]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frame.c
[gdb/testsuite] Require python in gdb.server/server-kill-python.exp
[thirdparty/binutils-gdb.git] / gdb / frame.c
1 /* Cache and manage frames for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "target.h"
23 #include "value.h"
24 #include "inferior.h" /* for inferior_ptid */
25 #include "regcache.h"
26 #include "user-regs.h"
27 #include "gdb_obstack.h"
28 #include "dummy-frame.h"
29 #include "sentinel-frame.h"
30 #include "gdbcore.h"
31 #include "annotate.h"
32 #include "language.h"
33 #include "frame-unwind.h"
34 #include "frame-base.h"
35 #include "command.h"
36 #include "gdbcmd.h"
37 #include "observable.h"
38 #include "objfiles.h"
39 #include "gdbthread.h"
40 #include "block.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "hashtab.h"
44 #include "valprint.h"
45 #include "cli/cli-option.h"
46
47 /* The sentinel frame terminates the innermost end of the frame chain.
48 If unwound, it returns the information needed to construct an
49 innermost frame.
50
51 The current frame, which is the innermost frame, can be found at
52 sentinel_frame->prev. */
53
54 static struct frame_info *sentinel_frame;
55
56 /* Number of calls to reinit_frame_cache. */
57 static unsigned int frame_cache_generation = 0;
58
59 /* See frame.h. */
60
61 unsigned int
62 get_frame_cache_generation ()
63 {
64 return frame_cache_generation;
65 }
66
67 /* The values behind the global "set backtrace ..." settings. */
68 set_backtrace_options user_set_backtrace_options;
69
70 static struct frame_info *get_prev_frame_raw (struct frame_info *this_frame);
71 static const char *frame_stop_reason_symbol_string (enum unwind_stop_reason reason);
72
73 /* Status of some values cached in the frame_info object. */
74
75 enum cached_copy_status
76 {
77 /* Value is unknown. */
78 CC_UNKNOWN,
79
80 /* We have a value. */
81 CC_VALUE,
82
83 /* Value was not saved. */
84 CC_NOT_SAVED,
85
86 /* Value is unavailable. */
87 CC_UNAVAILABLE
88 };
89
90 enum class frame_id_status
91 {
92 /* Frame id is not computed. */
93 NOT_COMPUTED = 0,
94
95 /* Frame id is being computed (compute_frame_id is active). */
96 COMPUTING,
97
98 /* Frame id has been computed. */
99 COMPUTED,
100 };
101
102 /* We keep a cache of stack frames, each of which is a "struct
103 frame_info". The innermost one gets allocated (in
104 wait_for_inferior) each time the inferior stops; sentinel_frame
105 points to it. Additional frames get allocated (in get_prev_frame)
106 as needed, and are chained through the next and prev fields. Any
107 time that the frame cache becomes invalid (most notably when we
108 execute something, but also if we change how we interpret the
109 frames (e.g. "set heuristic-fence-post" in mips-tdep.c, or anything
110 which reads new symbols)), we should call reinit_frame_cache. */
111
112 struct frame_info
113 {
114 /* Return a string representation of this frame. */
115 std::string to_string () const;
116
117 /* Level of this frame. The inner-most (youngest) frame is at level
118 0. As you move towards the outer-most (oldest) frame, the level
119 increases. This is a cached value. It could just as easily be
120 computed by counting back from the selected frame to the inner
121 most frame. */
122 /* NOTE: cagney/2002-04-05: Perhaps a level of ``-1'' should be
123 reserved to indicate a bogus frame - one that has been created
124 just to keep GDB happy (GDB always needs a frame). For the
125 moment leave this as speculation. */
126 int level;
127
128 /* The frame's program space. */
129 struct program_space *pspace;
130
131 /* The frame's address space. */
132 const address_space *aspace;
133
134 /* The frame's low-level unwinder and corresponding cache. The
135 low-level unwinder is responsible for unwinding register values
136 for the previous frame. The low-level unwind methods are
137 selected based on the presence, or otherwise, of register unwind
138 information such as CFI. */
139 void *prologue_cache;
140 const struct frame_unwind *unwind;
141
142 /* Cached copy of the previous frame's architecture. */
143 struct
144 {
145 bool p;
146 struct gdbarch *arch;
147 } prev_arch;
148
149 /* Cached copy of the previous frame's resume address. */
150 struct {
151 cached_copy_status status;
152 /* Did VALUE require unmasking when being read. */
153 bool masked;
154 CORE_ADDR value;
155 } prev_pc;
156
157 /* Cached copy of the previous frame's function address. */
158 struct
159 {
160 CORE_ADDR addr;
161 cached_copy_status status;
162 } prev_func;
163
164 /* This frame's ID. */
165 struct
166 {
167 frame_id_status p;
168 struct frame_id value;
169 } this_id;
170
171 /* The frame's high-level base methods, and corresponding cache.
172 The high level base methods are selected based on the frame's
173 debug info. */
174 const struct frame_base *base;
175 void *base_cache;
176
177 /* Pointers to the next (down, inner, younger) and previous (up,
178 outer, older) frame_info's in the frame cache. */
179 struct frame_info *next; /* down, inner, younger */
180 bool prev_p;
181 struct frame_info *prev; /* up, outer, older */
182
183 /* The reason why we could not set PREV, or UNWIND_NO_REASON if we
184 could. Only valid when PREV_P is set. */
185 enum unwind_stop_reason stop_reason;
186
187 /* A frame specific string describing the STOP_REASON in more detail.
188 Only valid when PREV_P is set, but even then may still be NULL. */
189 const char *stop_string;
190 };
191
192 /* See frame.h. */
193
194 void
195 set_frame_previous_pc_masked (struct frame_info *frame)
196 {
197 frame->prev_pc.masked = true;
198 }
199
200 /* See frame.h. */
201
202 bool
203 get_frame_pc_masked (const struct frame_info *frame)
204 {
205 gdb_assert (frame->next != nullptr);
206 gdb_assert (frame->next->prev_pc.status == CC_VALUE);
207
208 return frame->next->prev_pc.masked;
209 }
210
211 /* A frame stash used to speed up frame lookups. Create a hash table
212 to stash frames previously accessed from the frame cache for
213 quicker subsequent retrieval. The hash table is emptied whenever
214 the frame cache is invalidated. */
215
216 static htab_t frame_stash;
217
218 /* Internal function to calculate a hash from the frame_id addresses,
219 using as many valid addresses as possible. Frames below level 0
220 are not stored in the hash table. */
221
222 static hashval_t
223 frame_addr_hash (const void *ap)
224 {
225 const struct frame_info *frame = (const struct frame_info *) ap;
226 const struct frame_id f_id = frame->this_id.value;
227 hashval_t hash = 0;
228
229 gdb_assert (f_id.stack_status != FID_STACK_INVALID
230 || f_id.code_addr_p
231 || f_id.special_addr_p);
232
233 if (f_id.stack_status == FID_STACK_VALID)
234 hash = iterative_hash (&f_id.stack_addr,
235 sizeof (f_id.stack_addr), hash);
236 if (f_id.code_addr_p)
237 hash = iterative_hash (&f_id.code_addr,
238 sizeof (f_id.code_addr), hash);
239 if (f_id.special_addr_p)
240 hash = iterative_hash (&f_id.special_addr,
241 sizeof (f_id.special_addr), hash);
242
243 return hash;
244 }
245
246 /* Internal equality function for the hash table. This function
247 defers equality operations to frame_id_eq. */
248
249 static int
250 frame_addr_hash_eq (const void *a, const void *b)
251 {
252 const struct frame_info *f_entry = (const struct frame_info *) a;
253 const struct frame_info *f_element = (const struct frame_info *) b;
254
255 return frame_id_eq (f_entry->this_id.value,
256 f_element->this_id.value);
257 }
258
259 /* Internal function to create the frame_stash hash table. 100 seems
260 to be a good compromise to start the hash table at. */
261
262 static void
263 frame_stash_create (void)
264 {
265 frame_stash = htab_create (100,
266 frame_addr_hash,
267 frame_addr_hash_eq,
268 NULL);
269 }
270
271 /* Internal function to add a frame to the frame_stash hash table.
272 Returns false if a frame with the same ID was already stashed, true
273 otherwise. */
274
275 static bool
276 frame_stash_add (frame_info *frame)
277 {
278 /* Do not try to stash the sentinel frame. */
279 gdb_assert (frame->level >= 0);
280
281 frame_info **slot = (struct frame_info **) htab_find_slot (frame_stash,
282 frame, INSERT);
283
284 /* If we already have a frame in the stack with the same id, we
285 either have a stack cycle (corrupted stack?), or some bug
286 elsewhere in GDB. In any case, ignore the duplicate and return
287 an indication to the caller. */
288 if (*slot != nullptr)
289 return false;
290
291 *slot = frame;
292 return true;
293 }
294
295 /* Internal function to search the frame stash for an entry with the
296 given frame ID. If found, return that frame. Otherwise return
297 NULL. */
298
299 static struct frame_info *
300 frame_stash_find (struct frame_id id)
301 {
302 struct frame_info dummy;
303 struct frame_info *frame;
304
305 dummy.this_id.value = id;
306 frame = (struct frame_info *) htab_find (frame_stash, &dummy);
307 return frame;
308 }
309
310 /* Internal function to invalidate the frame stash by removing all
311 entries in it. This only occurs when the frame cache is
312 invalidated. */
313
314 static void
315 frame_stash_invalidate (void)
316 {
317 htab_empty (frame_stash);
318 }
319
320 /* See frame.h */
321 scoped_restore_selected_frame::scoped_restore_selected_frame ()
322 {
323 m_lang = current_language->la_language;
324 save_selected_frame (&m_fid, &m_level);
325 }
326
327 /* See frame.h */
328 scoped_restore_selected_frame::~scoped_restore_selected_frame ()
329 {
330 restore_selected_frame (m_fid, m_level);
331 set_language (m_lang);
332 }
333
334 /* Flag to control debugging. */
335
336 bool frame_debug;
337
338 static void
339 show_frame_debug (struct ui_file *file, int from_tty,
340 struct cmd_list_element *c, const char *value)
341 {
342 fprintf_filtered (file, _("Frame debugging is %s.\n"), value);
343 }
344
345 /* Implementation of "show backtrace past-main". */
346
347 static void
348 show_backtrace_past_main (struct ui_file *file, int from_tty,
349 struct cmd_list_element *c, const char *value)
350 {
351 fprintf_filtered (file,
352 _("Whether backtraces should "
353 "continue past \"main\" is %s.\n"),
354 value);
355 }
356
357 /* Implementation of "show backtrace past-entry". */
358
359 static void
360 show_backtrace_past_entry (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362 {
363 fprintf_filtered (file, _("Whether backtraces should continue past the "
364 "entry point of a program is %s.\n"),
365 value);
366 }
367
368 /* Implementation of "show backtrace limit". */
369
370 static void
371 show_backtrace_limit (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373 {
374 fprintf_filtered (file,
375 _("An upper bound on the number "
376 "of backtrace levels is %s.\n"),
377 value);
378 }
379
380 /* See frame.h. */
381
382 std::string
383 frame_id::to_string () const
384 {
385 const struct frame_id &id = *this;
386
387 std::string res = "{";
388
389 if (id.stack_status == FID_STACK_INVALID)
390 res += "!stack";
391 else if (id.stack_status == FID_STACK_UNAVAILABLE)
392 res += "stack=<unavailable>";
393 else if (id.stack_status == FID_STACK_SENTINEL)
394 res += "stack=<sentinel>";
395 else if (id.stack_status == FID_STACK_OUTER)
396 res += "stack=<outer>";
397 else
398 res += std::string ("stack=") + hex_string (id.stack_addr);
399
400 /* Helper function to format 'N=A' if P is true, otherwise '!N'. */
401 auto field_to_string = [] (const char *n, bool p, CORE_ADDR a) -> std::string
402 {
403 if (p)
404 return std::string (n) + "=" + core_addr_to_string (a);
405 else
406 return std::string ("!") + std::string (n);
407 };
408
409 res += (std::string (",")
410 + field_to_string ("code", id.code_addr_p, id.code_addr)
411 + std::string (",")
412 + field_to_string ("special", id.special_addr_p, id.special_addr));
413
414 if (id.artificial_depth)
415 res += ",artificial=" + std::to_string (id.artificial_depth);
416 res += "}";
417 return res;
418 }
419
420 /* Return a string representation of TYPE. */
421
422 static const char *
423 frame_type_str (frame_type type)
424 {
425 switch (type)
426 {
427 case NORMAL_FRAME:
428 return "NORMAL_FRAME";
429
430 case DUMMY_FRAME:
431 return "DUMMY_FRAME";
432
433 case INLINE_FRAME:
434 return "INLINE_FRAME";
435
436 case TAILCALL_FRAME:
437 return "TAILCALL_FRAME";
438
439 case SIGTRAMP_FRAME:
440 return "SIGTRAMP_FRAME";
441
442 case ARCH_FRAME:
443 return "ARCH_FRAME";
444
445 case SENTINEL_FRAME:
446 return "SENTINEL_FRAME";
447
448 default:
449 return "<unknown type>";
450 };
451 }
452
453 /* See struct frame_info. */
454
455 std::string
456 frame_info::to_string () const
457 {
458 const frame_info *fi = this;
459
460 std::string res;
461
462 res += string_printf ("{level=%d,", fi->level);
463
464 if (fi->unwind != NULL)
465 res += string_printf ("type=%s,", frame_type_str (fi->unwind->type));
466 else
467 res += "type=<unknown>,";
468
469 if (fi->unwind != NULL)
470 res += string_printf ("unwinder=\"%s\",", fi->unwind->name);
471 else
472 res += "unwinder=<unknown>,";
473
474 if (fi->next == NULL || fi->next->prev_pc.status == CC_UNKNOWN)
475 res += "pc=<unknown>,";
476 else if (fi->next->prev_pc.status == CC_VALUE)
477 res += string_printf ("pc=%s%s,", hex_string (fi->next->prev_pc.value),
478 fi->next->prev_pc.masked ? "[PAC]" : "");
479 else if (fi->next->prev_pc.status == CC_NOT_SAVED)
480 res += "pc=<not saved>,";
481 else if (fi->next->prev_pc.status == CC_UNAVAILABLE)
482 res += "pc=<unavailable>,";
483
484 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
485 res += "id=<not computed>,";
486 else if (fi->this_id.p == frame_id_status::COMPUTING)
487 res += "id=<computing>,";
488 else
489 res += string_printf ("id=%s,", fi->this_id.value.to_string ().c_str ());
490
491 if (fi->next != NULL && fi->next->prev_func.status == CC_VALUE)
492 res += string_printf ("func=%s", hex_string (fi->next->prev_func.addr));
493 else
494 res += "func=<unknown>";
495
496 res += "}";
497
498 return res;
499 }
500
501 /* Given FRAME, return the enclosing frame as found in real frames read-in from
502 inferior memory. Skip any previous frames which were made up by GDB.
