]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/findvar.c
Sort includes for files gdb/[a-f]*.[chyl].
[thirdparty/binutils-gdb.git] / gdb / findvar.c
1 /* Find a variable's value in memory, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 /* Local non-gdb includes. */
23 #include "block.h"
24 #include "common/selftest.h"
25 #include "dwarf2loc.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "gdbtypes.h"
29 #include "inferior.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "symfile.h"
34 #include "symtab.h"
35 #include "target.h"
36 #include "user-regs.h"
37 #include "value.h"
38
39 /* Basic byte-swapping routines. All 'extract' functions return a
40 host-format integer from a target-format integer at ADDR which is
41 LEN bytes long. */
42
43 #if TARGET_CHAR_BIT != 8 || HOST_CHAR_BIT != 8
44 /* 8 bit characters are a pretty safe assumption these days, so we
45 assume it throughout all these swapping routines. If we had to deal with
46 9 bit characters, we would need to make len be in bits and would have
47 to re-write these routines... */
48 you lose
49 #endif
50
51 template<typename T, typename>
52 T
53 extract_integer (const gdb_byte *addr, int len, enum bfd_endian byte_order)
54 {
55 typename std::make_unsigned<T>::type retval = 0;
56 const unsigned char *p;
57 const unsigned char *startaddr = addr;
58 const unsigned char *endaddr = startaddr + len;
59
60 if (len > (int) sizeof (T))
61 error (_("\
62 That operation is not available on integers of more than %d bytes."),
63 (int) sizeof (T));
64
65 /* Start at the most significant end of the integer, and work towards
66 the least significant. */
67 if (byte_order == BFD_ENDIAN_BIG)
68 {
69 p = startaddr;
70 if (std::is_signed<T>::value)
71 {
72 /* Do the sign extension once at the start. */
73 retval = ((LONGEST) * p ^ 0x80) - 0x80;
74 ++p;
75 }
76 for (; p < endaddr; ++p)
77 retval = (retval << 8) | *p;
78 }
79 else
80 {
81 p = endaddr - 1;
82 if (std::is_signed<T>::value)
83 {
84 /* Do the sign extension once at the start. */
85 retval = ((LONGEST) * p ^ 0x80) - 0x80;
86 --p;
87 }
88 for (; p >= startaddr; --p)
89 retval = (retval << 8) | *p;
90 }
91 return retval;
92 }
93
94 /* Explicit instantiations. */
95 template LONGEST extract_integer<LONGEST> (const gdb_byte *addr, int len,
96 enum bfd_endian byte_order);
97 template ULONGEST extract_integer<ULONGEST> (const gdb_byte *addr, int len,
98 enum bfd_endian byte_order);
99
100 /* Sometimes a long long unsigned integer can be extracted as a
101 LONGEST value. This is done so that we can print these values
102 better. If this integer can be converted to a LONGEST, this
103 function returns 1 and sets *PVAL. Otherwise it returns 0. */
104
105 int
106 extract_long_unsigned_integer (const gdb_byte *addr, int orig_len,
107 enum bfd_endian byte_order, LONGEST *pval)
108 {
109 const gdb_byte *p;
110 const gdb_byte *first_addr;
111 int len;
112
113 len = orig_len;
114 if (byte_order == BFD_ENDIAN_BIG)
115 {
116 for (p = addr;
117 len > (int) sizeof (LONGEST) && p < addr + orig_len;
118 p++)
119 {
120 if (*p == 0)
121 len--;
122 else
123 break;
124 }
125 first_addr = p;
126 }
127 else
128 {
129 first_addr = addr;
130 for (p = addr + orig_len - 1;
131 len > (int) sizeof (LONGEST) && p >= addr;
132 p--)
133 {
134 if (*p == 0)
135 len--;
136 else
137 break;
138 }
139 }
140
141 if (len <= (int) sizeof (LONGEST))
142 {
143 *pval = (LONGEST) extract_unsigned_integer (first_addr,
144 sizeof (LONGEST),
145 byte_order);
146 return 1;
147 }
148
149 return 0;
150 }
151
152
153 /* Treat the bytes at BUF as a pointer of type TYPE, and return the
154 address it represents. */
155 CORE_ADDR
156 extract_typed_address (const gdb_byte *buf, struct type *type)
157 {
158 if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
159 internal_error (__FILE__, __LINE__,
160 _("extract_typed_address: "
161 "type is not a pointer or reference"));
162
163 return gdbarch_pointer_to_address (get_type_arch (type), type, buf);
164 }
165
166 /* All 'store' functions accept a host-format integer and store a
167 target-format integer at ADDR which is LEN bytes long. */
168 template<typename T, typename>
169 void
170 store_integer (gdb_byte *addr, int len, enum bfd_endian byte_order,
171 T val)
172 {
173 gdb_byte *p;
174 gdb_byte *startaddr = addr;
175 gdb_byte *endaddr = startaddr + len;
176
177 /* Start at the least significant end of the integer, and work towards
178 the most significant. */
179 if (byte_order == BFD_ENDIAN_BIG)
