]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frv-tdep.c
internal_error: remove need to pass __FILE__/__LINE__
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "arch-utils.h"
24 #include "regcache.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dis-asm.h"
30 #include "sim-regno.h"
31 #include "gdb/sim-frv.h"
32 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
33 #include "symtab.h"
34 #include "elf-bfd.h"
35 #include "elf/frv.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "solib.h"
39 #include "frv-tdep.h"
40 #include "objfiles.h"
41 #include "gdbarch.h"
42
43 struct frv_unwind_cache /* was struct frame_extra_info */
44 {
45 /* The previous frame's inner-most stack address. Used as this
46 frame ID's stack_addr. */
47 CORE_ADDR prev_sp;
48
49 /* The frame's base, optionally used by the high-level debug info. */
50 CORE_ADDR base;
51
52 /* Table indicating the location of each and every register. */
53 trad_frame_saved_reg *saved_regs;
54 };
55
56 /* A structure describing a particular variant of the FRV.
57 We allocate and initialize one of these structures when we create
58 the gdbarch object for a variant.
59
60 At the moment, all the FR variants we support differ only in which
61 registers are present; the portable code of GDB knows that
62 registers whose names are the empty string don't exist, so the
63 `register_names' array captures all the per-variant information we
64 need.
65
66 in the future, if we need to have per-variant maps for raw size,
67 virtual type, etc., we should replace register_names with an array
68 of structures, each of which gives all the necessary info for one
69 register. Don't stick parallel arrays in here --- that's so
70 Fortran. */
71 struct frv_gdbarch_tdep : gdbarch_tdep_base
72 {
73 /* Which ABI is in use? */
74 enum frv_abi frv_abi {};
75
76 /* How many general-purpose registers does this variant have? */
77 int num_gprs = 0;
78
79 /* How many floating-point registers does this variant have? */
80 int num_fprs = 0;
81
82 /* How many hardware watchpoints can it support? */
83 int num_hw_watchpoints = 0;
84
85 /* How many hardware breakpoints can it support? */
86 int num_hw_breakpoints = 0;
87
88 /* Register names. */
89 const char **register_names = nullptr;
90 };
91
92 /* Return the FR-V ABI associated with GDBARCH. */
93 enum frv_abi
94 frv_abi (struct gdbarch *gdbarch)
95 {
96 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
97 return tdep->frv_abi;
98 }
99
100 /* Fetch the interpreter and executable loadmap addresses (for shared
101 library support) for the FDPIC ABI. Return 0 if successful, -1 if
102 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
103 int
104 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
105 CORE_ADDR *exec_addr)
106 {
107 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
108 return -1;
109 else
110 {
111 struct regcache *regcache = get_current_regcache ();
112
113 if (interp_addr != NULL)
114 {
115 ULONGEST val;
116 regcache_cooked_read_unsigned (regcache,
117 fdpic_loadmap_interp_regnum, &val);
118 *interp_addr = val;
119 }
120 if (exec_addr != NULL)
121 {
122 ULONGEST val;
123 regcache_cooked_read_unsigned (regcache,
124 fdpic_loadmap_exec_regnum, &val);
125 *exec_addr = val;
126 }
127 return 0;
128 }
129 }
130
131 /* Allocate a new variant structure, and set up default values for all
132 the fields. */
133 static frv_gdbarch_tdep *
134 new_variant (void)
135 {
136 int r;
137
138 frv_gdbarch_tdep *var = new frv_gdbarch_tdep;
139
140 var->frv_abi = FRV_ABI_EABI;
141 var->num_gprs = 64;
142 var->num_fprs = 64;
143 var->num_hw_watchpoints = 0;
144 var->num_hw_breakpoints = 0;
145
146 /* By default, don't supply any general-purpose or floating-point
147 register names. */
148 var->register_names
149 = (const char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
150 * sizeof (const char *));
151 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
152 var->register_names[r] = "";
153
154 /* Do, however, supply default names for the known special-purpose
155 registers. */
156
157 var->register_names[pc_regnum] = "pc";
158 var->register_names[lr_regnum] = "lr";
159 var->register_names[lcr_regnum] = "lcr";
160
161 var->register_names[psr_regnum] = "psr";
162 var->register_names[ccr_regnum] = "ccr";
163 var->register_names[cccr_regnum] = "cccr";
164 var->register_names[tbr_regnum] = "tbr";
165
166 /* Debug registers. */
167 var->register_names[brr_regnum] = "brr";
168 var->register_names[dbar0_regnum] = "dbar0";
169 var->register_names[dbar1_regnum] = "dbar1";
170 var->register_names[dbar2_regnum] = "dbar2";
171 var->register_names[dbar3_regnum] = "dbar3";
172
173 /* iacc0 (Only found on MB93405.) */
174 var->register_names[iacc0h_regnum] = "iacc0h";
175 var->register_names[iacc0l_regnum] = "iacc0l";
176 var->register_names[iacc0_regnum] = "iacc0";
177
178 /* fsr0 (Found on FR555 and FR501.) */
179 var->register_names[fsr0_regnum] = "fsr0";
180
181 /* acc0 - acc7. The architecture provides for the possibility of many
182 more (up to 64 total), but we don't want to make that big of a hole
183 in the G packet. If we need more in the future, we'll add them
184 elsewhere. */
185 for (r = acc0_regnum; r <= acc7_regnum; r++)
186 var->register_names[r]
187 = xstrprintf ("acc%d", r - acc0_regnum).release ();
188
189 /* accg0 - accg7: These are one byte registers. The remote protocol
190 provides the raw values packed four into a slot. accg0123 and
191 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
192 We don't provide names for accg0123 and accg4567 since the user will
193 likely not want to see these raw values. */
194
195 for (r = accg0_regnum; r <= accg7_regnum; r++)
196 var->register_names[r]
197 = xstrprintf ("accg%d", r - accg0_regnum).release ();
198
199 /* msr0 and msr1. */
200
201 var->register_names[msr0_regnum] = "msr0";
202 var->register_names[msr1_regnum] = "msr1";
203
204 /* gner and fner registers. */
205 var->register_names[gner0_regnum] = "gner0";
206 var->register_names[gner1_regnum] = "gner1";
207 var->register_names[fner0_regnum] = "fner0";
208 var->register_names[fner1_regnum] = "fner1";
