as a pointer of type TYPE in target
321 format in BUF. */
322 void
323 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
324 gdb_byte *buf, CORE_ADDR addr)
325 {
326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
327
328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
329 }
330
331 void
332 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
333 gdb_byte *buf, CORE_ADDR addr)
334 {
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336
337 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
338 }
339 \f
340 /* Will calling read_var_value or locate_var_value on SYM end
341 up caring what frame it is being evaluated relative to? SYM must
342 be non-NULL. */
343 int
344 symbol_read_needs_frame (struct symbol *sym)
345 {
346 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
347 return SYMBOL_COMPUTED_OPS (sym)->read_needs_frame (sym);
348
349 switch (SYMBOL_CLASS (sym))
350 {
351 /* All cases listed explicitly so that gcc -Wall will detect it if
352 we failed to consider one. */
353 case LOC_COMPUTED:
354 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
355
356 case LOC_REGISTER:
357 case LOC_ARG:
358 case LOC_REF_ARG:
359 case LOC_REGPARM_ADDR:
360 case LOC_LOCAL:
361 return 1;
362
363 case LOC_UNDEF:
364 case LOC_CONST:
365 case LOC_STATIC:
366 case LOC_TYPEDEF:
367
368 case LOC_LABEL:
369 /* Getting the address of a label can be done independently of the block,
370 even if some *uses* of that address wouldn't work so well without
371 the right frame. */
372
373 case LOC_BLOCK:
374 case LOC_CONST_BYTES:
375 case LOC_UNRESOLVED:
376 case LOC_OPTIMIZED_OUT:
377 return 0;
378 }
379 return 1;
380 }
381
382 /* Private data to be used with minsym_lookup_iterator_cb. */
383
384 struct minsym_lookup_data
385 {
386 /* The name of the minimal symbol we are searching for. */
387 const char *name;
388
389 /* The field where the callback should store the minimal symbol
390 if found. It should be initialized to NULL before the search
391 is started. */
392 struct bound_minimal_symbol result;
393 };
394
395 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
396 It searches by name for a minimal symbol within the given OBJFILE.
397 The arguments are passed via CB_DATA, which in reality is a pointer
398 to struct minsym_lookup_data. */
399
400 static int
401 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
402 {
403 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
404
405 gdb_assert (data->result.minsym == NULL);
406
407 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
408
409 /* The iterator should stop iff a match was found. */
410 return (data->result.minsym != NULL);
411 }
412
413 /* Given static link expression and the frame it lives in, look for the frame
414 the static links points to and return it. Return NULL if we could not find
415 such a frame. */
416
417 static struct frame_info *
418 follow_static_link (struct frame_info *frame,
419 const struct dynamic_prop *static_link)
420 {
421 CORE_ADDR upper_frame_base;
422
423 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
424 return NULL;
425
426 /* Now climb up the stack frame until we reach the frame we are interested
427 in. */
428 for (; frame != NULL; frame = get_prev_frame (frame))
429 {
430 struct symbol *framefunc = get_frame_function (frame);
431
432 /* Stacks can be quite deep: give the user a chance to stop this. */
433 QUIT;
434
435 /* If we don't know how to compute FRAME's base address, don't give up:
436 maybe the frame we are looking for is upper in the stace frame. */
437 if (framefunc != NULL
438 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
439 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
440 == upper_frame_base))
441 break;
442 }
443
444 return frame;
445 }
446
447 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
448 rules, look for the frame that is actually hosting VAR and return it. If,
449 for some reason, we found no such frame, return NULL.
450
451 This kind of computation is necessary to correctly handle lexically nested
452 functions.
453
454 Note that in some cases, we know what scope VAR comes from but we cannot
455 reach the specific frame that hosts the instance of VAR we are looking for.