503 Return FRAME if FRAME is a non-artificial frame.
504 Return NULL if FRAME is the start of an artificial-only chain. */
505
506 static struct frame_info *
507 skip_artificial_frames (struct frame_info *frame)
508 {
509 /* Note we use get_prev_frame_always, and not get_prev_frame. The
510 latter will truncate the frame chain, leading to this function
511 unintentionally returning a null_frame_id (e.g., when the user
512 sets a backtrace limit).
513
514 Note that for record targets we may get a frame chain that consists
515 of artificial frames only. */
516 while (get_frame_type (frame) == INLINE_FRAME
517 || get_frame_type (frame) == TAILCALL_FRAME)
518 {
519 frame = get_prev_frame_always (frame);
520 if (frame == NULL)
521 break;
522 }
523
524 return frame;
525 }
526
527 struct frame_info *
528 skip_unwritable_frames (struct frame_info *frame)
529 {
530 while (gdbarch_code_of_frame_writable (get_frame_arch (frame), frame) == 0)
531 {
532 frame = get_prev_frame (frame);
533 if (frame == NULL)
534 break;
535 }
536
537 return frame;
538 }
539
540 /* See frame.h. */
541
542 struct frame_info *
543 skip_tailcall_frames (struct frame_info *frame)
544 {
545 while (get_frame_type (frame) == TAILCALL_FRAME)
546 {
547 /* Note that for record targets we may get a frame chain that consists of
548 tailcall frames only. */
549 frame = get_prev_frame (frame);
550 if (frame == NULL)
551 break;
552 }
553
554 return frame;
555 }
556
557 /* Compute the frame's uniq ID that can be used to, later, re-find the
558 frame. */
559
560 static void
561 compute_frame_id (struct frame_info *fi)
562 {
563 FRAME_SCOPED_DEBUG_ENTER_EXIT;
564
565 gdb_assert (fi->this_id.p == frame_id_status::NOT_COMPUTED);
566
567 unsigned int entry_generation = get_frame_cache_generation ();
568
569 try
570 {
571 /* Mark this frame's id as "being computed. */
572 fi->this_id.p = frame_id_status::COMPUTING;
573
574 frame_debug_printf ("fi=%d", fi->level);
575
576 /* Find the unwinder. */
577 if (fi->unwind == NULL)
578 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
579
580 /* Find THIS frame's ID. */
581 /* Default to outermost if no ID is found. */
582 fi->this_id.value = outer_frame_id;
583 fi->unwind->this_id (fi, &fi->prologue_cache, &fi->this_id.value);
584 gdb_assert (frame_id_p (fi->this_id.value));
585
586 /* Mark this frame's id as "computed". */
587 fi->this_id.p = frame_id_status::COMPUTED;
588
589 frame_debug_printf (" -> %s", fi->this_id.value.to_string ().c_str ());
590 }
591 catch (const gdb_exception &ex)
592 {
593 /* On error, revert the frame id status to not computed. If the frame
594 cache generation changed, the frame object doesn't exist anymore, so
595 don't touch it. */
596 if (get_frame_cache_generation () == entry_generation)
597 fi->this_id.p = frame_id_status::NOT_COMPUTED;
598
599 throw;
600 }
601 }
602
603 /* Return a frame uniq ID that can be used to, later, re-find the
604 frame. */
605
606 struct frame_id
607 get_frame_id (struct frame_info *fi)
608 {
609 if (fi == NULL)
610 return null_frame_id;
611
612 /* It's always invalid to try to get a frame's id while it is being
613 computed. */
614 gdb_assert (fi->this_id.p != frame_id_status::COMPUTING);
615
616 if (fi->this_id.p == frame_id_status::NOT_COMPUTED)
617 {
618 /* If we haven't computed the frame id yet, then it must be that
619 this is the current frame. Compute it now, and stash the
620 result. The IDs of other frames are computed as soon as
621 they're created, in order to detect cycles. See
622 get_prev_frame_if_no_cycle. */
623 gdb_assert (fi->level == 0);
624
625 /* Compute. */
626 compute_frame_id (fi);
627
628 /* Since this is the first frame in the chain, this should
629 always succeed. */
630 bool stashed = frame_stash_add (fi);
631 gdb_assert (stashed);
632 }
633
634 return fi->this_id.value;
635 }
636
637 struct frame_id
638 get_stack_frame_id (struct frame_info *next_frame)
639 {
640 return get_frame_id (skip_artificial_frames (next_frame));
641 }
642
643 struct frame_id
644 frame_unwind_caller_id (struct frame_info *next_frame)
645 {
646 struct frame_info *this_frame;
647
648 /* Use get_prev_frame_always, and not get_prev_frame. The latter
649 will truncate the frame chain, leading to this function
650 unintentionally returning a null_frame_id (e.g., when a caller
651 requests the frame ID of "main()"s caller. */
652
653 next_frame = skip_artificial_frames (next_frame);
654 if (next_frame == NULL)
655 return null_frame_id;
656
657 this_frame = get_prev_frame_always (next_frame);
658 if (this_frame)
659 return get_frame_id (skip_artificial_frames (this_frame));
660 else
661 return null_frame_id;
662 }
663
664 const struct frame_id null_frame_id = { 0 }; /* All zeros. */
665 const struct frame_id sentinel_frame_id = { 0, 0, 0, FID_STACK_SENTINEL, 0, 1, 0 };
666 const struct frame_id outer_frame_id = { 0, 0, 0, FID_STACK_OUTER, 0, 1, 0 };
667
668 struct frame_id
669 frame_id_build_special (CORE_ADDR stack_addr, CORE_ADDR code_addr,
670 CORE_ADDR special_addr)
671 {
672 struct frame_id id = null_frame_id;
673
674 id.stack_addr = stack_addr;
675 id.stack_status = FID_STACK_VALID;
676 id.code_addr = code_addr;
677 id.code_addr_p = true;
678 id.special_addr = special_addr;
679 id.special_addr_p = true;
680 return id;
681 }
682
683 /* See frame.h. */
684
685 struct frame_id
686 frame_id_build_unavailable_stack (CORE_ADDR code_addr)
687 {
688 struct frame_id id = null_frame_id;
689
690 id.stack_status = FID_STACK_UNAVAILABLE;
691 id.code_addr = code_addr;
692 id.code_addr_p = true;
693 return id;
694 }
695
696 /* See frame.h. */
697
698 struct frame_id
699 frame_id_build_unavailable_stack_special (CORE_ADDR code_addr,
700 CORE_ADDR special_addr)
701 {
702 struct frame_id id = null_frame_id;
703
704 id.stack_status = FID_STACK_UNAVAILABLE;
705 id.code_addr = code_addr;
706 id.code_addr_p = true;
707 id.special_addr = special_addr;
708 id.special_addr_p = true;
709 return id;
710 }
711
712 struct frame_id
713 frame_id_build (CORE_ADDR stack_addr, CORE_ADDR code_addr)
714 {
715 struct frame_id id = null_frame_id;
716
717 id.stack_addr = stack_addr;
718 id.stack_status = FID_STACK_VALID;
719 id.code_addr = code_addr;
720 id.code_addr_p = true;
721 return id;
722 }
723
724 struct frame_id
725 frame_id_build_wild (CORE_ADDR stack_addr)
726 {
727 struct frame_id id = null_frame_id;
728
729 id.stack_addr = stack_addr;
730 id.stack_status = FID_STACK_VALID;
731 return id;
732 }
733
734 bool
735 frame_id_p (frame_id l)
736 {
737 /* The frame is valid iff it has a valid stack address. */
738 bool p = l.stack_status != FID_STACK_INVALID;
739
740 frame_debug_printf ("l=%s -> %d", l.to_string ().c_str (), p);
741
742 return p;
743 }
744
745 bool
746 frame_id_artificial_p (frame_id l)
747 {
748 if (!frame_id_p (l))
749 return false;
750
751 return l.artificial_depth != 0;
752 }
753
754 bool
755 frame_id_eq (frame_id l, frame_id r)
756 {
757 bool eq;
758
759 if (l.stack_status == FID_STACK_INVALID
760 || r.stack_status == FID_STACK_INVALID)
761 /* Like a NaN, if either ID is invalid, the result is false.
762 Note that a frame ID is invalid iff it is the null frame ID. */
763 eq = false;
764 else if (l.stack_status != r.stack_status || l.stack_addr != r.stack_addr)
765 /* If .stack addresses are different, the frames are different. */
766 eq = false;
767 else if (l.code_addr_p && r.code_addr_p && l.code_addr != r.code_addr)
768 /* An invalid code addr is a wild card. If .code addresses are
769 different, the frames are different. */
770 eq = false;
771 else if (l.special_addr_p && r.special_addr_p
772 && l.special_addr != r.special_addr)
773 /* An invalid special addr is a wild card (or unused). Otherwise
774 if special addresses are different, the frames are different. */
775 eq = false;
776 else if (l.artificial_depth != r.artificial_depth)
777 /* If artificial depths are different, the frames must be different. */
778 eq = false;
779 else
780 /* Frames are equal. */
781 eq = true;
782
783 frame_debug_printf ("l=%s, r=%s -> %d",
784 l.to_string ().c_str (), r.to_string ().c_str (), eq);
785
786 return eq;
787 }
788
789 /* Safety net to check whether frame ID L should be inner to
790 frame ID R, according to their stack addresses.
791
792 This method cannot be used to compare arbitrary frames, as the
793 ranges of valid stack addresses may be discontiguous (e.g. due
794 to sigaltstack).
795
796 However, it can be used as safety net to discover invalid frame
797 IDs in certain circumstances. Assuming that NEXT is the immediate
798 inner frame to THIS and that NEXT and THIS are both NORMAL frames:
799
800 * The stack address of NEXT must be inner-than-or-equal to the stack
801 address of THIS.
802
803 Therefore, if frame_id_inner (THIS, NEXT) holds, some unwind
804 error has occurred.
805
806 * If NEXT and THIS have different stack addresses, no other frame
807 in the frame chain may have a stack address in between.
808
809 Therefore, if frame_id_inner (TEST, THIS) holds, but
810 frame_id_inner (TEST, NEXT) does not hold, TEST cannot refer
811 to a valid frame in the frame chain.
812
813 The sanity checks above cannot be performed when a SIGTRAMP frame
814 is involved, because signal handlers might be executed on a different
815 stack than the stack used by the routine that caused the signal
816 to be raised. This can happen for instance when a thread exceeds
817 its maximum stack size. In this case, certain compilers implement
818 a stack overflow strategy that cause the handler to be run on a
819 different stack. */
820
821 static bool
822 frame_id_inner (struct gdbarch *gdbarch, struct frame_id l, struct frame_id r)
823 {
824 bool inner;
825
826 if (l.stack_status != FID_STACK_VALID || r.stack_status != FID_STACK_VALID)
827 /* Like NaN, any operation involving an invalid ID always fails.
