]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/frv-tdep.c
start change to progspace independence
[thirdparty/binutils-gdb.git] / gdb / frv-tdep.c
1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
2
3 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "regcache.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "dis-asm.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33 #include "gdb/sim-frv.h"
34 #include "opcodes/frv-desc.h" /* for the H_SPR_... enums */
35 #include "symtab.h"
36 #include "elf-bfd.h"
37 #include "elf/frv.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "solib.h"
41 #include "frv-tdep.h"
42 #include "objfiles.h"
43
44 extern void _initialize_frv_tdep (void);
45
46 struct frv_unwind_cache /* was struct frame_extra_info */
47 {
48 /* The previous frame's inner-most stack address. Used as this
49 frame ID's stack_addr. */
50 CORE_ADDR prev_sp;
51
52 /* The frame's base, optionally used by the high-level debug info. */
53 CORE_ADDR base;
54
55 /* Table indicating the location of each and every register. */
56 struct trad_frame_saved_reg *saved_regs;
57 };
58
59 /* A structure describing a particular variant of the FRV.
60 We allocate and initialize one of these structures when we create
61 the gdbarch object for a variant.
62
63 At the moment, all the FR variants we support differ only in which
64 registers are present; the portable code of GDB knows that
65 registers whose names are the empty string don't exist, so the
66 `register_names' array captures all the per-variant information we
67 need.
68
69 in the future, if we need to have per-variant maps for raw size,
70 virtual type, etc., we should replace register_names with an array
71 of structures, each of which gives all the necessary info for one
72 register. Don't stick parallel arrays in here --- that's so
73 Fortran. */
74 struct gdbarch_tdep
75 {
76 /* Which ABI is in use? */
77 enum frv_abi frv_abi;
78
79 /* How many general-purpose registers does this variant have? */
80 int num_gprs;
81
82 /* How many floating-point registers does this variant have? */
83 int num_fprs;
84
85 /* How many hardware watchpoints can it support? */
86 int num_hw_watchpoints;
87
88 /* How many hardware breakpoints can it support? */
89 int num_hw_breakpoints;
90
91 /* Register names. */
92 char **register_names;
93 };
94
95 /* Return the FR-V ABI associated with GDBARCH. */
96 enum frv_abi
97 frv_abi (struct gdbarch *gdbarch)
98 {
99 return gdbarch_tdep (gdbarch)->frv_abi;
100 }
101
102 /* Fetch the interpreter and executable loadmap addresses (for shared
103 library support) for the FDPIC ABI. Return 0 if successful, -1 if
104 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
105 int
106 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
107 CORE_ADDR *exec_addr)
108 {
109 if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
110 return -1;
111 else
112 {
113 struct regcache *regcache = get_current_regcache ();
114
115 if (interp_addr != NULL)
116 {
117 ULONGEST val;
118 regcache_cooked_read_unsigned (regcache,
119 fdpic_loadmap_interp_regnum, &val);
120 *interp_addr = val;
121 }
122 if (exec_addr != NULL)
123 {
124 ULONGEST val;
125 regcache_cooked_read_unsigned (regcache,
126 fdpic_loadmap_exec_regnum, &val);
127 *exec_addr = val;
128 }
129 return 0;
130 }
131 }
132
133 /* Allocate a new variant structure, and set up default values for all
134 the fields. */
135 static struct gdbarch_tdep *
136 new_variant (void)
137 {
138 struct gdbarch_tdep *var;
139 int r;
140
141 var = xmalloc (sizeof (*var));
142 memset (var, 0, sizeof (*var));
143
144 var->frv_abi = FRV_ABI_EABI;
145 var->num_gprs = 64;
146 var->num_fprs = 64;
147 var->num_hw_watchpoints = 0;
148 var->num_hw_breakpoints = 0;
149
150 /* By default, don't supply any general-purpose or floating-point
151 register names. */
152 var->register_names
153 = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
154 * sizeof (char *));
155 for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
156 var->register_names[r] = "";
157
158 /* Do, however, supply default names for the known special-purpose
159 registers. */
160
161 var->register_names[pc_regnum] = "pc";
162 var->register_names[lr_regnum] = "lr";
163 var->register_names[lcr_regnum] = "lcr";
164
165 var->register_names[psr_regnum] = "psr";
166 var->register_names[ccr_regnum] = "ccr";
167 var->register_names[cccr_regnum] = "cccr";
168 var->register_names[tbr_regnum] = "tbr";
169
170 /* Debug registers. */
171 var->register_names[brr_regnum] = "brr";
172 var->register_names[dbar0_regnum] = "dbar0";
173 var->register_names[dbar1_regnum] = "dbar1";
174 var->register_names[dbar2_regnum] = "dbar2";
175 var->register_names[dbar3_regnum] = "dbar3";
176
177 /* iacc0 (Only found on MB93405.) */
178 var->register_names[iacc0h_regnum] = "iacc0h";