209
210 return var;
211 }
212
213
214 /* Indicate that the variant VAR has NUM_GPRS general-purpose
215 registers, and fill in the names array appropriately. */
216 static void
217 set_variant_num_gprs (frv_gdbarch_tdep *var, int num_gprs)
218 {
219 int r;
220
221 var->num_gprs = num_gprs;
222
223 for (r = 0; r < num_gprs; ++r)
224 {
225 char buf[20];
226
227 xsnprintf (buf, sizeof (buf), "gr%d", r);
228 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
229 }
230 }
231
232
233 /* Indicate that the variant VAR has NUM_FPRS floating-point
234 registers, and fill in the names array appropriately. */
235 static void
236 set_variant_num_fprs (frv_gdbarch_tdep *var, int num_fprs)
237 {
238 int r;
239
240 var->num_fprs = num_fprs;
241
242 for (r = 0; r < num_fprs; ++r)
243 {
244 char buf[20];
245
246 xsnprintf (buf, sizeof (buf), "fr%d", r);
247 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
248 }
249 }
250
251 static void
252 set_variant_abi_fdpic (frv_gdbarch_tdep *var)
253 {
254 var->frv_abi = FRV_ABI_FDPIC;
255 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
256 var->register_names[fdpic_loadmap_interp_regnum]
257 = xstrdup ("loadmap_interp");
258 }
259
260 static void
261 set_variant_scratch_registers (frv_gdbarch_tdep *var)
262 {
263 var->register_names[scr0_regnum] = xstrdup ("scr0");
264 var->register_names[scr1_regnum] = xstrdup ("scr1");
265 var->register_names[scr2_regnum] = xstrdup ("scr2");
266 var->register_names[scr3_regnum] = xstrdup ("scr3");
267 }
268
269 static const char *
270 frv_register_name (struct gdbarch *gdbarch, int reg)
271 {
272 frv_gdbarch_tdep *tdep = gdbarch_tdep<frv_gdbarch_tdep> (gdbarch);
273 return tdep->register_names[reg];
274 }
275
276
277 static struct type *
278 frv_register_type (struct gdbarch *gdbarch, int reg)
279 {
280 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
281 return builtin_type (gdbarch)->builtin_float;
282 else if (reg == iacc0_regnum)
283 return builtin_type (gdbarch)->builtin_int64;
284 else
285 return builtin_type (gdbarch)->builtin_int32;
286 }
287
288 static enum register_status
289 frv_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
290 int reg, gdb_byte *buffer)
291 {
292 enum register_status status;
293
294 if (reg == iacc0_regnum)
295 {
296 status = regcache->raw_read (iacc0h_regnum, buffer);
297 if (status == REG_VALID)
298 status = regcache->raw_read (iacc0l_regnum, (bfd_byte *) buffer + 4);
299 }
300 else if (accg0_regnum <= reg && reg <= accg7_regnum)
301 {
302 /* The accg raw registers have four values in each slot with the
303 lowest register number occupying the first byte. */
304
305 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
306 int byte_num = (reg - accg0_regnum) % 4;
307 gdb_byte buf[4];
308
309 status = regcache->raw_read (raw_regnum, buf);
310 if (status == REG_VALID)
311 {
312 memset (buffer, 0, 4);
313 /* FR-V is big endian, so put the requested byte in the
314 first byte of the buffer allocated to hold the
315 pseudo-register. */
316 buffer[0] = buf[byte_num];
317 }
318 }
319 else
320 gdb_assert_not_reached ("invalid pseudo register number");
321
322 return status;
323 }
324
325 static void
326 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
327 int reg, const gdb_byte *buffer)
328 {
329 if (reg == iacc0_regnum)
330 {
331 regcache->raw_write (iacc0h_regnum, buffer);
332 regcache->raw_write (iacc0l_regnum, (bfd_byte *) buffer + 4);
333 }
334 else if (accg0_regnum <= reg && reg <= accg7_regnum)
335 {
336 /* The accg raw registers have four values in each slot with the
337 lowest register number occupying the first byte. */
338
339 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
340 int byte_num = (reg - accg0_regnum) % 4;
341 gdb_byte buf[4];
342
343 regcache->raw_read (raw_regnum, buf);
344 buf[byte_num] = ((bfd_byte *) buffer)[0];
345 regcache->raw_write (raw_regnum, buf);
346 }
347 }
348
349 static int
350 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
351 {
352 static const int spr_map[] =
353 {
354 H_SPR_PSR, /* psr_regnum */
355 H_SPR_CCR, /* ccr_regnum */
356 H_SPR_CCCR, /* cccr_regnum */
357 -1, /* fdpic_loadmap_exec_regnum */
358 -1, /* fdpic_loadmap_interp_regnum */
359 -1, /* 134 */
360 H_SPR_TBR, /* tbr_regnum */
361 H_SPR_BRR, /* brr_regnum */
362 H_SPR_DBAR0, /* dbar0_regnum */
363 H_SPR_DBAR1, /* dbar1_regnum */
364 H_SPR_DBAR2, /* dbar2_regnum */
365 H_SPR_DBAR3, /* dbar3_regnum */
366 H_SPR_SCR0, /* scr0_regnum */
367 H_SPR_SCR1, /* scr1_regnum */
368 H_SPR_SCR2, /* scr2_regnum */
369 H_SPR_SCR3, /* scr3_regnum */
370 H_SPR_LR, /* lr_regnum */
371 H_SPR_LCR, /* lcr_regnum */
372 H_SPR_IACC0H, /* iacc0h_regnum */
373 H_SPR_IACC0L, /* iacc0l_regnum */
374 H_SPR_FSR0, /* fsr0_regnum */
375 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
376 -1, /* acc0_regnum */
377 -1, /* acc1_regnum */
378 -1, /* acc2_regnum */
379 -1, /* acc3_regnum */
380 -1, /* acc4_regnum */
381 -1, /* acc5_regnum */
382 -1, /* acc6_regnum */
383 -1, /* acc7_regnum */
384 -1, /* acc0123_regnum */
385 -1, /* acc4567_regnum */
386 H_SPR_MSR0, /* msr0_regnum */
387 H_SPR_MSR1, /* msr1_regnum */
388 H_SPR_GNER0, /* gner0_regnum */
389 H_SPR_GNER1, /* gner1_regnum */
390 H_SPR_FNER0, /* fner0_regnum */
391 H_SPR_FNER1, /* fner1_regnum */
392 };
393
394 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
395
396 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
397 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
398 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
399 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
400 else if (pc_regnum == reg)
401 return SIM_FRV_PC_REGNUM;
402 else if (reg >= first_spr_regnum
403 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
404 {
405 int spr_reg_offset = spr_map[reg - first_spr_regnum];
406
407 if (spr_reg_offset < 0)
408 return SIM_REGNO_DOES_NOT_EXIST;
409 else
410 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
411 }
412
413 internal_error (_("Bad register number %d"), reg);
414 }
415
416 constexpr gdb_byte frv_break_insn[] = {0xc0, 0x70, 0x00, 0x01};
417
418 typedef BP_MANIPULATION (frv_break_insn) frv_breakpoint;
419
