]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frame.c
Convert observers to C++
[thirdparty/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45
46 /* The sentinel frame terminates the innermost end of the frame chain.
47 If unwound, it returns the information needed to construct an
48 innermost frame.
49
50 The current frame, which is the innermost frame, can be found at
51 sentinel_frame->prev. */
52
53 static struct frame_info *sentinel_frame;
54
55 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
56 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
57
58 /* Status of some values cached in the frame_info object. */
59
60 enum cached_copy_status
61 {
62 /* Value is unknown. */
63 CC_UNKNOWN,
64
65 /* We have a value. */
66 CC_VALUE,
67
68 /* Value was not saved. */
69 CC_NOT_SAVED,
70
71 /* Value is unavailable. */
72 CC_UNAVAILABLE
73 };
74
75 /* We keep a cache of stack frames, each of which is a "struct
76 frame_info". The innermost one gets allocated (in
77 wait_for_inferior) each time the inferior stops; sentinel_frame
78 points to it. Additional frames get allocated (in get_prev_frame)
79 as needed, and are chained through the next and prev fields. Any
80 time that the frame cache becomes invalid (most notably when we
81 execute something, but also if we change how we interpret the
82 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
83 which reads new symbols)), we should call reinit_frame_cache. */
84
85 struct frame_info
86 {
87 /* Level of this frame. The inner-most (youngest) frame is at level
88 0. As you move towards the outer-most (oldest) frame, the level
89 increases. This is a cached value. It could just as easily be
90 computed by counting back from the selected frame to the inner
91 most frame. */
92 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
93 reserved to indicate a bogus frame - one that has been created
94 just to keep GDB happy (GDB always needs a frame). For the
95 moment leave this as speculation. */
96 int level;
97
98 /* The frame's program space. */
99 struct program_space *pspace;
100
101 /* The frame's address space. */
102 const address_space *aspace;
103
104 /* The frame's low-level unwinder and corresponding cache. The
105 low-level unwinder is responsible for unwinding register values
106 for the previous frame. The low-level unwind methods are
107 selected based on the presence, or otherwise, of register unwind
108 information such as CFI. */
109 void *prologue_cache;
110 const struct frame_unwind *unwind;
111
112 /* Cached copy of the previous frame's architecture. */
113 struct
114 {
115 int p;
116 struct gdbarch *arch;
117 } prev_arch;
118
119 /* Cached copy of the previous frame's resume address. */
120 struct {
121 enum cached_copy_status status;
122 CORE_ADDR value;
123 } prev_pc;
124
125 /* Cached copy of the previous frame's function address. */
126 struct
127 {
128 CORE_ADDR addr;
129 int p;
130 } prev_func;
131
132 /* This frame's ID. */
133 struct
134 {
135 int p;
136 struct frame_id value;
137 } this_id;
138
139 /* The frame's high-level base methods, and corresponding cache.
140 The high level base methods are selected based on the frame's
141 debug info. */
142 const struct frame_base *base;
143 void *base_cache;
144
145 /* Pointers to the next (down, inner, younger) and previous (up,
146 outer, older) frame_info's in the frame cache. */
147 struct frame_info *next; /* down, inner, younger */
148 int prev_p;
149 struct frame_info *prev; /* up, outer, older */
150
151 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
152 could. Only valid when PREV_P is set. */
153 enum unwind_stop_reason stop_reason;
154
155 /* A frame specific string describing the STOP_REASON in more detail.
156 Only valid when PREV_P is set, but even then may still be NULL. */
157 const char *stop_string;
158 };
159
160 /* A frame stash used to speed up frame lookups. Create a hash table
161 to stash frames previously accessed from the frame cache for
162 quicker subsequent retrieval. The hash table is emptied whenever
163 the frame cache is invalidated. */
164
165 static htab_t frame_stash;
166
167 /* Internal function to calculate a hash from the frame_id addresses,
168 using as many valid addresses as possible. Frames below level 0
169 are not stored in the hash table. */
170
171 static hashval_t
172 frame_addr_hash (const void *ap)
173 {
174 const struct frame_info *frame = (const struct frame_info *) ap;
175 const struct frame_id f_id = frame->this_id.value;
176 hashval_t hash = 0;
177
178 gdb_assert (f_id.stack_status != FID_STACK_INVALID
179 || f_id.code_addr_p
180 || f_id.special_addr_p);
181
182 if (f_id.stack_status == FID_STACK_VALID)
183 hash = iterative_hash (&f_id.stack_addr,
184 sizeof (f_id.stack_addr), hash);
185 if (f_id.code_addr_p)
186 hash = iterative_hash (&f_id.code_addr,
187 sizeof (f_id.code_addr), hash);
188 if (f_id.special_addr_p)
189 hash = iterative_hash (&f_id.special_addr,
190 sizeof (f_id.special_addr), hash);
191
192 return hash;
193 }
194
195 /* Internal equality function for the hash table. This function
196 defers equality operations to frame_id_eq. */
197
198 static int
199 frame_addr_hash_eq (const void *a, const void *b)
200 {
201 const struct frame_info *f_entry = (const struct frame_info *) a;
202 const struct frame_info *f_element = (const struct frame_info *) b;
203
204 return frame_id_eq (f_entry->this_id.value,
205 f_element->this_id.value);
206 }
207
208 /* Internal function to create the frame_stash hash table. 100 seems
209 to be a good compromise to start the hash table at. */
210
211 static void
212 frame_stash_create (void)
213 {
214 frame_stash = htab_create (100,
215 frame_addr_hash,
216 frame_addr_hash_eq,
217 NULL);
218 }
219
220 /* Internal function to add a frame to the frame_stash hash table.
221 Returns false if a frame with the same ID was already stashed, true
222 otherwise. */
223
224 static int
225 frame_stash_add (struct frame_info *frame)
226 {
227 struct frame_info **slot;
228
229 /* Do not try to stash the sentinel frame. */
230 gdb_assert (frame->level >= 0);
231
232 slot = (struct frame_info **) htab_find_slot (frame_stash,
233 frame,
234 INSERT);
235
236 /* If we already have a frame in the stack with the same id, we
237 either have a stack cycle (corrupted stack?), or some bug
238 elsewhere in GDB. In any case, ignore the duplicate and return
239 an indication to the caller. */
240 if (*slot != NULL)
241 return 0;
242
243 *slot = frame;
244 return 1;
245 }
246
247 /* Internal function to search the frame stash for an entry with the
248 given frame ID. If found, return that frame. Otherwise return
249 NULL. */
250
251 static struct frame_info *
252 frame_stash_find (struct frame_id id)
253 {
254 struct frame_info dummy;
255 struct frame_info *frame;
256
257 dummy.this_id.value = id;
258 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
259 return frame;
260 }
261
262 /* Internal function to invalidate the frame stash by removing all
263 entries in it. This only occurs when the frame cache is
264 invalidated. */
265
266 static void
267 frame_stash_invalidate (void)
268 {
269 htab_empty (frame_stash);
270 }
271
272 /* Flag to control debugging. */
273
274 unsigned int frame_debug;
275 static void
276 show_frame_debug (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278 {
279 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
280 }
281
282 /* Flag to indicate whether backtraces should stop at main et.al. */
283
284 static int backtrace_past_main;
285 static void
286 show_backtrace_past_main (struct ui_file *file, int from_tty,
287 struct cmd_list_element *c, const char *value)
288 {
289 fprintf_filtered (file,
290 _("Whether backtraces should "
291 "continue past \"main\" is %s.\n"),
292 value);
293 }
294
295 static int backtrace_past_entry;
296 static void
297 show_backtrace_past_entry (struct ui_file *file, int from_tty,
298 struct cmd_list_element *c, const char *value)
299 {
300 fprintf_filtered (file, _("Whether backtraces should continue past the "
301 "entry point of a program is %s.\n"),
302 value);
303 }
304
305 static unsigned int backtrace_limit = UINT_MAX;
306 static void
307 show_backtrace_limit (struct ui_file *file, int from_tty,
308 struct cmd_list_element *c, const char *value)
309 {
310 fprintf_filtered (file,
311 _("An upper bound on the number "
312 "of backtrace levels is %s.\n"),
313 value);
314 }
315
316
317 static void
318 fprint_field (struct ui_file *file, const char *name, int p, CORE_ADDR addr)
319 {
320 if (p)
321 fprintf_unfiltered (file, "%s=%s", name, hex_string (addr));
322 else
323 fprintf_unfiltered (file, "!%s", name);
324 }
325
326 void
327 fprint_frame_id (struct ui_file *file, struct frame_id id)
328 {
329 fprintf_unfiltered (file, "{");
330
331 if (id.stack_status == FID_STACK_INVALID)
332 fprintf_unfiltered (file, "!stack");
333 else if (id.stack_status == FID_STACK_UNAVAILABLE)
334 fprintf_unfiltered (file, "stack=<unavailable>");
335 else if (id.stack_status == FID_STACK_SENTINEL)
336 fprintf_unfiltered (file, "stack=<sentinel>");
337 else
338 fprintf_unfiltered (file, "stack=%s", hex_string (id.stack_addr));
339 fprintf_unfiltered (file, ",");
340
341 fprint_field (file, "code", id.code_addr_p, id.code_addr);
342 fprintf_unfiltered (file, ",");
343
344 fprint_field (file, "special", id.special_addr_p, id.special_addr);
345
346 if (id.artificial_depth)
347 fprintf_unfiltered (file, ",artificial=%d", id.artificial_depth);
348
349 fprintf_unfiltered (file, "}");
350 }
351
352 static void
353 fprint_frame_type (struct ui_file *file, enum frame_type type)
354 {
355 switch (type)
356 {
357 case NORMAL_FRAME:
358 fprintf_unfiltered (file, "NORMAL_FRAME");
359 return;
360 case DUMMY_FRAME:
361 fprintf_unfiltered (file, "DUMMY_FRAME");
362 return;
363 case INLINE_FRAME:
364 fprintf_unfiltered (file, "INLINE_FRAME");
365 return;
366 case TAILCALL_FRAME:
367 fprintf_unfiltered (file, "TAILCALL_FRAME");
368 return;
369 case SIGTRAMP_FRAME:
370 fprintf_unfiltered (file, "SIGTRAMP_FRAME");
371 return;
372 case ARCH_FRAME:
373 fprintf_unfiltered (file, "ARCH_FRAME");
374 return;
375 case SENTINEL_FRAME:
376 fprintf_unfiltered (file, "SENTINEL_FRAME");
377 return;
378 default:
379 fprintf_unfiltered (file, "<unknown type>");
380 return;
381 };
382 }
383
384 static void
385 fprint_frame (struct ui_file *file, struct frame_info *fi)
386 {
387 if (fi == NULL)
388 {
389 fprintf_unfiltered (file, "<NULL frame>");
390 return;
391 }
392 fprintf_unfiltered (file, "{");
393 fprintf_unfiltered (file, "level=%d", fi->level);
394 fprintf_unfiltered (file, ",");
395 fprintf_unfiltered (file, "type=");
396 if (fi->unwind != NULL)
397 fprint_frame_type (file, fi->unwind->type);
398 else
399 fprintf_unfiltered (file, "<unknown>");
400 fprintf_unfiltered (file, ",");
401 fprintf_unfiltered (file, "unwind=");
402 if (fi->unwind != NULL)
403 gdb_print_host_address (fi->unwind, file);
404 else
405 fprintf_unfiltered (file, "<unknown>");
406 fprintf_unfiltered (file, ",");
407 fprintf_unfiltered (file, "pc=");
408 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
409 fprintf_unfiltered (file, "<unknown>");
410 else if (fi->next->prev_pc.status == CC_VALUE)
411 fprintf_unfiltered (file, "%s",
412 hex_string (fi->next->prev_pc.value));
413 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
414 val_print_not_saved (file);
415 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
416 val_print_unavailable (file);
417 fprintf_unfiltered (file, ",");
418 fprintf_unfiltered (file, "id=");
419 if (fi->this_id.p)
420 fprint_frame_id (file, fi->this_id.value);
421 else
422 fprintf_unfiltered (file, "<unknown>");
423 fprintf_unfiltered (file, ",");
424 fprintf_unfiltered (file, "func=");
425 if (fi->next != NULL && fi->next->prev_func.p)
426 fprintf_unfiltered (file, "%s", hex_string (fi->next->prev_func.addr));
427 else
428 fprintf_unfiltered (file, "<unknown>");
429 fprintf_unfiltered (file, "}");
430 }
431
432 /* Given FRAME, return the enclosing frame as found in real frames read-in from
433 inferior memory. Skip any previous frames which were made up by GDB.