179 var->register_names[iacc0l_regnum] = "iacc0l";
180 var->register_names[iacc0_regnum] = "iacc0";
181
182 /* fsr0 (Found on FR555 and FR501.) */
183 var->register_names[fsr0_regnum] = "fsr0";
184
185 /* acc0 - acc7. The architecture provides for the possibility of many
186 more (up to 64 total), but we don't want to make that big of a hole
187 in the G packet. If we need more in the future, we'll add them
188 elsewhere. */
189 for (r = acc0_regnum; r <= acc7_regnum; r++)
190 {
191 char *buf;
192 buf = xstrprintf ("acc%d", r - acc0_regnum);
193 var->register_names[r] = buf;
194 }
195
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
201
202 for (r = accg0_regnum; r <= accg7_regnum; r++)
203 {
204 char *buf;
205 buf = xstrprintf ("accg%d", r - accg0_regnum);
206 var->register_names[r] = buf;
207 }
208
209 /* msr0 and msr1. */
210
211 var->register_names[msr0_regnum] = "msr0";
212 var->register_names[msr1_regnum] = "msr1";
213
214 /* gner and fner registers. */
215 var->register_names[gner0_regnum] = "gner0";
216 var->register_names[gner1_regnum] = "gner1";
217 var->register_names[fner0_regnum] = "fner0";
218 var->register_names[fner1_regnum] = "fner1";
219
220 return var;
221 }
222
223
224 /* Indicate that the variant VAR has NUM_GPRS general-purpose
225 registers, and fill in the names array appropriately. */
226 static void
227 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
228 {
229 int r;
230
231 var->num_gprs = num_gprs;
232
233 for (r = 0; r < num_gprs; ++r)
234 {
235 char buf[20];
236
237 xsnprintf (buf, sizeof (buf), "gr%d", r);
238 var->register_names[first_gpr_regnum + r] = xstrdup (buf);
239 }
240 }
241
242
243 /* Indicate that the variant VAR has NUM_FPRS floating-point
244 registers, and fill in the names array appropriately. */
245 static void
246 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
247 {
248 int r;
249
250 var->num_fprs = num_fprs;
251
252 for (r = 0; r < num_fprs; ++r)
253 {
254 char buf[20];
255
256 xsnprintf (buf, sizeof (buf), "fr%d", r);
257 var->register_names[first_fpr_regnum + r] = xstrdup (buf);
258 }
259 }
260
261 static void
262 set_variant_abi_fdpic (struct gdbarch_tdep *var)
263 {
264 var->frv_abi = FRV_ABI_FDPIC;
265 var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
266 var->register_names[fdpic_loadmap_interp_regnum]
267 = xstrdup ("loadmap_interp");
268 }
269
270 static void
271 set_variant_scratch_registers (struct gdbarch_tdep *var)
272 {
273 var->register_names[scr0_regnum] = xstrdup ("scr0");
274 var->register_names[scr1_regnum] = xstrdup ("scr1");
275 var->register_names[scr2_regnum] = xstrdup ("scr2");
276 var->register_names[scr3_regnum] = xstrdup ("scr3");
277 }
278
279 static const char *
280 frv_register_name (struct gdbarch *gdbarch, int reg)
281 {
282 if (reg < 0)
283 return "?toosmall?";
284 if (reg >= frv_num_regs + frv_num_pseudo_regs)
285 return "?toolarge?";
286
287 return gdbarch_tdep (gdbarch)->register_names[reg];
288 }
289
290
291 static struct type *
292 frv_register_type (struct gdbarch *gdbarch, int reg)
293 {
294 if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
295 return builtin_type (gdbarch)->builtin_float;
296 else if (reg == iacc0_regnum)
297 return builtin_type (gdbarch)->builtin_int64;
298 else
299 return builtin_type (gdbarch)->builtin_int32;
300 }
301
302 static enum register_status
303 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
304 int reg, gdb_byte *buffer)
305 {
306 enum register_status status;
307
308 if (reg == iacc0_regnum)
309 {
310 status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
311 if (status == REG_VALID)
312 status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
313 }
314 else if (accg0_regnum <= reg && reg <= accg7_regnum)
315 {
316 /* The accg raw registers have four values in each slot with the
317 lowest register number occupying the first byte. */
318
319 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
320 int byte_num = (reg - accg0_regnum) % 4;
321 gdb_byte buf[4];
322
323 status = regcache_raw_read (regcache, raw_regnum, buf);
324 if (status == REG_VALID)
325 {
326 memset (buffer, 0, 4);
327 /* FR-V is big endian, so put the requested byte in the
328 first byte of the buffer allocated to hold the
329 pseudo-register. */
330 buffer[0] = buf[byte_num];
331 }
332 }
333 else
334 gdb_assert_not_reached ("invalid pseudo register number");
335
336 return status;
337 }
338
339 static void
340 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
341 int reg, const gdb_byte *buffer)
342 {
343 if (reg == iacc0_regnum)
344 {
345 regcache_raw_write (regcache, iacc0h_regnum, buffer);
346 regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
347 }
348 else if (accg0_regnum <= reg && reg <= accg7_regnum)
349 {
350 /* The accg raw registers have four values in each slot with the
351 lowest register number occupying the first byte. */
