]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/findvar.c
update copyright year range in GDB files
[thirdparty/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "inferior.h"
27 #include "target.h"
28 #include "floatformat.h"
29 #include "symfile.h" /* for overlay functions */
30 #include "regcache.h"
31 #include "user-regs.h"
32 #include "block.h"
33 #include "objfiles.h"
34 #include "language.h"
35 #include "dwarf2loc.h"
36
37 /* Basic byte-swapping routines. All 'extract' functions return a
38 host-format integer from a target-format integer at ADDR which is
39 LEN bytes long. */
40
41 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
42 /* 8 bit characters are a pretty safe assumption these days, so we
43 assume it throughout all these swapping routines. If we had to deal with
44 9 bit characters, we would need to make len be in bits and would have
45 to re-write these routines... */
46 you lose
47 #endif
48
49 LONGEST
50 extract_signed_integer (const gdb_byte *addr, int len,
51 enum bfd_endian byte_order)
52 {
53 LONGEST retval;
54 const unsigned char *p;
55 const unsigned char *startaddr = addr;
56 const unsigned char *endaddr = startaddr + len;
57
58 if (len > (int) sizeof (LONGEST))
59 error (_("\
60 That operation is not available on integers of more than %d bytes."),
61 (int) sizeof (LONGEST));
62
63 /* Start at the most significant end of the integer, and work towards
64 the least significant. */
65 if (byte_order == BFD_ENDIAN_BIG)
66 {
67 p = startaddr;
68 /* Do the sign extension once at the start. */
69 retval = ((LONGEST) * p ^ 0x80) - 0x80;
70 for (++p; p < endaddr; ++p)
71 retval = (retval << 8) | *p;
72 }
73 else
74 {
75 p = endaddr - 1;
76 /* Do the sign extension once at the start. */
77 retval = ((LONGEST) * p ^ 0x80) - 0x80;
78 for (--p; p >= startaddr; --p)
79 retval = (retval << 8) | *p;
80 }
81 return retval;
82 }
83
84 ULONGEST
85 extract_unsigned_integer (const gdb_byte *addr, int len,
86 enum bfd_endian byte_order)
87 {
88 ULONGEST retval;
89 const unsigned char *p;
90 const unsigned char *startaddr = addr;
91 const unsigned char *endaddr = startaddr + len;
92
93 if (len > (int) sizeof (ULONGEST))
94 error (_("\
95 That operation is not available on integers of more than %d bytes."),
96 (int) sizeof (ULONGEST));
97
98 /* Start at the most significant end of the integer, and work towards
99 the least significant. */
100 retval = 0;
101 if (byte_order == BFD_ENDIAN_BIG)
102 {
103 for (p = startaddr; p < endaddr; ++p)
104 retval = (retval << 8) | *p;
105 }
106 else
107 {
108 for (p = endaddr - 1; p >= startaddr; --p)
109 retval = (retval << 8) | *p;
110 }
111 return retval;
112 }
113
114 /* Sometimes a long long unsigned integer can be extracted as a
115 LONGEST value. This is done so that we can print these values
116 better. If this integer can be converted to a LONGEST, this
117 function returns 1 and sets *PVAL. Otherwise it returns 0. */
118
119 int
120 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
121 enum bfd_endian byte_order, LONGEST *pval)
122 {
123 const gdb_byte *p;
124 const gdb_byte *first_addr;
125 int len;
126
127 len = orig_len;
128 if (byte_order == BFD_ENDIAN_BIG)
129 {
130 for (p = addr;
131 len > (int) sizeof (LONGEST) && p < addr + orig_len;
132 p++)
133 {
134 if (*p == 0)
135 len--;
136 else
137 break;
138 }
139 first_addr = p;
140 }
141 else
142 {
143 first_addr = addr;
144 for (p = addr + orig_len - 1;
145 len > (int) sizeof (LONGEST) && p >= addr;
146 p--)
147 {
148 if (*p == 0)
149 len--;
150 else
151 break;
152 }
153 }
154
155 if (len <= (int) sizeof (LONGEST))
156 {
157 *pval = (LONGEST) extract_unsigned_integer (first_addr,
158 sizeof (LONGEST),
159 byte_order);
160 return 1;
161 }
162
163 return 0;
164 }
165
166
167 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
168 address it represents. */
169 CORE_ADDR
170 extract_typed_address (const gdb_byte *buf, struct type *type)
171 {
172 if (TYPE_CODE (type) != TYPE_CODE_PTR
173 && TYPE_CODE (type) != TYPE_CODE_REF)
174 internal_error (__FILE__, __LINE__,
175 _("extract_typed_address: "
176 "type is not a pointer or reference"));