180 {
181 for (p = endaddr - 1; p >= startaddr; --p)
182 {
183 *p = val & 0xff;
184 val >>= 8;
185 }
186 }
187 else
188 {
189 for (p = startaddr; p < endaddr; ++p)
190 {
191 *p = val & 0xff;
192 val >>= 8;
193 }
194 }
195 }
196
197 /* Explicit instantiations. */
198 template void store_integer (gdb_byte *addr, int len,
199 enum bfd_endian byte_order,
200 LONGEST val);
201
202 template void store_integer (gdb_byte *addr, int len,
203 enum bfd_endian byte_order,
204 ULONGEST val);
205
206 /* Store the address ADDR as a pointer of type TYPE at BUF, in target
207 form. */
208 void
209 store_typed_address (gdb_byte *buf, struct type *type, CORE_ADDR addr)
210 {
211 if (TYPE_CODE (type) != TYPE_CODE_PTR && !TYPE_IS_REFERENCE (type))
212 internal_error (__FILE__, __LINE__,
213 _("store_typed_address: "
214 "type is not a pointer or reference"));
215
216 gdbarch_address_to_pointer (get_type_arch (type), type, buf, addr);
217 }
218
219 /* Copy a value from SOURCE of size SOURCE_SIZE bytes to DEST of size DEST_SIZE
220 bytes. If SOURCE_SIZE is greater than DEST_SIZE, then truncate the most
221 significant bytes. If SOURCE_SIZE is less than DEST_SIZE then either sign
222 or zero extended according to IS_SIGNED. Values are stored in memory with
223 endianess BYTE_ORDER. */
224
225 void
226 copy_integer_to_size (gdb_byte *dest, int dest_size, const gdb_byte *source,
227 int source_size, bool is_signed,
228 enum bfd_endian byte_order)
229 {
230 signed int size_diff = dest_size - source_size;
231
232 /* Copy across everything from SOURCE that can fit into DEST. */
233
234 if (byte_order == BFD_ENDIAN_BIG && size_diff > 0)
235 memcpy (dest + size_diff, source, source_size);
236 else if (byte_order == BFD_ENDIAN_BIG && size_diff < 0)
237 memcpy (dest, source - size_diff, dest_size);
238 else
239 memcpy (dest, source, std::min (source_size, dest_size));
240
241 /* Fill the remaining space in DEST by either zero extending or sign
242 extending. */
243
244 if (size_diff > 0)
245 {
246 gdb_byte extension = 0;
247 if (is_signed
248 && ((byte_order != BFD_ENDIAN_BIG && source[source_size - 1] & 0x80)
249 || (byte_order == BFD_ENDIAN_BIG && source[0] & 0x80)))
250 extension = 0xff;
251
252 /* Extend into MSBs of SOURCE. */
253 if (byte_order == BFD_ENDIAN_BIG)
254 memset (dest, extension, size_diff);
255 else
256 memset (dest + source_size, extension, size_diff);
257 }
258 }
259
260 /* Return a `value' with the contents of (virtual or cooked) register
261 REGNUM as found in the specified FRAME. The register's type is
262 determined by register_type(). */
263
264 struct value *
265 value_of_register (int regnum, struct frame_info *frame)
266 {
267 struct gdbarch *gdbarch = get_frame_arch (frame);
268 struct value *reg_val;
269
270 /* User registers lie completely outside of the range of normal
271 registers. Catch them early so that the target never sees them. */
272 if (regnum >= gdbarch_num_cooked_regs (gdbarch))
273 return value_of_user_reg (regnum, frame);
274
275 reg_val = value_of_register_lazy (frame, regnum);
276 value_fetch_lazy (reg_val);
277 return reg_val;
278 }
279
280 /* Return a `value' with the contents of (virtual or cooked) register
281 REGNUM as found in the specified FRAME. The register's type is
282 determined by register_type(). The value is not fetched. */
283
284 struct value *
285 value_of_register_lazy (struct frame_info *frame, int regnum)
286 {
287 struct gdbarch *gdbarch = get_frame_arch (frame);
288 struct value *reg_val;
289 struct frame_info *next_frame;
290
291 gdb_assert (regnum < gdbarch_num_cooked_regs (gdbarch));
292
293 gdb_assert (frame != NULL);
294
295 next_frame = get_next_frame_sentinel_okay (frame);
296
297 /* We should have a valid next frame. */
298 gdb_assert (frame_id_p (get_frame_id (next_frame)));
299
300 reg_val = allocate_value_lazy (register_type (gdbarch, regnum));
301 VALUE_LVAL (reg_val) = lval_register;
302 VALUE_REGNUM (reg_val) = regnum;
303 VALUE_NEXT_FRAME_ID (reg_val) = get_frame_id (next_frame);
304
305 return reg_val;
306 }
307
308 /* Given a pointer of type TYPE in target form in BUF, return the
309 address it represents. */
310 CORE_ADDR
311 unsigned_pointer_to_address (struct gdbarch *gdbarch,
312 struct type *type, const gdb_byte *buf)
313 {
314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
315
316 return extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
317 }
318
319 CORE_ADDR
320 signed_pointer_to_address (struct gdbarch *gdbarch,