434 Return FRAME if FRAME is a non-artificial frame.
435 Return NULL if FRAME is the start of an artificial-only chain. */
436
437 static struct frame_info *
438 skip_artificial_frames (struct frame_info *frame)
439 {
440 /* Note we use get_prev_frame_always, and not get_prev_frame. The
441 latter will truncate the frame chain, leading to this function
442 unintentionally returning a null_frame_id (e.g., when the user
443 sets a backtrace limit).
444
445 Note that for record targets we may get a frame chain that consists
446 of artificial frames only. */
447 while (get_frame_type (frame) == INLINE_FRAME
448 || get_frame_type (frame) == TAILCALL_FRAME)
449 {
450 frame = get_prev_frame_always (frame);
451 if (frame == NULL)
452 break;
453 }
454
455 return frame;
456 }
457
458 struct frame_info *
459 skip_unwritable_frames (struct frame_info *frame)
460 {
461 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
462 {
463 frame = get_prev_frame (frame);
464 if (frame == NULL)
465 break;
466 }
467
468 return frame;
469 }
470
471 /* See frame.h. */
472
473 struct frame_info *
474 skip_tailcall_frames (struct frame_info *frame)
475 {
476 while (get_frame_type (frame) == TAILCALL_FRAME)
477 {
478 /* Note that for record targets we may get a frame chain that consists of
479 tailcall frames only. */
480 frame = get_prev_frame (frame);
481 if (frame == NULL)
482 break;
483 }
484
485 return frame;
486 }
487
488 /* Compute the frame's uniq ID that can be used to, later, re-find the
489 frame. */
490
491 static void
492 compute_frame_id (struct frame_info *fi)
493 {
494 gdb_assert (!fi->this_id.p);
495
496 if (frame_debug)
497 fprintf_unfiltered (gdb_stdlog, "{ compute_frame_id (fi=%d) ",
498 fi->level);
499 /* Find the unwinder. */
500 if (fi->unwind == NULL)
501 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
502 /* Find THIS frame's ID. */
503 /* Default to outermost if no ID is found. */
504 fi->this_id.value = outer_frame_id;
505 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
506 gdb_assert (frame_id_p (fi->this_id.value));
507 fi->this_id.p = 1;
508 if (frame_debug)
509 {
510 fprintf_unfiltered (gdb_stdlog, "-> ");
511 fprint_frame_id (gdb_stdlog, fi->this_id.value);
512 fprintf_unfiltered (gdb_stdlog, " }\n");
513 }
514 }
515
516 /* Return a frame uniq ID that can be used to, later, re-find the
517 frame. */
518
519 struct frame_id
520 get_frame_id (struct frame_info *fi)
521 {
522 if (fi == NULL)
523 return null_frame_id;
524
525 if (!fi->this_id.p)
526 {
527 int stashed;
528
529 /* If we haven't computed the frame id yet, then it must be that
530 this is the current frame. Compute it now, and stash the
531 result. The IDs of other frames are computed as soon as
532 they're created, in order to detect cycles. See
533 get_prev_frame_if_no_cycle. */
534 gdb_assert (fi->level == 0);
535
536 /* Compute. */
537 compute_frame_id (fi);
538
539 /* Since this is the first frame in the chain, this should
540 always succeed. */
541 stashed = frame_stash_add (fi);
542 gdb_assert (stashed);
543 }
544
545 return fi->this_id.value;
546 }
547
548 struct frame_id
549 get_stack_frame_id (struct frame_info *next_frame)
550 {
551 return get_frame_id (skip_artificial_frames (next_frame));
552 }
553
554 struct frame_id
555 frame_unwind_caller_id (struct frame_info *next_frame)
556 {
557 struct frame_info *this_frame;
558
559 /* Use get_prev_frame_always, and not get_prev_frame. The latter
560 will truncate the frame chain, leading to this function
561 unintentionally returning a null_frame_id (e.g., when a caller
562 requests the frame ID of "main()"s caller. */
563
564 next_frame = skip_artificial_frames (next_frame);
565 if (next_frame == NULL)
566 return null_frame_id;
567
568 this_frame = get_prev_frame_always (next_frame);
569 if (this_frame)
570 return get_frame_id (skip_artificial_frames (this_frame));
571 else
572 return null_frame_id;
573 }
574
575 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
576 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
577 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_INVALID, 0, 1, 0 };
578
579 struct frame_id
580 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
581 CORE_ADDR special_addr)
582 {
583 struct frame_id id = null_frame_id;
584
585 id.stack_addr = stack_addr;
586 id.stack_status = FID_STACK_VALID;
587 id.code_addr = code_addr;
588 id.code_addr_p = 1;
589 id.special_addr = special_addr;
590 id.special_addr_p = 1;
591 return id;
592 }
593
594 /* See frame.h. */
595
596 struct frame_id
597 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
598 {
599 struct frame_id id = null_frame_id;
600
601 id.stack_status = FID_STACK_UNAVAILABLE;
602 id.code_addr = code_addr;
603 id.code_addr_p = 1;
604 return id;
605 }
606
607 /* See frame.h. */
608
609 struct frame_id
610 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
611 CORE_ADDR special_addr)
612 {
613 struct frame_id id = null_frame_id;
614
615 id.stack_status = FID_STACK_UNAVAILABLE;
616 id.code_addr = code_addr;
617 id.code_addr_p = 1;
618 id.special_addr = special_addr;
619 id.special_addr_p = 1;
620 return id;
621 }
622
623 struct frame_id
624 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
625 {
626 struct frame_id id = null_frame_id;
627
628 id.stack_addr = stack_addr;
629 id.stack_status = FID_STACK_VALID;
630 id.code_addr = code_addr;
631 id.code_addr_p = 1;
632 return id;
633 }
634
635 struct frame_id
636 frame_id_build_wild (CORE_ADDR stack_addr)
637 {
638 struct frame_id id = null_frame_id;
639
640 id.stack_addr = stack_addr;
641 id.stack_status = FID_STACK_VALID;
642 return id;
643 }
644
645 int
646 frame_id_p (struct frame_id l)
647 {
648 int p;
649
650 /* The frame is valid iff it has a valid stack address. */
651 p = l.stack_status != FID_STACK_INVALID;
652 /* outer_frame_id is also valid. */
653 if (!p && memcmp (&l, &outer_frame_id, sizeof (l)) == 0)
654 p = 1;
655 if (frame_debug)
656 {
657 fprintf_unfiltered (gdb_stdlog, "{ frame_id_p (l=");
658 fprint_frame_id (gdb_stdlog, l);
659 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", p);
660 }
661 return p;
662 }
663
664 int
665 frame_id_artificial_p (struct frame_id l)
666 {
667 if (!frame_id_p (l))
668 return 0;
669
670 return (l.artificial_depth != 0);
671 }
672
673 int
674 frame_id_eq (struct frame_id l, struct frame_id r)
675 {
676 int eq;
677
678 if (l.stack_status == FID_STACK_INVALID && l.special_addr_p
679 && r.stack_status == FID_STACK_INVALID && r.special_addr_p)
680 /* The outermost frame marker is equal to itself. This is the
681 dodgy thing about outer_frame_id, since between execution steps
682 we might step into another function - from which we can't
683 unwind either. More thought required to get rid of
684 outer_frame_id. */
685 eq = 1;
686 else if (l.stack_status == FID_STACK_INVALID
687 || r.stack_status == FID_STACK_INVALID)
688 /* Like a NaN, if either ID is invalid, the result is false.
689 Note that a frame ID is invalid iff it is the null frame ID. */
690 eq = 0;
691 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
692 /* If .stack addresses are different, the frames are different. */
693 eq = 0;
694 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
695 /* An invalid code addr is a wild card. If .code addresses are
696 different, the frames are different. */
697 eq = 0;
698 else if (l.special_addr_p && r.special_addr_p
699 && l.special_addr != r.special_addr)
700 /* An invalid special addr is a wild card (or unused). Otherwise
701 if special addresses are different, the frames are different. */
702 eq = 0;
703 else if (l.artificial_depth != r.artificial_depth)
704 /* If artifical depths are different, the frames must be different. */
705 eq = 0;
706 else
707 /* Frames are equal. */
708 eq = 1;
709
710 if (frame_debug)
711 {
712 fprintf_unfiltered (gdb_stdlog, "{ frame_id_eq (l=");
713 fprint_frame_id (gdb_stdlog, l);
714 fprintf_unfiltered (gdb_stdlog, ",r=");
715 fprint_frame_id (gdb_stdlog, r);
716 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", eq);
717 }
718 return eq;
719 }
720
721 /* Safety net to check whether frame ID L should be inner to
722 frame ID R, according to their stack addresses.
723
724 This method cannot be used to compare arbitrary frames, as the
725 ranges of valid stack addresses may be discontiguous (e.g. due
726 to sigaltstack).
727
728 However, it can be used as safety net to discover invalid frame
729 IDs in certain circumstances. Assuming that NEXT is the immediate
730 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
731
732 * The stack address of NEXT must be inner-than-or-equal to the stack
733 address of THIS.
734
735 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
736 error has occurred.
737
738 * If NEXT and THIS have different stack addresses, no other frame
739 in the frame chain may have a stack address in between.
740
741 Therefore, if frame_id_inner (TEST, THIS) holds, but
742 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
743 to a valid frame in the frame chain.
744
745 The sanity checks above cannot be performed when a SIGTRAMP frame
746 is involved, because signal handlers might be executed on a different
747 stack than the stack used by the routine that caused the signal
748 to be raised. This can happen for instance when a thread exceeds
749 its maximum stack size. In this case, certain compilers implement
750 a stack overflow strategy that cause the handler to be run on a
751 different stack. */
752
753 static int
754 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
755 {
756 int inner;
757
758 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
759 /* Like NaN, any operation involving an invalid ID always fails.