828 Likewise if either ID has an unavailable stack address. */
829 inner = false;
830 else if (l.artificial_depth > r.artificial_depth
831 && l.stack_addr == r.stack_addr
832 && l.code_addr_p == r.code_addr_p
833 && l.special_addr_p == r.special_addr_p
834 && l.special_addr == r.special_addr)
835 {
836 /* Same function, different inlined functions. */
837 const struct block *lb, *rb;
838
839 gdb_assert (l.code_addr_p && r.code_addr_p);
840
841 lb = block_for_pc (l.code_addr);
842 rb = block_for_pc (r.code_addr);
843
844 if (lb == NULL || rb == NULL)
845 /* Something's gone wrong. */
846 inner = false;
847 else
848 /* This will return true if LB and RB are the same block, or
849 if the block with the smaller depth lexically encloses the
850 block with the greater depth. */
851 inner = contained_in (lb, rb);
852 }
853 else
854 /* Only return non-zero when strictly inner than. Note that, per
855 comment in "frame.h", there is some fuzz here. Frameless
856 functions are not strictly inner than (same .stack but
857 different .code and/or .special address). */
858 inner = gdbarch_inner_than (gdbarch, l.stack_addr, r.stack_addr);
859
860 frame_debug_printf ("is l=%s inner than r=%s? %d",
861 l.to_string ().c_str (), r.to_string ().c_str (),
862 inner);
863
864 return inner;
865 }
866
867 struct frame_info *
868 frame_find_by_id (struct frame_id id)
869 {
870 struct frame_info *frame, *prev_frame;
871
872 /* ZERO denotes the null frame, let the caller decide what to do
873 about it. Should it instead return get_current_frame()? */
874 if (!frame_id_p (id))
875 return NULL;
876
877 /* Check for the sentinel frame. */
878 if (frame_id_eq (id, sentinel_frame_id))
879 return sentinel_frame;
880
881 /* Try using the frame stash first. Finding it there removes the need
882 to perform the search by looping over all frames, which can be very
883 CPU-intensive if the number of frames is very high (the loop is O(n)
884 and get_prev_frame performs a series of checks that are relatively
885 expensive). This optimization is particularly useful when this function
886 is called from another function (such as value_fetch_lazy, case
887 VALUE_LVAL (val) == lval_register) which already loops over all frames,
888 making the overall behavior O(n^2). */
889 frame = frame_stash_find (id);
890 if (frame)
891 return frame;
892
893 for (frame = get_current_frame (); ; frame = prev_frame)
894 {
895 struct frame_id self = get_frame_id (frame);
896
897 if (frame_id_eq (id, self))
898 /* An exact match. */
899 return frame;
900
901 prev_frame = get_prev_frame (frame);
902 if (!prev_frame)
903 return NULL;
904
905 /* As a safety net to avoid unnecessary backtracing while trying
906 to find an invalid ID, we check for a common situation where
907 we can detect from comparing stack addresses that no other
908 frame in the current frame chain can have this ID. See the
909 comment at frame_id_inner for details. */
910 if (get_frame_type (frame) == NORMAL_FRAME
911 && !frame_id_inner (get_frame_arch (frame), id, self)
912 && frame_id_inner (get_frame_arch (prev_frame), id,
913 get_frame_id (prev_frame)))
914 return NULL;
915 }
916 return NULL;
917 }
918
919 static CORE_ADDR
920 frame_unwind_pc (struct frame_info *this_frame)
921 {
922 if (this_frame->prev_pc.status == CC_UNKNOWN)
923 {
924 struct gdbarch *prev_gdbarch;
925 CORE_ADDR pc = 0;
926 bool pc_p = false;
927
928 /* The right way. The `pure' way. The one true way. This
929 method depends solely on the register-unwind code to
930 determine the value of registers in THIS frame, and hence
931 the value of this frame's PC (resume address). A typical
932 implementation is no more than:
933
934 frame_unwind_register (this_frame, ISA_PC_REGNUM, buf);
935 return extract_unsigned_integer (buf, size of ISA_PC_REGNUM);
936
937 Note: this method is very heavily dependent on a correct
938 register-unwind implementation, it pays to fix that
939 method first; this method is frame type agnostic, since
940 it only deals with register values, it works with any
941 frame. This is all in stark contrast to the old
942 FRAME_SAVED_PC which would try to directly handle all the
943 different ways that a PC could be unwound. */
944 prev_gdbarch = frame_unwind_arch (this_frame);
945
946 try
947 {
948 pc = gdbarch_unwind_pc (prev_gdbarch, this_frame);
949 pc_p = true;
950 }
951 catch (const gdb_exception_error &ex)
952 {
953 if (ex.error == NOT_AVAILABLE_ERROR)
954 {
955 this_frame->prev_pc.status = CC_UNAVAILABLE;
956
957 frame_debug_printf ("this_frame=%d -> <unavailable>",
958 this_frame->level);
959 }
960 else if (ex.error == OPTIMIZED_OUT_ERROR)
961 {
962 this_frame->prev_pc.status = CC_NOT_SAVED;
963
964 frame_debug_printf ("this_frame=%d -> <not saved>",
965 this_frame->level);
966 }
967 else
968 throw;
969 }
970
971 if (pc_p)
972 {
973 this_frame->prev_pc.value = pc;
974 this_frame->prev_pc.status = CC_VALUE;
975
976 frame_debug_printf ("this_frame=%d -> %s",
977 this_frame->level,
978 hex_string (this_frame->prev_pc.value));
979 }
980 }
981
982 if (this_frame->prev_pc.status == CC_VALUE)
983 return this_frame->prev_pc.value;
984 else if (this_frame->prev_pc.status == CC_UNAVAILABLE)
985 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
986 else if (this_frame->prev_pc.status == CC_NOT_SAVED)
987 throw_error (OPTIMIZED_OUT_ERROR, _("PC not saved"));
988 else
989 internal_error (__FILE__, __LINE__,
990 "unexpected prev_pc status: %d",
991 (int) this_frame->prev_pc.status);
992 }
993
994 CORE_ADDR
995 frame_unwind_caller_pc (struct frame_info *this_frame)
996 {
997 this_frame = skip_artificial_frames (this_frame);
998
999 /* We must have a non-artificial frame. The caller is supposed to check
1000 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
1001 in this case. */
1002 gdb_assert (this_frame != NULL);
1003
1004 return frame_unwind_pc (this_frame);
1005 }
1006
1007 bool
1008 get_frame_func_if_available (frame_info *this_frame, CORE_ADDR *pc)
1009 {
1010 struct frame_info *next_frame = this_frame->next;
1011
1012 if (next_frame->prev_func.status == CC_UNKNOWN)
1013 {
1014 CORE_ADDR addr_in_block;
1015
1016 /* Make certain that this, and not the adjacent, function is
1017 found. */
1018 if (!get_frame_address_in_block_if_available (this_frame, &addr_in_block))
1019 {
1020 next_frame->prev_func.status = CC_UNAVAILABLE;
1021
1022 frame_debug_printf ("this_frame=%d -> unavailable",
1023 this_frame->level);
1024 }
1025 else
1026 {
1027 next_frame->prev_func.status = CC_VALUE;
1028 next_frame->prev_func.addr = get_pc_function_start (addr_in_block);
1029
1030 frame_debug_printf ("this_frame=%d -> %s",
1031 this_frame->level,
1032 hex_string (next_frame->prev_func.addr));
1033 }
1034 }
1035
1036 if (next_frame->prev_func.status == CC_UNAVAILABLE)
1037 {
1038 *pc = -1;
1039 return false;
1040 }
1041 else
1042 {
1043 gdb_assert (next_frame->prev_func.status == CC_VALUE);
1044
1045 *pc = next_frame->prev_func.addr;
1046 return true;
1047 }
1048 }
1049
1050 CORE_ADDR
1051 get_frame_func (struct frame_info *this_frame)
1052 {
1053 CORE_ADDR pc;
1054
1055 if (!get_frame_func_if_available (this_frame, &pc))
1056 throw_error (NOT_AVAILABLE_ERROR, _("PC not available"));
1057
1058 return pc;
1059 }
1060
1061 std::unique_ptr<readonly_detached_regcache>
1062 frame_save_as_regcache (struct frame_info *this_frame)
1063 {
1064 auto cooked_read = [this_frame] (int regnum, gdb_byte *buf)
1065 {
1066 if (!deprecated_frame_register_read (this_frame, regnum, buf))
1067 return REG_UNAVAILABLE;
1068 else
1069 return REG_VALID;
1070 };
1071
1072 std::unique_ptr<readonly_detached_regcache> regcache
1073 (new readonly_detached_regcache (get_frame_arch (this_frame), cooked_read));
1074
1075 return regcache;
1076 }
1077
1078 void
1079 frame_pop (struct frame_info *this_frame)
1080 {
1081 struct frame_info *prev_frame;
1082
1083 if (get_frame_type (this_frame) == DUMMY_FRAME)
1084 {
1085 /* Popping a dummy frame involves restoring more than just registers.
1086 dummy_frame_pop does all the work. */
1087 dummy_frame_pop (get_frame_id (this_frame), inferior_thread ());
1088 return;
1089 }
1090
1091 /* Ensure that we have a frame to pop to. */
1092 prev_frame = get_prev_frame_always (this_frame);
1093
1094 if (!prev_frame)
1095 error (_("Cannot pop the initial frame."));
1096
1097 /* Ignore TAILCALL_FRAME type frames, they were executed already before
1098 entering THISFRAME. */
1099 prev_frame = skip_tailcall_frames (prev_frame);
1100
1101 if (prev_frame == NULL)
1102 error (_("Cannot find the caller frame."));
1103
1104 /* Make a copy of all the register values unwound from this frame.
1105 Save them in a scratch buffer so that there isn't a race between
1106 trying to extract the old values from the current regcache while
1107 at the same time writing new values into that same cache. */
1108 std::unique_ptr<readonly_detached_regcache> scratch
1109 = frame_save_as_regcache (prev_frame);
1110
1111 /* FIXME: cagney/2003-03-16: It should be possible to tell the
1112 target's register cache that it is about to be hit with a burst
1113 register transfer and that the sequence of register writes should
1114 be batched. The pair target_prepare_to_store() and
1115 target_store_registers() kind of suggest this functionality.
1116 Unfortunately, they don't implement it. Their lack of a formal
1117 definition can lead to targets writing back bogus values
1118 (arguably a bug in the target code mind). */
1119 /* Now copy those saved registers into the current regcache. */
1120 get_current_regcache ()->restore (scratch.get ());
1121
1122 /* We've made right mess of GDB's local state, just discard
1123 everything. */
1124 reinit_frame_cache ();
1125 }
1126
1127 void
1128 frame_register_unwind (frame_info *next_frame, int regnum,
1129 int *optimizedp, int *unavailablep,
1130 enum lval_type *lvalp, CORE_ADDR *addrp,
1131 int *realnump, gdb_byte *bufferp)
1132 {
1133 struct value *value;
1134
1135 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1136 that the value proper does not need to be fetched. */
1137 gdb_assert (optimizedp != NULL);
1138 gdb_assert (lvalp != NULL);
1139 gdb_assert (addrp != NULL);
1140 gdb_assert (realnump != NULL);
1141 /* gdb_assert (bufferp != NULL); */
1142
1143 value = frame_unwind_register_value (next_frame, regnum);
1144
1145 gdb_assert (value != NULL);
1146
1147 *optimizedp = value_optimized_out (value);
1148 *unavailablep = !value_entirely_available (value);
1149 *lvalp = VALUE_LVAL (value);
1150 *addrp = value_address (value);
1151 if (*lvalp == lval_register)
1152 *realnump = VALUE_REGNUM (value);
1153 else
1154 *realnump = -1;
1155
1156 if (bufferp)
1157 {
1158 if (!*optimizedp && !*unavailablep)
1159 memcpy (bufferp, value_contents_all (value).data (),
1160 TYPE_LENGTH (value_type (value)));
1161 else
1162 memset (bufferp, 0, TYPE_LENGTH (value_type (value)));
1163 }
1164
1165 /* Dispose of the new value. This prevents watchpoints from
1166 trying to watch the saved frame pointer. */
1167 release_value (value);
1168 }
1169
1170 void
1171 frame_register (struct frame_info *frame, int regnum,
1172 int *optimizedp, int *unavailablep, enum lval_type *lvalp,
1173 CORE_ADDR *addrp, int *realnump, gdb_byte *bufferp)
1174 {
1175 /* Require all but BUFFERP to be valid. A NULL BUFFERP indicates
1176 that the value proper does not need to be fetched. */
1177 gdb_assert (optimizedp != NULL);
1178 gdb_assert (lvalp != NULL);
1179 gdb_assert (addrp != NULL);
1180 gdb_assert (realnump != NULL);
1181 /* gdb_assert (bufferp != NULL); */
1182
1183 /* Obtain the register value by unwinding the register from the next
1184 (more inner frame). */
1185 gdb_assert (frame != NULL && frame->next != NULL);
1186 frame_register_unwind (frame->next, regnum, optimizedp, unavailablep,
1187 lvalp, addrp, realnump, bufferp);
1188 }
1189
1190 void
1191 frame_unwind_register (frame_info *next_frame, int regnum, gdb_byte *buf)
1192 {
1193 int optimized;
1194 int unavailable;
1195 CORE_ADDR addr;
1196 int realnum;
1197 enum lval_type lval;
1198
1199 frame_register_unwind (next_frame, regnum, &optimized, &unavailable,
1200 &lval, &addr, &realnum, buf);
1201
1202 if (optimized)
1203 throw_error (OPTIMIZED_OUT_ERROR,
1204 _("Register %d was not saved"), regnum);
1205 if (unavailable)
1206 throw_error (NOT_AVAILABLE_ERROR,
1207 _("Register %d is not available"), regnum);
1208 }
1209
1210 void
1211 get_frame_register (struct frame_info *frame,
1212 int regnum, gdb_byte *buf)
1213 {
1214 frame_unwind_register (frame->next, regnum, buf);
1215 }
1216
1217 struct value *
1218 frame_unwind_register_value (frame_info *next_frame, int regnum)
1219 {
1220 FRAME_SCOPED_DEBUG_ENTER_EXIT;
1221
1222 gdb_assert (next_frame != NULL);
1223 gdbarch *gdbarch = frame_unwind_arch (next_frame);
1224 frame_debug_printf ("frame=%d, regnum=%d(%s)",
1225 next_frame->level, regnum,
1226 user_reg_map_regnum_to_name (gdbarch, regnum));
1227
1228 /* Find the unwinder. */
1229 if (next_frame->unwind == NULL)
1230 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
1231
1232 /* Ask this frame to unwind its register. */
1233 value *value = next_frame->unwind->prev_register (next_frame,
1234 &next_frame->prologue_cache,
1235 regnum);