321 struct type *type, const gdb_byte *buf)
322 {
323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
324
325 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
326 }
327
328 /* Given an address, store it as a pointer of type TYPE in target
329 format in BUF. */
330 void
331 unsigned_address_to_pointer (struct gdbarch *gdbarch, struct type *type,
332 gdb_byte *buf, CORE_ADDR addr)
333 {
334 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
335
336 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
337 }
338
339 void
340 address_to_signed_pointer (struct gdbarch *gdbarch, struct type *type,
341 gdb_byte *buf, CORE_ADDR addr)
342 {
343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
344
345 store_signed_integer (buf, TYPE_LENGTH (type), byte_order, addr);
346 }
347 \f
348 /* See value.h. */
349
350 enum symbol_needs_kind
351 symbol_read_needs (struct symbol *sym)
352 {
353 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
354 return SYMBOL_COMPUTED_OPS (sym)->get_symbol_read_needs (sym);
355
356 switch (SYMBOL_CLASS (sym))
357 {
358 /* All cases listed explicitly so that gcc -Wall will detect it if
359 we failed to consider one. */
360 case LOC_COMPUTED:
361 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
362
363 case LOC_REGISTER:
364 case LOC_ARG:
365 case LOC_REF_ARG:
366 case LOC_REGPARM_ADDR:
367 case LOC_LOCAL:
368 return SYMBOL_NEEDS_FRAME;
369
370 case LOC_UNDEF:
371 case LOC_CONST:
372 case LOC_STATIC:
373 case LOC_TYPEDEF:
374
375 case LOC_LABEL:
376 /* Getting the address of a label can be done independently of the block,
377 even if some *uses* of that address wouldn't work so well without
378 the right frame. */
379
380 case LOC_BLOCK:
381 case LOC_CONST_BYTES:
382 case LOC_UNRESOLVED:
383 case LOC_OPTIMIZED_OUT:
384 return SYMBOL_NEEDS_NONE;
385 }
386 return SYMBOL_NEEDS_FRAME;
387 }
388
389 /* See value.h. */
390
391 int
392 symbol_read_needs_frame (struct symbol *sym)
393 {
394 return symbol_read_needs (sym) == SYMBOL_NEEDS_FRAME;
395 }
396
397 /* Private data to be used with minsym_lookup_iterator_cb. */
398
399 struct minsym_lookup_data
400 {
401 /* The name of the minimal symbol we are searching for. */
402 const char *name;
403
404 /* The field where the callback should store the minimal symbol
405 if found. It should be initialized to NULL before the search
406 is started. */
407 struct bound_minimal_symbol result;
408 };
409
410 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
411 It searches by name for a minimal symbol within the given OBJFILE.
412 The arguments are passed via CB_DATA, which in reality is a pointer
413 to struct minsym_lookup_data. */
414
415 static int
416 minsym_lookup_iterator_cb (struct objfile *objfile, void *cb_data)
417 {
418 struct minsym_lookup_data *data = (struct minsym_lookup_data *) cb_data;
419
420 gdb_assert (data->result.minsym == NULL);
421
422 data->result = lookup_minimal_symbol (data->name, NULL, objfile);
423
424 /* The iterator should stop iff a match was found. */
425 return (data->result.minsym != NULL);
426 }
427
428 /* Given static link expression and the frame it lives in, look for the frame
429 the static links points to and return it. Return NULL if we could not find
430 such a frame. */
431
432 static struct frame_info *
433 follow_static_link (struct frame_info *frame,
434 const struct dynamic_prop *static_link)
435 {
436 CORE_ADDR upper_frame_base;
437
438 if (!dwarf2_evaluate_property (static_link, frame, NULL, &upper_frame_base))
439 return NULL;
440
441 /* Now climb up the stack frame until we reach the frame we are interested
442 in. */
443 for (; frame != NULL; frame = get_prev_frame (frame))
444 {
445 struct symbol *framefunc = get_frame_function (frame);
446
447 /* Stacks can be quite deep: give the user a chance to stop this. */
448 QUIT;
449
450 /* If we don't know how to compute FRAME's base address, don't give up:
451 maybe the frame we are looking for is upper in the stace frame. */
452 if (framefunc != NULL
453 && SYMBOL_BLOCK_OPS (framefunc) != NULL
454 && SYMBOL_BLOCK_OPS (framefunc)->get_frame_base != NULL
455 && (SYMBOL_BLOCK_OPS (framefunc)->get_frame_base (framefunc, frame)
456 == upper_frame_base))
457 break;
458 }
459
460 return frame;
461 }
462
463 /* Assuming VAR is a symbol that can be reached from FRAME thanks to lexical
464 rules, look for the frame that is actually hosting VAR and return it. If,
465 for some reason, we found no such frame, return NULL.