760 Likewise if either ID has an unavailable stack address. */
761 inner = 0;
762 else if (l.artificial_depth > r.artificial_depth
763 && l.stack_addr == r.stack_addr
764 && l.code_addr_p == r.code_addr_p
765 && l.special_addr_p == r.special_addr_p
766 && l.special_addr == r.special_addr)
767 {
768 /* Same function, different inlined functions. */
769 const struct block *lb, *rb;
770
771 gdb_assert (l.code_addr_p && r.code_addr_p);
772
773 lb = block_for_pc (l.code_addr);
774 rb = block_for_pc (r.code_addr);
775
776 if (lb == NULL || rb == NULL)
777 /* Something's gone wrong. */
778 inner = 0;
779 else
780 /* This will return true if LB and RB are the same block, or
781 if the block with the smaller depth lexically encloses the
782 block with the greater depth. */
783 inner = contained_in (lb, rb);
784 }
785 else
786 /* Only return non-zero when strictly inner than. Note that, per
787 comment in "frame.h", there is some fuzz here. Frameless
788 functions are not strictly inner than (same .stack but
789 different .code and/or .special address). */
790 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
791 if (frame_debug)
792 {
793 fprintf_unfiltered (gdb_stdlog, "{ frame_id_inner (l=");
794 fprint_frame_id (gdb_stdlog, l);
795 fprintf_unfiltered (gdb_stdlog, ",r=");
796 fprint_frame_id (gdb_stdlog, r);
797 fprintf_unfiltered (gdb_stdlog, ") -> %d }\n", inner);
798 }
799 return inner;
800 }
801
802 struct frame_info *
803 frame_find_by_id (struct frame_id id)
804 {
805 struct frame_info *frame, *prev_frame;
806
807 /* ZERO denotes the null frame, let the caller decide what to do
808 about it. Should it instead return get_current_frame()? */
809 if (!frame_id_p (id))
810 return NULL;
811
812 /* Check for the sentinel frame. */
813 if (frame_id_eq (id, sentinel_frame_id))
814 return sentinel_frame;
815
816 /* Try using the frame stash first. Finding it there removes the need
817 to perform the search by looping over all frames, which can be very
818 CPU-intensive if the number of frames is very high (the loop is O(n)
819 and get_prev_frame performs a series of checks that are relatively
820 expensive). This optimization is particularly useful when this function
821 is called from another function (such as value_fetch_lazy, case
822 VALUE_LVAL (val) == lval_register) which already loops over all frames,
823 making the overall behavior O(n^2). */
824 frame = frame_stash_find (id);
825 if (frame)
826 return frame;
827
828 for (frame = get_current_frame (); ; frame = prev_frame)
829 {
830 struct frame_id self = get_frame_id (frame);
831
832 if (frame_id_eq (id, self))
833 /* An exact match. */
834 return frame;
835
836 prev_frame = get_prev_frame (frame);
837 if (!prev_frame)
838 return NULL;
839
840 /* As a safety net to avoid unnecessary backtracing while trying
841 to find an invalid ID, we check for a common situation where
842 we can detect from comparing stack addresses that no other
843 frame in the current frame chain can have this ID. See the
844 comment at frame_id_inner for details. */
845 if (get_frame_type (frame) == NORMAL_FRAME
846 && !frame_id_inner (get_frame_arch (frame), id, self)
847 && frame_id_inner (get_frame_arch (prev_frame), id,
848 get_frame_id (prev_frame)))
849 return NULL;
850 }
851 return NULL;
852 }
853
854 static CORE_ADDR
855 frame_unwind_pc (struct frame_info *this_frame)
856 {
857 if (this_frame->prev_pc.status == CC_UNKNOWN)
858 {
859 if (gdbarch_unwind_pc_p (frame_unwind_arch (this_frame)))
860 {
861 struct gdbarch *prev_gdbarch;
862 CORE_ADDR pc = 0;
863 int pc_p = 0;
864
865 /* The right way. The `pure' way. The one true way. This
866 method depends solely on the register-unwind code to
867 determine the value of registers in THIS frame, and hence
868 the value of this frame's PC (resume address). A typical
869 implementation is no more than:
870
871 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
872 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
873
874 Note: this method is very heavily dependent on a correct
875 register-unwind implementation, it pays to fix that
876 method first; this method is frame type agnostic, since
877 it only deals with register values, it works with any
878 frame. This is all in stark contrast to the old
879 FRAME_SAVED_PC which would try to directly handle all the
880 different ways that a PC could be unwound. */
881 prev_gdbarch = frame_unwind_arch (this_frame);
882
883 TRY
884 {
885 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
886 pc_p = 1;
887 }
888 CATCH (ex, RETURN_MASK_ERROR)
889 {
890 if (ex.error == NOT_AVAILABLE_ERROR)
891 {
892 this_frame->prev_pc.status = CC_UNAVAILABLE;
893
894 if (frame_debug)
895 fprintf_unfiltered (gdb_stdlog,
896 "{ frame_unwind_pc (this_frame=%d)"
897 " -> <unavailable> }\n",
898 this_frame->level);
899 }
900 else if (ex.error == OPTIMIZED_OUT_ERROR)
901 {
902 this_frame->prev_pc.status = CC_NOT_SAVED;
903
904 if (frame_debug)
905 fprintf_unfiltered (gdb_stdlog,
906 "{ frame_unwind_pc (this_frame=%d)"
907 " -> <not saved> }\n",
908 this_frame->level);
909 }
910 else
911 throw_exception (ex);
912 }
913 END_CATCH
914
915 if (pc_p)
916 {
917 this_frame->prev_pc.value = pc;
918 this_frame->prev_pc.status = CC_VALUE;
919 if (frame_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "{ frame_unwind_pc (this_frame=%d) "
922 "-> %s }\n",
923 this_frame->level,
924 hex_string (this_frame->prev_pc.value));
925 }
926 }
927 else
928 internal_error (__FILE__, __LINE__, _("No unwind_pc method"));
929 }
930
931 if (this_frame->prev_pc.status == CC_VALUE)
932 return this_frame->prev_pc.value;
933 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
934 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
935 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
936 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
937 else
938 internal_error (__FILE__, __LINE__,
939 "unexpected prev_pc status: %d",
940 (int) this_frame->prev_pc.status);
941 }
942
943 CORE_ADDR
944 frame_unwind_caller_pc (struct frame_info *this_frame)
945 {
946 this_frame = skip_artificial_frames (this_frame);
947
948 /* We must have a non-artificial frame. The caller is supposed to check
949 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
950 in this case. */
951 gdb_assert (this_frame != NULL);
952
953 return frame_unwind_pc (this_frame);
954 }
955
956 int
957 get_frame_func_if_available (struct frame_info *this_frame, CORE_ADDR *pc)
958 {
959 struct frame_info *next_frame = this_frame->next;
960
961 if (!next_frame->prev_func.p)
962 {
963 CORE_ADDR addr_in_block;
964
965 /* Make certain that this, and not the adjacent, function is
966 found. */
967 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
968 {
969 next_frame->prev_func.p = -1;
970 if (frame_debug)
971 fprintf_unfiltered (gdb_stdlog,
972 "{ get_frame_func (this_frame=%d)"
973 " -> unavailable }\n",
974 this_frame->level);
975 }
976 else
977 {
978 next_frame->prev_func.p = 1;
979 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
980 if (frame_debug)
981 fprintf_unfiltered (gdb_stdlog,
982 "{ get_frame_func (this_frame=%d) -> %s }\n",
983 this_frame->level,
984 hex_string (next_frame->prev_func.addr));
985 }
986 }
987
988 if (next_frame->prev_func.p < 0)
989 {
990 *pc = -1;
991 return 0;
992 }
993 else
994 {
995 *pc = next_frame->prev_func.addr;
996 return 1;
997 }
998 }
999
1000 CORE_ADDR
1001 get_frame_func (struct frame_info *this_frame)
1002 {
1003 CORE_ADDR pc;
1004
1005 if (!get_frame_func_if_available (this_frame, &pc))
1006 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1007
1008 return pc;
1009 }
1010
1011 static enum register_status
1012 do_frame_register_read (void *src, int regnum, gdb_byte *buf)
1013 {
1014 if (!deprecated_frame_register_read ((struct frame_info *) src, regnum, buf))
1015 return REG_UNAVAILABLE;
1016 else
1017 return REG_VALID;
1018 }
1019
1020 std::unique_ptr<readonly_detached_regcache>
1021 frame_save_as_regcache (struct frame_info *this_frame)
1022 {
1023 std::unique_ptr<readonly_detached_regcache> regcache
1024 (new readonly_detached_regcache (get_frame_arch (this_frame),
1025 do_frame_register_read, this_frame));
1026
1027 return regcache;
1028 }
1029
1030 void
1031 frame_pop (struct frame_info *this_frame)
1032 {
1033 struct frame_info *prev_frame;
1034
1035 if (get_frame_type (this_frame) == DUMMY_FRAME)
1036 {
1037 /* Popping a dummy frame involves restoring more than just registers.
1038 dummy_frame_pop does all the work. */
1039 dummy_frame_pop (get_frame_id (this_frame), inferior_ptid);
1040 return;
1041 }
1042
1043 /* Ensure that we have a frame to pop to. */
1044 prev_frame = get_prev_frame_always (this_frame);
1045
1046 if (!prev_frame)
1047 error (_("Cannot pop the initial frame."));
1048
1049 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1050 entering THISFRAME. */
1051 prev_frame = skip_tailcall_frames (prev_frame);
1052
1053 if (prev_frame == NULL)
1054 error (_("Cannot find the caller frame."));
1055
1056 /* Make a copy of all the register values unwound from this frame.
1057 Save them in a scratch buffer so that there isn't a race between
1058 trying to extract the old values from the current regcache while
1059 at the same time writing new values into that same cache. */
1060 std::unique_ptr<readonly_detached_regcache> scratch
1061 = frame_save_as_regcache (prev_frame);
1062
1063 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1064 target's register cache that it is about to be hit with a burst
1065 register transfer and that the sequence of register writes should
1066 be batched. The pair target_prepare_to_store() and
1067 target_store_registers() kind of suggest this functionality.
1068 Unfortunately, they don't implement it. Their lack of a formal
1069 definition can lead to targets writing back bogus values
1070 (arguably a bug in the target code mind). */
1071 /* Now copy those saved registers into the current regcache. */
1072 get_current_regcache ()->restore (scratch.get ());
1073
1074 /* We've made right mess of GDB's local state, just discard
1075 everything. */
1076 reinit_frame_cache ();
1077 }
1078
1079 void
1080 frame_register_unwind (struct frame_info *frame, int regnum,
1081 int *optimizedp, int *unavailablep,
1082 enum lval_type *lvalp, CORE_ADDR *addrp,
1083 int *realnump, gdb_byte *bufferp)
1084 {
1085 struct value *value;
1086
1087 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1088 that the value proper does not need to be fetched. */
1089 gdb_assert (optimizedp != NULL);
1090 gdb_assert (lvalp != NULL);
1091 gdb_assert (addrp != NULL);
1092 gdb_assert (realnump != NULL);
1093 /* gdb_assert (bufferp != NULL); */
1094
1095 value = frame_unwind_register_value (frame, regnum);
1096
1097 gdb_assert (value != NULL);
1098
1099 *optimizedp = value_optimized_out (value);
1100 *unavailablep = !value_entirely_available (value);
1101 *lvalp = VALUE_LVAL (value);
1102 *addrp = value_address (value);
1103 if (*lvalp == lval_register)
1104 *realnump = VALUE_REGNUM (value);
1105 else
1106 *realnump = -1;
1107
1108 if (bufferp)
1109 {
1110 if (!*optimizedp && !*unavailablep)
1111 memcpy (bufferp, value_contents_all (value),
1112 TYPE_LENGTH (value_type (value)));
1113 else
1114 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1115 }
1116
1117 /* Dispose of the new value. This prevents watchpoints from
1118 trying to watch the saved frame pointer. */
1119 release_value (value);
1120 value_free (value);
1121 }
1122
1123 void
1124 frame_register (struct frame_info *frame, int regnum,
1125 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1126 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1127 {
1128 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1129 that the value proper does not need to be fetched. */
1130 gdb_assert (optimizedp != NULL);
1131 gdb_assert (lvalp != NULL);
1132 gdb_assert (addrp != NULL);
1133 gdb_assert (realnump != NULL);
1134 /* gdb_assert (bufferp != NULL); */
1135
1136 /* Obtain the register value by unwinding the register from the next
1137 (more inner frame). */
1138 gdb_assert (frame != NULL && frame->next != NULL);
1139 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1140 lvalp, addrp, realnump, bufferp);
1141 }
1142
1143 void
1144 frame_unwind_register (struct frame_info *frame, int regnum, gdb_byte *buf)
1145 {
1146 int optimized;
1147 int unavailable;
1148 CORE_ADDR addr;
1149 int realnum;
1150 enum lval_type lval;
1151
1152 frame_register_unwind (frame, regnum, &optimized, &unavailable,
1153 &lval, &addr, &realnum, buf);
1154
1155 if (optimized)