420 /* Define the maximum number of instructions which may be packed into a
421 bundle (VLIW instruction). */
422 static const int max_instrs_per_bundle = 8;
423
424 /* Define the size (in bytes) of an FR-V instruction. */
425 static const int frv_instr_size = 4;
426
427 /* Adjust a breakpoint's address to account for the FR-V architecture's
428 constraint that a break instruction must not appear as any but the
429 first instruction in the bundle. */
430 static CORE_ADDR
431 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
432 {
433 int count = max_instrs_per_bundle;
434 CORE_ADDR addr = bpaddr - frv_instr_size;
435 CORE_ADDR func_start = get_pc_function_start (bpaddr);
436
437 /* Find the end of the previous packing sequence. This will be indicated
438 by either attempting to access some inaccessible memory or by finding
439 an instruction word whose packing bit is set to one. */
440 while (count-- > 0 && addr >= func_start)
441 {
442 gdb_byte instr[frv_instr_size];
443 int status;
444
445 status = target_read_memory (addr, instr, sizeof instr);
446
447 if (status != 0)
448 break;
449
450 /* This is a big endian architecture, so byte zero will have most
451 significant byte. The most significant bit of this byte is the
452 packing bit. */
453 if (instr[0] & 0x80)
454 break;
455
456 addr -= frv_instr_size;
457 }
458
459 if (count > 0)
460 bpaddr = addr + frv_instr_size;
461
462 return bpaddr;
463 }
464
465
466 /* Return true if REG is a caller-saves ("scratch") register,
467 false otherwise. */
468 static int
469 is_caller_saves_reg (int reg)
470 {
471 return ((4 <= reg && reg <= 7)
472 || (14 <= reg && reg <= 15)
473 || (32 <= reg && reg <= 47));
474 }
475
476
477 /* Return true if REG is a callee-saves register, false otherwise. */
478 static int
479 is_callee_saves_reg (int reg)
480 {
481 return ((16 <= reg && reg <= 31)
482 || (48 <= reg && reg <= 63));
483 }
484
485
486 /* Return true if REG is an argument register, false otherwise. */
487 static int
488 is_argument_reg (int reg)
489 {
490 return (8 <= reg && reg <= 13);
491 }
492
493 /* Scan an FR-V prologue, starting at PC, until frame->PC.
494 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
495 We assume FRAME's saved_regs array has already been allocated and cleared.
496 Return the first PC value after the prologue.
497
498 Note that, for unoptimized code, we almost don't need this function
499 at all; all arguments and locals live on the stack, so we just need
500 the FP to find everything. The catch: structures passed by value
501 have their addresses living in registers; they're never spilled to
502 the stack. So if you ever want to be able to get to these
503 arguments in any frame but the top, you'll need to do this serious
504 prologue analysis. */
505 static CORE_ADDR
506 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
507 frame_info_ptr this_frame,
508 struct frv_unwind_cache *info)
509 {
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
511
512 /* When writing out instruction bitpatterns, we use the following
513 letters to label instruction fields:
514 P - The parallel bit. We don't use this.
515 J - The register number of GRj in the instruction description.
516 K - The register number of GRk in the instruction description.
517 I - The register number of GRi.
518 S - a signed immediate offset.
519 U - an unsigned immediate offset.
520
521 The dots below the numbers indicate where hex digit boundaries
522 fall, to make it easier to check the numbers. */
523
524 /* Non-zero iff we've seen the instruction that initializes the
525 frame pointer for this function's frame. */
526 int fp_set = 0;
527
528 /* If fp_set is non_zero, then this is the distance from
529 the stack pointer to frame pointer: fp = sp + fp_offset. */
530 int fp_offset = 0;
531
532 /* Total size of frame prior to any alloca operations. */
533 int framesize = 0;
534
535 /* Flag indicating if lr has been saved on the stack. */
536 int lr_saved_on_stack = 0;
537
538 /* The number of the general-purpose register we saved the return
539 address ("link register") in, or -1 if we haven't moved it yet. */
540 int lr_save_reg = -1;
541
542 /* Offset (from sp) at which lr has been saved on the stack. */
543
544 int lr_sp_offset = 0;
545
546 /* If gr_saved[i] is non-zero, then we've noticed that general
547 register i has been saved at gr_sp_offset[i] from the stack
548 pointer. */
549 char gr_saved[64];
550 int gr_sp_offset[64];
551
552 /* The address of the most recently scanned prologue instruction. */
553 CORE_ADDR last_prologue_pc;
554
555 /* The address of the next instruction. */
556 CORE_ADDR next_pc;
557
558 /* The upper bound to of the pc values to scan. */
559 CORE_ADDR lim_pc;
560
561 memset (gr_saved, 0, sizeof (gr_saved));
562
563 last_prologue_pc = pc;
564
565 /* Try to compute an upper limit (on how far to scan) based on the
566 line number info. */
567 lim_pc = skip_prologue_using_sal (gdbarch, pc);
568 /* If there's no line number info, lim_pc will be 0. In that case,
569 set the limit to be 100 instructions away from pc. Hopefully, this
570 will be far enough away to account for the entire prologue. Don't
571 worry about overshooting the end of the function. The scan loop
572 below contains some checks to avoid scanning unreasonably far. */
573 if (lim_pc == 0)
574 lim_pc = pc + 400;
575
576 /* If we have a frame, we don't want to scan past the frame's pc. This
577 will catch those cases where the pc is in the prologue. */
578 if (this_frame)
579 {
580 CORE_ADDR frame_pc = get_frame_pc (this_frame);
581 if (frame_pc < lim_pc)
582 lim_pc = frame_pc;
583 }
584
585 /* Scan the prologue. */
586 while (pc < lim_pc)
587 {
588 gdb_byte buf[frv_instr_size];
589 LONGEST op;
590
591 if (target_read_memory (pc, buf, sizeof buf) != 0)
592 break;
593 op = extract_signed_integer (buf, byte_order);
594
595 next_pc = pc + 4;
596
597 /* The tests in this chain of ifs should be in order of
598 decreasing selectivity, so that more particular patterns get
599 to fire before less particular patterns. */
600
601 /* Some sort of control transfer instruction: stop scanning prologue.