466
467 This kind of computation is necessary to correctly handle lexically nested
468 functions.
469
470 Note that in some cases, we know what scope VAR comes from but we cannot
471 reach the specific frame that hosts the instance of VAR we are looking for.
472 For backward compatibility purposes (with old compilers), we then look for
473 the first frame that can host it. */
474
475 static struct frame_info *
476 get_hosting_frame (struct symbol *var, const struct block *var_block,
477 struct frame_info *frame)
478 {
479 const struct block *frame_block = NULL;
480
481 if (!symbol_read_needs_frame (var))
482 return NULL;
483
484 /* Some symbols for local variables have no block: this happens when they are
485 not produced by a debug information reader, for instance when GDB creates
486 synthetic symbols. Without block information, we must assume they are
487 local to FRAME. In this case, there is nothing to do. */
488 else if (var_block == NULL)
489 return frame;
490
491 /* We currently assume that all symbols with a location list need a frame.
492 This is true in practice because selecting the location description
493 requires to compute the CFA, hence requires a frame. However we have
494 tests that embed global/static symbols with null location lists.
495 We want to get <optimized out> instead of <frame required> when evaluating
496 them so return a frame instead of raising an error. */
497 else if (var_block == block_global_block (var_block)
498 || var_block == block_static_block (var_block))
499 return frame;
500
501 /* We have to handle the "my_func::my_local_var" notation. This requires us
502 to look for upper frames when we find no block for the current frame: here
503 and below, handle when frame_block == NULL. */
504 if (frame != NULL)
505 frame_block = get_frame_block (frame, NULL);
506
507 /* Climb up the call stack until reaching the frame we are looking for. */
508 while (frame != NULL && frame_block != var_block)
509 {
510 /* Stacks can be quite deep: give the user a chance to stop this. */
511 QUIT;
512
513 if (frame_block == NULL)
514 {
515 frame = get_prev_frame (frame);
516 if (frame == NULL)
517 break;
518 frame_block = get_frame_block (frame, NULL);
519 }
520
521 /* If we failed to find the proper frame, fallback to the heuristic
522 method below. */
523 else if (frame_block == block_global_block (frame_block))
524 {
525 frame = NULL;
526 break;
527 }
528
529 /* Assuming we have a block for this frame: if we are at the function
530 level, the immediate upper lexical block is in an outer function:
531 follow the static link. */
532 else if (BLOCK_FUNCTION (frame_block))
533 {
534 const struct dynamic_prop *static_link
535 = block_static_link (frame_block);
536 int could_climb_up = 0;
537
538 if (static_link != NULL)
539 {
540 frame = follow_static_link (frame, static_link);
541 if (frame != NULL)
542 {
543 frame_block = get_frame_block (frame, NULL);
544 could_climb_up = frame_block != NULL;
545 }
546 }
547 if (!could_climb_up)
548 {
549 frame = NULL;
550 break;
551 }
552 }
553
554 else
555 /* We must be in some function nested lexical block. Just get the
556 outer block: both must share the same frame. */
557 frame_block = BLOCK_SUPERBLOCK (frame_block);
558 }
559
560 /* Old compilers may not provide a static link, or they may provide an
561 invalid one. For such cases, fallback on the old way to evaluate
562 non-local references: just climb up the call stack and pick the first
563 frame that contains the variable we are looking for. */
564 if (frame == NULL)
565 {
566 frame = block_innermost_frame (var_block);
567 if (frame == NULL)
568 {
569 if (BLOCK_FUNCTION (var_block)
570 && !block_inlined_p (var_block)
571 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)))
572 error (_("No frame is currently executing in block %s."),
573 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (var_block)));
574 else
575 error (_("No frame is currently executing in specified"
576 " block"));
577 }
578 }
579
580 return frame;
581 }
582
583 /* A default implementation for the "la_read_var_value" hook in
584 the language vector which should work in most situations. */
585
586 struct value *
587 default_read_var_value (struct symbol *var, const struct block *var_block,
588 struct frame_info *frame)
589 {
590 struct value *v;
591 struct type *type = SYMBOL_TYPE (var);
592 CORE_ADDR addr;
593 enum symbol_needs_kind sym_need;
594
595 /* Call check_typedef on our type to make sure that, if TYPE is
596 a TYPE_CODE_TYPEDEF, its length is set to the length of the target type
597 instead of zero. However, we do not replace the typedef type by the