456 For backward compatibility purposes (with old compilers), we then look for
457 the first frame that can host it. */
458
459 static struct frame_info *
460 get_hosting_frame (struct symbol *var, const struct block *var_block,
461 struct frame_info *frame)
462 {
463 const struct block *frame_block = NULL;
464
465 if (!symbol_read_needs_frame (var))
466 return NULL;
467
468 /* Some symbols for local variables have no block: this happens when they are
469 not produced by a debug information reader, for instance when GDB creates
470 synthetic symbols. Without block information, we must assume they are
471 local to FRAME. In this case, there is nothing to do. */
472 else if (var_block == NULL)
473 return frame;
474
475 /* We currently assume that all symbols with a location list need a frame.
476 This is true in practice because selecting the location description
477 requires to compute the CFA, hence requires a frame. However we have
478 tests that embed global/static symbols with null location lists.
479 We want to get <optimized out> instead of <frame required> when evaluating
480 them so return a frame instead of raising an error. */
481 else if (var_block == block_global_block (var_block)
482 || var_block == block_static_block (var_block))
483 return frame;
484
485 /* We have to handle the "my_func::my_local_var" notation. This requires us
486 to look for upper frames when we find no block for the current frame: here
487 and below, handle when frame_block == NULL. */
488 if (frame != NULL)
489 frame_block = get_frame_block (frame, NULL);
490
491 /* Climb up the call stack until reaching the frame we are looking for. */
492 while (frame != NULL && frame_block != var_block)
493 {
494 /* Stacks can be quite deep: give the user a chance to stop this. */
495 QUIT;
496
497 if (frame_block == NULL)
498 {
499 frame = get_prev_frame (frame);
500 if (frame == NULL)
501 break;
502 frame_block = get_frame_block (frame, NULL);
503 }
504
505 /* If we failed to find the proper frame, fallback to the heuristic
506 method below. */
507 else if (frame_block == block_global_block (frame_block))
508 {
509 frame = NULL;
510 break;
511 }
512
513 /* Assuming we have a block for this frame: if we are at the function
514 level, the immediate upper lexical block is in an outer function:
515 follow the static link. */
516 else if (BLOCK_FUNCTION (frame_block))
517 {
518 const struct dynamic_prop *static_link
519 = block_static_link (frame_block);
520 int could_climb_up = 0;
521
522 if (static_link != NULL)
523 {
524 frame = follow_static_link (frame, static_link);
525 if (frame != NULL)
526 {
527 frame_block = get_frame_block (frame, NULL);
528 could_climb_up = frame_block != NULL;
529 }
530 }
531 if (!could_climb_up)
532 {
533 frame = NULL;
534 break;
535 }
536 }
537
538 else
539 /* We must be in some function nested lexical block. Just get the
540 outer block: both must share the same frame. */
541 frame_block = BLOCK_SUPERBLOCK (frame_block);
542 }
543
544 /* Old compilers may not provide a static link, or they may provide an
545 invalid one. For such cases, fallback on the old way to evaluate
546 non-local references: just climb up the call stack and pick the first
547 frame that contains the variable we are looking for. */
548 if (frame == NULL)
549 {
550 frame = block_innermost_frame (var_block);
551 if (frame == NULL)
552 {
553 if (BLOCK_FUNCTION (var_block)
554 && !block_inlined_p (var_block)
555 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)))
556 error (_("No frame is currently executing in block %s."),
557 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)));
558 else
559 error (_("No frame is currently executing in specified"
560 " block"));
561 }
562 }
563
564 return frame;
565 }
566
567 /* A default implementation for the "la_read_var_value" hook in
568 the language vector which should work in most situations. */
569
570 struct value *
571 default_read_var_value (struct symbol *var, const struct block *var_block,
572 struct frame_info *frame)
573 {
574 struct value *v;
575 struct type *type = SYMBOL_TYPE (var);
576 CORE_ADDR addr;
577
578 /* Call check_typedef on our type to make sure that, if TYPE is
579 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
580 instead of zero. However, we do not replace the typedef type by the
581 target type, because we want to keep the typedef in order to be able to