602 Integer Conditional Branch:
603 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
604 Floating-point / media Conditional Branch:
605 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
606 LCR Conditional Branch to LR
607 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
608 Integer conditional Branches to LR
609 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
610 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
611 Floating-point/Media Branches to LR
612 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
613 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
614 Jump and Link
615 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
616 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
617 Call
618 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
619 Return from Trap
620 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
621 Integer Conditional Trap
622 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
623 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
624 Floating-point /media Conditional Trap
625 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
626 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
627 Break
628 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
629 Media Trap
630 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
631 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
632 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
633 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
634 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
635 {
636 /* Stop scanning; not in prologue any longer. */
637 break;
638 }
639
640 /* Loading something from memory into fp probably means that
641 we're in the epilogue. Stop scanning the prologue.
642 ld @(GRi, GRk), fp
643 X 000010 0000010 XXXXXX 000100 XXXXXX
644 ldi @(GRi, d12), fp
645 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
646 else if ((op & 0x7ffc0fc0) == 0x04080100
647 || (op & 0x7ffc0000) == 0x04c80000)
648 {
649 break;
650 }
651
652 /* Setting the FP from the SP:
653 ori sp, 0, fp
654 P 000010 0100010 000001 000000000000 = 0x04881000
655 0 111111 1111111 111111 111111111111 = 0x7fffffff
656 . . . . . . . .
657 We treat this as part of the prologue. */
658 else if ((op & 0x7fffffff) == 0x04881000)
659 {
660 fp_set = 1;
661 fp_offset = 0;
662 last_prologue_pc = next_pc;
663 }
664
665 /* Move the link register to the scratch register grJ, before saving:
666 movsg lr, grJ
667 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
668 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
669 . . . . . . . .
670 We treat this as part of the prologue. */
671 else if ((op & 0x7fffffc0) == 0x080d01c0)
672 {
673 int gr_j = op & 0x3f;
674
675 /* If we're moving it to a scratch register, that's fine. */
676 if (is_caller_saves_reg (gr_j))
677 {
678 lr_save_reg = gr_j;
679 last_prologue_pc = next_pc;
680 }
681 }
682
683 /* To save multiple callee-saves registers on the stack, at
684 offset zero:
685
686 std grK,@(sp,gr0)
687 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
688 0 000000 1111111 111111 111111 111111 = 0x01ffffff
689
690 stq grK,@(sp,gr0)
691 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
692 0 000000 1111111 111111 111111 111111 = 0x01ffffff
693 . . . . . . . .
694 We treat this as part of the prologue, and record the register's
695 saved address in the frame structure. */
696 else if ((op & 0x01ffffff) == 0x000c10c0
697 || (op & 0x01ffffff) == 0x000c1100)
698 {
699 int gr_k = ((op >> 25) & 0x3f);
700 int ope = ((op >> 6) & 0x3f);
701 int count;
702 int i;
703
704 /* Is it an std or an stq? */
705 if (ope == 0x03)
706 count = 2;
707 else
708 count = 4;
709
710 /* Is it really a callee-saves register? */
711 if (is_callee_saves_reg (gr_k))
712 {
713 for (i = 0; i < count; i++)
714 {
715 gr_saved[gr_k + i] = 1;
716 gr_sp_offset[gr_k + i] = 4 * i;
717 }
718 last_prologue_pc = next_pc;
719 }
720 }
721
722 /* Adjusting the stack pointer. (The stack pointer is GR1.)
723 addi sp, S, sp
724 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
725 0 111111 1111111 111111 000000000000 = 0x7ffff000
726 . . . . . . . .
727 We treat this as part of the prologue. */
728 else if ((op & 0x7ffff000) == 0x02401000)
729 {
730 if (framesize == 0)
731 {
732 /* Sign-extend the twelve-bit field.
733 (Isn't there a better way to do this?) */
734 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
735
736 framesize -= s;
737 last_prologue_pc = pc;
738 }
739 else
740 {
741 /* If the prologue is being adjusted again, we've
742 likely gone too far; i.e. we're probably in the
743 epilogue. */
744 break;
745 }
746 }
747
748 /* Setting the FP to a constant distance from the SP:
749 addi sp, S, fp
750 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
751 0 111111 1111111 111111 000000000000 = 0x7ffff000
752 . . . . . . . .
753 We treat this as part of the prologue. */
754 else if ((op & 0x7ffff000) == 0x04401000)
755 {
756 /* Sign-extend the twelve-bit field.
757 (Isn't there a better way to do this?) */
758 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
759 fp_set = 1;
760 fp_offset = s;
761 last_prologue_pc = pc;
762 }
763
764 /* To spill an argument register to a scratch register:
765 ori GRi, 0, GRk
766 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
767 0 000000 1111111 000000 111111111111 = 0x01fc0fff
768 . . . . . . . .
769 For the time being, we treat this as a prologue instruction,
770 assuming that GRi is an argument register. This one's kind
771 of suspicious, because it seems like it could be part of a
772 legitimate body instruction. But we only come here when the
773 source info wasn't helpful, so we have to do the best we can.
774 Hopefully once GCC and GDB agree on how to emit line number
775 info for prologues, then this code will never come into play. */
776 else if ((op & 0x01fc0fff) == 0x00880000)
777 {
778 int gr_i = ((op >> 12) & 0x3f);
779
780 /* Make sure that the source is an arg register; if it is, we'll
781 treat it as a prologue instruction. */
782 if (is_argument_reg (gr_i))
783 last_prologue_pc = next_pc;
784 }
785
786 /* To spill 16-bit values to the stack:
787 sthi GRk, @(fp, s)
788 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
789 0 000000 1111111 111111 000000000000 = 0x01fff000
790 . . . . . . . .