177
178 return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
179 }
180
181 /* All 'store' functions accept a host-format integer and store a
182 target-format integer at ADDR which is LEN bytes long. */
183
184 void
185 store_signed_integer (gdb_byte *addr, int len,
186 enum bfd_endian byte_order, LONGEST val)
187 {
188 gdb_byte *p;
189 gdb_byte *startaddr = addr;
190 gdb_byte *endaddr = startaddr + len;
191
192 /* Start at the least significant end of the integer, and work towards
193 the most significant. */
194 if (byte_order == BFD_ENDIAN_BIG)
195 {
196 for (p = endaddr - 1; p >= startaddr; --p)
197 {
198 *p = val & 0xff;
199 val >>= 8;
200 }
201 }
202 else
203 {
204 for (p = startaddr; p < endaddr; ++p)
205 {
206 *p = val & 0xff;
207 val >>= 8;
208 }
209 }
210 }
211
212 void
213 store_unsigned_integer (gdb_byte *addr, int len,
214 enum bfd_endian byte_order, ULONGEST val)
215 {
216 unsigned char *p;
217 unsigned char *startaddr = (unsigned char *) addr;
218 unsigned char *endaddr = startaddr + len;
219
220 /* Start at the least significant end of the integer, and work towards
221 the most significant. */
222 if (byte_order == BFD_ENDIAN_BIG)
223 {
224 for (p = endaddr - 1; p >= startaddr; --p)
225 {
226 *p = val & 0xff;
227 val >>= 8;
228 }
229 }
230 else
231 {
232 for (p = startaddr; p < endaddr; ++p)
233 {
234 *p = val & 0xff;
235 val >>= 8;
236 }
237 }
238 }
239
240 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
241 form. */
242 void
243 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
244 {
245 if (TYPE_CODE (type) != TYPE_CODE_PTR
246 && TYPE_CODE (type) != TYPE_CODE_REF)
247 internal_error (__FILE__, __LINE__,
248 _("store_typed_address: "
249 "type is not a pointer or reference"));
250
251 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
252 }
253
254
255
256 /* Return a `value' with the contents of (virtual or cooked) register
257 REGNUM as found in the specified FRAME. The register's type is
258 determined by register_type(). */
259
260 struct value *
261 value_of_register (int regnum, struct frame_info *frame)
262 {
263 struct gdbarch *gdbarch = get_frame_arch (frame);
264 struct value *reg_val;
265
266 /* User registers lie completely outside of the range of normal
267 registers. Catch them early so that the target never sees them. */
268 if (regnum >= gdbarch_num_regs (gdbarch)
269 + gdbarch_num_pseudo_regs (gdbarch))
270 return value_of_user_reg (regnum, frame);
271
272 reg_val = value_of_register_lazy (frame, regnum);
273 value_fetch_lazy (reg_val);
274 return reg_val;
275 }
276
277 /* Return a `value' with the contents of (virtual or cooked) register
278 REGNUM as found in the specified FRAME. The register's type is
279 determined by register_type(). The value is not fetched. */
280
281 struct value *
282 value_of_register_lazy (struct frame_info *frame, int regnum)
283 {
284 struct gdbarch *gdbarch = get_frame_arch (frame);
285 struct value *reg_val;
286 struct frame_info *next_frame;
287
288 gdb_assert (regnum < (gdbarch_num_regs (gdbarch)
289 + gdbarch_num_pseudo_regs (gdbarch)));
290
291 gdb_assert (frame != NULL);
292
293 next_frame = get_next_frame_sentinel_okay (frame);
294
295 /* We should have a valid next frame. */
296 gdb_assert (frame_id_p (get_frame_id (next_frame)));
297
298 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
299 VALUE_LVAL (reg_val) = lval_register;
300 VALUE_REGNUM (reg_val) = regnum;
301 VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);
302
303 return reg_val;
304 }
305
306 /* Given a pointer of type TYPE in target form in BUF, return the
307 address it represents. */
308 CORE_ADDR
309 unsigned_pointer_to_address (struct gdbarch *gdbarch,
310 struct type *type, const gdb_byte *buf)
311 {
312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
313
314 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
315 }
316
317 CORE_ADDR
318 signed_pointer_to_address (struct gdbarch *gdbarch,
319 struct type *type, const gdb_byte *buf)
320 {
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322
323 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
324 }
325