352
353 int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
354 int byte_num = (reg - accg0_regnum) % 4;
355 gdb_byte buf[4];
356
357 regcache_raw_read (regcache, raw_regnum, buf);
358 buf[byte_num] = ((bfd_byte *) buffer)[0];
359 regcache_raw_write (regcache, raw_regnum, buf);
360 }
361 }
362
363 static int
364 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
365 {
366 static const int spr_map[] =
367 {
368 H_SPR_PSR, /* psr_regnum */
369 H_SPR_CCR, /* ccr_regnum */
370 H_SPR_CCCR, /* cccr_regnum */
371 -1, /* fdpic_loadmap_exec_regnum */
372 -1, /* fdpic_loadmap_interp_regnum */
373 -1, /* 134 */
374 H_SPR_TBR, /* tbr_regnum */
375 H_SPR_BRR, /* brr_regnum */
376 H_SPR_DBAR0, /* dbar0_regnum */
377 H_SPR_DBAR1, /* dbar1_regnum */
378 H_SPR_DBAR2, /* dbar2_regnum */
379 H_SPR_DBAR3, /* dbar3_regnum */
380 H_SPR_SCR0, /* scr0_regnum */
381 H_SPR_SCR1, /* scr1_regnum */
382 H_SPR_SCR2, /* scr2_regnum */
383 H_SPR_SCR3, /* scr3_regnum */
384 H_SPR_LR, /* lr_regnum */
385 H_SPR_LCR, /* lcr_regnum */
386 H_SPR_IACC0H, /* iacc0h_regnum */
387 H_SPR_IACC0L, /* iacc0l_regnum */
388 H_SPR_FSR0, /* fsr0_regnum */
389 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
390 -1, /* acc0_regnum */
391 -1, /* acc1_regnum */
392 -1, /* acc2_regnum */
393 -1, /* acc3_regnum */
394 -1, /* acc4_regnum */
395 -1, /* acc5_regnum */
396 -1, /* acc6_regnum */
397 -1, /* acc7_regnum */
398 -1, /* acc0123_regnum */
399 -1, /* acc4567_regnum */
400 H_SPR_MSR0, /* msr0_regnum */
401 H_SPR_MSR1, /* msr1_regnum */
402 H_SPR_GNER0, /* gner0_regnum */
403 H_SPR_GNER1, /* gner1_regnum */
404 H_SPR_FNER0, /* fner0_regnum */
405 H_SPR_FNER1, /* fner1_regnum */
406 };
407
408 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
409
410 if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
411 return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
412 else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
413 return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
414 else if (pc_regnum == reg)
415 return SIM_FRV_PC_REGNUM;
416 else if (reg >= first_spr_regnum
417 && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
418 {
419 int spr_reg_offset = spr_map[reg - first_spr_regnum];
420
421 if (spr_reg_offset < 0)
422 return SIM_REGNO_DOES_NOT_EXIST;
423 else
424 return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
425 }
426
427 internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
428 }
429
430 static const unsigned char *
431 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
432 {
433 static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
434 *lenp = sizeof (breakpoint);
435 return breakpoint;
436 }
437
438 /* Define the maximum number of instructions which may be packed into a
439 bundle (VLIW instruction). */
440 static const int max_instrs_per_bundle = 8;
441
442 /* Define the size (in bytes) of an FR-V instruction. */
443 static const int frv_instr_size = 4;
444
445 /* Adjust a breakpoint's address to account for the FR-V architecture's
446 constraint that a break instruction must not appear as any but the
447 first instruction in the bundle. */
448 static CORE_ADDR
449 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
450 {
451 int count = max_instrs_per_bundle;
452 CORE_ADDR addr = bpaddr - frv_instr_size;
453 CORE_ADDR func_start = get_pc_function_start (bpaddr);
454
455 /* Find the end of the previous packing sequence. This will be indicated
456 by either attempting to access some inaccessible memory or by finding
457 an instruction word whose packing bit is set to one. */
458 while (count-- > 0 && addr >= func_start)
459 {
460 gdb_byte instr[frv_instr_size];
461 int status;
462
463 status = target_read_memory (addr, instr, sizeof instr);
464
465 if (status != 0)
466 break;
467
468 /* This is a big endian architecture, so byte zero will have most
469 significant byte. The most significant bit of this byte is the
470 packing bit. */
471 if (instr[0] & 0x80)
472 break;
473
474 addr -= frv_instr_size;
475 }
476
477 if (count > 0)
478 bpaddr = addr + frv_instr_size;
479
480 return bpaddr;
481 }
482
483
484 /* Return true if REG is a caller-saves ("scratch") register,
485 false otherwise. */
486 static int
487 is_caller_saves_reg (int reg)
488 {
489 return ((4 <= reg && reg <= 7)
490 || (14 <= reg && reg <= 15)
491 || (32 <= reg && reg <= 47));
492 }
493
494
495 /* Return true if REG is a callee-saves register, false otherwise. */
496 static int
497 is_callee_saves_reg (int reg)
498 {
499 return ((16 <= reg && reg <= 31)
500 || (48 <= reg && reg <= 63));
501 }
502
503
504 /* Return true if REG is an argument register, false otherwise. */
505 static int
506 is_argument_reg (int reg)
507 {
508 return (8 <= reg && reg <= 13);
509 }
510
511 /* Scan an FR-V prologue, starting at PC, until frame->PC.