1156 throw_error (OPTIMIZED_OUT_ERROR,
1157 _("Register %d was not saved"), regnum);
1158 if (unavailable)
1159 throw_error (NOT_AVAILABLE_ERROR,
1160 _("Register %d is not available"), regnum);
1161 }
1162
1163 void
1164 get_frame_register (struct frame_info *frame,
1165 int regnum, gdb_byte *buf)
1166 {
1167 frame_unwind_register (frame->next, regnum, buf);
1168 }
1169
1170 struct value *
1171 frame_unwind_register_value (struct frame_info *frame, int regnum)
1172 {
1173 struct gdbarch *gdbarch;
1174 struct value *value;
1175
1176 gdb_assert (frame != NULL);
1177 gdbarch = frame_unwind_arch (frame);
1178
1179 if (frame_debug)
1180 {
1181 fprintf_unfiltered (gdb_stdlog,
1182 "{ frame_unwind_register_value "
1183 "(frame=%d,regnum=%d(%s),...) ",
1184 frame->level, regnum,
1185 user_reg_map_regnum_to_name (gdbarch, regnum));
1186 }
1187
1188 /* Find the unwinder. */
1189 if (frame->unwind == NULL)
1190 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
1191
1192 /* Ask this frame to unwind its register. */
1193 value = frame->unwind->prev_register (frame, &frame->prologue_cache, regnum);
1194
1195 if (frame_debug)
1196 {
1197 fprintf_unfiltered (gdb_stdlog, "->");
1198 if (value_optimized_out (value))
1199 {
1200 fprintf_unfiltered (gdb_stdlog, " ");
1201 val_print_optimized_out (value, gdb_stdlog);
1202 }
1203 else
1204 {
1205 if (VALUE_LVAL (value) == lval_register)
1206 fprintf_unfiltered (gdb_stdlog, " register=%d",
1207 VALUE_REGNUM (value));
1208 else if (VALUE_LVAL (value) == lval_memory)
1209 fprintf_unfiltered (gdb_stdlog, " address=%s",
1210 paddress (gdbarch,
1211 value_address (value)));
1212 else
1213 fprintf_unfiltered (gdb_stdlog, " computed");
1214
1215 if (value_lazy (value))
1216 fprintf_unfiltered (gdb_stdlog, " lazy");
1217 else
1218 {
1219 int i;
1220 const gdb_byte *buf = value_contents (value);
1221
1222 fprintf_unfiltered (gdb_stdlog, " bytes=");
1223 fprintf_unfiltered (gdb_stdlog, "[");
1224 for (i = 0; i < register_size (gdbarch, regnum); i++)
1225 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1226 fprintf_unfiltered (gdb_stdlog, "]");
1227 }
1228 }
1229
1230 fprintf_unfiltered (gdb_stdlog, " }\n");
1231 }
1232
1233 return value;
1234 }
1235
1236 struct value *
1237 get_frame_register_value (struct frame_info *frame, int regnum)
1238 {
1239 return frame_unwind_register_value (frame->next, regnum);
1240 }
1241
1242 LONGEST
1243 frame_unwind_register_signed (struct frame_info *frame, int regnum)
1244 {
1245 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1246 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1247 int size = register_size (gdbarch, regnum);
1248 struct value *value = frame_unwind_register_value (frame, regnum);
1249
1250 gdb_assert (value != NULL);
1251
1252 if (value_optimized_out (value))
1253 {
1254 throw_error (OPTIMIZED_OUT_ERROR,
1255 _("Register %d was not saved"), regnum);
1256 }
1257 if (!value_entirely_available (value))
1258 {
1259 throw_error (NOT_AVAILABLE_ERROR,
1260 _("Register %d is not available"), regnum);
1261 }
1262
1263 LONGEST r = extract_signed_integer (value_contents_all (value), size,
1264 byte_order);
1265
1266 release_value (value);
1267 value_free (value);
1268 return r;
1269 }
1270
1271 LONGEST
1272 get_frame_register_signed (struct frame_info *frame, int regnum)
1273 {
1274 return frame_unwind_register_signed (frame->next, regnum);
1275 }
1276
1277 ULONGEST
1278 frame_unwind_register_unsigned (struct frame_info *frame, int regnum)
1279 {
1280 struct gdbarch *gdbarch = frame_unwind_arch (frame);
1281 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1282 int size = register_size (gdbarch, regnum);
1283 struct value *value = frame_unwind_register_value (frame, regnum);
1284
1285 gdb_assert (value != NULL);
1286
1287 if (value_optimized_out (value))
1288 {
1289 throw_error (OPTIMIZED_OUT_ERROR,
1290 _("Register %d was not saved"), regnum);
1291 }
1292 if (!value_entirely_available (value))
1293 {
1294 throw_error (NOT_AVAILABLE_ERROR,
1295 _("Register %d is not available"), regnum);
1296 }
1297
1298 ULONGEST r = extract_unsigned_integer (value_contents_all (value), size,
1299 byte_order);
1300
1301 release_value (value);
1302 value_free (value);
1303 return r;
1304 }
1305
1306 ULONGEST
1307 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1308 {
1309 return frame_unwind_register_unsigned (frame->next, regnum);
1310 }
1311
1312 int
1313 read_frame_register_unsigned (struct frame_info *frame, int regnum,
1314 ULONGEST *val)
1315 {
1316 struct value *regval = get_frame_register_value (frame, regnum);
1317
1318 if (!value_optimized_out (regval)
1319 && value_entirely_available (regval))
1320 {
1321 struct gdbarch *gdbarch = get_frame_arch (frame);
1322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1323 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1324
1325 *val = extract_unsigned_integer (value_contents (regval), size, byte_order);
1326 return 1;
1327 }
1328
1329 return 0;
1330 }
1331
1332 void
1333 put_frame_register (struct frame_info *frame, int regnum,
1334 const gdb_byte *buf)
1335 {
1336 struct gdbarch *gdbarch = get_frame_arch (frame);
1337 int realnum;
1338 int optim;
1339 int unavail;
1340 enum lval_type lval;
1341 CORE_ADDR addr;
1342
1343 frame_register (frame, regnum, &optim, &unavail,
1344 &lval, &addr, &realnum, NULL);
1345 if (optim)
1346 error (_("Attempt to assign to a register that was not saved."));
1347 switch (lval)
1348 {
1349 case lval_memory:
1350 {
1351 write_memory (addr, buf, register_size (gdbarch, regnum));
1352 break;
1353 }
1354 case lval_register:
1355 regcache_cooked_write (get_current_regcache (), realnum, buf);
1356 break;
1357 default:
1358 error (_("Attempt to assign to an unmodifiable value."));
1359 }
1360 }
1361
1362 /* This function is deprecated. Use get_frame_register_value instead,
1363 which provides more accurate information.
1364
1365 Find and return the value of REGNUM for the specified stack frame.
1366 The number of bytes copied is REGISTER_SIZE (REGNUM).
1367
1368 Returns 0 if the register value could not be found. */
1369
1370 int
1371 deprecated_frame_register_read (struct frame_info *frame, int regnum,
1372 gdb_byte *myaddr)
1373 {
1374 int optimized;
1375 int unavailable;
1376 enum lval_type lval;
1377 CORE_ADDR addr;
1378 int realnum;
1379
1380 frame_register (frame, regnum, &optimized, &unavailable,
1381 &lval, &addr, &realnum, myaddr);
1382
1383 return !optimized && !unavailable;
1384 }
1385
1386 int
1387 get_frame_register_bytes (struct frame_info *frame, int regnum,
1388 CORE_ADDR offset, int len, gdb_byte *myaddr,
1389 int *optimizedp, int *unavailablep)
1390 {
1391 struct gdbarch *gdbarch = get_frame_arch (frame);
1392 int i;
1393 int maxsize;
1394 int numregs;
1395
1396 /* Skip registers wholly inside of OFFSET. */
1397 while (offset >= register_size (gdbarch, regnum))
1398 {
1399 offset -= register_size (gdbarch, regnum);
1400 regnum++;
1401 }
1402
1403 /* Ensure that we will not read beyond the end of the register file.
1404 This can only ever happen if the debug information is bad. */
1405 maxsize = -offset;
1406 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1407 for (i = regnum; i < numregs; i++)
1408 {
1409 int thissize = register_size (gdbarch, i);
1410
1411 if (thissize == 0)
1412 break; /* This register is not available on this architecture. */
1413 maxsize += thissize;
1414 }
1415 if (len > maxsize)
1416 error (_("Bad debug information detected: "
1417 "Attempt to read %d bytes from registers."), len);
1418
1419 /* Copy the data. */
1420 while (len > 0)
1421 {
1422 int curr_len = register_size (gdbarch, regnum) - offset;
1423
1424 if (curr_len > len)
1425 curr_len = len;
1426
1427 if (curr_len == register_size (gdbarch, regnum))
1428 {
1429 enum lval_type lval;
1430 CORE_ADDR addr;
1431 int realnum;
1432
1433 frame_register (frame, regnum, optimizedp, unavailablep,
1434 &lval, &addr, &realnum, myaddr);
1435 if (*optimizedp || *unavailablep)
1436 return 0;
1437 }
1438 else
1439 {
1440 struct value *value = frame_unwind_register_value (frame->next,
1441 regnum);
1442 gdb_assert (value != NULL);
1443 *optimizedp = value_optimized_out (value);
1444 *unavailablep = !value_entirely_available (value);
1445
1446 if (*optimizedp || *unavailablep)
1447 {
1448 release_value (value);
1449 value_free (value);
1450 return 0;
1451 }
1452 memcpy (myaddr, value_contents_all (value) + offset, curr_len);
1453 release_value (value);
1454 value_free (value);
1455 }
1456
1457 myaddr += curr_len;
1458 len -= curr_len;
1459 offset = 0;
1460 regnum++;
1461 }
1462
1463 *optimizedp = 0;
1464 *unavailablep = 0;
1465 return 1;
1466 }
1467
1468 void
1469 put_frame_register_bytes (struct frame_info *frame, int regnum,
1470 CORE_ADDR offset, int len, const gdb_byte *myaddr)
1471 {
1472 struct gdbarch *gdbarch = get_frame_arch (frame);
1473
1474 /* Skip registers wholly inside of OFFSET. */
1475 while (offset >= register_size (gdbarch, regnum))
1476 {
1477 offset -= register_size (gdbarch, regnum);
1478 regnum++;
1479 }
1480
1481 /* Copy the data. */
1482 while (len > 0)
1483 {
1484 int curr_len = register_size (gdbarch, regnum) - offset;
1485
1486 if (curr_len > len)
1487 curr_len = len;
1488
1489 if (curr_len == register_size (gdbarch, regnum))
1490 {
1491 put_frame_register (frame, regnum, myaddr);
1492 }
1493 else
1494 {
1495 struct value *value = frame_unwind_register_value (frame->next,
1496 regnum);
1497 gdb_assert (value != NULL);
1498
1499 memcpy ((char *) value_contents_writeable (value) + offset, myaddr,
1500 curr_len);
1501 put_frame_register (frame, regnum, value_contents_raw (value));
1502 release_value (value);
1503 value_free (value);
1504 }
1505
1506 myaddr += curr_len;
1507 len -= curr_len;
1508 offset = 0;
1509 regnum++;
1510 }
1511 }
1512
1513 /* Create a sentinel frame. */
1514
1515 static struct frame_info *
1516 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1517 {
1518 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1519
1520 frame->level = -1;
1521 frame->pspace = pspace;
1522 frame->aspace = regcache->aspace ();
1523 /* Explicitly initialize the sentinel frame's cache. Provide it
1524 with the underlying regcache. In the future additional
1525 information, such as the frame's thread will be added. */
1526 frame->prologue_cache = sentinel_frame_cache (regcache);
1527 /* For the moment there is only one sentinel frame implementation. */
1528 frame->unwind = &sentinel_frame_unwind;
1529 /* Link this frame back to itself. The frame is self referential
1530 (the unwound PC is the same as the pc), so make it so. */
1531 frame->next = frame;
1532 /* The sentinel frame has a special ID. */
1533 frame->this_id.p = 1;
1534 frame->this_id.value = sentinel_frame_id;
1535 if (frame_debug)
1536 {
1537 fprintf_unfiltered (gdb_stdlog, "{ create_sentinel_frame (...) -> ");
1538 fprint_frame (gdb_stdlog, frame);
1539 fprintf_unfiltered (gdb_stdlog, " }\n");
1540 }
1541 return frame;
1542 }
1543
1544 /* Cache for frame addresses already read by gdb. Valid only while
1545 inferior is stopped. Control variables for the frame cache should
1546 be local to this module. */
1547
1548 static struct obstack frame_cache_obstack;
1549
1550 void *
1551 frame_obstack_zalloc (unsigned long size)
1552 {
1553 void *data = obstack_alloc (&frame_cache_obstack, size);
1554
1555 memset (data, 0, size);
1556 return data;
1557 }
1558
1559 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1560
1561 struct frame_info *
1562 get_current_frame (void)
1563 {
1564 struct frame_info *current_frame;
1565
1566 /* First check, and report, the lack of registers. Having GDB
1567 report "No stack!" or "No memory" when the target doesn't even
1568 have registers is very confusing. Besides, "printcmd.exp"
1569 explicitly checks that ``print $pc'' with no registers prints "No
1570 registers". */
1571 if (!target_has_registers)
1572 error (_("No registers."));
1573 if (!target_has_stack)
1574 error (_("No stack."));
1575 if (!target_has_memory)
1576 error (_("No memory."));
1577 /* Traceframes are effectively a substitute for the live inferior. */
1578 if (get_traceframe_number () < 0)
1579 validate_registers_access ();
1580
1581 if (sentinel_frame == NULL)
1582 sentinel_frame =
1583 create_sentinel_frame (current_program_space, get_current_regcache ());
1584
1585 /* Set the current frame before computing the frame id, to avoid
1586 recursion inside compute_frame_id, in case the frame's
1587 unwinder decides to do a symbol lookup (which depends on the
1588 selected frame's block).