326 /* Given an address, store it as a pointer of type TYPE in target
327 format in BUF. */
328 void
329 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
330 gdb_byte *buf, CORE_ADDR addr)
331 {
332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
333
334 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
335 }
336
337 void
338 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
339 gdb_byte *buf, CORE_ADDR addr)
340 {
341 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
342
343 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
344 }
345 \f
346 /* See value.h. */
347
348 enum symbol_needs_kind
349 symbol_read_needs (struct symbol *sym)
350 {
351 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
352 return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);
353
354 switch (SYMBOL_CLASS (sym))
355 {
356 /* All cases listed explicitly so that gcc -Wall will detect it if
357 we failed to consider one. */
358 case LOC_COMPUTED:
359 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
360
361 case LOC_REGISTER:
362 case LOC_ARG:
363 case LOC_REF_ARG:
364 case LOC_REGPARM_ADDR:
365 case LOC_LOCAL:
366 return SYMBOL_NEEDS_FRAME;
367
368 case LOC_UNDEF:
369 case LOC_CONST:
370 case LOC_STATIC:
371 case LOC_TYPEDEF:
372
373 case LOC_LABEL:
374 /* Getting the address of a label can be done independently of the block,
375 even if some *uses* of that address wouldn't work so well without
376 the right frame. */
377
378 case LOC_BLOCK:
379 case LOC_CONST_BYTES:
380 case LOC_UNRESOLVED:
381 case LOC_OPTIMIZED_OUT:
382 return SYMBOL_NEEDS_NONE;
383 }
384 return SYMBOL_NEEDS_FRAME;
385 }
386
387 /* See value.h. */
388
389 int
390 symbol_read_needs_frame (struct symbol *sym)
391 {
392 return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
393 }
394
395 /* Private data to be used with minsym_lookup_iterator_cb. */
396
397 struct minsym_lookup_data
398 {
399 /* The name of the minimal symbol we are searching for. */
400 const char *name;
401
402 /* The field where the callback should store the minimal symbol
403 if found. It should be initialized to NULL before the search
404 is started. */
405 struct bound_minimal_symbol result;
406 };
407
408 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
409 It searches by name for a minimal symbol within the given OBJFILE.
410 The arguments are passed via CB_DATA, which in reality is a pointer
411 to struct minsym_lookup_data. */
412
413 static int
414 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
415 {
416 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
417
418 gdb_assert (data->result.minsym == NULL);
419
420 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
421
422 /* The iterator should stop iff a match was found. */
423 return (data->result.minsym != NULL);
424 }
425
426 /* Given static link expression and the frame it lives in, look for the frame
427 the static links points to and return it. Return NULL if we could not find
428 such a frame. */
429
430 static struct frame_info *
431 follow_static_link (struct frame_info *frame,
432 const struct dynamic_prop *static_link)
433 {
434 CORE_ADDR upper_frame_base;
435
436 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
437 return NULL;
438
439 /* Now climb up the stack frame until we reach the frame we are interested
440 in. */
441 for (; frame != NULL; frame = get_prev_frame (frame))
442 {
443 struct symbol *framefunc = get_frame_function (frame);
444
445 /* Stacks can be quite deep: give the user a chance to stop this. */
446 QUIT;
447
448 /* If we don't know how to compute FRAME's base address, don't give up:
449 maybe the frame we are looking for is upper in the stace frame. */
450 if (framefunc != NULL
451 && SYMBOL_BLOCK_OPS (framefunc) != NULL
452 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
453 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
454 == upper_frame_base))
455 break;
456 }
457
458 return frame;
459 }
460
461 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
462 rules, look for the frame that is actually hosting VAR and return it. If,
463 for some reason, we found no such frame, return NULL.