512 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
513 We assume FRAME's saved_regs array has already been allocated and cleared.
514 Return the first PC value after the prologue.
515
516 Note that, for unoptimized code, we almost don't need this function
517 at all; all arguments and locals live on the stack, so we just need
518 the FP to find everything. The catch: structures passed by value
519 have their addresses living in registers; they're never spilled to
520 the stack. So if you ever want to be able to get to these
521 arguments in any frame but the top, you'll need to do this serious
522 prologue analysis. */
523 static CORE_ADDR
524 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
525 struct frame_info *this_frame,
526 struct frv_unwind_cache *info)
527 {
528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
529
530 /* When writing out instruction bitpatterns, we use the following
531 letters to label instruction fields:
532 P - The parallel bit. We don't use this.
533 J - The register number of GRj in the instruction description.
534 K - The register number of GRk in the instruction description.
535 I - The register number of GRi.
536 S - a signed imediate offset.
537 U - an unsigned immediate offset.
538
539 The dots below the numbers indicate where hex digit boundaries
540 fall, to make it easier to check the numbers. */
541
542 /* Non-zero iff we've seen the instruction that initializes the
543 frame pointer for this function's frame. */
544 int fp_set = 0;
545
546 /* If fp_set is non_zero, then this is the distance from
547 the stack pointer to frame pointer: fp = sp + fp_offset. */
548 int fp_offset = 0;
549
550 /* Total size of frame prior to any alloca operations. */
551 int framesize = 0;
552
553 /* Flag indicating if lr has been saved on the stack. */
554 int lr_saved_on_stack = 0;
555
556 /* The number of the general-purpose register we saved the return
557 address ("link register") in, or -1 if we haven't moved it yet. */
558 int lr_save_reg = -1;
559
560 /* Offset (from sp) at which lr has been saved on the stack. */
561
562 int lr_sp_offset = 0;
563
564 /* If gr_saved[i] is non-zero, then we've noticed that general
565 register i has been saved at gr_sp_offset[i] from the stack
566 pointer. */
567 char gr_saved[64];
568 int gr_sp_offset[64];
569
570 /* The address of the most recently scanned prologue instruction. */
571 CORE_ADDR last_prologue_pc;
572
573 /* The address of the next instruction. */
574 CORE_ADDR next_pc;
575
576 /* The upper bound to of the pc values to scan. */
577 CORE_ADDR lim_pc;
578
579 memset (gr_saved, 0, sizeof (gr_saved));
580
581 last_prologue_pc = pc;
582
583 /* Try to compute an upper limit (on how far to scan) based on the
584 line number info. */
585 lim_pc = skip_prologue_using_sal (gdbarch, pc);
586 /* If there's no line number info, lim_pc will be 0. In that case,
587 set the limit to be 100 instructions away from pc. Hopefully, this
588 will be far enough away to account for the entire prologue. Don't
589 worry about overshooting the end of the function. The scan loop
590 below contains some checks to avoid scanning unreasonably far. */
591 if (lim_pc == 0)
592 lim_pc = pc + 400;
593
594 /* If we have a frame, we don't want to scan past the frame's pc. This
595 will catch those cases where the pc is in the prologue. */
596 if (this_frame)
597 {
598 CORE_ADDR frame_pc = get_frame_pc (this_frame);
599 if (frame_pc < lim_pc)
600 lim_pc = frame_pc;
601 }
602
603 /* Scan the prologue. */
604 while (pc < lim_pc)
605 {
606 gdb_byte buf[frv_instr_size];
607 LONGEST op;
608
609 if (target_read_memory (pc, buf, sizeof buf) != 0)
610 break;
611 op = extract_signed_integer (buf, sizeof buf, byte_order);
612
613 next_pc = pc + 4;
614
615 /* The tests in this chain of ifs should be in order of
616 decreasing selectivity, so that more particular patterns get
617 to fire before less particular patterns. */
618
619 /* Some sort of control transfer instruction: stop scanning prologue.
620 Integer Conditional Branch:
621 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
622 Floating-point / media Conditional Branch:
623 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
624 LCR Conditional Branch to LR
625 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
626 Integer conditional Branches to LR
627 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
628 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
629 Floating-point/Media Branches to LR
630 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
631 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
632 Jump and Link
633 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
634 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
635 Call
636 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
637 Return from Trap
638 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
639 Integer Conditional Trap
640 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
641 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
642 Floating-point /media Conditional Trap
643 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
644 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
645 Break
646 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
647 Media Trap
648 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
649 if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
650 || (op & 0x01f80000) == 0x00300000 /* Jump and Link */
651 || (op & 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
652 || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
653 {
654 /* Stop scanning; not in prologue any longer. */
655 break;
656 }
657
658 /* Loading something from memory into fp probably means that
659 we're in the epilogue. Stop scanning the prologue.