1589
1590 This call must always succeed. In particular, nothing inside
1591 get_prev_frame_always_1 should try to unwind from the
1592 sentinel frame, because that could fail/throw, and we always
1593 want to leave with the current frame created and linked in --
1594 we should never end up with the sentinel frame as outermost
1595 frame. */
1596 current_frame = get_prev_frame_always_1 (sentinel_frame);
1597 gdb_assert (current_frame != NULL);
1598
1599 return current_frame;
1600 }
1601
1602 /* The "selected" stack frame is used by default for local and arg
1603 access. May be zero, for no selected frame. */
1604
1605 static struct frame_info *selected_frame;
1606
1607 int
1608 has_stack_frames (void)
1609 {
1610 if (!target_has_registers || !target_has_stack || !target_has_memory)
1611 return 0;
1612
1613 /* Traceframes are effectively a substitute for the live inferior. */
1614 if (get_traceframe_number () < 0)
1615 {
1616 /* No current inferior, no frame. */
1617 if (ptid_equal (inferior_ptid, null_ptid))
1618 return 0;
1619
1620 /* Don't try to read from a dead thread. */
1621 if (is_exited (inferior_ptid))
1622 return 0;
1623
1624 /* ... or from a spinning thread. */
1625 if (is_executing (inferior_ptid))
1626 return 0;
1627 }
1628
1629 return 1;
1630 }
1631
1632 /* Return the selected frame. Always non-NULL (unless there isn't an
1633 inferior sufficient for creating a frame) in which case an error is
1634 thrown. */
1635
1636 struct frame_info *
1637 get_selected_frame (const char *message)
1638 {
1639 if (selected_frame == NULL)
1640 {
1641 if (message != NULL && !has_stack_frames ())
1642 error (("%s"), message);
1643 /* Hey! Don't trust this. It should really be re-finding the
1644 last selected frame of the currently selected thread. This,
1645 though, is better than nothing. */
1646 select_frame (get_current_frame ());
1647 }
1648 /* There is always a frame. */
1649 gdb_assert (selected_frame != NULL);
1650 return selected_frame;
1651 }
1652
1653 /* If there is a selected frame, return it. Otherwise, return NULL. */
1654
1655 struct frame_info *
1656 get_selected_frame_if_set (void)
1657 {
1658 return selected_frame;
1659 }
1660
1661 /* This is a variant of get_selected_frame() which can be called when
1662 the inferior does not have a frame; in that case it will return
1663 NULL instead of calling error(). */
1664
1665 struct frame_info *
1666 deprecated_safe_get_selected_frame (void)
1667 {
1668 if (!has_stack_frames ())
1669 return NULL;
1670 return get_selected_frame (NULL);
1671 }
1672
1673 /* Select frame FI (or NULL - to invalidate the current frame). */
1674
1675 void
1676 select_frame (struct frame_info *fi)
1677 {
1678 selected_frame = fi;
1679 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1680 frame is being invalidated. */
1681
1682 /* FIXME: kseitz/2002-08-28: It would be nice to call
1683 selected_frame_level_changed_event() right here, but due to limitations
1684 in the current interfaces, we would end up flooding UIs with events
1685 because select_frame() is used extensively internally.
1686
1687 Once we have frame-parameterized frame (and frame-related) commands,
1688 the event notification can be moved here, since this function will only
1689 be called when the user's selected frame is being changed. */
1690
1691 /* Ensure that symbols for this frame are read in. Also, determine the
1692 source language of this frame, and switch to it if desired. */
1693 if (fi)
1694 {
1695 CORE_ADDR pc;
1696
1697 /* We retrieve the frame's symtab by using the frame PC.
1698 However we cannot use the frame PC as-is, because it usually
1699 points to the instruction following the "call", which is
1700 sometimes the first instruction of another function. So we
1701 rely on get_frame_address_in_block() which provides us with a
1702 PC which is guaranteed to be inside the frame's code
1703 block. */
1704 if (get_frame_address_in_block_if_available (fi, &pc))
1705 {
1706 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1707
1708 if (cust != NULL
1709 && compunit_language (cust) != current_language->la_language
1710 && compunit_language (cust) != language_unknown
1711 && language_mode == language_mode_auto)
1712 set_language (compunit_language (cust));
1713 }
1714 }
1715 }
1716
1717 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1718 Always returns a non-NULL value. */
1719
1720 struct frame_info *
1721 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1722 {
1723 struct frame_info *fi;
1724
1725 if (frame_debug)
1726 {
1727 fprintf_unfiltered (gdb_stdlog,
1728 "{ create_new_frame (addr=%s, pc=%s) ",
1729 hex_string (addr), hex_string (pc));
1730 }
1731
1732 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1733
1734 fi->next = create_sentinel_frame (current_program_space,
1735 get_current_regcache ());
1736
1737 /* Set/update this frame's cached PC value, found in the next frame.
1738 Do this before looking for this frame's unwinder. A sniffer is
1739 very likely to read this, and the corresponding unwinder is
1740 entitled to rely that the PC doesn't magically change. */
1741 fi->next->prev_pc.value = pc;
1742 fi->next->prev_pc.status = CC_VALUE;
1743
1744 /* We currently assume that frame chain's can't cross spaces. */
1745 fi->pspace = fi->next->pspace;
1746 fi->aspace = fi->next->aspace;
1747
1748 /* Select/initialize both the unwind function and the frame's type
1749 based on the PC. */
1750 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1751
1752 fi->this_id.p = 1;
1753 fi->this_id.value = frame_id_build (addr, pc);
1754
1755 if (frame_debug)
1756 {
1757 fprintf_unfiltered (gdb_stdlog, "-> ");
1758 fprint_frame (gdb_stdlog, fi);
1759 fprintf_unfiltered (gdb_stdlog, " }\n");
1760 }
1761
1762 return fi;
1763 }
1764
1765 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1766 innermost frame). Be careful to not fall off the bottom of the
1767 frame chain and onto the sentinel frame. */
1768
1769 struct frame_info *
1770 get_next_frame (struct frame_info *this_frame)
1771 {
1772 if (this_frame->level > 0)
1773 return this_frame->next;
1774 else
1775 return NULL;
1776 }
1777
1778 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1779 innermost (i.e. current) frame, return the sentinel frame. Thus,
1780 unlike get_next_frame(), NULL will never be returned. */
1781
1782 struct frame_info *
1783 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1784 {
1785 gdb_assert (this_frame != NULL);
1786
1787 /* Note that, due to the manner in which the sentinel frame is
1788 constructed, this_frame->next still works even when this_frame
1789 is the sentinel frame. But we disallow it here anyway because
1790 calling get_next_frame_sentinel_okay() on the sentinel frame
1791 is likely a coding error. */
1792 gdb_assert (this_frame != sentinel_frame);
1793
1794 return this_frame->next;
1795 }
1796
1797 /* Observer for the target_changed event. */
1798
1799 static void
1800 frame_observer_target_changed (struct target_ops *target)
1801 {
1802 reinit_frame_cache ();
1803 }
1804
1805 /* Flush the entire frame cache. */
1806
1807 void
1808 reinit_frame_cache (void)
1809 {
1810 struct frame_info *fi;
1811
1812 /* Tear down all frame caches. */
1813 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1814 {
1815 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1816 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1817 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1818 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1819 }
1820
1821 /* Since we can't really be sure what the first object allocated was. */
1822 obstack_free (&frame_cache_obstack, 0);
1823 obstack_init (&frame_cache_obstack);
1824
1825 if (sentinel_frame != NULL)
1826 annotate_frames_invalid ();
1827
1828 sentinel_frame = NULL; /* Invalidate cache */
1829 select_frame (NULL);
1830 frame_stash_invalidate ();
1831 if (frame_debug)
1832 fprintf_unfiltered (gdb_stdlog, "{ reinit_frame_cache () }\n");
1833 }
1834
1835 /* Find where a register is saved (in memory or another register).
1836 The result of frame_register_unwind is just where it is saved
1837 relative to this particular frame. */
1838
1839 static void
1840 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
1841 int *optimizedp, enum lval_type *lvalp,
1842 CORE_ADDR *addrp, int *realnump)
1843 {
1844 gdb_assert (this_frame == NULL || this_frame->level >= 0);
1845
1846 while (this_frame != NULL)
1847 {
1848 int unavailable;
1849
1850 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
1851 lvalp, addrp, realnump, NULL);
1852
1853 if (*optimizedp)
1854 break;
1855
1856 if (*lvalp != lval_register)
1857 break;
1858
1859 regnum = *realnump;
1860 this_frame = get_next_frame (this_frame);
1861 }
1862 }
1863
1864 /* Called during frame unwinding to remove a previous frame pointer from a
1865 frame passed in ARG. */
1866
1867 static void
1868 remove_prev_frame (void *arg)
1869 {
1870 struct frame_info *this_frame, *prev_frame;
1871
1872 this_frame = (struct frame_info *) arg;
1873 prev_frame = this_frame->prev;
1874 gdb_assert (prev_frame != NULL);
1875
1876 prev_frame->next = NULL;
1877 this_frame->prev = NULL;
1878 }
1879
1880 /* Get the previous raw frame, and check that it is not identical to
1881 same other frame frame already in the chain. If it is, there is
1882 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
1883 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
1884 validity tests, that compare THIS_FRAME and the next frame, we do
1885 this right after creating the previous frame, to avoid ever ending
1886 up with two frames with the same id in the frame chain. */
1887
1888 static struct frame_info *
1889 get_prev_frame_if_no_cycle (struct frame_info *this_frame)
1890 {
1891 struct frame_info *prev_frame;
1892 struct cleanup *prev_frame_cleanup;
1893
1894 prev_frame = get_prev_frame_raw (this_frame);
1895
1896 /* Don't compute the frame id of the current frame yet. Unwinding
1897 the sentinel frame can fail (e.g., if the thread is gone and we
1898 can't thus read its registers). If we let the cycle detection
1899 code below try to compute a frame ID, then an error thrown from
1900 within the frame ID computation would result in the sentinel
1901 frame as outermost frame, which is bogus. Instead, we'll compute
1902 the current frame's ID lazily in get_frame_id. Note that there's
1903 no point in doing cycle detection when there's only one frame, so
1904 nothing is lost here. */
1905 if (prev_frame->level == 0)
1906 return prev_frame;
1907
1908 /* The cleanup will remove the previous frame that get_prev_frame_raw
1909 linked onto THIS_FRAME. */
1910 prev_frame_cleanup = make_cleanup (remove_prev_frame, this_frame);
1911
1912 compute_frame_id (prev_frame);
1913 if (!frame_stash_add (prev_frame))
1914 {
1915 /* Another frame with the same id was already in the stash. We just
1916 detected a cycle. */
1917 if (frame_debug)
1918 {
1919 fprintf_unfiltered (gdb_stdlog, "-> ");
1920 fprint_frame (gdb_stdlog, NULL);
1921 fprintf_unfiltered (gdb_stdlog, " // this frame has same ID }\n");
1922 }
1923 this_frame->stop_reason = UNWIND_SAME_ID;
1924 /* Unlink. */
1925 prev_frame->next = NULL;
1926 this_frame->prev = NULL;
1927 prev_frame = NULL;
1928 }
1929
1930 discard_cleanups (prev_frame_cleanup);
1931 return prev_frame;
1932 }
1933
1934 /* Helper function for get_prev_frame_always, this is called inside a
1935 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
1936 there is no such frame. This may throw an exception. */
1937
1938 static struct frame_info *
1939 get_prev_frame_always_1 (struct frame_info *this_frame)
1940 {
1941 struct gdbarch *gdbarch;
1942
1943 gdb_assert (this_frame != NULL);
1944 gdbarch = get_frame_arch (this_frame);
1945
1946 if (frame_debug)
1947 {
1948 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame_always (this_frame=");
1949 if (this_frame != NULL)
1950 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
1951 else
1952 fprintf_unfiltered (gdb_stdlog, "<NULL>");
1953 fprintf_unfiltered (gdb_stdlog, ") ");
1954 }
1955
1956 /* Only try to do the unwind once. */
1957 if (this_frame->prev_p)
1958 {
1959 if (frame_debug)
1960 {
1961 fprintf_unfiltered (gdb_stdlog, "-> ");
1962 fprint_frame (gdb_stdlog, this_frame->prev);
1963 fprintf_unfiltered (gdb_stdlog, " // cached \n");
1964 }
1965 return this_frame->prev;
1966 }
1967
1968 /* If the frame unwinder hasn't been selected yet, we must do so
1969 before setting prev_p; otherwise the check for misbehaved
1970 sniffers will think that this frame's sniffer tried to unwind
1971 further (see frame_cleanup_after_sniffer). */
1972 if (this_frame->unwind == NULL)
1973 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
1974
1975 this_frame->prev_p = 1;
1976 this_frame->stop_reason = UNWIND_NO_REASON;
1977
1978 /* If we are unwinding from an inline frame, all of the below tests
1979 were already performed when we unwound from the next non-inline
1980 frame. We must skip them, since we can not get THIS_FRAME's ID
1981 until we have unwound all the way down to the previous non-inline
1982 frame. */
1983 if (get_frame_type (this_frame) == INLINE_FRAME)
1984 return get_prev_frame_if_no_cycle (this_frame);
1985
1986 /* Check that this frame is unwindable. If it isn't, don't try to
1987 unwind to the prev frame. */
1988 this_frame->stop_reason
1989 = this_frame->unwind->stop_reason (this_frame,
1990 &this_frame->prologue_cache);
1991
1992 if (this_frame->stop_reason != UNWIND_NO_REASON)
1993 {
1994 if (frame_debug)
1995 {
1996 enum unwind_stop_reason reason = this_frame->stop_reason;
1997
1998 fprintf_unfiltered (gdb_stdlog, "-> ");
1999 fprint_frame (gdb_stdlog, NULL);
2000 fprintf_unfiltered (gdb_stdlog, " // %s }\n",
2001 frame_stop_reason_symbol_string (reason));
2002 }
2003 return NULL;
2004 }
2005
2006 /* Check that this frame's ID isn't inner to (younger, below, next)
2007 the next frame. This happens when a frame unwind goes backwards.