464
465 This kind of computation is necessary to correctly handle lexically nested
466 functions.
467
468 Note that in some cases, we know what scope VAR comes from but we cannot
469 reach the specific frame that hosts the instance of VAR we are looking for.
470 For backward compatibility purposes (with old compilers), we then look for
471 the first frame that can host it. */
472
473 static struct frame_info *
474 get_hosting_frame (struct symbol *var, const struct block *var_block,
475 struct frame_info *frame)
476 {
477 const struct block *frame_block = NULL;
478
479 if (!symbol_read_needs_frame (var))
480 return NULL;
481
482 /* Some symbols for local variables have no block: this happens when they are
483 not produced by a debug information reader, for instance when GDB creates
484 synthetic symbols. Without block information, we must assume they are
485 local to FRAME. In this case, there is nothing to do. */
486 else if (var_block == NULL)
487 return frame;
488
489 /* We currently assume that all symbols with a location list need a frame.
490 This is true in practice because selecting the location description
491 requires to compute the CFA, hence requires a frame. However we have
492 tests that embed global/static symbols with null location lists.
493 We want to get <optimized out> instead of <frame required> when evaluating
494 them so return a frame instead of raising an error. */
495 else if (var_block == block_global_block (var_block)
496 || var_block == block_static_block (var_block))
497 return frame;
498
499 /* We have to handle the "my_func::my_local_var" notation. This requires us
500 to look for upper frames when we find no block for the current frame: here
501 and below, handle when frame_block == NULL. */
502 if (frame != NULL)
503 frame_block = get_frame_block (frame, NULL);
504
505 /* Climb up the call stack until reaching the frame we are looking for. */
506 while (frame != NULL && frame_block != var_block)
507 {
508 /* Stacks can be quite deep: give the user a chance to stop this. */
509 QUIT;
510
511 if (frame_block == NULL)
512 {
513 frame = get_prev_frame (frame);
514 if (frame == NULL)
515 break;
516 frame_block = get_frame_block (frame, NULL);
517 }
518
519 /* If we failed to find the proper frame, fallback to the heuristic
520 method below. */
521 else if (frame_block == block_global_block (frame_block))
522 {
523 frame = NULL;
524 break;
525 }
526
527 /* Assuming we have a block for this frame: if we are at the function
528 level, the immediate upper lexical block is in an outer function:
529 follow the static link. */
530 else if (BLOCK_FUNCTION (frame_block))
531 {
532 const struct dynamic_prop *static_link
533 = block_static_link (frame_block);
534 int could_climb_up = 0;
535
536 if (static_link != NULL)
537 {
538 frame = follow_static_link (frame, static_link);
539 if (frame != NULL)
540 {
541 frame_block = get_frame_block (frame, NULL);
542 could_climb_up = frame_block != NULL;
543 }
544 }
545 if (!could_climb_up)
546 {
547 frame = NULL;
548 break;
549 }
550 }
551
552 else
553 /* We must be in some function nested lexical block. Just get the
554 outer block: both must share the same frame. */
555 frame_block = BLOCK_SUPERBLOCK (frame_block);
556 }
557
558 /* Old compilers may not provide a static link, or they may provide an
559 invalid one. For such cases, fallback on the old way to evaluate
560 non-local references: just climb up the call stack and pick the first
561 frame that contains the variable we are looking for. */
562 if (frame == NULL)
563 {
564 frame = block_innermost_frame (var_block);
565 if (frame == NULL)
566 {
567 if (BLOCK_FUNCTION (var_block)
568 && !block_inlined_p (var_block)
569 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)))
570 error (_("No frame is currently executing in block %s."),
571 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)));
572 else
573 error (_("No frame is currently executing in specified"
574 " block"));
575 }
576 }
577
578 return frame;
579 }
580
581 /* A default implementation for the "la_read_var_value" hook in
582 the language vector which should work in most situations. */
583
584 struct value *
585 default_read_var_value (struct symbol *var, const struct block *var_block,
586 struct frame_info *frame)
587 {
588 struct value *v;
589 struct type *type = SYMBOL_TYPE (var);
590 CORE_ADDR addr;
591 enum symbol_needs_kind sym_need;
592
593 /* Call check_typedef on our type to make sure that, if TYPE is
594 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
595 instead of zero. However, we do not replace the typedef type by the