598 target type, because we want to keep the typedef in order to be able to
599 set the returned value type description correctly. */
600 check_typedef (type);
601
602 sym_need = symbol_read_needs (var);
603 if (sym_need == SYMBOL_NEEDS_FRAME)
604 gdb_assert (frame != NULL);
605 else if (sym_need == SYMBOL_NEEDS_REGISTERS && !target_has_registers)
606 error (_("Cannot read `%s' without registers"), SYMBOL_PRINT_NAME (var));
607
608 if (frame != NULL)
609 frame = get_hosting_frame (var, var_block, frame);
610
611 if (SYMBOL_COMPUTED_OPS (var) != NULL)
612 return SYMBOL_COMPUTED_OPS (var)->read_variable (var, frame);
613
614 switch (SYMBOL_CLASS (var))
615 {
616 case LOC_CONST:
617 if (is_dynamic_type (type))
618 {
619 /* Value is a constant byte-sequence and needs no memory access. */
620 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
621 }
622 /* Put the constant back in target format. */
623 v = allocate_value (type);
624 store_signed_integer (value_contents_raw (v), TYPE_LENGTH (type),
625 gdbarch_byte_order (get_type_arch (type)),
626 (LONGEST) SYMBOL_VALUE (var));
627 VALUE_LVAL (v) = not_lval;
628 return v;
629
630 case LOC_LABEL:
631 /* Put the constant back in target format. */
632 v = allocate_value (type);
633 if (overlay_debugging)
634 {
635 addr
636 = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
637 SYMBOL_OBJ_SECTION (symbol_objfile (var),
638 var));
639
640 store_typed_address (value_contents_raw (v), type, addr);
641 }
642 else
643 store_typed_address (value_contents_raw (v), type,
644 SYMBOL_VALUE_ADDRESS (var));
645 VALUE_LVAL (v) = not_lval;
646 return v;
647
648 case LOC_CONST_BYTES:
649 if (is_dynamic_type (type))
650 {
651 /* Value is a constant byte-sequence and needs no memory access. */
652 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
653 }
654 v = allocate_value (type);
655 memcpy (value_contents_raw (v), SYMBOL_VALUE_BYTES (var),
656 TYPE_LENGTH (type));
657 VALUE_LVAL (v) = not_lval;
658 return v;
659
660 case LOC_STATIC:
661 if (overlay_debugging)
662 addr = symbol_overlayed_address (SYMBOL_VALUE_ADDRESS (var),
663 SYMBOL_OBJ_SECTION (symbol_objfile (var),
664 var));
665 else
666 addr = SYMBOL_VALUE_ADDRESS (var);
667 break;
668
669 case LOC_ARG:
670 addr = get_frame_args_address (frame);
671 if (!addr)
672 error (_("Unknown argument list address for `%s'."),
673 SYMBOL_PRINT_NAME (var));
674 addr += SYMBOL_VALUE (var);
675 break;
676
677 case LOC_REF_ARG:
678 {
679 struct value *ref;
680 CORE_ADDR argref;
681
682 argref = get_frame_args_address (frame);
683 if (!argref)
684 error (_("Unknown argument list address for `%s'."),
685 SYMBOL_PRINT_NAME (var));
686 argref += SYMBOL_VALUE (var);
687 ref = value_at (lookup_pointer_type (type), argref);
688 addr = value_as_address (ref);
689 break;
690 }
691
692 case LOC_LOCAL:
693 addr = get_frame_locals_address (frame);
694 addr += SYMBOL_VALUE (var);
695 break;
696
697 case LOC_TYPEDEF:
698 error (_("Cannot look up value of a typedef `%s'."),
699 SYMBOL_PRINT_NAME (var));
700 break;
701
702 case LOC_BLOCK:
703 if (overlay_debugging)
704 addr = symbol_overlayed_address
705 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)),
706 SYMBOL_OBJ_SECTION (symbol_objfile (var), var));
707 else
708 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var));
709 break;
710
711 case LOC_REGISTER:
712 case LOC_REGPARM_ADDR:
713 {
714 int regno = SYMBOL_REGISTER_OPS (var)
715 ->register_number (var, get_frame_arch (frame));
716 struct value *regval;
717
718 if (SYMBOL_CLASS (var) == LOC_REGPARM_ADDR)
719 {
720 regval = value_from_register (lookup_pointer_type (type),
721 regno,
722 frame);
723
724 if (regval == NULL)
725 error (_("Value of register variable not available for `%s'."),
726 SYMBOL_PRINT_NAME (var));
727
728 addr = value_as_address (regval);
729 }
730 else
731 {
732 regval = value_from_register (type, regno, frame);
733
734 if (regval == NULL)
735 error (_("Value of register variable not available for `%s'."),
736 SYMBOL_PRINT_NAME (var));
737 return regval;
738 }
739 }
740 break;
741
742 case LOC_COMPUTED:
743 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
744
745 case LOC_UNRESOLVED:
746 {
747 struct minsym_lookup_data lookup_data;
748 struct minimal_symbol *msym;
749 struct obj_section *obj_section;
750
751 memset (&lookup_data, 0, sizeof (lookup_data));
752 lookup_data.name = SYMBOL_LINKAGE_NAME (var);
753
754 gdbarch_iterate_over_objfiles_in_search_order
755 (symbol_arch (var),
756 minsym_lookup_iterator_cb, &lookup_data,
757 symbol_objfile (var));
758 msym = lookup_data.result.minsym;
759
760 /* If we can't find the minsym there's a problem in the symbol info.