660 ld @(GRi, GRk), fp
661 X 000010 0000010 XXXXXX 000100 XXXXXX
662 ldi @(GRi, d12), fp
663 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
664 else if ((op & 0x7ffc0fc0) == 0x04080100
665 || (op & 0x7ffc0000) == 0x04c80000)
666 {
667 break;
668 }
669
670 /* Setting the FP from the SP:
671 ori sp, 0, fp
672 P 000010 0100010 000001 000000000000 = 0x04881000
673 0 111111 1111111 111111 111111111111 = 0x7fffffff
674 . . . . . . . .
675 We treat this as part of the prologue. */
676 else if ((op & 0x7fffffff) == 0x04881000)
677 {
678 fp_set = 1;
679 fp_offset = 0;
680 last_prologue_pc = next_pc;
681 }
682
683 /* Move the link register to the scratch register grJ, before saving:
684 movsg lr, grJ
685 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
686 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
687 . . . . . . . .
688 We treat this as part of the prologue. */
689 else if ((op & 0x7fffffc0) == 0x080d01c0)
690 {
691 int gr_j = op & 0x3f;
692
693 /* If we're moving it to a scratch register, that's fine. */
694 if (is_caller_saves_reg (gr_j))
695 {
696 lr_save_reg = gr_j;
697 last_prologue_pc = next_pc;
698 }
699 }
700
701 /* To save multiple callee-saves registers on the stack, at
702 offset zero:
703
704 std grK,@(sp,gr0)
705 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
706 0 000000 1111111 111111 111111 111111 = 0x01ffffff
707
708 stq grK,@(sp,gr0)
709 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
710 0 000000 1111111 111111 111111 111111 = 0x01ffffff
711 . . . . . . . .
712 We treat this as part of the prologue, and record the register's
713 saved address in the frame structure. */
714 else if ((op & 0x01ffffff) == 0x000c10c0
715 || (op & 0x01ffffff) == 0x000c1100)
716 {
717 int gr_k = ((op >> 25) & 0x3f);
718 int ope = ((op >> 6) & 0x3f);
719 int count;
720 int i;
721
722 /* Is it an std or an stq? */
723 if (ope == 0x03)
724 count = 2;
725 else
726 count = 4;
727
728 /* Is it really a callee-saves register? */
729 if (is_callee_saves_reg (gr_k))
730 {
731 for (i = 0; i < count; i++)
732 {
733 gr_saved[gr_k + i] = 1;
734 gr_sp_offset[gr_k + i] = 4 * i;
735 }
736 last_prologue_pc = next_pc;
737 }
738 }
739
740 /* Adjusting the stack pointer. (The stack pointer is GR1.)
741 addi sp, S, sp
742 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
743 0 111111 1111111 111111 000000000000 = 0x7ffff000
744 . . . . . . . .
745 We treat this as part of the prologue. */
746 else if ((op & 0x7ffff000) == 0x02401000)
747 {
748 if (framesize == 0)
749 {
750 /* Sign-extend the twelve-bit field.
751 (Isn't there a better way to do this?) */
752 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
753
754 framesize -= s;
755 last_prologue_pc = pc;
756 }
757 else
758 {
759 /* If the prologue is being adjusted again, we've
760 likely gone too far; i.e. we're probably in the
761 epilogue. */
762 break;
763 }
764 }
765
766 /* Setting the FP to a constant distance from the SP:
767 addi sp, S, fp
768 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
769 0 111111 1111111 111111 000000000000 = 0x7ffff000
770 . . . . . . . .
771 We treat this as part of the prologue. */
772 else if ((op & 0x7ffff000) == 0x04401000)
773 {
774 /* Sign-extend the twelve-bit field.
775 (Isn't there a better way to do this?) */
776 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
777 fp_set = 1;
778 fp_offset = s;
779 last_prologue_pc = pc;
780 }
781
782 /* To spill an argument register to a scratch register:
783 ori GRi, 0, GRk
784 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
785 0 000000 1111111 000000 111111111111 = 0x01fc0fff
786 . . . . . . . .
787 For the time being, we treat this as a prologue instruction,
788 assuming that GRi is an argument register. This one's kind
789 of suspicious, because it seems like it could be part of a
790 legitimate body instruction. But we only come here when the
791 source info wasn't helpful, so we have to do the best we can.
792 Hopefully once GCC and GDB agree on how to emit line number
793 info for prologues, then this code will never come into play. */
794 else if ((op & 0x01fc0fff) == 0x00880000)
795 {
796 int gr_i = ((op >> 12) & 0x3f);
797
798 /* Make sure that the source is an arg register; if it is, we'll
799 treat it as a prologue instruction. */
800 if (is_argument_reg (gr_i))
801 last_prologue_pc = next_pc;
802 }
803
804 /* To spill 16-bit values to the stack:
805 sthi GRk, @(fp, s)
806 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
807 0 000000 1111111 111111 000000000000 = 0x01fff000
808 . . . . . . . .