2008 This check is valid only if this frame and the next frame are NORMAL.
2009 See the comment at frame_id_inner for details. */
2010 if (get_frame_type (this_frame) == NORMAL_FRAME
2011 && this_frame->next->unwind->type == NORMAL_FRAME
2012 && frame_id_inner (get_frame_arch (this_frame->next),
2013 get_frame_id (this_frame),
2014 get_frame_id (this_frame->next)))
2015 {
2016 CORE_ADDR this_pc_in_block;
2017 struct minimal_symbol *morestack_msym;
2018 const char *morestack_name = NULL;
2019
2020 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2021 this_pc_in_block = get_frame_address_in_block (this_frame);
2022 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2023 if (morestack_msym)
2024 morestack_name = MSYMBOL_LINKAGE_NAME (morestack_msym);
2025 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2026 {
2027 if (frame_debug)
2028 {
2029 fprintf_unfiltered (gdb_stdlog, "-> ");
2030 fprint_frame (gdb_stdlog, NULL);
2031 fprintf_unfiltered (gdb_stdlog,
2032 " // this frame ID is inner }\n");
2033 }
2034 this_frame->stop_reason = UNWIND_INNER_ID;
2035 return NULL;
2036 }
2037 }
2038
2039 /* Check that this and the next frame do not unwind the PC register
2040 to the same memory location. If they do, then even though they
2041 have different frame IDs, the new frame will be bogus; two
2042 functions can't share a register save slot for the PC. This can
2043 happen when the prologue analyzer finds a stack adjustment, but
2044 no PC save.
2045
2046 This check does assume that the "PC register" is roughly a
2047 traditional PC, even if the gdbarch_unwind_pc method adjusts
2048 it (we do not rely on the value, only on the unwound PC being
2049 dependent on this value). A potential improvement would be
2050 to have the frame prev_pc method and the gdbarch unwind_pc
2051 method set the same lval and location information as
2052 frame_register_unwind. */
2053 if (this_frame->level > 0
2054 && gdbarch_pc_regnum (gdbarch) >= 0
2055 && get_frame_type (this_frame) == NORMAL_FRAME
2056 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2057 || get_frame_type (this_frame->next) == INLINE_FRAME))
2058 {
2059 int optimized, realnum, nrealnum;
2060 enum lval_type lval, nlval;
2061 CORE_ADDR addr, naddr;
2062
2063 frame_register_unwind_location (this_frame,
2064 gdbarch_pc_regnum (gdbarch),
2065 &optimized, &lval, &addr, &realnum);
2066 frame_register_unwind_location (get_next_frame (this_frame),
2067 gdbarch_pc_regnum (gdbarch),
2068 &optimized, &nlval, &naddr, &nrealnum);
2069
2070 if ((lval == lval_memory && lval == nlval && addr == naddr)
2071 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2072 {
2073 if (frame_debug)
2074 {
2075 fprintf_unfiltered (gdb_stdlog, "-> ");
2076 fprint_frame (gdb_stdlog, NULL);
2077 fprintf_unfiltered (gdb_stdlog, " // no saved PC }\n");
2078 }
2079
2080 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2081 this_frame->prev = NULL;
2082 return NULL;
2083 }
2084 }
2085
2086 return get_prev_frame_if_no_cycle (this_frame);
2087 }
2088
2089 /* Return a "struct frame_info" corresponding to the frame that called
2090 THIS_FRAME. Returns NULL if there is no such frame.
2091
2092 Unlike get_prev_frame, this function always tries to unwind the
2093 frame. */
2094
2095 struct frame_info *
2096 get_prev_frame_always (struct frame_info *this_frame)
2097 {
2098 struct frame_info *prev_frame = NULL;
2099
2100 TRY
2101 {
2102 prev_frame = get_prev_frame_always_1 (this_frame);
2103 }
2104 CATCH (ex, RETURN_MASK_ERROR)
2105 {
2106 if (ex.error == MEMORY_ERROR)
2107 {
2108 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2109 if (ex.message != NULL)
2110 {
2111 char *stop_string;
2112 size_t size;
2113
2114 /* The error needs to live as long as the frame does.
2115 Allocate using stack local STOP_STRING then assign the
2116 pointer to the frame, this allows the STOP_STRING on the
2117 frame to be of type 'const char *'. */
2118 size = strlen (ex.message) + 1;
2119 stop_string = (char *) frame_obstack_zalloc (size);
2120 memcpy (stop_string, ex.message, size);
2121 this_frame->stop_string = stop_string;
2122 }
2123 prev_frame = NULL;
2124 }
2125 else
2126 throw_exception (ex);
2127 }
2128 END_CATCH
2129
2130 return prev_frame;
2131 }
2132
2133 /* Construct a new "struct frame_info" and link it previous to
2134 this_frame. */
2135
2136 static struct frame_info *
2137 get_prev_frame_raw (struct frame_info *this_frame)
2138 {
2139 struct frame_info *prev_frame;
2140
2141 /* Allocate the new frame but do not wire it in to the frame chain.
2142 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2143 frame->next to pull some fancy tricks (of course such code is, by
2144 definition, recursive). Try to prevent it.
2145
2146 There is no reason to worry about memory leaks, should the
2147 remainder of the function fail. The allocated memory will be
2148 quickly reclaimed when the frame cache is flushed, and the `we've
2149 been here before' check above will stop repeated memory
2150 allocation calls. */
2151 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2152 prev_frame->level = this_frame->level + 1;
2153
2154 /* For now, assume we don't have frame chains crossing address
2155 spaces. */
2156 prev_frame->pspace = this_frame->pspace;
2157 prev_frame->aspace = this_frame->aspace;
2158
2159 /* Don't yet compute ->unwind (and hence ->type). It is computed
2160 on-demand in get_frame_type, frame_register_unwind, and
2161 get_frame_id. */
2162
2163 /* Don't yet compute the frame's ID. It is computed on-demand by
2164 get_frame_id(). */
2165
2166 /* The unwound frame ID is validate at the start of this function,
2167 as part of the logic to decide if that frame should be further
2168 unwound, and not here while the prev frame is being created.
2169 Doing this makes it possible for the user to examine a frame that
2170 has an invalid frame ID.
2171
2172 Some very old VAX code noted: [...] For the sake of argument,
2173 suppose that the stack is somewhat trashed (which is one reason
2174 that "info frame" exists). So, return 0 (indicating we don't
2175 know the address of the arglist) if we don't know what frame this
2176 frame calls. */
2177
2178 /* Link it in. */
2179 this_frame->prev = prev_frame;
2180 prev_frame->next = this_frame;
2181
2182 if (frame_debug)
2183 {
2184 fprintf_unfiltered (gdb_stdlog, "-> ");
2185 fprint_frame (gdb_stdlog, prev_frame);
2186 fprintf_unfiltered (gdb_stdlog, " }\n");
2187 }
2188
2189 return prev_frame;
2190 }
2191
2192 /* Debug routine to print a NULL frame being returned. */
2193
2194 static void
2195 frame_debug_got_null_frame (struct frame_info *this_frame,
2196 const char *reason)
2197 {
2198 if (frame_debug)
2199 {
2200 fprintf_unfiltered (gdb_stdlog, "{ get_prev_frame (this_frame=");
2201 if (this_frame != NULL)
2202 fprintf_unfiltered (gdb_stdlog, "%d", this_frame->level);
2203 else
2204 fprintf_unfiltered (gdb_stdlog, "<NULL>");
2205 fprintf_unfiltered (gdb_stdlog, ") -> // %s}\n", reason);
2206 }
2207 }
2208
2209 /* Is this (non-sentinel) frame in the "main"() function? */
2210
2211 static int
2212 inside_main_func (struct frame_info *this_frame)
2213 {
2214 struct bound_minimal_symbol msymbol;
2215 CORE_ADDR maddr;
2216
2217 if (symfile_objfile == 0)
2218 return 0;
2219 msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
2220 if (msymbol.minsym == NULL)
2221 return 0;
2222 /* Make certain that the code, and not descriptor, address is
2223 returned. */
2224 maddr = gdbarch_convert_from_func_ptr_addr (get_frame_arch (this_frame),
2225 BMSYMBOL_VALUE_ADDRESS (msymbol),
2226 &current_target);
2227 return maddr == get_frame_func (this_frame);
2228 }
2229
2230 /* Test whether THIS_FRAME is inside the process entry point function. */
2231
2232 static int
2233 inside_entry_func (struct frame_info *this_frame)
2234 {
2235 CORE_ADDR entry_point;
2236
2237 if (!entry_point_address_query (&entry_point))
2238 return 0;
2239
2240 return get_frame_func (this_frame) == entry_point;
2241 }
2242
2243 /* Return a structure containing various interesting information about
2244 the frame that called THIS_FRAME. Returns NULL if there is entier
2245 no such frame or the frame fails any of a set of target-independent
2246 condition that should terminate the frame chain (e.g., as unwinding
2247 past main()).