761 The symbol exists in the debug info, but it's missing in the minsym
762 table. */
763 if (msym == NULL)
764 {
765 const char *flavour_name
766 = objfile_flavour_name (symbol_objfile (var));
767
768 /* We can't get here unless we've opened the file, so flavour_name
769 can't be NULL. */
770 gdb_assert (flavour_name != NULL);
771 error (_("Missing %s symbol \"%s\"."),
772 flavour_name, SYMBOL_LINKAGE_NAME (var));
773 }
774 obj_section = MSYMBOL_OBJ_SECTION (lookup_data.result.objfile, msym);
775 /* Relocate address, unless there is no section or the variable is
776 a TLS variable. */
777 if (obj_section == NULL
778 || (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
779 addr = MSYMBOL_VALUE_RAW_ADDRESS (msym);
780 else
781 addr = BMSYMBOL_VALUE_ADDRESS (lookup_data.result);
782 if (overlay_debugging)
783 addr = symbol_overlayed_address (addr, obj_section);
784 /* Determine address of TLS variable. */
785 if (obj_section
786 && (obj_section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
787 addr = target_translate_tls_address (obj_section->objfile, addr);
788 }
789 break;
790
791 case LOC_OPTIMIZED_OUT:
792 if (is_dynamic_type (type))
793 type = resolve_dynamic_type (type, NULL, /* Unused address. */ 0);
794 return allocate_optimized_out_value (type);
795
796 default:
797 error (_("Cannot look up value of a botched symbol `%s'."),
798 SYMBOL_PRINT_NAME (var));
799 break;
800 }
801
802 v = value_at_lazy (type, addr);
803 return v;
804 }
805
806 /* Calls VAR's language la_read_var_value hook with the given arguments. */
807
808 struct value *
809 read_var_value (struct symbol *var, const struct block *var_block,
810 struct frame_info *frame)
811 {
812 const struct language_defn *lang = language_def (SYMBOL_LANGUAGE (var));
813
814 gdb_assert (lang != NULL);
815 gdb_assert (lang->la_read_var_value != NULL);
816
817 return lang->la_read_var_value (var, var_block, frame);
818 }
819
820 /* Install default attributes for register values. */
821
822 struct value *
823 default_value_from_register (struct gdbarch *gdbarch, struct type *type,
824 int regnum, struct frame_id frame_id)
825 {
826 int len = TYPE_LENGTH (type);
827 struct value *value = allocate_value (type);
828 struct frame_info *frame;
829
830 VALUE_LVAL (value) = lval_register;
831 frame = frame_find_by_id (frame_id);
832
833 if (frame == NULL)
834 frame_id = null_frame_id;
835 else
836 frame_id = get_frame_id (get_next_frame_sentinel_okay (frame));
837
838 VALUE_NEXT_FRAME_ID (value) = frame_id;
839 VALUE_REGNUM (value) = regnum;
840
841 /* Any structure stored in more than one register will always be
842 an integral number of registers. Otherwise, you need to do
843 some fiddling with the last register copied here for little
844 endian machines. */
845 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
846 && len < register_size (gdbarch, regnum))
847 /* Big-endian, and we want less than full size. */
848 set_value_offset (value, register_size (gdbarch, regnum) - len);
849 else
850 set_value_offset (value, 0);
851
852 return value;
853 }
854
855 /* VALUE must be an lval_register value. If regnum is the value's
856 associated register number, and len the length of the values type,
857 read one or more registers in FRAME, starting with register REGNUM,
858 until we've read LEN bytes.