1236
1237 if (frame_debug)
1238 {
1239 string_file debug_file;
1240
1241 fprintf_unfiltered (&debug_file, " ->");
1242 if (value_optimized_out (value))
1243 {
1244 fprintf_unfiltered (&debug_file, " ");
1245 val_print_not_saved (&debug_file);
1246 }
1247 else
1248 {
1249 if (VALUE_LVAL (value) == lval_register)
1250 fprintf_unfiltered (&debug_file, " register=%d",
1251 VALUE_REGNUM (value));
1252 else if (VALUE_LVAL (value) == lval_memory)
1253 fprintf_unfiltered (&debug_file, " address=%s",
1254 paddress (gdbarch,
1255 value_address (value)));
1256 else
1257 fprintf_unfiltered (&debug_file, " computed");
1258
1259 if (value_lazy (value))
1260 fprintf_unfiltered (&debug_file, " lazy");
1261 else
1262 {
1263 int i;
1264 const gdb_byte *buf = value_contents (value).data ();
1265
1266 fprintf_unfiltered (&debug_file, " bytes=");
1267 fprintf_unfiltered (&debug_file, "[");
1268 for (i = 0; i < register_size (gdbarch, regnum); i++)
1269 fprintf_unfiltered (&debug_file, "%02x", buf[i]);
1270 fprintf_unfiltered (&debug_file, "]");
1271 }
1272 }
1273
1274 frame_debug_printf ("%s", debug_file.c_str ());
1275 }
1276
1277 return value;
1278 }
1279
1280 struct value *
1281 get_frame_register_value (struct frame_info *frame, int regnum)
1282 {
1283 return frame_unwind_register_value (frame->next, regnum);
1284 }
1285
1286 LONGEST
1287 frame_unwind_register_signed (frame_info *next_frame, int regnum)
1288 {
1289 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1290 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1291 int size = register_size (gdbarch, regnum);
1292 struct value *value = frame_unwind_register_value (next_frame, regnum);
1293
1294 gdb_assert (value != NULL);
1295
1296 if (value_optimized_out (value))
1297 {
1298 throw_error (OPTIMIZED_OUT_ERROR,
1299 _("Register %d was not saved"), regnum);
1300 }
1301 if (!value_entirely_available (value))
1302 {
1303 throw_error (NOT_AVAILABLE_ERROR,
1304 _("Register %d is not available"), regnum);
1305 }
1306
1307 LONGEST r = extract_signed_integer (value_contents_all (value).data (), size,
1308 byte_order);
1309
1310 release_value (value);
1311 return r;
1312 }
1313
1314 LONGEST
1315 get_frame_register_signed (struct frame_info *frame, int regnum)
1316 {
1317 return frame_unwind_register_signed (frame->next, regnum);
1318 }
1319
1320 ULONGEST
1321 frame_unwind_register_unsigned (frame_info *next_frame, int regnum)
1322 {
1323 struct gdbarch *gdbarch = frame_unwind_arch (next_frame);
1324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1325 int size = register_size (gdbarch, regnum);
1326 struct value *value = frame_unwind_register_value (next_frame, regnum);
1327
1328 gdb_assert (value != NULL);
1329
1330 if (value_optimized_out (value))
1331 {
1332 throw_error (OPTIMIZED_OUT_ERROR,
1333 _("Register %d was not saved"), regnum);
1334 }
1335 if (!value_entirely_available (value))
1336 {
1337 throw_error (NOT_AVAILABLE_ERROR,
1338 _("Register %d is not available"), regnum);
1339 }
1340
1341 ULONGEST r = extract_unsigned_integer (value_contents_all (value).data (),
1342 size, byte_order);
1343
1344 release_value (value);
1345 return r;
1346 }
1347
1348 ULONGEST
1349 get_frame_register_unsigned (struct frame_info *frame, int regnum)
1350 {
1351 return frame_unwind_register_unsigned (frame->next, regnum);
1352 }
1353
1354 bool
1355 read_frame_register_unsigned (frame_info *frame, int regnum,
1356 ULONGEST *val)
1357 {
1358 struct value *regval = get_frame_register_value (frame, regnum);
1359
1360 if (!value_optimized_out (regval)
1361 && value_entirely_available (regval))
1362 {
1363 struct gdbarch *gdbarch = get_frame_arch (frame);
1364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1365 int size = register_size (gdbarch, VALUE_REGNUM (regval));
1366
1367 *val = extract_unsigned_integer (value_contents (regval).data (), size,
1368 byte_order);
1369 return true;
1370 }
1371
1372 return false;
1373 }
1374
1375 void
1376 put_frame_register (struct frame_info *frame, int regnum,
1377 const gdb_byte *buf)
1378 {
1379 struct gdbarch *gdbarch = get_frame_arch (frame);
1380 int realnum;
1381 int optim;
1382 int unavail;
1383 enum lval_type lval;
1384 CORE_ADDR addr;
1385
1386 frame_register (frame, regnum, &optim, &unavail,
1387 &lval, &addr, &realnum, NULL);
1388 if (optim)
1389 error (_("Attempt to assign to a register that was not saved."));
1390 switch (lval)
1391 {
1392 case lval_memory:
1393 {
1394 write_memory (addr, buf, register_size (gdbarch, regnum));
1395 break;
1396 }
1397 case lval_register:
1398 get_current_regcache ()->cooked_write (realnum, buf);
1399 break;
1400 default:
1401 error (_("Attempt to assign to an unmodifiable value."));
1402 }
1403 }
1404
1405 /* This function is deprecated. Use get_frame_register_value instead,
1406 which provides more accurate information.
1407
1408 Find and return the value of REGNUM for the specified stack frame.
1409 The number of bytes copied is REGISTER_SIZE (REGNUM).
1410
1411 Returns 0 if the register value could not be found. */
1412
1413 bool
1414 deprecated_frame_register_read (frame_info *frame, int regnum,
1415 gdb_byte *myaddr)
1416 {
1417 int optimized;
1418 int unavailable;
1419 enum lval_type lval;
1420 CORE_ADDR addr;
1421 int realnum;
1422
1423 frame_register (frame, regnum, &optimized, &unavailable,
1424 &lval, &addr, &realnum, myaddr);
1425
1426 return !optimized && !unavailable;
1427 }
1428
1429 bool
1430 get_frame_register_bytes (frame_info *frame, int regnum,
1431 CORE_ADDR offset,
1432 gdb::array_view<gdb_byte> buffer,
1433 int *optimizedp, int *unavailablep)
1434 {
1435 struct gdbarch *gdbarch = get_frame_arch (frame);
1436 int i;
1437 int maxsize;
1438 int numregs;
1439
1440 /* Skip registers wholly inside of OFFSET. */
1441 while (offset >= register_size (gdbarch, regnum))
1442 {
1443 offset -= register_size (gdbarch, regnum);
1444 regnum++;
1445 }
1446
1447 /* Ensure that we will not read beyond the end of the register file.
1448 This can only ever happen if the debug information is bad. */
1449 maxsize = -offset;
1450 numregs = gdbarch_num_cooked_regs (gdbarch);
1451 for (i = regnum; i < numregs; i++)
1452 {
1453 int thissize = register_size (gdbarch, i);
1454
1455 if (thissize == 0)
1456 break; /* This register is not available on this architecture. */
1457 maxsize += thissize;
1458 }
1459
1460 int len = buffer.size ();
1461 if (len > maxsize)
1462 error (_("Bad debug information detected: "
1463 "Attempt to read %d bytes from registers."), len);
1464
1465 /* Copy the data. */
1466 while (len > 0)
1467 {
1468 int curr_len = register_size (gdbarch, regnum) - offset;
1469
1470 if (curr_len > len)
1471 curr_len = len;
1472
1473 gdb_byte *myaddr = buffer.data ();
1474
1475 if (curr_len == register_size (gdbarch, regnum))
1476 {
1477 enum lval_type lval;
1478 CORE_ADDR addr;
1479 int realnum;
1480
1481 frame_register (frame, regnum, optimizedp, unavailablep,
1482 &lval, &addr, &realnum, myaddr);
1483 if (*optimizedp || *unavailablep)
1484 return false;
1485 }
1486 else
1487 {
1488 struct value *value = frame_unwind_register_value (frame->next,
1489 regnum);
1490 gdb_assert (value != NULL);
1491 *optimizedp = value_optimized_out (value);
1492 *unavailablep = !value_entirely_available (value);
1493
1494 if (*optimizedp || *unavailablep)
1495 {
1496 release_value (value);
1497 return false;
1498 }
1499
1500 memcpy (myaddr, value_contents_all (value).data () + offset,
1501 curr_len);
1502 release_value (value);
1503 }
1504
1505 myaddr += curr_len;
1506 len -= curr_len;
1507 offset = 0;
1508 regnum++;
1509 }
1510
1511 *optimizedp = 0;
1512 *unavailablep = 0;
1513
1514 return true;
1515 }
1516
1517 void
1518 put_frame_register_bytes (struct frame_info *frame, int regnum,
1519 CORE_ADDR offset,
1520 gdb::array_view<const gdb_byte> buffer)
1521 {
1522 struct gdbarch *gdbarch = get_frame_arch (frame);
1523
1524 /* Skip registers wholly inside of OFFSET. */
1525 while (offset >= register_size (gdbarch, regnum))
1526 {
1527 offset -= register_size (gdbarch, regnum);
1528 regnum++;
1529 }
1530
1531 int len = buffer.size ();
1532 /* Copy the data. */
1533 while (len > 0)
1534 {
1535 int curr_len = register_size (gdbarch, regnum) - offset;
1536
1537 if (curr_len > len)
1538 curr_len = len;
1539
1540 const gdb_byte *myaddr = buffer.data ();
1541 if (curr_len == register_size (gdbarch, regnum))
1542 {
1543 put_frame_register (frame, regnum, myaddr);
1544 }
1545 else
1546 {
1547 struct value *value = frame_unwind_register_value (frame->next,
1548 regnum);
1549 gdb_assert (value != NULL);
1550
1551 memcpy ((char *) value_contents_writeable (value).data () + offset,
1552 myaddr, curr_len);
1553 put_frame_register (frame, regnum,
1554 value_contents_raw (value).data ());
1555 release_value (value);
1556 }
1557
1558 myaddr += curr_len;
1559 len -= curr_len;
1560 offset = 0;
1561 regnum++;
1562 }
1563 }
1564
1565 /* Create a sentinel frame. */
1566
1567 static struct frame_info *
1568 create_sentinel_frame (struct program_space *pspace, struct regcache *regcache)
1569 {
1570 struct frame_info *frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
1571
1572 frame->level = -1;
1573 frame->pspace = pspace;
1574 frame->aspace = regcache->aspace ();
1575 /* Explicitly initialize the sentinel frame's cache. Provide it
1576 with the underlying regcache. In the future additional
1577 information, such as the frame's thread will be added. */
1578 frame->prologue_cache = sentinel_frame_cache (regcache);
1579 /* For the moment there is only one sentinel frame implementation. */
1580 frame->unwind = &sentinel_frame_unwind;
1581 /* Link this frame back to itself. The frame is self referential
1582 (the unwound PC is the same as the pc), so make it so. */
1583 frame->next = frame;
1584 /* The sentinel frame has a special ID. */
1585 frame->this_id.p = frame_id_status::COMPUTED;
1586 frame->this_id.value = sentinel_frame_id;
1587
1588 frame_debug_printf (" -> %s", frame->to_string ().c_str ());
1589
1590 return frame;
1591 }
1592
1593 /* Cache for frame addresses already read by gdb. Valid only while
1594 inferior is stopped. Control variables for the frame cache should
1595 be local to this module. */
1596
1597 static struct obstack frame_cache_obstack;
1598
1599 void *
1600 frame_obstack_zalloc (unsigned long size)
1601 {
1602 void *data = obstack_alloc (&frame_cache_obstack, size);
1603
1604 memset (data, 0, size);
1605 return data;
1606 }
1607
1608 static struct frame_info *get_prev_frame_always_1 (struct frame_info *this_frame);
1609
1610 struct frame_info *
1611 get_current_frame (void)
1612 {
1613 struct frame_info *current_frame;
1614
1615 /* First check, and report, the lack of registers. Having GDB
1616 report "No stack!" or "No memory" when the target doesn't even
1617 have registers is very confusing. Besides, "printcmd.exp"
1618 explicitly checks that ``print $pc'' with no registers prints "No
1619 registers". */
1620 if (!target_has_registers ())
1621 error (_("No registers."));
1622 if (!target_has_stack ())
1623 error (_("No stack."));
1624 if (!target_has_memory ())
1625 error (_("No memory."));
1626 /* Traceframes are effectively a substitute for the live inferior. */
1627 if (get_traceframe_number () < 0)
1628 validate_registers_access ();
1629
1630 if (sentinel_frame == NULL)
1631 sentinel_frame =
1632 create_sentinel_frame (current_program_space, get_current_regcache ());
1633
1634 /* Set the current frame before computing the frame id, to avoid
1635 recursion inside compute_frame_id, in case the frame's
1636 unwinder decides to do a symbol lookup (which depends on the
1637 selected frame's block).
1638
1639 This call must always succeed. In particular, nothing inside
1640 get_prev_frame_always_1 should try to unwind from the
1641 sentinel frame, because that could fail/throw, and we always
1642 want to leave with the current frame created and linked in --
1643 we should never end up with the sentinel frame as outermost
1644 frame. */
1645 current_frame = get_prev_frame_always_1 (sentinel_frame);
1646 gdb_assert (current_frame != NULL);
1647
1648 return current_frame;
1649 }
1650
1651 /* The "selected" stack frame is used by default for local and arg
1652 access.
1653
1654 The "single source of truth" for the selected frame is the
1655 SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL pair.
1656
1657 Frame IDs can be saved/restored across reinitializing the frame
1658 cache, while frame_info pointers can't (frame_info objects are
1659 invalidated). If we know the corresponding frame_info object, it
1660 is cached in SELECTED_FRAME.
1661
1662 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1663 and the target has stack and is stopped, the selected frame is the
1664 current (innermost) frame. This means that SELECTED_FRAME_LEVEL is
1665 never 0 and SELECTED_FRAME_ID is never the ID of the innermost
1666 frame.
1667
1668 If SELECTED_FRAME_ID / SELECTED_FRAME_LEVEL are null_frame_id / -1,
1669 and the target has no stack or is executing, then there's no
1670 selected frame. */
1671 static frame_id selected_frame_id = null_frame_id;
1672 static int selected_frame_level = -1;
1673
1674 /* The cached frame_info object pointing to the selected frame.