582 set the returned value type description correctly. */
583 check_typedef (type);
584
585 if (symbol_read_needs_frame (var))
586 gdb_assert (frame != NULL);
587
588 if (frame != NULL)
589 frame = get_hosting_frame (var, var_block, frame);
590
591 if (SYMBOL_COMPUTED_OPS (var) != NULL)
592 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
593
594 switch (SYMBOL_CLASS (var))
595 {
596 case LOC_CONST:
597 if (is_dynamic_type (type))
598 {
599 /* Value is a constant byte-sequence and needs no memory access. */
600 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
601 }
602 /* Put the constant back in target format. */
603 v = allocate_value (type);
604 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
605 gdbarch_byte_order (get_type_arch (type)),
606 (LONGEST) SYMBOL_VALUE (var));
607 VALUE_LVAL (v) = not_lval;
608 return v;
609
610 case LOC_LABEL:
611 /* Put the constant back in target format. */
612 v = allocate_value (type);
613 if (overlay_debugging)
614 {
615 CORE_ADDR addr
616 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
617 SYMBOL_OBJ_SECTION (symbol_objfile (var),
618 var));
619
620 store_typed_address (value_contents_raw (v), type, addr);
621 }
622 else
623 store_typed_address (value_contents_raw (v), type,
624 SYMBOL_VALUE_ADDRESS (var));
625 VALUE_LVAL (v) = not_lval;
626 return v;
627
628 case LOC_CONST_BYTES:
629 if (is_dynamic_type (type))
630 {
631 /* Value is a constant byte-sequence and needs no memory access. */
632 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
633 }
634 v = allocate_value (type);
635 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
636 TYPE_LENGTH (type));
637 VALUE_LVAL (v) = not_lval;
638 return v;
639
640 case LOC_STATIC:
641 if (overlay_debugging)
642 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
643 SYMBOL_OBJ_SECTION (symbol_objfile (var),
644 var));
645 else
646 addr = SYMBOL_VALUE_ADDRESS (var);
647 break;
648
649 case LOC_ARG:
650 addr = get_frame_args_address (frame);
651 if (!addr)
652 error (_("Unknown argument list address for `%s'."),
653 SYMBOL_PRINT_NAME (var));
654 addr += SYMBOL_VALUE (var);
655 break;
656
657 case LOC_REF_ARG:
658 {
659 struct value *ref;
660 CORE_ADDR argref;
661
662 argref = get_frame_args_address (frame);
663 if (!argref)
664 error (_("Unknown argument list address for `%s'."),
665 SYMBOL_PRINT_NAME (var));
666 argref += SYMBOL_VALUE (var);
667 ref = value_at (lookup_pointer_type (type), argref);
668 addr = value_as_address (ref);
669 break;
670 }
671
672 case LOC_LOCAL:
673 addr = get_frame_locals_address (frame);
674 addr += SYMBOL_VALUE (var);
675 break;
676
677 case LOC_TYPEDEF:
678 error (_("Cannot look up value of a typedef `%s'."),
679 SYMBOL_PRINT_NAME (var));
680 break;
681
682 case LOC_BLOCK:
683 if (overlay_debugging)
684 addr = symbol_overlayed_address
685 (BLOCK_START (SYMBOL_BLOCK_VALUE (var)),
686 SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
687 else
688 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
689 break;
690
691 case LOC_REGISTER:
692 case LOC_REGPARM_ADDR:
693 {
694 int regno = SYMBOL_REGISTER_OPS (var)
695 ->register_number (var, get_frame_arch (frame));
696 struct value *regval;
697
698 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
699 {
700 regval = value_from_register (lookup_pointer_type (type),
701 regno,
702 frame);
703
704 if (regval == NULL)
705 error (_("Value of register variable not available for `%s'."),
706 SYMBOL_PRINT_NAME (var));
707
708 addr = value_as_address (regval);
709 }
710 else
711 {
712 regval = value_from_register (type, regno, frame);
713
714 if (regval == NULL)
715 error (_("Value of register variable not available for `%s'."),
716 SYMBOL_PRINT_NAME (var));
717 return regval;
718 }
719 }
720 break;
721
722 case LOC_COMPUTED:
723 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
724
725 case LOC_UNRESOLVED:
726 {
727 struct minsym_lookup_data lookup_data;
728 struct minimal_symbol *msym;
729 struct obj_section *obj_section;
730
731 memset (&lookup_data, 0, sizeof (lookup_data));
732 lookup_data.name = SYMBOL_LINKAGE_NAME (var);
733
734 gdbarch_iterate_over_objfiles_in_search_order
735 (symbol_arch (var),
736 minsym_lookup_iterator_cb, &lookup_data,
737 symbol_objfile (var));
738 msym = lookup_data.result.minsym;
739
740 /* If we can't find the minsym there's a problem in the symbol info.