809 And for 8-bit values, we use STB instructions.
810 stbi GRk, @(fp, s)
811 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
812 0 000000 1111111 111111 000000000000 = 0x01fff000
813 . . . . . . . .
814 We check that GRk is really an argument register, and treat
815 all such as part of the prologue. */
816 else if ( (op & 0x01fff000) == 0x01442000
817 || (op & 0x01fff000) == 0x01402000)
818 {
819 int gr_k = ((op >> 25) & 0x3f);
820
821 /* Make sure that GRk is really an argument register; treat
822 it as a prologue instruction if so. */
823 if (is_argument_reg (gr_k))
824 last_prologue_pc = next_pc;
825 }
826
827 /* To save multiple callee-saves register on the stack, at a
828 non-zero offset:
829
830 stdi GRk, @(sp, s)
831 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
832 0 000000 1111111 111111 000000000000 = 0x01fff000
833 . . . . . . . .
834 stqi GRk, @(sp, s)
835 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
836 0 000000 1111111 111111 000000000000 = 0x01fff000
837 . . . . . . . .
838 We treat this as part of the prologue, and record the register's
839 saved address in the frame structure. */
840 else if ((op & 0x01fff000) == 0x014c1000
841 || (op & 0x01fff000) == 0x01501000)
842 {
843 int gr_k = ((op >> 25) & 0x3f);
844 int count;
845 int i;
846
847 /* Is it a stdi or a stqi? */
848 if ((op & 0x01fff000) == 0x014c1000)
849 count = 2;
850 else
851 count = 4;
852
853 /* Is it really a callee-saves register? */
854 if (is_callee_saves_reg (gr_k))
855 {
856 /* Sign-extend the twelve-bit field.
857 (Isn't there a better way to do this?) */
858 int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
859
860 for (i = 0; i < count; i++)
861 {
862 gr_saved[gr_k + i] = 1;
863 gr_sp_offset[gr_k + i] = s + (4 * i);
864 }
865 last_prologue_pc = next_pc;
866 }
867 }
868
869 /* Storing any kind of integer register at any constant offset
870 from any other register.
871
872 st GRk, @(GRi, gr0)
873 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
874 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
875 . . . . . . . .
876 sti GRk, @(GRi, d12)
877 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
878 0 000000 1111111 000000 000000000000 = 0x01fc0000
879 . . . . . . . .
880 These could be almost anything, but a lot of prologue
881 instructions fall into this pattern, so let's decode the
882 instruction once, and then work at a higher level. */
883 else if (((op & 0x01fc0fff) == 0x000c0080)
884 || ((op & 0x01fc0000) == 0x01480000))
885 {
886 int gr_k = ((op >> 25) & 0x3f);
887 int gr_i = ((op >> 12) & 0x3f);
888 int offset;
889
890 /* Are we storing with gr0 as an offset, or using an
891 immediate value? */
892 if ((op & 0x01fc0fff) == 0x000c0080)
893 offset = 0;
894 else
895 offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
896
897 /* If the address isn't relative to the SP or FP, it's not a
898 prologue instruction. */
899 if (gr_i != sp_regnum && gr_i != fp_regnum)
900 {
901 /* Do nothing; not a prologue instruction. */
902 }
903
904 /* Saving the old FP in the new frame (relative to the SP). */
905 else if (gr_k == fp_regnum && gr_i == sp_regnum)
906 {
907 gr_saved[fp_regnum] = 1;
908 gr_sp_offset[fp_regnum] = offset;
909 last_prologue_pc = next_pc;
910 }
911
912 /* Saving callee-saves register(s) on the stack, relative to
913 the SP. */
914 else if (gr_i == sp_regnum
915 && is_callee_saves_reg (gr_k))
916 {
917 gr_saved[gr_k] = 1;
918 if (gr_i == sp_regnum)
919 gr_sp_offset[gr_k] = offset;
920 else
921 gr_sp_offset[gr_k] = offset + fp_offset;
922 last_prologue_pc = next_pc;
923 }
924
925 /* Saving the scratch register holding the return address. */
926 else if (lr_save_reg != -1
927 && gr_k == lr_save_reg)
928 {
929 lr_saved_on_stack = 1;
930 if (gr_i == sp_regnum)
931 lr_sp_offset = offset;
932 else
933 lr_sp_offset = offset + fp_offset;
934 last_prologue_pc = next_pc;
935 }
936
937 /* Spilling int-sized arguments to the stack. */
938 else if (is_argument_reg (gr_k))
939 last_prologue_pc = next_pc;
940 }
941 pc = next_pc;
942 }
943
944 if (this_frame && info)
945 {
946 int i;
947 ULONGEST this_base;
948
949 /* If we know the relationship between the stack and frame
950 pointers, record the addresses of the registers we noticed.