1675 Looked up on demand by get_selected_frame. */
1676 static struct frame_info *selected_frame;
1677
1678 /* See frame.h. */
1679
1680 void
1681 save_selected_frame (frame_id *frame_id, int *frame_level)
1682 noexcept
1683 {
1684 *frame_id = selected_frame_id;
1685 *frame_level = selected_frame_level;
1686 }
1687
1688 /* See frame.h. */
1689
1690 void
1691 restore_selected_frame (frame_id frame_id, int frame_level)
1692 noexcept
1693 {
1694 /* save_selected_frame never returns level == 0, so we shouldn't see
1695 it here either. */
1696 gdb_assert (frame_level != 0);
1697
1698 /* FRAME_ID can be null_frame_id only IFF frame_level is -1. */
1699 gdb_assert ((frame_level == -1 && !frame_id_p (frame_id))
1700 || (frame_level != -1 && frame_id_p (frame_id)));
1701
1702 selected_frame_id = frame_id;
1703 selected_frame_level = frame_level;
1704
1705 /* Will be looked up later by get_selected_frame. */
1706 selected_frame = nullptr;
1707 }
1708
1709 /* See frame.h. */
1710
1711 void
1712 lookup_selected_frame (struct frame_id a_frame_id, int frame_level)
1713 {
1714 struct frame_info *frame = NULL;
1715 int count;
1716
1717 /* This either means there was no selected frame, or the selected
1718 frame was the current frame. In either case, select the current
1719 frame. */
1720 if (frame_level == -1)
1721 {
1722 select_frame (get_current_frame ());
1723 return;
1724 }
1725
1726 /* select_frame never saves 0 in SELECTED_FRAME_LEVEL, so we
1727 shouldn't see it here. */
1728 gdb_assert (frame_level > 0);
1729
1730 /* Restore by level first, check if the frame id is the same as
1731 expected. If that fails, try restoring by frame id. If that
1732 fails, nothing to do, just warn the user. */
1733
1734 count = frame_level;
1735 frame = find_relative_frame (get_current_frame (), &count);
1736 if (count == 0
1737 && frame != NULL
1738 /* The frame ids must match - either both valid or both
1739 outer_frame_id. The latter case is not failsafe, but since
1740 it's highly unlikely the search by level finds the wrong
1741 frame, it's 99.9(9)% of the time (for all practical purposes)
1742 safe. */
1743 && frame_id_eq (get_frame_id (frame), a_frame_id))
1744 {
1745 /* Cool, all is fine. */
1746 select_frame (frame);
1747 return;
1748 }
1749
1750 frame = frame_find_by_id (a_frame_id);
1751 if (frame != NULL)
1752 {
1753 /* Cool, refound it. */
1754 select_frame (frame);
1755 return;
1756 }
1757
1758 /* Nothing else to do, the frame layout really changed. Select the
1759 innermost stack frame. */
1760 select_frame (get_current_frame ());
1761
1762 /* Warn the user. */
1763 if (frame_level > 0 && !current_uiout->is_mi_like_p ())
1764 {
1765 warning (_("Couldn't restore frame #%d in "
1766 "current thread. Bottom (innermost) frame selected:"),
1767 frame_level);
1768 /* For MI, we should probably have a notification about current
1769 frame change. But this error is not very likely, so don't
1770 bother for now. */
1771 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1772 }
1773 }
1774
1775 bool
1776 has_stack_frames ()
1777 {
1778 if (!target_has_registers () || !target_has_stack ()
1779 || !target_has_memory ())
1780 return false;
1781
1782 /* Traceframes are effectively a substitute for the live inferior. */
1783 if (get_traceframe_number () < 0)
1784 {
1785 /* No current inferior, no frame. */
1786 if (inferior_ptid == null_ptid)
1787 return false;
1788
1789 thread_info *tp = inferior_thread ();
1790 /* Don't try to read from a dead thread. */
1791 if (tp->state == THREAD_EXITED)
1792 return false;
1793
1794 /* ... or from a spinning thread. */
1795 if (tp->executing ())
1796 return false;
1797 }
1798
1799 return true;
1800 }
1801
1802 /* See frame.h. */
1803
1804 struct frame_info *
1805 get_selected_frame (const char *message)
1806 {
1807 if (selected_frame == NULL)
1808 {
1809 if (message != NULL && !has_stack_frames ())
1810 error (("%s"), message);
1811
1812 lookup_selected_frame (selected_frame_id, selected_frame_level);
1813 }
1814 /* There is always a frame. */
1815 gdb_assert (selected_frame != NULL);
1816 return selected_frame;
1817 }
1818
1819 /* This is a variant of get_selected_frame() which can be called when
1820 the inferior does not have a frame; in that case it will return
1821 NULL instead of calling error(). */
1822
1823 struct frame_info *
1824 deprecated_safe_get_selected_frame (void)
1825 {
1826 if (!has_stack_frames ())
1827 return NULL;
1828 return get_selected_frame (NULL);
1829 }
1830
1831 /* Select frame FI (or NULL - to invalidate the selected frame). */
1832
1833 void
1834 select_frame (struct frame_info *fi)
1835 {
1836 selected_frame = fi;
1837 selected_frame_level = frame_relative_level (fi);
1838 if (selected_frame_level == 0)
1839 {
1840 /* Treat the current frame especially -- we want to always
1841 save/restore it without warning, even if the frame ID changes
1842 (see lookup_selected_frame). E.g.:
1843
1844 // The current frame is selected, the target had just stopped.
1845 {
1846 scoped_restore_selected_frame restore_frame;
1847 some_operation_that_changes_the_stack ();
1848 }
1849 // scoped_restore_selected_frame's dtor runs, but the
1850 // original frame_id can't be found. No matter whether it
1851 // is found or not, we still end up with the now-current
1852 // frame selected. Warning in lookup_selected_frame in this
1853 // case seems pointless.
1854
1855 Also get_frame_id may access the target's registers/memory,
1856 and thus skipping get_frame_id optimizes the common case.
1857
1858 Saving the selected frame this way makes get_selected_frame
1859 and restore_current_frame return/re-select whatever frame is
1860 the innermost (current) then. */
1861 selected_frame_level = -1;
1862 selected_frame_id = null_frame_id;
1863 }
1864 else
1865 selected_frame_id = get_frame_id (fi);
1866
1867 /* NOTE: cagney/2002-05-04: FI can be NULL. This occurs when the
1868 frame is being invalidated. */
1869
1870 /* FIXME: kseitz/2002-08-28: It would be nice to call
1871 selected_frame_level_changed_event() right here, but due to limitations
1872 in the current interfaces, we would end up flooding UIs with events
1873 because select_frame() is used extensively internally.
1874
1875 Once we have frame-parameterized frame (and frame-related) commands,
1876 the event notification can be moved here, since this function will only
1877 be called when the user's selected frame is being changed. */
1878
1879 /* Ensure that symbols for this frame are read in. Also, determine the
1880 source language of this frame, and switch to it if desired. */
1881 if (fi)
1882 {
1883 CORE_ADDR pc;
1884
1885 /* We retrieve the frame's symtab by using the frame PC.
1886 However we cannot use the frame PC as-is, because it usually
1887 points to the instruction following the "call", which is
1888 sometimes the first instruction of another function. So we
1889 rely on get_frame_address_in_block() which provides us with a
1890 PC which is guaranteed to be inside the frame's code
1891 block. */
1892 if (get_frame_address_in_block_if_available (fi, &pc))
1893 {
1894 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
1895
1896 if (cust != NULL
1897 && compunit_language (cust) != current_language->la_language
1898 && compunit_language (cust) != language_unknown
1899 && language_mode == language_mode_auto)
1900 set_language (compunit_language (cust));
1901 }
1902 }
1903 }
1904
1905 /* Create an arbitrary (i.e. address specified by user) or innermost frame.
1906 Always returns a non-NULL value. */
1907
1908 struct frame_info *
1909 create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
1910 {
1911 struct frame_info *fi;
1912
1913 frame_debug_printf ("addr=%s, pc=%s", hex_string (addr), hex_string (pc));
1914
1915 fi = FRAME_OBSTACK_ZALLOC (struct frame_info);
1916
1917 fi->next = create_sentinel_frame (current_program_space,
1918 get_current_regcache ());
1919
1920 /* Set/update this frame's cached PC value, found in the next frame.
1921 Do this before looking for this frame's unwinder. A sniffer is
1922 very likely to read this, and the corresponding unwinder is
1923 entitled to rely that the PC doesn't magically change. */
1924 fi->next->prev_pc.value = pc;
1925 fi->next->prev_pc.status = CC_VALUE;
1926
1927 /* We currently assume that frame chain's can't cross spaces. */
1928 fi->pspace = fi->next->pspace;
1929 fi->aspace = fi->next->aspace;
1930
1931 /* Select/initialize both the unwind function and the frame's type
1932 based on the PC. */
1933 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
1934
1935 fi->this_id.p = frame_id_status::COMPUTED;
1936 fi->this_id.value = frame_id_build (addr, pc);
1937
1938 frame_debug_printf (" -> %s", fi->to_string ().c_str ());
1939
1940 return fi;
1941 }
1942
1943 /* Return the frame that THIS_FRAME calls (NULL if THIS_FRAME is the
1944 innermost frame). Be careful to not fall off the bottom of the
1945 frame chain and onto the sentinel frame. */
1946
1947 struct frame_info *
1948 get_next_frame (struct frame_info *this_frame)
1949 {
1950 if (this_frame->level > 0)
1951 return this_frame->next;
1952 else
1953 return NULL;
1954 }
1955
1956 /* Return the frame that THIS_FRAME calls. If THIS_FRAME is the
1957 innermost (i.e. current) frame, return the sentinel frame. Thus,
1958 unlike get_next_frame(), NULL will never be returned. */
1959
1960 struct frame_info *
1961 get_next_frame_sentinel_okay (struct frame_info *this_frame)
1962 {
1963 gdb_assert (this_frame != NULL);
1964
1965 /* Note that, due to the manner in which the sentinel frame is
1966 constructed, this_frame->next still works even when this_frame
1967 is the sentinel frame. But we disallow it here anyway because
1968 calling get_next_frame_sentinel_okay() on the sentinel frame
1969 is likely a coding error. */
1970 gdb_assert (this_frame != sentinel_frame);
1971
1972 return this_frame->next;
1973 }
1974
1975 /* Observer for the target_changed event. */
1976
1977 static void
1978 frame_observer_target_changed (struct target_ops *target)
1979 {
1980 reinit_frame_cache ();
1981 }
1982
1983 /* Flush the entire frame cache. */
1984
1985 void
1986 reinit_frame_cache (void)
1987 {
1988 struct frame_info *fi;
1989
1990 ++frame_cache_generation;
1991
1992 /* Tear down all frame caches. */
1993 for (fi = sentinel_frame; fi != NULL; fi = fi->prev)
1994 {
1995 if (fi->prologue_cache && fi->unwind->dealloc_cache)
1996 fi->unwind->dealloc_cache (fi, fi->prologue_cache);
1997 if (fi->base_cache && fi->base->unwind->dealloc_cache)
1998 fi->base->unwind->dealloc_cache (fi, fi->base_cache);
1999 }
2000
2001 /* Since we can't really be sure what the first object allocated was. */
2002 obstack_free (&frame_cache_obstack, 0);
2003 obstack_init (&frame_cache_obstack);
2004
2005 if (sentinel_frame != NULL)
2006 annotate_frames_invalid ();
2007
2008 sentinel_frame = NULL; /* Invalidate cache */
2009 select_frame (NULL);
2010 frame_stash_invalidate ();
2011
2012 frame_debug_printf ("generation=%d", frame_cache_generation);
2013 }
2014
2015 /* Find where a register is saved (in memory or another register).
2016 The result of frame_register_unwind is just where it is saved
2017 relative to this particular frame. */
2018
2019 static void
2020 frame_register_unwind_location (struct frame_info *this_frame, int regnum,
2021 int *optimizedp, enum lval_type *lvalp,
2022 CORE_ADDR *addrp, int *realnump)
2023 {
2024 gdb_assert (this_frame == NULL || this_frame->level >= 0);
2025
2026 while (this_frame != NULL)
2027 {
2028 int unavailable;
2029
2030 frame_register_unwind (this_frame, regnum, optimizedp, &unavailable,
2031 lvalp, addrp, realnump, NULL);
2032
2033 if (*optimizedp)
2034 break;
2035
2036 if (*lvalp != lval_register)
2037 break;
2038
2039 regnum = *realnump;
2040 this_frame = get_next_frame (this_frame);
2041 }
2042 }
2043
2044 /* Get the previous raw frame, and check that it is not identical to
2045 same other frame frame already in the chain. If it is, there is
2046 most likely a stack cycle, so we discard it, and mark THIS_FRAME as
2047 outermost, with UNWIND_SAME_ID stop reason. Unlike the other
2048 validity tests, that compare THIS_FRAME and the next frame, we do
2049 this right after creating the previous frame, to avoid ever ending
2050 up with two frames with the same id in the frame chain.
2051
2052 There is however, one case where this cycle detection is not desirable,
2053 when asking for the previous frame of an inline frame, in this case, if
2054 the previous frame is a duplicate and we return nullptr then we will be
2055 unable to calculate the frame_id of the inline frame, this in turn
2056 causes inline_frame_this_id() to fail. So for inline frames (and only
2057 for inline frames), the previous frame will always be returned, even when it
2058 has a duplicate frame_id. We're not worried about cycles in the frame
2059 chain as, if the previous frame returned here has a duplicate frame_id,
2060 then the frame_id of the inline frame, calculated based off the frame_id
2061 of the previous frame, should also be a duplicate. */
2062
2063 static struct frame_info *
2064 get_prev_frame_maybe_check_cycle (struct frame_info *this_frame)
2065 {
2066 struct frame_info *prev_frame = get_prev_frame_raw (this_frame);
2067
2068 /* Don't compute the frame id of the current frame yet. Unwinding
2069 the sentinel frame can fail (e.g., if the thread is gone and we
2070 can't thus read its registers). If we let the cycle detection
2071 code below try to compute a frame ID, then an error thrown from
2072 within the frame ID computation would result in the sentinel
2073 frame as outermost frame, which is bogus. Instead, we'll compute
2074 the current frame's ID lazily in get_frame_id. Note that there's
2075 no point in doing cycle detection when there's only one frame, so
2076 nothing is lost here. */
2077 if (prev_frame->level == 0)
2078 return prev_frame;
2079
2080 unsigned int entry_generation = get_frame_cache_generation ();
2081
2082 try
2083 {
2084 compute_frame_id (prev_frame);
2085
2086 bool cycle_detection_p = get_frame_type (this_frame) != INLINE_FRAME;
2087
2088 /* This assert checks GDB's state with respect to calculating the
2089 frame-id of THIS_FRAME, in the case where THIS_FRAME is an inline
2090 frame.