791 And for 8-bit values, we use STB instructions.
792 stbi GRk, @(fp, s)
793 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
794 0 000000 1111111 111111 000000000000 = 0x01fff000
795 . . . . . . . .
796 We check that GRk is really an argument register, and treat
797 all such as part of the prologue. */
798 else if ( (op & 0x01fff000) == 0x01442000
799 || (op & 0x01fff000) == 0x01402000)
800 {
801 int gr_k = ((op >> 25) & 0x3f);
802
803 /* Make sure that GRk is really an argument register; treat
804 it as a prologue instruction if so. */
805 if (is_argument_reg (gr_k))
806 last_prologue_pc = next_pc;
807 }
808
809 /* To save multiple callee-saves register on the stack, at a
810 non-zero offset:
811
812 stdi GRk, @(sp, s)
813 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
814 0 000000 1111111 111111 000000000000 = 0x01fff000
815 . . . . . . . .
816 stqi GRk, @(sp, s)
817 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
818 0 000000 1111111 111111 000000000000 = 0x01fff000
819 . . . . . . . .
820 We treat this as part of the prologue, and record the register's
821 saved address in the frame structure. */
822 else if ((op & 0x01fff000) == 0x014c1000
823 || (op & 0x01fff000) == 0x01501000)
824 {
825 int gr_k = ((op >> 25) & 0x3f);
826 int count;
827 int i;
828
829 /* Is it a stdi or a stqi? */
830 if ((op & 0x01fff000) == 0x014c1000)
831 count = 2;
832 else
833 count = 4;
834
835 /* Is it really a callee-saves register? */
836 if (is_callee_saves_reg (gr_k))
837 {
838 /* Sign-extend the twelve-bit field.
839 (Isn't there a better way to do this?) */
840 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
841
842 for (i = 0; i < count; i++)
843 {
844 gr_saved[gr_k + i] = 1;
845 gr_sp_offset[gr_k + i] = s + (4 * i);
846 }
847 last_prologue_pc = next_pc;
848 }
849 }
850
851 /* Storing any kind of integer register at any constant offset
852 from any other register.
853
854 st GRk, @(GRi, gr0)
855 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
856 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
857 . . . . . . . .
858 sti GRk, @(GRi, d12)
859 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
860 0 000000 1111111 000000 000000000000 = 0x01fc0000
861 . . . . . . . .
862 These could be almost anything, but a lot of prologue
863 instructions fall into this pattern, so let's decode the
864 instruction once, and then work at a higher level. */
865 else if (((op & 0x01fc0fff) == 0x000c0080)
866 || ((op & 0x01fc0000) == 0x01480000))
867 {
868 int gr_k = ((op >> 25) & 0x3f);
869 int gr_i = ((op >> 12) & 0x3f);
870 int offset;
871
872 /* Are we storing with gr0 as an offset, or using an
873 immediate value? */
874 if ((op & 0x01fc0fff) == 0x000c0080)
875 offset = 0;
876 else
877 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
878
879 /* If the address isn't relative to the SP or FP, it's not a
880 prologue instruction. */
881 if (gr_i != sp_regnum && gr_i != fp_regnum)
882 {
883 /* Do nothing; not a prologue instruction. */
884 }
885
886 /* Saving the old FP in the new frame (relative to the SP). */
887 else if (gr_k == fp_regnum && gr_i == sp_regnum)
888 {
889 gr_saved[fp_regnum] = 1;
890 gr_sp_offset[fp_regnum] = offset;
891 last_prologue_pc = next_pc;
892 }
893
894 /* Saving callee-saves register(s) on the stack, relative to
895 the SP. */
896 else if (gr_i == sp_regnum
897 && is_callee_saves_reg (gr_k))
898 {
899 gr_saved[gr_k] = 1;
900 if (gr_i == sp_regnum)
901 gr_sp_offset[gr_k] = offset;
902 else
903 gr_sp_offset[gr_k] = offset + fp_offset;
904 last_prologue_pc = next_pc;
905 }
906
907 /* Saving the scratch register holding the return address. */
908 else if (lr_save_reg != -1
909 && gr_k == lr_save_reg)
910 {
911 lr_saved_on_stack = 1;
912 if (gr_i == sp_regnum)
913 lr_sp_offset = offset;
914 else
915 lr_sp_offset = offset + fp_offset;
916 last_prologue_pc = next_pc;
917 }
918
919 /* Spilling int-sized arguments to the stack. */
920 else if (is_argument_reg (gr_k))
921 last_prologue_pc = next_pc;
922 }
923 pc = next_pc;
924 }
925
926 if (this_frame && info)
927 {
928 int i;
929 ULONGEST this_base;
930
931 /* If we know the relationship between the stack and frame
932 pointers, record the addresses of the registers we noticed.
933 Note that we have to do this as a separate step at the end,
934 because instructions may save relative to the SP, but we need
935 their addresses relative to the FP. */
936 if (fp_set)
937 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
938 else
939 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
940
941 for (i = 0; i < 64; i++)
942 if (gr_saved[i])
943 info->saved_regs[i].set_addr (this_base - fp_offset
944 + gr_sp_offset[i]);
945
946 info->prev_sp = this_base - fp_offset + framesize;
947 info->base = this_base;
948
949 /* If LR was saved on the stack, record its location. */
950 if (lr_saved_on_stack)
951 info->saved_regs[lr_regnum].set_addr (this_base - fp_offset
952 + lr_sp_offset);
953
954 /* The call instruction moves the caller's PC in the callee's LR.
955 Since this is an unwind, do the reverse. Copy the location of LR
956 into PC (the address / regnum) so that a request for PC will be
957 converted into a request for the LR. */
958 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
959
960 /* Save the previous frame's computed SP value. */
961 info->saved_regs[sp_regnum].set_value (info->prev_sp);
962 }
963
964 return last_prologue_pc;
965 }
966
967
968 static CORE_ADDR
969 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
970 {
971 CORE_ADDR func_addr, func_end, new_pc;
972
973 new_pc = pc;
974
975 /* If the line table has entry for a line *within* the function
976 (i.e., not in the prologue, and not past the end), then that's
977 our location. */
978 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
979 {
980 struct symtab_and_line sal;
981
982 sal = find_pc_line (func_addr, 0);
983
984 if (sal.line != 0 && sal.end < func_end)
985 {
986 new_pc = sal.end;
987 }
988 }
989
990 /* The FR-V prologue is at least five instructions long (twenty bytes).