951 Note that we have to do this as a separate step at the end,
952 because instructions may save relative to the SP, but we need
953 their addresses relative to the FP. */
954 if (fp_set)
955 this_base = get_frame_register_unsigned (this_frame, fp_regnum);
956 else
957 this_base = get_frame_register_unsigned (this_frame, sp_regnum);
958
959 for (i = 0; i < 64; i++)
960 if (gr_saved[i])
961 info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
962
963 info->prev_sp = this_base - fp_offset + framesize;
964 info->base = this_base;
965
966 /* If LR was saved on the stack, record its location. */
967 if (lr_saved_on_stack)
968 info->saved_regs[lr_regnum].addr
969 = this_base - fp_offset + lr_sp_offset;
970
971 /* The call instruction moves the caller's PC in the callee's LR.
972 Since this is an unwind, do the reverse. Copy the location of LR
973 into PC (the address / regnum) so that a request for PC will be
974 converted into a request for the LR. */
975 info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
976
977 /* Save the previous frame's computed SP value. */
978 trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
979 }
980
981 return last_prologue_pc;
982 }
983
984
985 static CORE_ADDR
986 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
987 {
988 CORE_ADDR func_addr, func_end, new_pc;
989
990 new_pc = pc;
991
992 /* If the line table has entry for a line *within* the function
993 (i.e., not in the prologue, and not past the end), then that's
994 our location. */
995 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
996 {
997 struct symtab_and_line sal;
998
999 sal = find_pc_line (func_addr, 0);
1000
1001 if (sal.line != 0 && sal.end < func_end)
1002 {
1003 new_pc = sal.end;
1004 }
1005 }
1006
1007 /* The FR-V prologue is at least five instructions long (twenty bytes).
1008 If we didn't find a real source location past that, then
1009 do a full analysis of the prologue. */
1010 if (new_pc < pc + 20)
1011 new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
1012
1013 return new_pc;
1014 }
1015
1016
1017 /* Examine the instruction pointed to by PC. If it corresponds to
1018 a call to __main, return the address of the next instruction.
1019 Otherwise, return PC. */
1020
1021 static CORE_ADDR
1022 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1023 {
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1025 gdb_byte buf[4];
1026 unsigned long op;
1027 CORE_ADDR orig_pc = pc;
1028
1029 if (target_read_memory (pc, buf, 4))
1030 return pc;
1031 op = extract_unsigned_integer (buf, 4, byte_order);
1032
1033 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1034 to the call instruction.
1035
1036 Skip over this instruction if present. It won't be present in
1037 non-PIC code, and even in PIC code, it might not be present.
1038 (This is due to the fact that GR15, the FDPIC register, already
1039 contains the correct value.)
1040
1041 The general form of the LDI is given first, followed by the
1042 specific instruction with the GRi and GRk filled in as FP and
1043 GR15.
1044
1045 ldi @(GRi, d12), GRk
1046 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1047 0 000000 1111111 000000 000000000000 = 0x01fc0000
1048 . . . . . . . .
1049 ldi @(FP, d12), GR15
1050 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1051 0 001111 1111111 000010 000000000000 = 0x7ffff000
1052 . . . . . . . . */
1053
1054 if ((op & 0x7ffff000) == 0x1ec82000)
1055 {
1056 pc += 4;
1057 if (target_read_memory (pc, buf, 4))
1058 return orig_pc;
1059 op = extract_unsigned_integer (buf, 4, byte_order);
1060 }
1061
1062 /* The format of an FRV CALL instruction is as follows:
1063
1064 call label24
1065 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1066 0 000000 1111111 000000000000000000 = 0x01fc0000
1067 . . . . . . . .
1068
1069 where label24 is constructed by concatenating the H bits with the
1070 L bits. The call target is PC + (4 * sign_ext(label24)). */
1071
1072 if ((op & 0x01fc0000) == 0x003c0000)
1073 {
1074 LONGEST displ;
1075 CORE_ADDR call_dest;
1076 struct bound_minimal_symbol s;
1077
1078 displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
1079 if ((displ & 0x00800000) != 0)
1080 displ |= ~((LONGEST) 0x00ffffff);
1081
1082 call_dest = pc + 4 * displ;
1083 s = lookup_minimal_symbol_by_pc (call_dest);
1084
1085 if (s.minsym != NULL
1086 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1087 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1088 {
1089 pc += 4;
1090 return pc;
1091 }
1092 }
1093 return orig_pc;
1094 }
1095
1096
1097 static struct frv_unwind_cache *
1098 frv_frame_unwind_cache (struct frame_info *this_frame,
1099 void **this_prologue_cache)
1100 {
1101 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1102 struct frv_unwind_cache *info;
1103
1104 if ((*this_prologue_cache))
1105 return (*this_prologue_cache);
1106
1107 info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
1108 (*this_prologue_cache) = info;
1109 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1110
1111 /* Prologue analysis does the rest... */
1112 frv_analyze_prologue (gdbarch,