2091
2092 If THIS_FRAME is frame #0, and is an inline frame, then we put off
2093 calculating the frame_id until we specifically make a call to
2094 get_frame_id(). As a result we can enter this function in two
2095 possible states. If GDB asked for the previous frame of frame #0
2096 then THIS_FRAME will be frame #0 (an inline frame), and the
2097 frame_id will be in the NOT_COMPUTED state. However, if GDB asked
2098 for the frame_id of frame #0, then, as getting the frame_id of an
2099 inline frame requires us to get the frame_id of the previous
2100 frame, we will still end up in here, and the frame_id status will
2101 be COMPUTING.
2102
2103 If, instead, THIS_FRAME is at a level greater than #0 then things
2104 are simpler. For these frames we immediately compute the frame_id
2105 when the frame is initially created, and so, for those frames, we
2106 will always enter this function with the frame_id status of
2107 COMPUTING. */
2108 gdb_assert (cycle_detection_p
2109 || (this_frame->level > 0
2110 && (this_frame->this_id.p
2111 == frame_id_status::COMPUTING))
2112 || (this_frame->level == 0
2113 && (this_frame->this_id.p
2114 != frame_id_status::COMPUTED)));
2115
2116 /* We must do the CYCLE_DETECTION_P check after attempting to add
2117 PREV_FRAME into the cache; if PREV_FRAME is unique then we do want
2118 it in the cache, but if it is a duplicate and CYCLE_DETECTION_P is
2119 false, then we don't want to unlink it. */
2120 if (!frame_stash_add (prev_frame) && cycle_detection_p)
2121 {
2122 /* Another frame with the same id was already in the stash. We just
2123 detected a cycle. */
2124 frame_debug_printf (" -> nullptr // this frame has same ID");
2125
2126 this_frame->stop_reason = UNWIND_SAME_ID;
2127 /* Unlink. */
2128 prev_frame->next = NULL;
2129 this_frame->prev = NULL;
2130 prev_frame = NULL;
2131 }
2132 }
2133 catch (const gdb_exception &ex)
2134 {
2135 if (get_frame_cache_generation () == entry_generation)
2136 {
2137 prev_frame->next = NULL;
2138 this_frame->prev = NULL;
2139 }
2140
2141 throw;
2142 }
2143
2144 return prev_frame;
2145 }
2146
2147 /* Helper function for get_prev_frame_always, this is called inside a
2148 TRY_CATCH block. Return the frame that called THIS_FRAME or NULL if
2149 there is no such frame. This may throw an exception. */
2150
2151 static struct frame_info *
2152 get_prev_frame_always_1 (struct frame_info *this_frame)
2153 {
2154 FRAME_SCOPED_DEBUG_ENTER_EXIT;
2155
2156 gdb_assert (this_frame != NULL);
2157
2158 if (frame_debug)
2159 {
2160 if (this_frame != NULL)
2161 frame_debug_printf ("this_frame=%d", this_frame->level);
2162 else
2163 frame_debug_printf ("this_frame=nullptr");
2164 }
2165
2166 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2167
2168 /* Only try to do the unwind once. */
2169 if (this_frame->prev_p)
2170 {
2171 if (this_frame->prev != nullptr)
2172 frame_debug_printf (" -> %s // cached",
2173 this_frame->prev->to_string ().c_str ());
2174 else
2175 frame_debug_printf
2176 (" -> nullptr // %s // cached",
2177 frame_stop_reason_symbol_string (this_frame->stop_reason));
2178 return this_frame->prev;
2179 }
2180
2181 /* If the frame unwinder hasn't been selected yet, we must do so
2182 before setting prev_p; otherwise the check for misbehaved
2183 sniffers will think that this frame's sniffer tried to unwind
2184 further (see frame_cleanup_after_sniffer). */
2185 if (this_frame->unwind == NULL)
2186 frame_unwind_find_by_frame (this_frame, &this_frame->prologue_cache);
2187
2188 this_frame->prev_p = true;
2189 this_frame->stop_reason = UNWIND_NO_REASON;
2190
2191 /* If we are unwinding from an inline frame, all of the below tests
2192 were already performed when we unwound from the next non-inline
2193 frame. We must skip them, since we can not get THIS_FRAME's ID
2194 until we have unwound all the way down to the previous non-inline
2195 frame. */
2196 if (get_frame_type (this_frame) == INLINE_FRAME)
2197 return get_prev_frame_maybe_check_cycle (this_frame);
2198
2199 /* If this_frame is the current frame, then compute and stash its
2200 frame id prior to fetching and computing the frame id of the
2201 previous frame. Otherwise, the cycle detection code in
2202 get_prev_frame_if_no_cycle() will not work correctly. When
2203 get_frame_id() is called later on, an assertion error will be
2204 triggered in the event of a cycle between the current frame and
2205 its previous frame.
2206
2207 Note we do this after the INLINE_FRAME check above. That is
2208 because the inline frame's frame id computation needs to fetch
2209 the frame id of its previous real stack frame. I.e., we need to
2210 avoid recursion in that case. This is OK since we're sure the
2211 inline frame won't create a cycle with the real stack frame. See
2212 inline_frame_this_id. */
2213 if (this_frame->level == 0)
2214 get_frame_id (this_frame);
2215
2216 /* Check that this frame is unwindable. If it isn't, don't try to
2217 unwind to the prev frame. */
2218 this_frame->stop_reason
2219 = this_frame->unwind->stop_reason (this_frame,
2220 &this_frame->prologue_cache);
2221
2222 if (this_frame->stop_reason != UNWIND_NO_REASON)
2223 {
2224 frame_debug_printf
2225 (" -> nullptr // %s",
2226 frame_stop_reason_symbol_string (this_frame->stop_reason));
2227 return NULL;
2228 }
2229
2230 /* Check that this frame's ID isn't inner to (younger, below, next)
2231 the next frame. This happens when a frame unwind goes backwards.
2232 This check is valid only if this frame and the next frame are NORMAL.
2233 See the comment at frame_id_inner for details. */
2234 if (get_frame_type (this_frame) == NORMAL_FRAME
2235 && this_frame->next->unwind->type == NORMAL_FRAME
2236 && frame_id_inner (get_frame_arch (this_frame->next),
2237 get_frame_id (this_frame),
2238 get_frame_id (this_frame->next)))
2239 {
2240 CORE_ADDR this_pc_in_block;
2241 struct minimal_symbol *morestack_msym;
2242 const char *morestack_name = NULL;
2243
2244 /* gcc -fsplit-stack __morestack can continue the stack anywhere. */
2245 this_pc_in_block = get_frame_address_in_block (this_frame);
2246 morestack_msym = lookup_minimal_symbol_by_pc (this_pc_in_block).minsym;
2247 if (morestack_msym)
2248 morestack_name = morestack_msym->linkage_name ();
2249 if (!morestack_name || strcmp (morestack_name, "__morestack") != 0)
2250 {
2251 frame_debug_printf (" -> nullptr // this frame ID is inner");
2252 this_frame->stop_reason = UNWIND_INNER_ID;
2253 return NULL;
2254 }
2255 }
2256
2257 /* Check that this and the next frame do not unwind the PC register
2258 to the same memory location. If they do, then even though they
2259 have different frame IDs, the new frame will be bogus; two
2260 functions can't share a register save slot for the PC. This can
2261 happen when the prologue analyzer finds a stack adjustment, but
2262 no PC save.
2263
2264 This check does assume that the "PC register" is roughly a
2265 traditional PC, even if the gdbarch_unwind_pc method adjusts
2266 it (we do not rely on the value, only on the unwound PC being
2267 dependent on this value). A potential improvement would be
2268 to have the frame prev_pc method and the gdbarch unwind_pc
2269 method set the same lval and location information as
2270 frame_register_unwind. */
2271 if (this_frame->level > 0
2272 && gdbarch_pc_regnum (gdbarch) >= 0
2273 && get_frame_type (this_frame) == NORMAL_FRAME
2274 && (get_frame_type (this_frame->next) == NORMAL_FRAME
2275 || get_frame_type (this_frame->next) == INLINE_FRAME))
2276 {
2277 int optimized, realnum, nrealnum;
2278 enum lval_type lval, nlval;
2279 CORE_ADDR addr, naddr;
2280
2281 frame_register_unwind_location (this_frame,
2282 gdbarch_pc_regnum (gdbarch),
2283 &optimized, &lval, &addr, &realnum);
2284 frame_register_unwind_location (get_next_frame (this_frame),
2285 gdbarch_pc_regnum (gdbarch),
2286 &optimized, &nlval, &naddr, &nrealnum);
2287
2288 if ((lval == lval_memory && lval == nlval && addr == naddr)
2289 || (lval == lval_register && lval == nlval && realnum == nrealnum))
2290 {
2291 frame_debug_printf (" -> nullptr // no saved PC");
2292 this_frame->stop_reason = UNWIND_NO_SAVED_PC;
2293 this_frame->prev = NULL;
2294 return NULL;
2295 }
2296 }
2297
2298 return get_prev_frame_maybe_check_cycle (this_frame);
2299 }
2300
2301 /* Return a "struct frame_info" corresponding to the frame that called
2302 THIS_FRAME. Returns NULL if there is no such frame.
2303
2304 Unlike get_prev_frame, this function always tries to unwind the
2305 frame. */
2306
2307 struct frame_info *
2308 get_prev_frame_always (struct frame_info *this_frame)
2309 {
2310 struct frame_info *prev_frame = NULL;
2311
2312 try
2313 {
2314 prev_frame = get_prev_frame_always_1 (this_frame);
2315 }
2316 catch (const gdb_exception_error &ex)
2317 {
2318 if (ex.error == MEMORY_ERROR)
2319 {
2320 this_frame->stop_reason = UNWIND_MEMORY_ERROR;
2321 if (ex.message != NULL)
2322 {
2323 char *stop_string;
2324 size_t size;
2325
2326 /* The error needs to live as long as the frame does.
2327 Allocate using stack local STOP_STRING then assign the
2328 pointer to the frame, this allows the STOP_STRING on the
2329 frame to be of type 'const char *'. */
2330 size = ex.message->size () + 1;
2331 stop_string = (char *) frame_obstack_zalloc (size);
2332 memcpy (stop_string, ex.what (), size);
2333 this_frame->stop_string = stop_string;
2334 }
2335 prev_frame = NULL;
2336 }
2337 else
2338 throw;
2339 }
2340
2341 return prev_frame;
2342 }
2343
2344 /* Construct a new "struct frame_info" and link it previous to
2345 this_frame. */
2346
2347 static struct frame_info *
2348 get_prev_frame_raw (struct frame_info *this_frame)
2349 {
2350 struct frame_info *prev_frame;
2351
2352 /* Allocate the new frame but do not wire it in to the frame chain.
2353 Some (bad) code in INIT_FRAME_EXTRA_INFO tries to look along
2354 frame->next to pull some fancy tricks (of course such code is, by
2355 definition, recursive). Try to prevent it.
2356
2357 There is no reason to worry about memory leaks, should the
2358 remainder of the function fail. The allocated memory will be
2359 quickly reclaimed when the frame cache is flushed, and the `we've
2360 been here before' check above will stop repeated memory
2361 allocation calls. */
2362 prev_frame = FRAME_OBSTACK_ZALLOC (struct frame_info);
2363 prev_frame->level = this_frame->level + 1;
2364
2365 /* For now, assume we don't have frame chains crossing address
2366 spaces. */
2367 prev_frame->pspace = this_frame->pspace;
2368 prev_frame->aspace = this_frame->aspace;
2369
2370 /* Don't yet compute ->unwind (and hence ->type). It is computed
2371 on-demand in get_frame_type, frame_register_unwind, and
2372 get_frame_id. */
2373
2374 /* Don't yet compute the frame's ID. It is computed on-demand by
2375 get_frame_id(). */
2376
2377 /* The unwound frame ID is validate at the start of this function,
2378 as part of the logic to decide if that frame should be further
2379 unwound, and not here while the prev frame is being created.
2380 Doing this makes it possible for the user to examine a frame that
2381 has an invalid frame ID.