991 If we didn't find a real source location past that, then
992 do a full analysis of the prologue. */
993 if (new_pc < pc + 20)
994 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
995
996 return new_pc;
997 }
998
999
1000 /* Examine the instruction pointed to by PC. If it corresponds to
1001 a call to __main, return the address of the next instruction.
1002 Otherwise, return PC. */
1003
1004 static CORE_ADDR
1005 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1006 {
1007 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1008 gdb_byte buf[4];
1009 unsigned long op;
1010 CORE_ADDR orig_pc = pc;
1011
1012 if (target_read_memory (pc, buf, 4))
1013 return pc;
1014 op = extract_unsigned_integer (buf, 4, byte_order);
1015
1016 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1017 to the call instruction.
1018
1019 Skip over this instruction if present. It won't be present in
1020 non-PIC code, and even in PIC code, it might not be present.
1021 (This is due to the fact that GR15, the FDPIC register, already
1022 contains the correct value.)
1023
1024 The general form of the LDI is given first, followed by the
1025 specific instruction with the GRi and GRk filled in as FP and
1026 GR15.
1027
1028 ldi @(GRi, d12), GRk
1029 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1030 0 000000 1111111 000000 000000000000 = 0x01fc0000
1031 . . . . . . . .
1032 ldi @(FP, d12), GR15
1033 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1034 0 001111 1111111 000010 000000000000 = 0x7ffff000
1035 . . . . . . . . */
1036
1037 if ((op & 0x7ffff000) == 0x1ec82000)
1038 {
1039 pc += 4;
1040 if (target_read_memory (pc, buf, 4))
1041 return orig_pc;
1042 op = extract_unsigned_integer (buf, 4, byte_order);
1043 }
1044
1045 /* The format of an FRV CALL instruction is as follows:
1046
1047 call label24
1048 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1049 0 000000 1111111 000000000000000000 = 0x01fc0000
1050 . . . . . . . .
1051
1052 where label24 is constructed by concatenating the H bits with the
1053 L bits. The call target is PC + (4 * sign_ext(label24)). */
1054
1055 if ((op & 0x01fc0000) == 0x003c0000)
1056 {
1057 LONGEST displ;
1058 CORE_ADDR call_dest;
1059 struct bound_minimal_symbol s;
1060
1061 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1062 if ((displ & 0x00800000) != 0)
1063 displ |= ~((LONGEST) 0x00ffffff);
1064
1065 call_dest = pc + 4 * displ;
1066 s = lookup_minimal_symbol_by_pc (call_dest);
1067
1068 if (s.minsym != NULL
1069 && s.minsym->linkage_name () != NULL
1070 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1071 {
1072 pc += 4;
1073 return pc;
1074 }
1075 }
1076 return orig_pc;
1077 }
1078
1079
1080 static struct frv_unwind_cache *
1081 frv_frame_unwind_cache (frame_info_ptr this_frame,
1082 void **this_prologue_cache)
1083 {
1084 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1085 struct frv_unwind_cache *info;
1086
1087 if ((*this_prologue_cache))
1088 return (struct frv_unwind_cache *) (*this_prologue_cache);
1089
1090 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1091 (*this_prologue_cache) = info;
1092 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1093
1094 /* Prologue analysis does the rest... */
1095 frv_analyze_prologue (gdbarch,
1096 get_frame_func (this_frame), this_frame, info);
1097
1098 return info;
1099 }
1100
1101 static void
1102 frv_extract_return_value (struct type *type, struct regcache *regcache,
1103 gdb_byte *valbuf)
1104 {
1105 struct gdbarch *gdbarch = regcache->arch ();
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 int len = type->length ();
1108
1109 if (len <= 4)
1110 {
1111 ULONGEST gpr8_val;
1112 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1113 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1114 }
1115 else if (len == 8)
1116 {
1117 ULONGEST regval;
1118
1119 regcache_cooked_read_unsigned (regcache, 8, &regval);
1120 store_unsigned_integer (valbuf, 4, byte_order, regval);
1121 regcache_cooked_read_unsigned (regcache, 9, &regval);
1122 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1123 }
1124 else
1125 internal_error (_("Illegal return value length: %d"), len);
1126 }
1127
1128 static CORE_ADDR
1129 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1130 {
1131 /* Require dword alignment. */
1132 return align_down (sp, 8);
1133 }
1134
1135 static CORE_ADDR
1136 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1137 {
1138 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1139 CORE_ADDR descr;
1140 gdb_byte valbuf[4];
1141 CORE_ADDR start_addr;
1142
1143 /* If we can't find the function in the symbol table, then we assume
1144 that the function address is already in descriptor form. */
1145 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1146 || entry_point != start_addr)
1147 return entry_point;
1148
1149 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1150
1151 if (descr != 0)
1152 return descr;
1153
1154 /* Construct a non-canonical descriptor from space allocated on
1155 the stack. */
1156
1157 descr = value_as_long (value_allocate_space_in_inferior (8));
1158 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1159 write_memory (descr, valbuf, 4);
1160 store_unsigned_integer (valbuf, 4, byte_order,
1161 frv_fdpic_find_global_pointer (entry_point));
1162 write_memory (descr + 4, valbuf, 4);
1163 return descr;
1164 }
1165
1166 static CORE_ADDR
1167 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1168 struct target_ops *targ)
1169 {
1170 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1171 CORE_ADDR entry_point;
1172 CORE_ADDR got_address;
1173
1174 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1175 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1176
1177 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1178 return entry_point;
1179 else
1180 return addr;