596 target type, because we want to keep the typedef in order to be able to
597 set the returned value type description correctly. */
598 check_typedef (type);
599
600 sym_need = symbol_read_needs (var);
601 if (sym_need == SYMBOL_NEEDS_FRAME)
602 gdb_assert (frame != NULL);
603 else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers)
604 error (_("Cannot read `%s' without registers"), SYMBOL_PRINT_NAME (var));
605
606 if (frame != NULL)
607 frame = get_hosting_frame (var, var_block, frame);
608
609 if (SYMBOL_COMPUTED_OPS (var) != NULL)
610 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
611
612 switch (SYMBOL_CLASS (var))
613 {
614 case LOC_CONST:
615 if (is_dynamic_type (type))
616 {
617 /* Value is a constant byte-sequence and needs no memory access. */
618 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
619 }
620 /* Put the constant back in target format. */
621 v = allocate_value (type);
622 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
623 gdbarch_byte_order (get_type_arch (type)),
624 (LONGEST) SYMBOL_VALUE (var));
625 VALUE_LVAL (v) = not_lval;
626 return v;
627
628 case LOC_LABEL:
629 /* Put the constant back in target format. */
630 v = allocate_value (type);
631 if (overlay_debugging)
632 {
633 CORE_ADDR addr
634 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
635 SYMBOL_OBJ_SECTION (symbol_objfile (var),
636 var));
637
638 store_typed_address (value_contents_raw (v), type, addr);
639 }
640 else
641 store_typed_address (value_contents_raw (v), type,
642 SYMBOL_VALUE_ADDRESS (var));
643 VALUE_LVAL (v) = not_lval;
644 return v;
645
646 case LOC_CONST_BYTES:
647 if (is_dynamic_type (type))
648 {
649 /* Value is a constant byte-sequence and needs no memory access. */
650 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
651 }
652 v = allocate_value (type);
653 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
654 TYPE_LENGTH (type));
655 VALUE_LVAL (v) = not_lval;
656 return v;
657
658 case LOC_STATIC:
659 if (overlay_debugging)
660 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
661 SYMBOL_OBJ_SECTION (symbol_objfile (var),
662 var));
663 else
664 addr = SYMBOL_VALUE_ADDRESS (var);
665 break;
666
667 case LOC_ARG:
668 addr = get_frame_args_address (frame);
669 if (!addr)
670 error (_("Unknown argument list address for `%s'."),
671 SYMBOL_PRINT_NAME (var));
672 addr += SYMBOL_VALUE (var);
673 break;
674
675 case LOC_REF_ARG:
676 {
677 struct value *ref;
678 CORE_ADDR argref;
679
680 argref = get_frame_args_address (frame);
681 if (!argref)
682 error (_("Unknown argument list address for `%s'."),
683 SYMBOL_PRINT_NAME (var));
684 argref += SYMBOL_VALUE (var);
685 ref = value_at (lookup_pointer_type (type), argref);
686 addr = value_as_address (ref);
687 break;
688 }
689
690 case LOC_LOCAL:
691 addr = get_frame_locals_address (frame);
692 addr += SYMBOL_VALUE (var);
693 break;
694
695 case LOC_TYPEDEF:
696 error (_("Cannot look up value of a typedef `%s'."),
697 SYMBOL_PRINT_NAME (var));
698 break;
699
700 case LOC_BLOCK:
701 if (overlay_debugging)
702 addr = symbol_overlayed_address
703 (BLOCK_START (SYMBOL_BLOCK_VALUE (var)),
704 SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
705 else
706 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
707 break;
708
709 case LOC_REGISTER:
710 case LOC_REGPARM_ADDR:
711 {
712 int regno = SYMBOL_REGISTER_OPS (var)
713 ->register_number (var, get_frame_arch (frame));
714 struct value *regval;
715
716 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
717 {
718 regval = value_from_register (lookup_pointer_type (type),
719 regno,
720 frame);
721
722 if (regval == NULL)
723 error (_("Value of register variable not available for `%s'."),
724 SYMBOL_PRINT_NAME (var));
725
726 addr = value_as_address (regval);
727 }
728 else
729 {
730 regval = value_from_register (type, regno, frame);
731
732 if (regval == NULL)
733 error (_("Value of register variable not available for `%s'."),
734 SYMBOL_PRINT_NAME (var));
735 return regval;
736 }
737 }
738 break;
739
740 case LOC_COMPUTED:
741 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
742
743 case LOC_UNRESOLVED:
744 {
745 struct minsym_lookup_data lookup_data;
746 struct minimal_symbol *msym;
747 struct obj_section *obj_section;
748
749 memset (&lookup_data, 0, sizeof (lookup_data));
750 lookup_data.name = SYMBOL_LINKAGE_NAME (var);
751
752 gdbarch_iterate_over_objfiles_in_search_order
753 (symbol_arch (var),
754 minsym_lookup_iterator_cb, &lookup_data,
755 symbol_objfile (var));
756 msym = lookup_data.result.minsym;
757
758 /* If we can't find the minsym there's a problem in the symbol info.