2382
2383 Some very old VAX code noted: [...] For the sake of argument,
2384 suppose that the stack is somewhat trashed (which is one reason
2385 that "info frame" exists). So, return 0 (indicating we don't
2386 know the address of the arglist) if we don't know what frame this
2387 frame calls. */
2388
2389 /* Link it in. */
2390 this_frame->prev = prev_frame;
2391 prev_frame->next = this_frame;
2392
2393 frame_debug_printf (" -> %s", prev_frame->to_string ().c_str ());
2394
2395 return prev_frame;
2396 }
2397
2398 /* Debug routine to print a NULL frame being returned. */
2399
2400 static void
2401 frame_debug_got_null_frame (struct frame_info *this_frame,
2402 const char *reason)
2403 {
2404 if (frame_debug)
2405 {
2406 if (this_frame != NULL)
2407 frame_debug_printf ("this_frame=%d -> %s", this_frame->level, reason);
2408 else
2409 frame_debug_printf ("this_frame=nullptr -> %s", reason);
2410 }
2411 }
2412
2413 /* Is this (non-sentinel) frame in the "main"() function? */
2414
2415 static bool
2416 inside_main_func (frame_info *this_frame)
2417 {
2418 if (current_program_space->symfile_object_file == nullptr)
2419 return false;
2420
2421 CORE_ADDR sym_addr;
2422 const char *name = main_name ();
2423 bound_minimal_symbol msymbol
2424 = lookup_minimal_symbol (name, NULL,
2425 current_program_space->symfile_object_file);
2426 if (msymbol.minsym == nullptr)
2427 {
2428 /* In some language (for example Fortran) there will be no minimal
2429 symbol with the name of the main function. In this case we should
2430 search the full symbols to see if we can find a match. */
2431 struct block_symbol bs = lookup_symbol (name, NULL, VAR_DOMAIN, 0);
2432 if (bs.symbol == nullptr)
2433 return false;
2434
2435 const struct block *block = SYMBOL_BLOCK_VALUE (bs.symbol);
2436 gdb_assert (block != nullptr);
2437 sym_addr = BLOCK_START (block);
2438 }
2439 else
2440 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
2441
2442 /* Convert any function descriptor addresses into the actual function
2443 code address. */
2444 sym_addr = gdbarch_convert_from_func_ptr_addr
2445 (get_frame_arch (this_frame), sym_addr, current_inferior ()->top_target ());
2446
2447 return sym_addr == get_frame_func (this_frame);
2448 }
2449
2450 /* Test whether THIS_FRAME is inside the process entry point function. */
2451
2452 static bool
2453 inside_entry_func (frame_info *this_frame)
2454 {
2455 CORE_ADDR entry_point;
2456
2457 if (!entry_point_address_query (&entry_point))
2458 return false;
2459
2460 return get_frame_func (this_frame) == entry_point;
2461 }
2462
2463 /* Return a structure containing various interesting information about
2464 the frame that called THIS_FRAME. Returns NULL if there is entier
2465 no such frame or the frame fails any of a set of target-independent
2466 condition that should terminate the frame chain (e.g., as unwinding
2467 past main()).
2468
2469 This function should not contain target-dependent tests, such as
2470 checking whether the program-counter is zero. */
2471
2472 struct frame_info *
2473 get_prev_frame (struct frame_info *this_frame)
2474 {
2475 FRAME_SCOPED_DEBUG_ENTER_EXIT;
2476
2477 CORE_ADDR frame_pc;
2478 int frame_pc_p;
2479
2480 /* There is always a frame. If this assertion fails, suspect that
2481 something should be calling get_selected_frame() or
2482 get_current_frame(). */
2483 gdb_assert (this_frame != NULL);
2484
2485 frame_pc_p = get_frame_pc_if_available (this_frame, &frame_pc);
2486
2487 /* tausq/2004-12-07: Dummy frames are skipped because it doesn't make much
2488 sense to stop unwinding at a dummy frame. One place where a dummy
2489 frame may have an address "inside_main_func" is on HPUX. On HPUX, the
2490 pcsqh register (space register for the instruction at the head of the
2491 instruction queue) cannot be written directly; the only way to set it
2492 is to branch to code that is in the target space. In order to implement
2493 frame dummies on HPUX, the called function is made to jump back to where
2494 the inferior was when the user function was called. If gdb was inside
2495 the main function when we created the dummy frame, the dummy frame will
2496 point inside the main function. */
2497 if (this_frame->level >= 0
2498 && get_frame_type (this_frame) == NORMAL_FRAME
2499 && !user_set_backtrace_options.backtrace_past_main
2500 && frame_pc_p
2501 && inside_main_func (this_frame))
2502 /* Don't unwind past main(). Note, this is done _before_ the
2503 frame has been marked as previously unwound. That way if the
2504 user later decides to enable unwinds past main(), that will
2505 automatically happen. */
2506 {
2507 frame_debug_got_null_frame (this_frame, "inside main func");
2508 return NULL;
2509 }
2510
2511 /* If the user's backtrace limit has been exceeded, stop. We must
2512 add two to the current level; one of those accounts for backtrace_limit
2513 being 1-based and the level being 0-based, and the other accounts for
2514 the level of the new frame instead of the level of the current
2515 frame. */
2516 if (this_frame->level + 2 > user_set_backtrace_options.backtrace_limit)
2517 {
2518 frame_debug_got_null_frame (this_frame, "backtrace limit exceeded");
2519 return NULL;
2520 }
2521
2522 /* If we're already inside the entry function for the main objfile,
2523 then it isn't valid. Don't apply this test to a dummy frame -
2524 dummy frame PCs typically land in the entry func. Don't apply
2525 this test to the sentinel frame. Sentinel frames should always
2526 be allowed to unwind. */
2527 /* NOTE: cagney/2003-07-07: Fixed a bug in inside_main_func() -
2528 wasn't checking for "main" in the minimal symbols. With that
2529 fixed asm-source tests now stop in "main" instead of halting the
2530 backtrace in weird and wonderful ways somewhere inside the entry
2531 file. Suspect that tests for inside the entry file/func were
2532 added to work around that (now fixed) case. */
2533 /* NOTE: cagney/2003-07-15: danielj (if I'm reading it right)
2534 suggested having the inside_entry_func test use the
2535 inside_main_func() msymbol trick (along with entry_point_address()
2536 I guess) to determine the address range of the start function.
2537 That should provide a far better stopper than the current
2538 heuristics. */
2539 /* NOTE: tausq/2004-10-09: this is needed if, for example, the compiler
2540 applied tail-call optimizations to main so that a function called
2541 from main returns directly to the caller of main. Since we don't
2542 stop at main, we should at least stop at the entry point of the
2543 application. */
2544 if (this_frame->level >= 0
2545 && get_frame_type (this_frame) == NORMAL_FRAME
2546 && !user_set_backtrace_options.backtrace_past_entry
2547 && frame_pc_p
2548 && inside_entry_func (this_frame))
2549 {
2550 frame_debug_got_null_frame (this_frame, "inside entry func");
2551 return NULL;
2552 }
2553
2554 /* Assume that the only way to get a zero PC is through something
2555 like a SIGSEGV or a dummy frame, and hence that NORMAL frames
2556 will never unwind a zero PC. */
2557 if (this_frame->level > 0
2558 && (get_frame_type (this_frame) == NORMAL_FRAME
2559 || get_frame_type (this_frame) == INLINE_FRAME)
2560 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME
2561 && frame_pc_p && frame_pc == 0)
2562 {
2563 frame_debug_got_null_frame (this_frame, "zero PC");
2564 return NULL;
2565 }
2566
2567 return get_prev_frame_always (this_frame);
2568 }
2569
2570 CORE_ADDR
2571 get_frame_pc (struct frame_info *frame)
2572 {
2573 gdb_assert (frame->next != NULL);
2574 return frame_unwind_pc (frame->next);
2575 }
2576
2577 bool
2578 get_frame_pc_if_available (frame_info *frame, CORE_ADDR *pc)
2579 {
2580
2581 gdb_assert (frame->next != NULL);
2582
2583 try
2584 {
2585 *pc = frame_unwind_pc (frame->next);
2586 }
2587 catch (const gdb_exception_error &ex)
2588 {
2589 if (ex.error == NOT_AVAILABLE_ERROR)
2590 return false;
2591 else
2592 throw;
2593 }
2594
2595 return true;
2596 }
2597
2598 /* Return an address that falls within THIS_FRAME's code block. */
2599
2600 CORE_ADDR
2601 get_frame_address_in_block (struct frame_info *this_frame)
2602 {
2603 /* A draft address. */
2604 CORE_ADDR pc = get_frame_pc (this_frame);
2605
2606 struct frame_info *next_frame = this_frame->next;
2607
2608 /* Calling get_frame_pc returns the resume address for THIS_FRAME.
2609 Normally the resume address is inside the body of the function
2610 associated with THIS_FRAME, but there is a special case: when
2611 calling a function which the compiler knows will never return
2612 (for instance abort), the call may be the very last instruction
2613 in the calling function. The resume address will point after the
2614 call and may be at the beginning of a different function
2615 entirely.
2616
2617 If THIS_FRAME is a signal frame or dummy frame, then we should
2618 not adjust the unwound PC. For a dummy frame, GDB pushed the
2619 resume address manually onto the stack. For a signal frame, the
2620 OS may have pushed the resume address manually and invoked the
2621 handler (e.g. GNU/Linux), or invoked the trampoline which called
2622 the signal handler - but in either case the signal handler is
2623 expected to return to the trampoline. So in both of these
2624 cases we know that the resume address is executable and
2625 related. So we only need to adjust the PC if THIS_FRAME
2626 is a normal function.
2627
2628 If the program has been interrupted while THIS_FRAME is current,
2629 then clearly the resume address is inside the associated
2630 function. There are three kinds of interruption: debugger stop
2631 (next frame will be SENTINEL_FRAME), operating system
2632 signal or exception (next frame will be SIGTRAMP_FRAME),
2633 or debugger-induced function call (next frame will be
2634 DUMMY_FRAME). So we only need to adjust the PC if
2635 NEXT_FRAME is a normal function.
2636
2637 We check the type of NEXT_FRAME first, since it is already
2638 known; frame type is determined by the unwinder, and since
2639 we have THIS_FRAME we've already selected an unwinder for
2640 NEXT_FRAME.
2641
2642 If the next frame is inlined, we need to keep going until we find
2643 the real function - for instance, if a signal handler is invoked
2644 while in an inlined function, then the code address of the
2645 "calling" normal function should not be adjusted either. */
2646
2647 while (get_frame_type (next_frame) == INLINE_FRAME)
2648 next_frame = next_frame->next;
2649
2650 if ((get_frame_type (next_frame) == NORMAL_FRAME
2651 || get_frame_type (next_frame) == TAILCALL_FRAME)
2652 && (get_frame_type (this_frame) == NORMAL_FRAME
2653 || get_frame_type (this_frame) == TAILCALL_FRAME
2654 || get_frame_type (this_frame) == INLINE_FRAME))
2655 return pc - 1;
2656
2657 return pc;
2658 }
2659
2660 bool
2661 get_frame_address_in_block_if_available (frame_info *this_frame,
2662 CORE_ADDR *pc)
2663 {
2664
2665 try
2666 {
2667 *pc = get_frame_address_in_block (this_frame);
2668 }
2669 catch (const gdb_exception_error &ex)
2670 {
2671 if (ex.error == NOT_AVAILABLE_ERROR)
2672 return false;
2673 throw;
2674 }
2675
2676 return true;
2677 }
2678
2679 symtab_and_line
2680 find_frame_sal (frame_info *frame)
2681 {
2682 struct frame_info *next_frame;
2683 int notcurrent;
2684 CORE_ADDR pc;
2685
2686 if (frame_inlined_callees (frame) > 0)
2687 {
2688 struct symbol *sym;
2689
2690 /* If the current frame has some inlined callees, and we have a next
2691 frame, then that frame must be an inlined frame. In this case
2692 this frame's sal is the "call site" of the next frame's inlined
2693 function, which can not be inferred from get_frame_pc. */
2694 next_frame = get_next_frame (frame);
2695 if (next_frame)
2696 sym = get_frame_function (next_frame);
2697 else
2698 sym = inline_skipped_symbol (inferior_thread ());
2699
2700 /* If frame is inline, it certainly has symbols. */
2701 gdb_assert (sym);
2702
2703 symtab_and_line sal;
2704 if (SYMBOL_LINE (sym) != 0)
2705 {
2706 sal.symtab = symbol_symtab (sym);
2707 sal.line = SYMBOL_LINE (sym);
2708 }
2709 else
2710 /* If the symbol does not have a location, we don't know where
2711 the call site is. Do not pretend to. This is jarring, but
2712 we can't do much better. */
2713 sal.pc = get_frame_pc (frame);
2714
2715 sal.pspace = get_frame_program_space (frame);
2716 return sal;
2717 }
2718
2719 /* If FRAME is not the innermost frame, that normally means that
2720 FRAME->pc points at the return instruction (which is *after* the
2721 call instruction), and we want to get the line containing the
2722 call (because the call is where the user thinks the program is).
2723 However, if the next frame is either a SIGTRAMP_FRAME or a
2724 DUMMY_FRAME, then the next frame will contain a saved interrupt
2725 PC and such a PC indicates the current (rather than next)
2726 instruction/line, consequently, for such cases, want to get the
2727 line containing fi->pc. */
2728 if (!get_frame_pc_if_available (frame, &pc))
2729 return {};
2730
2731 notcurrent = (pc != get_frame_address_in_block (frame));
2732 return find_pc_line (pc, notcurrent);
2733 }
2734
2735 /* Per "frame.h", return the ``address'' of the frame. Code should
2736 really be using get_frame_id(). */
2737 CORE_ADDR
2738 get_frame_base (struct frame_info *fi)
2739 {
2740 return get_frame_id (fi).stack_addr;
2741 }
2742
2743 /* High-level offsets into the frame. Used by the debug info. */
2744
2745 CORE_ADDR
2746 get_frame_base_address (struct frame_info *fi)
2747 {
2748 if (get_frame_type (fi) != NORMAL_FRAME)
2749 return 0;
2750 if (fi->base == NULL)
2751 fi->base = frame_base_find_by_frame (fi);
2752 /* Sneaky: If the low-level unwind and high-level base code share a
2753 common unwinder, let them share the prologue cache. */
2754 if (fi->base->unwind == fi->unwind)
2755 return fi->base->this_base (fi, &fi->prologue_cache);
2756 return fi->base->this_base (fi, &fi->base_cache);
2757 }
2758
2759 CORE_ADDR
2760 get_frame_locals_address (struct frame_info *fi)
2761 {
2762 if (get_frame_type (fi) != NORMAL_FRAME)
2763 return 0;
2764 /* If there isn't a frame address method, find it. */
2765 if (fi->base == NULL)
2766 fi->base = frame_base_find_by_frame (fi);
2767 /* Sneaky: If the low-level unwind and high-level base code share a
2768 common unwinder, let them share the prologue cache. */
2769 if (fi->base->unwind == fi->unwind)
2770 return fi->base->this_locals (fi, &fi->prologue_cache);
2771 return fi->base->this_locals (fi, &fi->base_cache);
2772 }
2773
2774 CORE_ADDR
2775 get_frame_args_address (struct frame_info *fi)
2776 {
2777 if (get_frame_type (fi) != NORMAL_FRAME)
2778 return 0;
2779 /* If there isn't a frame address method, find it. */
2780 if (fi->base == NULL)
2781 fi->base = frame_base_find_by_frame (fi);
2782 /* Sneaky: If the low-level unwind and high-level base code share a
2783 common unwinder, let them share the prologue cache. */
2784 if (fi->base->unwind == fi->unwind)
2785 return fi->base->this_args (fi, &fi->prologue_cache);
2786 return fi->base->this_args (fi, &fi->base_cache);
2787 }
2788
2789 /* Return true if the frame unwinder for frame FI is UNWINDER; false
2790 otherwise. */
2791
2792 bool
2793 frame_unwinder_is (frame_info *fi, const frame_unwind *unwinder)
2794 {
2795 if (fi->unwind == nullptr)
2796 frame_unwind_find_by_frame (fi, &fi->prologue_cache);
2797
2798 return fi->unwind == unwinder;
2799 }
2800
2801 /* Level of the selected frame: 0 for innermost, 1 for its caller, ...