741 The symbol exists in the debug info, but it's missing in the minsym
742 table. */
743 if (msym == NULL)
744 {
745 const char *flavour_name
746 = objfile_flavour_name (symbol_objfile (var));
747
748 /* We can't get here unless we've opened the file, so flavour_name
749 can't be NULL. */
750 gdb_assert (flavour_name != NULL);
751 error (_("Missing %s symbol \"%s\"."),
752 flavour_name, SYMBOL_LINKAGE_NAME (var));
753 }
754 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
755 /* Relocate address, unless there is no section or the variable is
756 a TLS variable. */
757 if (obj_section == NULL
758 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
759 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
760 else
761 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
762 if (overlay_debugging)
763 addr = symbol_overlayed_address (addr, obj_section);
764 /* Determine address of TLS variable. */
765 if (obj_section
766 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
767 addr = target_translate_tls_address (obj_section->objfile, addr);
768 }
769 break;
770
771 case LOC_OPTIMIZED_OUT:
772 return allocate_optimized_out_value (type);
773
774 default:
775 error (_("Cannot look up value of a botched symbol `%s'."),
776 SYMBOL_PRINT_NAME (var));
777 break;
778 }
779
780 v = value_at_lazy (type, addr);
781 return v;
782 }
783
784 /* Calls VAR's language la_read_var_value hook with the given arguments. */
785
786 struct value *
787 read_var_value (struct symbol *var, const struct block *var_block,
788 struct frame_info *frame)
789 {
790 const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));
791
792 gdb_assert (lang != NULL);
793 gdb_assert (lang->la_read_var_value != NULL);
794
795 return lang->la_read_var_value (var, var_block, frame);
796 }
797
798 /* Install default attributes for register values. */
799
800 struct value *
801 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
802 int regnum, struct frame_id frame_id)
803 {
804 int len = TYPE_LENGTH (type);
805 struct value *value = allocate_value (type);
806
807 VALUE_LVAL (value) = lval_register;
808 VALUE_FRAME_ID (value) = frame_id;
809 VALUE_REGNUM (value) = regnum;
810
811 /* Any structure stored in more than one register will always be
812 an integral number of registers. Otherwise, you need to do
813 some fiddling with the last register copied here for little
814 endian machines. */
815 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
816 && len < register_size (gdbarch, regnum))
817 /* Big-endian, and we want less than full size. */
818 set_value_offset (value, register_size (gdbarch, regnum) - len);
819 else
820 set_value_offset (value, 0);
821
822 return value;
823 }
824
825 /* VALUE must be an lval_register value. If regnum is the value's
826 associated register number, and len the length of the values type,
827 read one or more registers in FRAME, starting with register REGNUM,
828 until we've read LEN bytes.