1181 }
1182
1183 static CORE_ADDR
1184 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1185 struct regcache *regcache, CORE_ADDR bp_addr,
1186 int nargs, struct value **args, CORE_ADDR sp,
1187 function_call_return_method return_method,
1188 CORE_ADDR struct_addr)
1189 {
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 int argreg;
1192 int argnum;
1193 const gdb_byte *val;
1194 gdb_byte valbuf[4];
1195 struct value *arg;
1196 struct type *arg_type;
1197 int len;
1198 enum type_code typecode;
1199 CORE_ADDR regval;
1200 int stack_space;
1201 int stack_offset;
1202 enum frv_abi abi = frv_abi (gdbarch);
1203 CORE_ADDR func_addr = find_function_addr (function, NULL);
1204
1205 #if 0
1206 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1207 nargs, (int) sp, struct_return, struct_addr);
1208 #endif
1209
1210 stack_space = 0;
1211 for (argnum = 0; argnum < nargs; ++argnum)
1212 stack_space += align_up (value_type (args[argnum])->length (), 4);
1213
1214 stack_space -= (6 * 4);
1215 if (stack_space > 0)
1216 sp -= stack_space;
1217
1218 /* Make sure stack is dword aligned. */
1219 sp = align_down (sp, 8);
1220
1221 stack_offset = 0;
1222
1223 argreg = 8;
1224
1225 if (return_method == return_method_struct)
1226 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1227 struct_addr);
1228
1229 for (argnum = 0; argnum < nargs; ++argnum)
1230 {
1231 arg = args[argnum];
1232 arg_type = check_typedef (value_type (arg));
1233 len = arg_type->length ();
1234 typecode = arg_type->code ();
1235
1236 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1237 {
1238 store_unsigned_integer (valbuf, 4, byte_order,
1239 value_address (arg));
1240 typecode = TYPE_CODE_PTR;
1241 len = 4;
1242 val = valbuf;
1243 }
1244 else if (abi == FRV_ABI_FDPIC
1245 && len == 4
1246 && typecode == TYPE_CODE_PTR
1247 && arg_type->target_type ()->code () == TYPE_CODE_FUNC)
1248 {
1249 /* The FDPIC ABI requires function descriptors to be passed instead
1250 of entry points. */
1251 CORE_ADDR addr = extract_unsigned_integer
1252 (value_contents (arg).data (), 4, byte_order);
1253 addr = find_func_descr (gdbarch, addr);
1254 store_unsigned_integer (valbuf, 4, byte_order, addr);
1255 typecode = TYPE_CODE_PTR;
1256 len = 4;
1257 val = valbuf;
1258 }
1259 else
1260 {
1261 val = value_contents (arg).data ();
1262 }
1263
1264 while (len > 0)
1265 {
1266 int partial_len = (len < 4 ? len : 4);
1267
1268 if (argreg < 14)
1269 {
1270 regval = extract_unsigned_integer (val, partial_len, byte_order);
1271 #if 0
1272 printf(" Argnum %d data %x -> reg %d\n",
1273 argnum, (int) regval, argreg);
1274 #endif
1275 regcache_cooked_write_unsigned (regcache, argreg, regval);
1276 ++argreg;
1277 }
1278 else
1279 {
1280 #if 0
1281 printf(" Argnum %d data %x -> offset %d (%x)\n",
1282 argnum, *((int *)val), stack_offset,
1283 (int) (sp + stack_offset));
1284 #endif
1285 write_memory (sp + stack_offset, val, partial_len);
1286 stack_offset += align_up (partial_len, 4);
1287 }
1288 len -= partial_len;
1289 val += partial_len;
1290 }
1291 }
1292
1293 /* Set the return address. For the frv, the return breakpoint is
1294 always at BP_ADDR. */
1295 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1296
1297 if (abi == FRV_ABI_FDPIC)
1298 {
1299 /* Set the GOT register for the FDPIC ABI. */
1300 regcache_cooked_write_unsigned
1301 (regcache, first_gpr_regnum + 15,
1302 frv_fdpic_find_global_pointer (func_addr));
1303 }
1304
1305 /* Finally, update the SP register. */
1306 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1307
1308 return sp;
1309 }
1310
1311 static void
1312 frv_store_return_value (struct type *type, struct regcache *regcache,
1313 const gdb_byte *valbuf)
1314 {
1315 int len = type->length ();
1316
1317 if (len <= 4)
1318 {
1319 bfd_byte val[4];
1320 memset (val, 0, sizeof (val));
1321 memcpy (val + (4 - len), valbuf, len);
1322 regcache->cooked_write (8, val);
1323 }
1324 else if (len == 8)
1325 {
1326 regcache->cooked_write (8, valbuf);
1327 regcache->cooked_write (9, (bfd_byte *) valbuf + 4);
1328 }
1329 else
1330 internal_error (_("Don't know how to return a %d-byte value."), len);
1331 }
1332
1333 static enum return_value_convention
1334 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1335 struct type *valtype, struct regcache *regcache,
1336 gdb_byte *readbuf, const gdb_byte *writebuf)
1337 {
1338 int struct_return = valtype->code () == TYPE_CODE_STRUCT
1339 || valtype->code () == TYPE_CODE_UNION
1340 || valtype->code () == TYPE_CODE_ARRAY;
1341
1342 if (writebuf != NULL)
1343 {
1344 gdb_assert (!struct_return);
1345 frv_store_return_value (valtype, regcache, writebuf);
1346 }
1347
1348 if (readbuf != NULL)
1349 {
1350 gdb_assert (!struct_return);
1351 frv_extract_return_value (valtype, regcache, readbuf);
1352 }
1353
1354 if (struct_return)
1355 return RETURN_VALUE_STRUCT_CONVENTION;
1356 else
1357 return RETURN_VALUE_REGISTER_CONVENTION;
1358 }
1359
1360 /* Given a GDB frame, determine the address of the calling function's
1361 frame. This will be used to create a new GDB frame struct. */
1362
1363 static void
1364 frv_frame_this_id (frame_info_ptr this_frame,
1365 void **this_prologue_cache, struct frame_id *this_id)
1366 {
1367 struct frv_unwind_cache *info
1368 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1369 CORE_ADDR base;
1370 CORE_ADDR func;
1371 struct bound_minimal_symbol msym_stack;
1372 struct frame_id id;
1373
1374 /* The FUNC is easy. */
1375 func = get_frame_func (this_frame);
1376
1377 /* Check if the stack is empty. */
1378 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1379 if (msym_stack.minsym && info->base == msym_stack.value_address ())
1380 return;
1381
1382 /* Hopefully the prologue analysis either correctly determined the
1383 frame's base (which is the SP from the previous frame), or set