859
860 If any of the registers we try to read are optimized out, then mark the
861 complete resulting value as optimized out. */
862
863 void
864 read_frame_register_value (struct value *value, struct frame_info *frame)
865 {
866 struct gdbarch *gdbarch = get_frame_arch (frame);
867 LONGEST offset = 0;
868 LONGEST reg_offset = value_offset (value);
869 int regnum = VALUE_REGNUM (value);
870 int len = type_length_units (check_typedef (value_type (value)));
871
872 gdb_assert (VALUE_LVAL (value) == lval_register);
873
874 /* Skip registers wholly inside of REG_OFFSET. */
875 while (reg_offset >= register_size (gdbarch, regnum))
876 {
877 reg_offset -= register_size (gdbarch, regnum);
878 regnum++;
879 }
880
881 /* Copy the data. */
882 while (len > 0)
883 {
884 struct value *regval = get_frame_register_value (frame, regnum);
885 int reg_len = type_length_units (value_type (regval)) - reg_offset;
886
887 /* If the register length is larger than the number of bytes
888 remaining to copy, then only copy the appropriate bytes. */
889 if (reg_len > len)
890 reg_len = len;
891
892 value_contents_copy (value, offset, regval, reg_offset, reg_len);
893
894 offset += reg_len;
895 len -= reg_len;
896 reg_offset = 0;
897 regnum++;
898 }
899 }
900
901 /* Return a value of type TYPE, stored in register REGNUM, in frame FRAME. */
902
903 struct value *
904 value_from_register (struct type *type, int regnum, struct frame_info *frame)
905 {
906 struct gdbarch *gdbarch = get_frame_arch (frame);
907 struct type *type1 = check_typedef (type);
908 struct value *v;
909
910 if (gdbarch_convert_register_p (gdbarch, regnum, type1))
911 {
912 int optim, unavail, ok;
913
914 /* The ISA/ABI need to something weird when obtaining the
915 specified value from this register. It might need to
916 re-order non-adjacent, starting with REGNUM (see MIPS and
917 i386). It might need to convert the [float] register into
918 the corresponding [integer] type (see Alpha). The assumption
919 is that gdbarch_register_to_value populates the entire value
920 including the location. */
921 v = allocate_value (type);
922 VALUE_LVAL (v) = lval_register;
923 VALUE_NEXT_FRAME_ID (v) = get_frame_id (get_next_frame_sentinel_okay (frame));
924 VALUE_REGNUM (v) = regnum;
925 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type1,
926 value_contents_raw (v), &optim,
927 &unavail);
928
929 if (!ok)
930 {
931 if (optim)
932 mark_value_bytes_optimized_out (v, 0, TYPE_LENGTH (type));
933 if (unavail)
934 mark_value_bytes_unavailable (v, 0, TYPE_LENGTH (type));
935 }
936 }
937 else
938 {
939 /* Construct the value. */
940 v = gdbarch_value_from_register (gdbarch, type,
941 regnum, get_frame_id (frame));
942
943 /* Get the data. */
944 read_frame_register_value (v, frame);
945 }
946
947 return v;
948 }
949
950 /* Return contents of register REGNUM in frame FRAME as address.
951 Will abort if register value is not available. */
952
953 CORE_ADDR
954 address_from_register (int regnum, struct frame_info *frame)
955 {
956 struct gdbarch *gdbarch = get_frame_arch (frame);
957 struct type *type = builtin_type (gdbarch)->builtin_data_ptr;
958 struct value *value;
959 CORE_ADDR result;
960 int regnum_max_excl = gdbarch_num_cooked_regs (gdbarch);
961
962 if (regnum < 0 || regnum >= regnum_max_excl)
963 error (_("Invalid register #%d, expecting 0 <= # < %d"), regnum,
964 regnum_max_excl);
965
966 /* This routine may be called during early unwinding, at a time
967 where the ID of FRAME is not yet known. Calling value_from_register
968 would therefore abort in get_frame_id. However, since we only need
969 a temporary value that is never used as lvalue, we actually do not
970 really need to set its VALUE_NEXT_FRAME_ID. Therefore, we re-implement
971 the core of value_from_register, but use the null_frame_id. */
972
973 /* Some targets require a special conversion routine even for plain
974 pointer types. Avoid constructing a value object in those cases. */
975 if (gdbarch_convert_register_p (gdbarch, regnum, type))
976 {
977 gdb_byte *buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
978 int optim, unavail, ok;
979
980 ok = gdbarch_register_to_value (gdbarch, frame, regnum, type,
981 buf, &optim, &unavail);
982 if (!ok)
983 {
984 /* This function is used while computing a location expression.
985 Complain about the value being optimized out, rather than
986 letting value_as_address complain about some random register
987 the expression depends on not being saved. */
988 error_value_optimized_out ();
989 }
990
991 return unpack_long (type, buf);
992 }
993
994 value = gdbarch_value_from_register (gdbarch, type, regnum, null_frame_id);
995 read_frame_register_value (value, frame);
996
997 if (value_optimized_out (value))
998 {
999 /* This function is used while computing a location expression.