829
830 If any of the registers we try to read are optimized out, then mark the
831 complete resulting value as optimized out. */
832
833 void
834 read_frame_register_value (struct value *value, struct frame_info *frame)
835 {
836 struct gdbarch *gdbarch = get_frame_arch (frame);
837 int offset = 0;
838 int reg_offset = value_offset (value);
839 int regnum = VALUE_REGNUM (value);
840 int len = type_length_units (check_typedef (value_type (value)));
841
842 gdb_assert (VALUE_LVAL (value) == lval_register);
843
844 /* Skip registers wholly inside of REG_OFFSET. */
845 while (reg_offset >= register_size (gdbarch, regnum))
846 {
847 reg_offset -= register_size (gdbarch, regnum);
848 regnum++;
849 }
850
851 /* Copy the data. */
852 while (len > 0)
853 {
854 struct value *regval = get_frame_register_value (frame, regnum);
855 int reg_len = type_length_units (value_type (regval)) - reg_offset;
856
857 /* If the register length is larger than the number of bytes
858 remaining to copy, then only copy the appropriate bytes. */
859 if (reg_len > len)
860 reg_len = len;
861
862 value_contents_copy (value, offset, regval, reg_offset, reg_len);
863
864 offset += reg_len;
865 len -= reg_len;
866 reg_offset = 0;
867 regnum++;
868 }
869 }
870
871 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
872
873 struct value *
874 value_from_register (struct type *type, int regnum, struct frame_info *frame)
875 {
876 struct gdbarch *gdbarch = get_frame_arch (frame);
877 struct type *type1 = check_typedef (type);
878 struct value *v;
879
880 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
881 {
882 int optim, unavail, ok;
883
884 /* The ISA/ABI need to something weird when obtaining the
885 specified value from this register. It might need to
886 re-order non-adjacent, starting with REGNUM (see MIPS and
887 i386). It might need to convert the [float] register into
888 the corresponding [integer] type (see Alpha). The assumption
889 is that gdbarch_register_to_value populates the entire value
890 including the location. */
891 v = allocate_value (type);
892 VALUE_LVAL (v) = lval_register;
893 VALUE_FRAME_ID (v) = get_frame_id (frame);
894 VALUE_REGNUM (v) = regnum;
895 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
896 value_contents_raw (v), &optim,
897 &unavail);
898
899 if (!ok)
900 {
901 if (optim)
902 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
903 if (unavail)
904 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
905 }
906 }
907 else
908 {
909 /* Construct the value. */
910 v = gdbarch_value_from_register (gdbarch, type,
911 regnum, get_frame_id (frame));
912
913 /* Get the data. */
914 read_frame_register_value (v, frame);
915 }
916
917 return v;
918 }
919
920 /* Return contents of register REGNUM in frame FRAME as address.
921 Will abort if register value is not available. */
922
923 CORE_ADDR
924 address_from_register (int regnum, struct frame_info *frame)
925 {
926 struct gdbarch *gdbarch = get_frame_arch (frame);
927 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
928 struct value *value;
929 CORE_ADDR result;
930 int regnum_max_excl = (gdbarch_num_regs (gdbarch)
931 + gdbarch_num_pseudo_regs (gdbarch));
932
933 if (regnum < 0 || regnum >= regnum_max_excl)
934 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
935 regnum_max_excl);
936
937 /* This routine may be called during early unwinding, at a time
938 where the ID of FRAME is not yet known. Calling value_from_register
939 would therefore abort in get_frame_id. However, since we only need
940 a temporary value that is never used as lvalue, we actually do not
941 really need to set its VALUE_FRAME_ID. Therefore, we re-implement
942 the core of value_from_register, but use the null_frame_id. */
943
944 /* Some targets require a special conversion routine even for plain
945 pointer types. Avoid constructing a value object in those cases. */
946 if (gdbarch_convert_register_p (gdbarch, regnum, type))
947 {
948 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
949 int optim, unavail, ok;
950
951 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
952 buf, &optim, &unavail);
953 if (!ok)
954 {
955 /* This function is used while computing a location expression.
956 Complain about the value being optimized out, rather than
957 letting value_as_address complain about some random register
958 the expression depends on not being saved. */
959 error_value_optimized_out ();
960 }
961
962 return unpack_long (type, buf);
963 }
964
965 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
966 read_frame_register_value (value, frame);
967
968 if (value_optimized_out (value))
969 {
970 /* This function is used while computing a location expression.
971 Complain about the value being optimized out, rather than
972 letting value_as_address complain about some random register
973 the expression depends on not being saved. */
974 error_value_optimized_out ();
975 }
976
977 result = value_as_address (value);
978 release_value (value);
979 value_free (value);
980
981 return result;
982 }
983