2802 or -1 for a NULL frame. */
2803
2804 int
2805 frame_relative_level (struct frame_info *fi)
2806 {
2807 if (fi == NULL)
2808 return -1;
2809 else
2810 return fi->level;
2811 }
2812
2813 enum frame_type
2814 get_frame_type (struct frame_info *frame)
2815 {
2816 if (frame->unwind == NULL)
2817 /* Initialize the frame's unwinder because that's what
2818 provides the frame's type. */
2819 frame_unwind_find_by_frame (frame, &frame->prologue_cache);
2820 return frame->unwind->type;
2821 }
2822
2823 struct program_space *
2824 get_frame_program_space (struct frame_info *frame)
2825 {
2826 return frame->pspace;
2827 }
2828
2829 struct program_space *
2830 frame_unwind_program_space (struct frame_info *this_frame)
2831 {
2832 gdb_assert (this_frame);
2833
2834 /* This is really a placeholder to keep the API consistent --- we
2835 assume for now that we don't have frame chains crossing
2836 spaces. */
2837 return this_frame->pspace;
2838 }
2839
2840 const address_space *
2841 get_frame_address_space (struct frame_info *frame)
2842 {
2843 return frame->aspace;
2844 }
2845
2846 /* Memory access methods. */
2847
2848 void
2849 get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
2850 gdb::array_view<gdb_byte> buffer)
2851 {
2852 read_memory (addr, buffer.data (), buffer.size ());
2853 }
2854
2855 LONGEST
2856 get_frame_memory_signed (struct frame_info *this_frame, CORE_ADDR addr,
2857 int len)
2858 {
2859 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2860 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2861
2862 return read_memory_integer (addr, len, byte_order);
2863 }
2864
2865 ULONGEST
2866 get_frame_memory_unsigned (struct frame_info *this_frame, CORE_ADDR addr,
2867 int len)
2868 {
2869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2871
2872 return read_memory_unsigned_integer (addr, len, byte_order);
2873 }
2874
2875 bool
2876 safe_frame_unwind_memory (struct frame_info *this_frame,
2877 CORE_ADDR addr, gdb::array_view<gdb_byte> buffer)
2878 {
2879 /* NOTE: target_read_memory returns zero on success! */
2880 return target_read_memory (addr, buffer.data (), buffer.size ()) == 0;
2881 }
2882
2883 /* Architecture methods. */
2884
2885 struct gdbarch *
2886 get_frame_arch (struct frame_info *this_frame)
2887 {
2888 return frame_unwind_arch (this_frame->next);
2889 }
2890
2891 struct gdbarch *
2892 frame_unwind_arch (struct frame_info *next_frame)
2893 {
2894 if (!next_frame->prev_arch.p)
2895 {
2896 struct gdbarch *arch;
2897
2898 if (next_frame->unwind == NULL)
2899 frame_unwind_find_by_frame (next_frame, &next_frame->prologue_cache);
2900
2901 if (next_frame->unwind->prev_arch != NULL)
2902 arch = next_frame->unwind->prev_arch (next_frame,
2903 &next_frame->prologue_cache);
2904 else
2905 arch = get_frame_arch (next_frame);
2906
2907 next_frame->prev_arch.arch = arch;
2908 next_frame->prev_arch.p = true;
2909 frame_debug_printf ("next_frame=%d -> %s",
2910 next_frame->level,
2911 gdbarch_bfd_arch_info (arch)->printable_name);
2912 }
2913
2914 return next_frame->prev_arch.arch;
2915 }
2916
2917 struct gdbarch *
2918 frame_unwind_caller_arch (struct frame_info *next_frame)
2919 {
2920 next_frame = skip_artificial_frames (next_frame);
2921
2922 /* We must have a non-artificial frame. The caller is supposed to check
2923 the result of frame_unwind_caller_id (), which returns NULL_FRAME_ID
2924 in this case. */
2925 gdb_assert (next_frame != NULL);
2926
2927 return frame_unwind_arch (next_frame);
2928 }
2929
2930 /* Gets the language of FRAME. */
2931
2932 enum language
2933 get_frame_language (struct frame_info *frame)
2934 {
2935 CORE_ADDR pc = 0;
2936 bool pc_p = false;
2937
2938 gdb_assert (frame!= NULL);
2939
2940 /* We determine the current frame language by looking up its
2941 associated symtab. To retrieve this symtab, we use the frame
2942 PC. However we cannot use the frame PC as is, because it
2943 usually points to the instruction following the "call", which
2944 is sometimes the first instruction of another function. So
2945 we rely on get_frame_address_in_block(), it provides us with
2946 a PC that is guaranteed to be inside the frame's code
2947 block. */
2948
2949 try
2950 {
2951 pc = get_frame_address_in_block (frame);
2952 pc_p = true;
2953 }
2954 catch (const gdb_exception_error &ex)
2955 {
2956 if (ex.error != NOT_AVAILABLE_ERROR)
2957 throw;
2958 }
2959
2960 if (pc_p)
2961 {
2962 struct compunit_symtab *cust = find_pc_compunit_symtab (pc);
2963
2964 if (cust != NULL)
2965 return compunit_language (cust);
2966 }
2967
2968 return language_unknown;
2969 }
2970
2971 /* Stack pointer methods. */
2972
2973 CORE_ADDR
2974 get_frame_sp (struct frame_info *this_frame)
2975 {
2976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2977
2978 /* NOTE drow/2008-06-28: gdbarch_unwind_sp could be converted to
2979 operate on THIS_FRAME now. */
2980 return gdbarch_unwind_sp (gdbarch, this_frame->next);
2981 }
2982
2983 /* Return the reason why we can't unwind past FRAME. */
2984
2985 enum unwind_stop_reason
2986 get_frame_unwind_stop_reason (struct frame_info *frame)
2987 {
2988 /* Fill-in STOP_REASON. */
2989 get_prev_frame_always (frame);
2990 gdb_assert (frame->prev_p);
2991
2992 return frame->stop_reason;
2993 }
2994
2995 /* Return a string explaining REASON. */
2996
2997 const char *
2998 unwind_stop_reason_to_string (enum unwind_stop_reason reason)
2999 {
3000 switch (reason)
3001 {
3002 #define SET(name, description) \
3003 case name: return _(description);
3004 #include "unwind_stop_reasons.def"
3005 #undef SET
3006
3007 default:
3008 internal_error (__FILE__, __LINE__,
3009 "Invalid frame stop reason");
3010 }
3011 }
3012
3013 const char *
3014 frame_stop_reason_string (struct frame_info *fi)
3015 {
3016 gdb_assert (fi->prev_p);
3017 gdb_assert (fi->prev == NULL);
3018
3019 /* Return the specific string if we have one. */
3020 if (fi->stop_string != NULL)
3021 return fi->stop_string;
3022
3023 /* Return the generic string if we have nothing better. */
3024 return unwind_stop_reason_to_string (fi->stop_reason);
3025 }
3026
3027 /* Return the enum symbol name of REASON as a string, to use in debug
3028 output. */
3029
3030 static const char *
3031 frame_stop_reason_symbol_string (enum unwind_stop_reason reason)
3032 {
3033 switch (reason)
3034 {
3035 #define SET(name, description) \
3036 case name: return #name;
3037 #include "unwind_stop_reasons.def"
3038 #undef SET
3039
3040 default:
3041 internal_error (__FILE__, __LINE__,
3042 "Invalid frame stop reason");
3043 }
3044 }
3045
3046 /* Clean up after a failed (wrong unwinder) attempt to unwind past
3047 FRAME. */
3048
3049 void
3050 frame_cleanup_after_sniffer (struct frame_info *frame)
3051 {
3052 /* The sniffer should not allocate a prologue cache if it did not
3053 match this frame. */
3054 gdb_assert (frame->prologue_cache == NULL);
3055
3056 /* No sniffer should extend the frame chain; sniff based on what is
3057 already certain. */
3058 gdb_assert (!frame->prev_p);
3059
3060 /* The sniffer should not check the frame's ID; that's circular. */
3061 gdb_assert (frame->this_id.p != frame_id_status::COMPUTED);
3062
3063 /* Clear cached fields dependent on the unwinder.
3064
3065 The previous PC is independent of the unwinder, but the previous
3066 function is not (see get_frame_address_in_block). */
3067 frame->prev_func.status = CC_UNKNOWN;
3068 frame->prev_func.addr = 0;
3069
3070 /* Discard the unwinder last, so that we can easily find it if an assertion
3071 in this function triggers. */
3072 frame->unwind = NULL;
3073 }
3074
3075 /* Set FRAME's unwinder temporarily, so that we can call a sniffer.
3076 If sniffing fails, the caller should be sure to call
3077 frame_cleanup_after_sniffer. */
3078
3079 void
3080 frame_prepare_for_sniffer (struct frame_info *frame,
3081 const struct frame_unwind *unwind)
3082 {
3083 gdb_assert (frame->unwind == NULL);
3084 frame->unwind = unwind;
3085 }
3086
3087 static struct cmd_list_element *set_backtrace_cmdlist;
3088 static struct cmd_list_element *show_backtrace_cmdlist;
3089
3090 /* Definition of the "set backtrace" settings that are exposed as
3091 "backtrace" command options. */
3092
3093 using boolean_option_def
3094 = gdb::option::boolean_option_def<set_backtrace_options>;
3095
3096 const gdb::option::option_def set_backtrace_option_defs[] = {
3097
3098 boolean_option_def {
3099 "past-main",
3100 [] (set_backtrace_options *opt) { return &opt->backtrace_past_main; },
3101 show_backtrace_past_main, /* show_cmd_cb */
3102 N_("Set whether backtraces should continue past \"main\"."),
3103 N_("Show whether backtraces should continue past \"main\"."),
3104 N_("Normally the caller of \"main\" is not of interest, so GDB will terminate\n\
3105 the backtrace at \"main\". Set this if you need to see the rest\n\
3106 of the stack trace."),
3107 },
3108
3109 boolean_option_def {
3110 "past-entry",
3111 [] (set_backtrace_options *opt) { return &opt->backtrace_past_entry; },
3112 show_backtrace_past_entry, /* show_cmd_cb */
3113 N_("Set whether backtraces should continue past the entry point of a program."),
3114 N_("Show whether backtraces should continue past the entry point of a program."),
3115 N_("Normally there are no callers beyond the entry point of a program, so GDB\n\
3116 will terminate the backtrace there. Set this if you need to see\n\
3117 the rest of the stack trace."),
3118 },
3119 };
3120
3121 void _initialize_frame ();
3122 void
3123 _initialize_frame ()
3124 {
3125 obstack_init (&frame_cache_obstack);
3126
3127 frame_stash_create ();
3128
3129 gdb::observers::target_changed.attach (frame_observer_target_changed,
3130 "frame");
3131
3132 add_basic_prefix_cmd ("backtrace", class_maintenance, _("\
3133 Set backtrace specific variables.\n\
3134 Configure backtrace variables such as the backtrace limit"),
3135 &set_backtrace_cmdlist,
3136 0/*allow-unknown*/, &setlist);
3137 add_show_prefix_cmd ("backtrace", class_maintenance, _("\
3138 Show backtrace specific variables.\n\
3139 Show backtrace variables such as the backtrace limit."),
3140 &show_backtrace_cmdlist,
3141 0/*allow-unknown*/, &showlist);
3142
3143 add_setshow_uinteger_cmd ("limit", class_obscure,
3144 &user_set_backtrace_options.backtrace_limit, _("\
3145 Set an upper bound on the number of backtrace levels."), _("\
3146 Show the upper bound on the number of backtrace levels."), _("\
3147 No more than the specified number of frames can be displayed or examined.\n\
3148 Literal \"unlimited\" or zero means no limit."),
3149 NULL,
3150 show_backtrace_limit,
3151 &set_backtrace_cmdlist,
3152 &show_backtrace_cmdlist);
3153
3154 gdb::option::add_setshow_cmds_for_options
3155 (class_stack, &user_set_backtrace_options,
3156 set_backtrace_option_defs, &set_backtrace_cmdlist, &show_backtrace_cmdlist);
3157
3158 /* Debug this files internals. */
3159 add_setshow_boolean_cmd ("frame", class_maintenance, &frame_debug, _("\
3160 Set frame debugging."), _("\
3161 Show frame debugging."), _("\
3162 When non-zero, frame specific internal debugging is enabled."),
3163 NULL,
3164 show_frame_debug,
3165 &setdebuglist, &showdebuglist);
3166 }