1000 Complain about the value being optimized out, rather than
1001 letting value_as_address complain about some random register
1002 the expression depends on not being saved. */
1003 error_value_optimized_out ();
1004 }
1005
1006 result = value_as_address (value);
1007 release_value (value);
1008
1009 return result;
1010 }
1011
1012 #if GDB_SELF_TEST
1013 namespace selftests {
1014 namespace findvar_tests {
1015
1016 /* Function to test copy_integer_to_size. Store SOURCE_VAL with size
1017 SOURCE_SIZE to a buffer, making sure no sign extending happens at this
1018 stage. Copy buffer to a new buffer using copy_integer_to_size. Extract
1019 copied value and compare to DEST_VALU. Copy again with a signed
1020 copy_integer_to_size and compare to DEST_VALS. Do everything for both
1021 LITTLE and BIG target endians. Use unsigned values throughout to make
1022 sure there are no implicit sign extensions. */
1023
1024 static void
1025 do_cint_test (ULONGEST dest_valu, ULONGEST dest_vals, int dest_size,
1026 ULONGEST src_val, int src_size)
1027 {
1028 for (int i = 0; i < 2 ; i++)
1029 {
1030 gdb_byte srcbuf[sizeof (ULONGEST)] = {};
1031 gdb_byte destbuf[sizeof (ULONGEST)] = {};
1032 enum bfd_endian byte_order = i ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1033
1034 /* Fill the src buffer (and later the dest buffer) with non-zero junk,
1035 to ensure zero extensions aren't hidden. */
1036 memset (srcbuf, 0xaa, sizeof (srcbuf));
1037
1038 /* Store (and later extract) using unsigned to ensure there are no sign
1039 extensions. */
1040 store_unsigned_integer (srcbuf, src_size, byte_order, src_val);
1041
1042 /* Test unsigned. */
1043 memset (destbuf, 0xaa, sizeof (destbuf));
1044 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, false,
1045 byte_order);
1046 SELF_CHECK (dest_valu == extract_unsigned_integer (destbuf, dest_size,
1047 byte_order));
1048
1049 /* Test signed. */
1050 memset (destbuf, 0xaa, sizeof (destbuf));
1051 copy_integer_to_size (destbuf, dest_size, srcbuf, src_size, true,
1052 byte_order);
1053 SELF_CHECK (dest_vals == extract_unsigned_integer (destbuf, dest_size,
1054 byte_order));
1055 }
1056 }
1057
1058 static void
1059 copy_integer_to_size_test ()
1060 {
1061 /* Destination is bigger than the source, which has the signed bit unset. */
1062 do_cint_test (0x12345678, 0x12345678, 8, 0x12345678, 4);
1063 do_cint_test (0x345678, 0x345678, 8, 0x12345678, 3);
1064
1065 /* Destination is bigger than the source, which has the signed bit set. */
1066 do_cint_test (0xdeadbeef, 0xffffffffdeadbeef, 8, 0xdeadbeef, 4);
1067 do_cint_test (0xadbeef, 0xffffffffffadbeef, 8, 0xdeadbeef, 3);
1068
1069 /* Destination is smaller than the source. */
1070 do_cint_test (0x5678, 0x5678, 2, 0x12345678, 3);
1071 do_cint_test (0xbeef, 0xbeef, 2, 0xdeadbeef, 3);
1072
1073 /* Destination and source are the same size. */
1074 do_cint_test (0x8765432112345678, 0x8765432112345678, 8, 0x8765432112345678,
1075 8);
1076 do_cint_test (0x432112345678, 0x432112345678, 6, 0x8765432112345678, 6);
1077 do_cint_test (0xfeedbeaddeadbeef, 0xfeedbeaddeadbeef, 8, 0xfeedbeaddeadbeef,
1078 8);
1079 do_cint_test (0xbeaddeadbeef, 0xbeaddeadbeef, 6, 0xfeedbeaddeadbeef, 6);
1080
1081 /* Destination is bigger than the source. Source is bigger than 32bits. */
1082 do_cint_test (0x3412345678, 0x3412345678, 8, 0x3412345678, 6);
1083 do_cint_test (0xff12345678, 0xff12345678, 8, 0xff12345678, 6);
1084 do_cint_test (0x432112345678, 0x432112345678, 8, 0x8765432112345678, 6);
1085 do_cint_test (0xff2112345678, 0xffffff2112345678, 8, 0xffffff2112345678, 6);
1086 }
1087
1088 } // namespace findvar_test
1089 } // namespace selftests
1090
1091 #endif
1092
1093 void
1094 _initialize_findvar (void)
1095 {
1096 #if GDB_SELF_TEST
1097 selftests::register_test
1098 ("copy_integer_to_size",
1099 selftests::findvar_tests::copy_integer_to_size_test);
1100 #endif
1101 }