759 The symbol exists in the debug info, but it's missing in the minsym
760 table. */
761 if (msym == NULL)
762 {
763 const char *flavour_name
764 = objfile_flavour_name (symbol_objfile (var));
765
766 /* We can't get here unless we've opened the file, so flavour_name
767 can't be NULL. */
768 gdb_assert (flavour_name != NULL);
769 error (_("Missing %s symbol \"%s\"."),
770 flavour_name, SYMBOL_LINKAGE_NAME (var));
771 }
772 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
773 /* Relocate address, unless there is no section or the variable is
774 a TLS variable. */
775 if (obj_section == NULL
776 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
777 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
778 else
779 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
780 if (overlay_debugging)
781 addr = symbol_overlayed_address (addr, obj_section);
782 /* Determine address of TLS variable. */
783 if (obj_section
784 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
785 addr = target_translate_tls_address (obj_section->objfile, addr);
786 }
787 break;
788
789 case LOC_OPTIMIZED_OUT:
790 return allocate_optimized_out_value (type);
791
792 default:
793 error (_("Cannot look up value of a botched symbol `%s'."),
794 SYMBOL_PRINT_NAME (var));
795 break;
796 }
797
798 v = value_at_lazy (type, addr);
799 return v;
800 }
801
802 /* Calls VAR's language la_read_var_value hook with the given arguments. */
803
804 struct value *
805 read_var_value (struct symbol *var, const struct block *var_block,
806 struct frame_info *frame)
807 {
808 const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));
809
810 gdb_assert (lang != NULL);
811 gdb_assert (lang->la_read_var_value != NULL);
812
813 return lang->la_read_var_value (var, var_block, frame);
814 }
815
816 /* Install default attributes for register values. */
817
818 struct value *
819 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
820 int regnum, struct frame_id frame_id)
821 {
822 int len = TYPE_LENGTH (type);
823 struct value *value = allocate_value (type);
824 struct frame_info *frame;
825
826 VALUE_LVAL (value) = lval_register;
827 frame = frame_find_by_id (frame_id);
828
829 if (frame == NULL)
830 frame_id = null_frame_id;
831 else
832 frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));
833
834 VALUE_NEXT_FRAME_ID (value) = frame_id;
835 VALUE_REGNUM (value) = regnum;
836
837 /* Any structure stored in more than one register will always be
838 an integral number of registers. Otherwise, you need to do
839 some fiddling with the last register copied here for little
840 endian machines. */
841 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
842 && len < register_size (gdbarch, regnum))
843 /* Big-endian, and we want less than full size. */
844 set_value_offset (value, register_size (gdbarch, regnum) - len);
845 else
846 set_value_offset (value, 0);
847
848 return value;
849 }
850
851 /* VALUE must be an lval_register value. If regnum is the value's
852 associated register number, and len the length of the values type,
853 read one or more registers in FRAME, starting with register REGNUM,
854 until we've read LEN bytes.