2248
2249 This function should not contain target-dependent tests, such as
2250 checking whether the program-counter is zero. */
2251
2252 struct frame_info *
2253 get_prev_frame (struct frame_info *this_frame)
2254 {
2255 CORE_ADDR frame_pc;
2256 int frame_pc_p;
2257
2258 /* There is always a frame. If this assertion fails, suspect that
2259 something should be calling get_selected_frame() or
2260 get_current_frame(). */
2261 gdb_assert (this_frame != NULL);
2262
2263 /* If this_frame is the current frame, then compute and stash
2264 its frame id prior to fetching and computing the frame id of the
2265 previous frame. Otherwise, the cycle detection code in
2266 get_prev_frame_if_no_cycle() will not work correctly. When
2267 get_frame_id() is called later on, an assertion error will
2268 be triggered in the event of a cycle between the current
2269 frame and its previous frame. */
2270 if (this_frame->level == 0)
2271 get_frame_id (this_frame);
2272
2273 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2274
2275 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2276 sense to stop unwinding at a dummy frame. One place where a dummy
2277 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2278 pcsqh register (space register for the instruction at the head of the
2279 instruction queue) cannot be written directly; the only way to set it
2280 is to branch to code that is in the target space. In order to implement
2281 frame dummies on HPUX, the called function is made to jump back to where
2282 the inferior was when the user function was called. If gdb was inside
2283 the main function when we created the dummy frame, the dummy frame will
2284 point inside the main function. */
2285 if (this_frame->level >= 0
2286 && get_frame_type (this_frame) == NORMAL_FRAME
2287 && !backtrace_past_main
2288 && frame_pc_p
2289 && inside_main_func (this_frame))
2290 /* Don't unwind past main(). Note, this is done _before_ the
2291 frame has been marked as previously unwound. That way if the
2292 user later decides to enable unwinds past main(), that will
2293 automatically happen. */
2294 {
2295 frame_debug_got_null_frame (this_frame, "inside main func");
2296 return NULL;
2297 }
2298
2299 /* If the user's backtrace limit has been exceeded, stop. We must
2300 add two to the current level; one of those accounts for backtrace_limit
2301 being 1-based and the level being 0-based, and the other accounts for
2302 the level of the new frame instead of the level of the current
2303 frame. */
2304 if (this_frame->level + 2 > backtrace_limit)
2305 {
2306 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2307 return NULL;
2308 }
2309
2310 /* If we're already inside the entry function for the main objfile,
2311 then it isn't valid. Don't apply this test to a dummy frame -
2312 dummy frame PCs typically land in the entry func. Don't apply
2313 this test to the sentinel frame. Sentinel frames should always
2314 be allowed to unwind. */
2315 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2316 wasn't checking for "main" in the minimal symbols. With that
2317 fixed asm-source tests now stop in "main" instead of halting the
2318 backtrace in weird and wonderful ways somewhere inside the entry
2319 file. Suspect that tests for inside the entry file/func were
2320 added to work around that (now fixed) case. */
2321 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2322 suggested having the inside_entry_func test use the
2323 inside_main_func() msymbol trick (along with entry_point_address()
2324 I guess) to determine the address range of the start function.
2325 That should provide a far better stopper than the current
2326 heuristics. */
2327 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2328 applied tail-call optimizations to main so that a function called
2329 from main returns directly to the caller of main. Since we don't
2330 stop at main, we should at least stop at the entry point of the
2331 application. */
2332 if (this_frame->level >= 0
2333 && get_frame_type (this_frame) == NORMAL_FRAME
2334 && !backtrace_past_entry
2335 && frame_pc_p
2336 && inside_entry_func (this_frame))
2337 {
2338 frame_debug_got_null_frame (this_frame, "inside entry func");
2339 return NULL;
2340 }
2341
2342 /* Assume that the only way to get a zero PC is through something
2343 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2344 will never unwind a zero PC. */
2345 if (this_frame->level > 0
2346 && (get_frame_type (this_frame) == NORMAL_FRAME
2347 || get_frame_type (this_frame) == INLINE_FRAME)
2348 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2349 && frame_pc_p && frame_pc == 0)
2350 {
2351 frame_debug_got_null_frame (this_frame, "zero PC");
2352 return NULL;
2353 }
2354
2355 return get_prev_frame_always (this_frame);
2356 }
2357
2358 struct frame_id
2359 get_prev_frame_id_by_id (struct frame_id id)
2360 {
2361 struct frame_id prev_id;
2362 struct frame_info *frame;
2363
2364 frame = frame_find_by_id (id);
2365
2366 if (frame != NULL)
2367 prev_id = get_frame_id (get_prev_frame (frame));
2368 else
2369 prev_id = null_frame_id;
2370
2371 return prev_id;
2372 }
2373
2374 CORE_ADDR
2375 get_frame_pc (struct frame_info *frame)
2376 {
2377 gdb_assert (frame->next != NULL);
2378 return frame_unwind_pc (frame->next);
2379 }
2380
2381 int
2382 get_frame_pc_if_available (struct frame_info *frame, CORE_ADDR *pc)
2383 {
2384
2385 gdb_assert (frame->next != NULL);
2386
2387 TRY
2388 {
2389 *pc = frame_unwind_pc (frame->next);
2390 }
2391 CATCH (ex, RETURN_MASK_ERROR)
2392 {
2393 if (ex.error == NOT_AVAILABLE_ERROR)
2394 return 0;
2395 else
2396 throw_exception (ex);
2397 }
2398 END_CATCH
2399
2400 return 1;
2401 }
2402
2403 /* Return an address that falls within THIS_FRAME's code block. */
2404
2405 CORE_ADDR
2406 get_frame_address_in_block (struct frame_info *this_frame)
2407 {
2408 /* A draft address. */
2409 CORE_ADDR pc = get_frame_pc (this_frame);
2410
2411 struct frame_info *next_frame = this_frame->next;
2412
2413 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2414 Normally the resume address is inside the body of the function
2415 associated with THIS_FRAME, but there is a special case: when
2416 calling a function which the compiler knows will never return
2417 (for instance abort), the call may be the very last instruction
2418 in the calling function. The resume address will point after the
2419 call and may be at the beginning of a different function
2420 entirely.
2421
2422 If THIS_FRAME is a signal frame or dummy frame, then we should
2423 not adjust the unwound PC. For a dummy frame, GDB pushed the
2424 resume address manually onto the stack. For a signal frame, the
2425 OS may have pushed the resume address manually and invoked the
2426 handler (e.g. GNU/Linux), or invoked the trampoline which called
2427 the signal handler - but in either case the signal handler is
2428 expected to return to the trampoline. So in both of these
2429 cases we know that the resume address is executable and
2430 related. So we only need to adjust the PC if THIS_FRAME
2431 is a normal function.
2432
2433 If the program has been interrupted while THIS_FRAME is current,
2434 then clearly the resume address is inside the associated
2435 function. There are three kinds of interruption: debugger stop
2436 (next frame will be SENTINEL_FRAME), operating system
2437 signal or exception (next frame will be SIGTRAMP_FRAME),
2438 or debugger-induced function call (next frame will be
2439 DUMMY_FRAME). So we only need to adjust the PC if
2440 NEXT_FRAME is a normal function.
2441
2442 We check the type of NEXT_FRAME first, since it is already
2443 known; frame type is determined by the unwinder, and since
2444 we have THIS_FRAME we've already selected an unwinder for
2445 NEXT_FRAME.
2446
2447 If the next frame is inlined, we need to keep going until we find
2448 the real function - for instance, if a signal handler is invoked
2449 while in an inlined function, then the code address of the
2450 "calling" normal function should not be adjusted either. */
2451
2452 while (get_frame_type (next_frame) == INLINE_FRAME)
2453 next_frame = next_frame->next;
2454
2455 if ((get_frame_type (next_frame) == NORMAL_FRAME
2456 || get_frame_type (next_frame) == TAILCALL_FRAME)
2457 && (get_frame_type (this_frame) == NORMAL_FRAME
2458 || get_frame_type (this_frame) == TAILCALL_FRAME
2459 || get_frame_type (this_frame) == INLINE_FRAME))
2460 return pc - 1;
2461
2462 return pc;
2463 }
2464
2465 int
2466 get_frame_address_in_block_if_available (struct frame_info *this_frame,
2467 CORE_ADDR *pc)
2468 {
2469
2470 TRY
2471 {
2472 *pc = get_frame_address_in_block (this_frame);
2473 }
2474 CATCH (ex, RETURN_MASK_ERROR)
2475 {
2476 if (ex.error == NOT_AVAILABLE_ERROR)
2477 return 0;
2478 throw_exception (ex);
2479 }
2480 END_CATCH
2481
2482 return 1;
2483 }
2484
2485 symtab_and_line
2486 find_frame_sal (frame_info *frame)
2487 {
2488 struct frame_info *next_frame;
2489 int notcurrent;
2490 CORE_ADDR pc;
2491
2492 /* If the next frame represents an inlined function call, this frame's
2493 sal is the "call site" of that inlined function, which can not
2494 be inferred from get_frame_pc. */
2495 next_frame = get_next_frame (frame);
2496 if (frame_inlined_callees (frame) > 0)
2497 {
2498 struct symbol *sym;
2499
2500 if (next_frame)
2501 sym = get_frame_function (next_frame);
2502 else
2503 sym = inline_skipped_symbol (inferior_ptid);
2504
2505 /* If frame is inline, it certainly has symbols. */
2506 gdb_assert (sym);
2507
2508 symtab_and_line sal;
2509 if (SYMBOL_LINE (sym) != 0)
2510 {
2511 sal.symtab = symbol_symtab (sym);
2512 sal.line = SYMBOL_LINE (sym);
2513 }
2514 else
2515 /* If the symbol does not have a location, we don't know where
2516 the call site is. Do not pretend to. This is jarring, but
2517 we can't do much better. */
2518 sal.pc = get_frame_pc (frame);
2519
2520 sal.pspace = get_frame_program_space (frame);
2521 return sal;
2522 }
2523
2524 /* If FRAME is not the innermost frame, that normally means that
2525 FRAME->pc points at the return instruction (which is *after* the
2526 call instruction), and we want to get the line containing the
2527 call (because the call is where the user thinks the program is).