1384 that base to "NULL". */
1385 base = info->prev_sp;
1386 if (base == 0)
1387 return;
1388
1389 id = frame_id_build (base, func);
1390 (*this_id) = id;
1391 }
1392
1393 static struct value *
1394 frv_frame_prev_register (frame_info_ptr this_frame,
1395 void **this_prologue_cache, int regnum)
1396 {
1397 struct frv_unwind_cache *info
1398 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1399 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1400 }
1401
1402 static const struct frame_unwind frv_frame_unwind = {
1403 "frv prologue",
1404 NORMAL_FRAME,
1405 default_frame_unwind_stop_reason,
1406 frv_frame_this_id,
1407 frv_frame_prev_register,
1408 NULL,
1409 default_frame_sniffer
1410 };
1411
1412 static CORE_ADDR
1413 frv_frame_base_address (frame_info_ptr this_frame, void **this_cache)
1414 {
1415 struct frv_unwind_cache *info
1416 = frv_frame_unwind_cache (this_frame, this_cache);
1417 return info->base;
1418 }
1419
1420 static const struct frame_base frv_frame_base = {
1421 &frv_frame_unwind,
1422 frv_frame_base_address,
1423 frv_frame_base_address,
1424 frv_frame_base_address
1425 };
1426
1427 static struct gdbarch *
1428 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1429 {
1430 struct gdbarch *gdbarch;
1431 int elf_flags = 0;
1432
1433 /* Check to see if we've already built an appropriate architecture
1434 object for this executable. */
1435 arches = gdbarch_list_lookup_by_info (arches, &info);
1436 if (arches)
1437 return arches->gdbarch;
1438
1439 /* Select the right tdep structure for this variant. */
1440 frv_gdbarch_tdep *var = new_variant ();
1441 switch (info.bfd_arch_info->mach)
1442 {
1443 case bfd_mach_frv:
1444 case bfd_mach_frvsimple:
1445 case bfd_mach_fr300:
1446 case bfd_mach_fr500:
1447 case bfd_mach_frvtomcat:
1448 case bfd_mach_fr550:
1449 set_variant_num_gprs (var, 64);
1450 set_variant_num_fprs (var, 64);
1451 break;
1452
1453 case bfd_mach_fr400:
1454 case bfd_mach_fr450:
1455 set_variant_num_gprs (var, 32);
1456 set_variant_num_fprs (var, 32);
1457 break;
1458
1459 default:
1460 /* Never heard of this variant. */
1461 return 0;
1462 }
1463
1464 /* Extract the ELF flags, if available. */
1465 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1466 elf_flags = elf_elfheader (info.abfd)->e_flags;
1467
1468 if (elf_flags & EF_FRV_FDPIC)
1469 set_variant_abi_fdpic (var);
1470
1471 if (elf_flags & EF_FRV_CPU_FR450)
1472 set_variant_scratch_registers (var);
1473
1474 gdbarch = gdbarch_alloc (&info, var);
1475
1476 set_gdbarch_short_bit (gdbarch, 16);
1477 set_gdbarch_int_bit (gdbarch, 32);
1478 set_gdbarch_long_bit (gdbarch, 32);
1479 set_gdbarch_long_long_bit (gdbarch, 64);
1480 set_gdbarch_float_bit (gdbarch, 32);
1481 set_gdbarch_double_bit (gdbarch, 64);
1482 set_gdbarch_long_double_bit (gdbarch, 64);
1483 set_gdbarch_ptr_bit (gdbarch, 32);
1484
1485 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1486 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1487
1488 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1489 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1490 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1491
1492 set_gdbarch_register_name (gdbarch, frv_register_name);
1493 set_gdbarch_register_type (gdbarch, frv_register_type);
1494 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1495
1496 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1497 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1498
1499 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1500 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1501 set_gdbarch_breakpoint_kind_from_pc (gdbarch, frv_breakpoint::kind_from_pc);
1502 set_gdbarch_sw_breakpoint_from_kind (gdbarch, frv_breakpoint::bp_from_kind);
1503 set_gdbarch_adjust_breakpoint_address
1504 (gdbarch, frv_adjust_breakpoint_address);
1505
1506 set_gdbarch_return_value (gdbarch, frv_return_value);
1507
1508 /* Frame stuff. */
1509 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1510 frame_base_set_default (gdbarch, &frv_frame_base);
1511 /* We set the sniffer lower down after the OSABI hooks have been
1512 established. */
1513
1514 /* Settings for calling functions in the inferior. */
1515 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1516
1517 /* Settings that should be unnecessary. */
1518 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1519
1520 /* Hardware watchpoint / breakpoint support. */
1521 switch (info.bfd_arch_info->mach)
1522 {
1523 case bfd_mach_frv:
1524 case bfd_mach_frvsimple:
1525 case bfd_mach_fr300:
1526 case bfd_mach_fr500:
1527 case bfd_mach_frvtomcat:
1528 /* fr500-style hardware debugging support. */
1529 var->num_hw_watchpoints = 4;
1530 var->num_hw_breakpoints = 4;
1531 break;
1532
1533 case bfd_mach_fr400:
1534 case bfd_mach_fr450:
1535 /* fr400-style hardware debugging support. */
1536 var->num_hw_watchpoints = 2;
1537 var->num_hw_breakpoints = 4;
1538 break;
1539
1540 default:
1541 /* Otherwise, assume we don't have hardware debugging support. */
1542 var->num_hw_watchpoints = 0;
1543 var->num_hw_breakpoints = 0;
1544 break;
1545 }
1546
1547 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1548 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1549 frv_convert_from_func_ptr_addr);
1550
1551 set_gdbarch_so_ops (gdbarch, &frv_so_ops);
1552
1553 /* Hook in ABI-specific overrides, if they have been registered. */
1554 gdbarch_init_osabi (info, gdbarch);
1555
1556 /* Set the fallback (prologue based) frame sniffer. */
1557 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1558
1559 /* Enable TLS support. */
1560 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1561 frv_fetch_objfile_link_map);
1562
1563 return gdbarch;
1564 }
1565
1566 void _initialize_frv_tdep ();
1567 void
1568 _initialize_frv_tdep ()
1569 {
1570 gdbarch_register (bfd_arch_frv, frv_gdbarch_init);
1571 }