855
856 If any of the registers we try to read are optimized out, then mark the
857 complete resulting value as optimized out. */
858
859 void
860 read_frame_register_value (struct value *value, struct frame_info *frame)
861 {
862 struct gdbarch *gdbarch = get_frame_arch (frame);
863 LONGEST offset = 0;
864 LONGEST reg_offset = value_offset (value);
865 int regnum = VALUE_REGNUM (value);
866 int len = type_length_units (check_typedef (value_type (value)));
867
868 gdb_assert (VALUE_LVAL (value) == lval_register);
869
870 /* Skip registers wholly inside of REG_OFFSET. */
871 while (reg_offset >= register_size (gdbarch, regnum))
872 {
873 reg_offset -= register_size (gdbarch, regnum);
874 regnum++;
875 }
876
877 /* Copy the data. */
878 while (len > 0)
879 {
880 struct value *regval = get_frame_register_value (frame, regnum);
881 int reg_len = type_length_units (value_type (regval)) - reg_offset;
882
883 /* If the register length is larger than the number of bytes
884 remaining to copy, then only copy the appropriate bytes. */
885 if (reg_len > len)
886 reg_len = len;
887
888 value_contents_copy (value, offset, regval, reg_offset, reg_len);
889
890 offset += reg_len;
891 len -= reg_len;
892 reg_offset = 0;
893 regnum++;
894 }
895 }
896
897 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
898
899 struct value *
900 value_from_register (struct type *type, int regnum, struct frame_info *frame)
901 {
902 struct gdbarch *gdbarch = get_frame_arch (frame);
903 struct type *type1 = check_typedef (type);
904 struct value *v;
905
906 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
907 {
908 int optim, unavail, ok;
909
910 /* The ISA/ABI need to something weird when obtaining the
911 specified value from this register. It might need to
912 re-order non-adjacent, starting with REGNUM (see MIPS and
913 i386). It might need to convert the [float] register into
914 the corresponding [integer] type (see Alpha). The assumption
915 is that gdbarch_register_to_value populates the entire value
916 including the location. */
917 v = allocate_value (type);
918 VALUE_LVAL (v) = lval_register;
919 VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
920 VALUE_REGNUM (v) = regnum;
921 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
922 value_contents_raw (v), &optim,
923 &unavail);
924
925 if (!ok)
926 {
927 if (optim)
928 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
929 if (unavail)
930 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
931 }
932 }
933 else
934 {
935 /* Construct the value. */
936 v = gdbarch_value_from_register (gdbarch, type,
937 regnum, get_frame_id (frame));
938
939 /* Get the data. */
940 read_frame_register_value (v, frame);
941 }
942
943 return v;
944 }
945
946 /* Return contents of register REGNUM in frame FRAME as address.
947 Will abort if register value is not available. */
948
949 CORE_ADDR
950 address_from_register (int regnum, struct frame_info *frame)
951 {
952 struct gdbarch *gdbarch = get_frame_arch (frame);
953 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
954 struct value *value;
955 CORE_ADDR result;
956 int regnum_max_excl = (gdbarch_num_regs (gdbarch)
957 + gdbarch_num_pseudo_regs (gdbarch));
958
959 if (regnum < 0 || regnum >= regnum_max_excl)
960 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
961 regnum_max_excl);
962
963 /* This routine may be called during early unwinding, at a time
964 where the ID of FRAME is not yet known. Calling value_from_register
965 would therefore abort in get_frame_id. However, since we only need
966 a temporary value that is never used as lvalue, we actually do not
967 really need to set its VALUE_NEXT_FRAME_ID. Therefore, we re-implement
968 the core of value_from_register, but use the null_frame_id. */
969
970 /* Some targets require a special conversion routine even for plain
971 pointer types. Avoid constructing a value object in those cases. */
972 if (gdbarch_convert_register_p (gdbarch, regnum, type))
973 {
974 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
975 int optim, unavail, ok;
976
977 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
978 buf, &optim, &unavail);
979 if (!ok)
980 {
981 /* This function is used while computing a location expression.
982 Complain about the value being optimized out, rather than
983 letting value_as_address complain about some random register
984 the expression depends on not being saved. */
985 error_value_optimized_out ();
986 }
987
988 return unpack_long (type, buf);
989 }
990
991 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
992 read_frame_register_value (value, frame);
993
994 if (value_optimized_out (value))
995 {
996 /* This function is used while computing a location expression.
997 Complain about the value being optimized out, rather than
998 letting value_as_address complain about some random register
999 the expression depends on not being saved. */
1000 error_value_optimized_out ();
1001 }
1002
1003 result = value_as_address (value);
1004 release_value (value);
1005 value_free (value);
1006
1007 return result;
1008 }
1009