2528 However, if the next frame is either a SIGTRAMP_FRAME or a
2529 DUMMY_FRAME, then the next frame will contain a saved interrupt
2530 PC and such a PC indicates the current (rather than next)
2531 instruction/line, consequently, for such cases, want to get the
2532 line containing fi->pc. */
2533 if (!get_frame_pc_if_available (frame, &pc))
2534 return {};
2535
2536 notcurrent = (pc != get_frame_address_in_block (frame));
2537 return find_pc_line (pc, notcurrent);
2538 }
2539
2540 /* Per "frame.h", return the ``address'' of the frame. Code should
2541 really be using get_frame_id(). */
2542 CORE_ADDR
2543 get_frame_base (struct frame_info *fi)
2544 {
2545 return get_frame_id (fi).stack_addr;
2546 }
2547
2548 /* High-level offsets into the frame. Used by the debug info. */
2549
2550 CORE_ADDR
2551 get_frame_base_address (struct frame_info *fi)
2552 {
2553 if (get_frame_type (fi) != NORMAL_FRAME)
2554 return 0;
2555 if (fi->base == NULL)
2556 fi->base = frame_base_find_by_frame (fi);
2557 /* Sneaky: If the low-level unwind and high-level base code share a
2558 common unwinder, let them share the prologue cache. */
2559 if (fi->base->unwind == fi->unwind)
2560 return fi->base->this_base (fi, &fi->prologue_cache);
2561 return fi->base->this_base (fi, &fi->base_cache);
2562 }
2563
2564 CORE_ADDR
2565 get_frame_locals_address (struct frame_info *fi)
2566 {
2567 if (get_frame_type (fi) != NORMAL_FRAME)
2568 return 0;
2569 /* If there isn't a frame address method, find it. */
2570 if (fi->base == NULL)
2571 fi->base = frame_base_find_by_frame (fi);
2572 /* Sneaky: If the low-level unwind and high-level base code share a
2573 common unwinder, let them share the prologue cache. */
2574 if (fi->base->unwind == fi->unwind)
2575 return fi->base->this_locals (fi, &fi->prologue_cache);
2576 return fi->base->this_locals (fi, &fi->base_cache);
2577 }
2578
2579 CORE_ADDR
2580 get_frame_args_address (struct frame_info *fi)
2581 {
2582 if (get_frame_type (fi) != NORMAL_FRAME)
2583 return 0;
2584 /* If there isn't a frame address method, find it. */
2585 if (fi->base == NULL)
2586 fi->base = frame_base_find_by_frame (fi);
2587 /* Sneaky: If the low-level unwind and high-level base code share a
2588 common unwinder, let them share the prologue cache. */
2589 if (fi->base->unwind == fi->unwind)
2590 return fi->base->this_args (fi, &fi->prologue_cache);
2591 return fi->base->this_args (fi, &fi->base_cache);
2592 }
2593
2594 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2595 otherwise. */
2596
2597 int
2598 frame_unwinder_is (struct frame_info *fi, const struct frame_unwind *unwinder)
2599 {
2600 if (fi->unwind == NULL)
2601 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2602 return fi->unwind == unwinder;
2603 }
2604
2605 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2606 or -1 for a NULL frame. */
2607
2608 int
2609 frame_relative_level (struct frame_info *fi)
2610 {
2611 if (fi == NULL)
2612 return -1;
2613 else
2614 return fi->level;
2615 }
2616
2617 enum frame_type
2618 get_frame_type (struct frame_info *frame)
2619 {
2620 if (frame->unwind == NULL)
2621 /* Initialize the frame's unwinder because that's what
2622 provides the frame's type. */
2623 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2624 return frame->unwind->type;
2625 }
2626
2627 struct program_space *
2628 get_frame_program_space (struct frame_info *frame)
2629 {
2630 return frame->pspace;
2631 }
2632
2633 struct program_space *
2634 frame_unwind_program_space (struct frame_info *this_frame)
2635 {
2636 gdb_assert (this_frame);
2637
2638 /* This is really a placeholder to keep the API consistent --- we
2639 assume for now that we don't have frame chains crossing
2640 spaces. */
2641 return this_frame->pspace;
2642 }
2643
2644 const address_space *
2645 get_frame_address_space (struct frame_info *frame)
2646 {
2647 return frame->aspace;
2648 }
2649
2650 /* Memory access methods. */
2651
2652 void
2653 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2654 gdb_byte *buf, int len)
2655 {
2656 read_memory (addr, buf, len);
2657 }
2658
2659 LONGEST
2660 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2661 int len)
2662 {
2663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2665
2666 return read_memory_integer (addr, len, byte_order);
2667 }
2668
2669 ULONGEST
2670 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2671 int len)
2672 {
2673 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2674 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2675
2676 return read_memory_unsigned_integer (addr, len, byte_order);
2677 }
2678
2679 int
2680 safe_frame_unwind_memory (struct frame_info *this_frame,
2681 CORE_ADDR addr, gdb_byte *buf, int len)
2682 {
2683 /* NOTE: target_read_memory returns zero on success! */
2684 return !target_read_memory (addr, buf, len);
2685 }
2686
2687 /* Architecture methods. */
2688
2689 struct gdbarch *
2690 get_frame_arch (struct frame_info *this_frame)
2691 {
2692 return frame_unwind_arch (this_frame->next);
2693 }
2694
2695 struct gdbarch *
2696 frame_unwind_arch (struct frame_info *next_frame)
2697 {
2698 if (!next_frame->prev_arch.p)
2699 {
2700 struct gdbarch *arch;
2701
2702 if (next_frame->unwind == NULL)
2703 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2704
2705 if (next_frame->unwind->prev_arch != NULL)
2706 arch = next_frame->unwind->prev_arch (next_frame,
2707 &next_frame->prologue_cache);
2708 else
2709 arch = get_frame_arch (next_frame);
2710
2711 next_frame->prev_arch.arch = arch;
2712 next_frame->prev_arch.p = 1;
2713 if (frame_debug)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "{ frame_unwind_arch (next_frame=%d) -> %s }\n",
2716 next_frame->level,
2717 gdbarch_bfd_arch_info (arch)->printable_name);
2718 }
2719
2720 return next_frame->prev_arch.arch;
2721 }
2722
2723 struct gdbarch *
2724 frame_unwind_caller_arch (struct frame_info *next_frame)
2725 {
2726 next_frame = skip_artificial_frames (next_frame);
2727
2728 /* We must have a non-artificial frame. The caller is supposed to check
2729 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2730 in this case. */
2731 gdb_assert (next_frame != NULL);
2732
2733 return frame_unwind_arch (next_frame);
2734 }
2735
2736 /* Gets the language of FRAME. */
2737
2738 enum language
2739 get_frame_language (struct frame_info *frame)
2740 {
2741 CORE_ADDR pc = 0;
2742 int pc_p = 0;
2743
2744 gdb_assert (frame!= NULL);
2745
2746 /* We determine the current frame language by looking up its
2747 associated symtab. To retrieve this symtab, we use the frame
2748 PC. However we cannot use the frame PC as is, because it
2749 usually points to the instruction following the "call", which
2750 is sometimes the first instruction of another function. So
2751 we rely on get_frame_address_in_block(), it provides us with
2752 a PC that is guaranteed to be inside the frame's code
2753 block. */
2754
2755 TRY
2756 {
2757 pc = get_frame_address_in_block (frame);
2758 pc_p = 1;
2759 }
2760 CATCH (ex, RETURN_MASK_ERROR)
2761 {
2762 if (ex.error != NOT_AVAILABLE_ERROR)
2763 throw_exception (ex);
2764 }
2765 END_CATCH
2766
2767 if (pc_p)
2768 {
2769 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2770
2771 if (cust != NULL)
2772 return compunit_language (cust);
2773 }
2774
2775 return language_unknown;
2776 }
2777
2778 /* Stack pointer methods. */
2779
2780 CORE_ADDR
2781 get_frame_sp (struct frame_info *this_frame)
2782 {
2783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2784
2785 /* Normality - an architecture that provides a way of obtaining any
2786 frame inner-most address. */
2787 if (gdbarch_unwind_sp_p (gdbarch))
2788 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2789 operate on THIS_FRAME now. */
2790 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2791 /* Now things are really are grim. Hope that the value returned by
2792 the gdbarch_sp_regnum register is meaningful. */
2793 if (gdbarch_sp_regnum (gdbarch) >= 0)
2794 return get_frame_register_unsigned (this_frame,
2795 gdbarch_sp_regnum (gdbarch));
2796 internal_error (__FILE__, __LINE__, _("Missing unwind SP method"));
2797 }
2798
2799 /* Return the reason why we can't unwind past FRAME. */
2800
2801 enum unwind_stop_reason
2802 get_frame_unwind_stop_reason (struct frame_info *frame)
2803 {
2804 /* Fill-in STOP_REASON. */
2805 get_prev_frame_always (frame);
2806 gdb_assert (frame->prev_p);
2807
2808 return frame->stop_reason;
2809 }
2810
2811 /* Return a string explaining REASON. */
2812
2813 const char *
2814 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2815 {
2816 switch (reason)
2817 {
2818 #define SET(name, description) \
2819 case name: return _(description);
2820 #include "unwind_stop_reasons.def"
2821 #undef SET
2822
2823 default:
2824 internal_error (__FILE__, __LINE__,
2825 "Invalid frame stop reason");
2826 }
2827 }
2828
2829 const char *
2830 frame_stop_reason_string (struct frame_info *fi)
2831 {
2832 gdb_assert (fi->prev_p);
2833 gdb_assert (fi->prev == NULL);
2834
2835 /* Return the specific string if we have one. */
2836 if (fi->stop_string != NULL)
2837 return fi->stop_string;
2838
2839 /* Return the generic string if we have nothing better. */
2840 return unwind_stop_reason_to_string (fi->stop_reason);
2841 }
2842
2843 /* Return the enum symbol name of REASON as a string, to use in debug
2844 output. */
2845
2846 static const char *
2847 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
2848 {
2849 switch (reason)
2850 {
2851 #define SET(name, description) \
2852 case name: return #name;
2853 #include "unwind_stop_reasons.def"
2854 #undef SET
2855
2856 default:
2857 internal_error (__FILE__, __LINE__,
2858 "Invalid frame stop reason");
2859 }
2860 }
2861
2862 /* Clean up after a failed (wrong unwinder) attempt to unwind past
2863 FRAME. */
2864
2865 void
2866 frame_cleanup_after_sniffer (struct frame_info *frame)
2867 {
2868 /* The sniffer should not allocate a prologue cache if it did not
2869 match this frame. */
2870 gdb_assert (frame->prologue_cache == NULL);
2871
2872 /* No sniffer should extend the frame chain; sniff based on what is
2873 already certain. */
2874 gdb_assert (!frame->prev_p);
2875
2876 /* The sniffer should not check the frame's ID; that's circular. */
2877 gdb_assert (!frame->this_id.p);
2878
2879 /* Clear cached fields dependent on the unwinder.
2880
2881 The previous PC is independent of the unwinder, but the previous
2882 function is not (see get_frame_address_in_block). */
2883 frame->prev_func.p = 0;
2884 frame->prev_func.addr = 0;
2885
2886 /* Discard the unwinder last, so that we can easily find it if an assertion
2887 in this function triggers. */
2888 frame->unwind = NULL;
2889 }
2890
2891 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
2892 If sniffing fails, the caller should be sure to call
2893 frame_cleanup_after_sniffer. */
2894
2895 void
2896 frame_prepare_for_sniffer (struct frame_info *frame,
2897 const struct frame_unwind *unwind)
2898 {
2899 gdb_assert (frame->unwind == NULL);
2900 frame->unwind = unwind;
2901 }
2902
2903 static struct cmd_list_element *set_backtrace_cmdlist;
2904 static struct cmd_list_element *show_backtrace_cmdlist;
2905
2906 static void
2907 set_backtrace_cmd (const char *args, int from_tty)
2908 {
2909 help_list (set_backtrace_cmdlist, "set backtrace ", all_commands,
2910 gdb_stdout);
2911 }
2912
2913 static void
2914 show_backtrace_cmd (const char *args, int from_tty)
2915 {
2916 cmd_show_list (show_backtrace_cmdlist, from_tty, "");
2917 }
2918
2919 void
2920 _initialize_frame (void)
2921 {
2922 obstack_init (&frame_cache_obstack);
2923
2924 frame_stash_create ();
2925
2926 gdb::observers::target_changed.attach (frame_observer_target_changed);
2927
2928 add_prefix_cmd ("backtrace", class_maintenance, set_backtrace_cmd, _("\
2929 Set backtrace specific variables.\n\
2930 Configure backtrace variables such as the backtrace limit"),
2931 &set_backtrace_cmdlist, "set backtrace ",
2932 0/*allow-unknown*/, &setlist);
2933 add_prefix_cmd ("backtrace", class_maintenance, show_backtrace_cmd, _("\
2934 Show backtrace specific variables\n\
2935 Show backtrace variables such as the backtrace limit"),
2936 &show_backtrace_cmdlist, "show backtrace ",
2937 0/*allow-unknown*/, &showlist);
2938
2939 add_setshow_boolean_cmd ("past-main", class_obscure,
2940 &backtrace_past_main, _("\
2941 Set whether backtraces should continue past \"main\"."), _("\
2942 Show whether backtraces should continue past \"main\"."), _("\
2943 Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
2944 the backtrace at \"main\". Set this variable if you need to see the rest\n\
2945 of the stack trace."),
2946 NULL,
2947 show_backtrace_past_main,
2948 &set_backtrace_cmdlist,
2949 &show_backtrace_cmdlist);
2950
2951 add_setshow_boolean_cmd ("past-entry", class_obscure,
2952 &backtrace_past_entry, _("\
2953 Set whether backtraces should continue past the entry point of a program."),
2954 _("\
2955 Show whether backtraces should continue past the entry point of a program."),
2956 _("\
2957 Normally there are no callers beyond the entry point of a program, so GDB\n\
2958 will terminate the backtrace there. Set this variable if you need to see\n\
2959 the rest of the stack trace."),
2960 NULL,
2961 show_backtrace_past_entry,
2962 &set_backtrace_cmdlist,
2963 &show_backtrace_cmdlist);
2964
2965 add_setshow_uinteger_cmd ("limit", class_obscure,
2966 &backtrace_limit, _("\
2967 Set an upper bound on the number of backtrace levels."), _("\
2968 Show the upper bound on the number of backtrace levels."), _("\
2969 No more than the specified number of frames can be displayed or examined.\n\
2970 Literal \"unlimited\" or zero means no limit."),
2971 NULL,
2972 show_backtrace_limit,
2973 &set_backtrace_cmdlist,
2974 &show_backtrace_cmdlist);
2975
2976 /* Debug this files internals. */
2977 add_setshow_zuinteger_cmd ("frame", class_maintenance, &frame_debug, _("\
2978 Set frame debugging."), _("\
2979 Show frame debugging."), _("\
2980 When non-zero, frame specific internal debugging is enabled."),
2981 NULL,
2982 show_frame_debug,
2983 &setdebuglist, &showdebuglist);
2984 }