1113 get_frame_func (this_frame), this_frame, info);
1114
1115 return info;
1116 }
1117
1118 static void
1119 frv_extract_return_value (struct type *type, struct regcache *regcache,
1120 gdb_byte *valbuf)
1121 {
1122 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1123 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1124 int len = TYPE_LENGTH (type);
1125
1126 if (len <= 4)
1127 {
1128 ULONGEST gpr8_val;
1129 regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
1130 store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
1131 }
1132 else if (len == 8)
1133 {
1134 ULONGEST regval;
1135
1136 regcache_cooked_read_unsigned (regcache, 8, &regval);
1137 store_unsigned_integer (valbuf, 4, byte_order, regval);
1138 regcache_cooked_read_unsigned (regcache, 9, &regval);
1139 store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
1140 }
1141 else
1142 internal_error (__FILE__, __LINE__,
1143 _("Illegal return value length: %d"), len);
1144 }
1145
1146 static CORE_ADDR
1147 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1148 {
1149 /* Require dword alignment. */
1150 return align_down (sp, 8);
1151 }
1152
1153 static CORE_ADDR
1154 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
1155 {
1156 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1157 CORE_ADDR descr;
1158 gdb_byte valbuf[4];
1159 CORE_ADDR start_addr;
1160
1161 /* If we can't find the function in the symbol table, then we assume
1162 that the function address is already in descriptor form. */
1163 if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
1164 || entry_point != start_addr)
1165 return entry_point;
1166
1167 descr = frv_fdpic_find_canonical_descriptor (entry_point);
1168
1169 if (descr != 0)
1170 return descr;
1171
1172 /* Construct a non-canonical descriptor from space allocated on
1173 the stack. */
1174
1175 descr = value_as_long (value_allocate_space_in_inferior (8));
1176 store_unsigned_integer (valbuf, 4, byte_order, entry_point);
1177 write_memory (descr, valbuf, 4);
1178 store_unsigned_integer (valbuf, 4, byte_order,
1179 frv_fdpic_find_global_pointer (entry_point));
1180 write_memory (descr + 4, valbuf, 4);
1181 return descr;
1182 }
1183
1184 static CORE_ADDR
1185 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1186 struct target_ops *targ)
1187 {
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 CORE_ADDR entry_point;
1190 CORE_ADDR got_address;
1191
1192 entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
1193 got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
1194
1195 if (got_address == frv_fdpic_find_global_pointer (entry_point))
1196 return entry_point;
1197 else
1198 return addr;
1199 }
1200
1201 static CORE_ADDR
1202 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1203 struct regcache *regcache, CORE_ADDR bp_addr,
1204 int nargs, struct value **args, CORE_ADDR sp,
1205 int struct_return, CORE_ADDR struct_addr)
1206 {
1207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1208 int argreg;
1209 int argnum;
1210 const gdb_byte *val;
1211 gdb_byte valbuf[4];
1212 struct value *arg;
1213 struct type *arg_type;
1214 int len;
1215 enum type_code typecode;
1216 CORE_ADDR regval;
1217 int stack_space;
1218 int stack_offset;
1219 enum frv_abi abi = frv_abi (gdbarch);
1220 CORE_ADDR func_addr = find_function_addr (function, NULL);
1221
1222 #if 0
1223 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1224 nargs, (int) sp, struct_return, struct_addr);
1225 #endif
1226
1227 stack_space = 0;
1228 for (argnum = 0; argnum < nargs; ++argnum)
1229 stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1230
1231 stack_space -= (6 * 4);
1232 if (stack_space > 0)
1233 sp -= stack_space;
1234
1235 /* Make sure stack is dword aligned. */
1236 sp = align_down (sp, 8);
1237
1238 stack_offset = 0;
1239
1240 argreg = 8;
1241
1242 if (struct_return)
1243 regcache_cooked_write_unsigned (regcache, struct_return_regnum,
1244 struct_addr);
1245
1246 for (argnum = 0; argnum < nargs; ++argnum)
1247 {
1248 arg = args[argnum];
1249 arg_type = check_typedef (value_type (arg));
1250 len = TYPE_LENGTH (arg_type);
1251 typecode = TYPE_CODE (arg_type);
1252
1253 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
1254 {
1255 store_unsigned_integer (valbuf, 4, byte_order,
1256 value_address (arg));
1257 typecode = TYPE_CODE_PTR;
1258 len = 4;
1259 val = valbuf;
1260 }
1261 else if (abi == FRV_ABI_FDPIC
1262 && len == 4
1263 && typecode == TYPE_CODE_PTR
1264 && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
1265 {
1266 /* The FDPIC ABI requires function descriptors to be passed instead
1267 of entry points. */
1268 CORE_ADDR addr = extract_unsigned_integer
1269 (value_contents (arg), 4, byte_order);
1270 addr = find_func_descr (gdbarch, addr);
1271 store_unsigned_integer (valbuf, 4, byte_order, addr);
1272 typecode = TYPE_CODE_PTR;
1273 len = 4;
1274 val = valbuf;
1275 }
1276 else
1277 {
1278 val = value_contents (arg);
1279 }
1280
1281 while (len > 0)
1282 {
1283 int partial_len = (len < 4 ? len : 4);
1284
1285 if (argreg < 14)
1286 {
1287 regval = extract_unsigned_integer (val, partial_len, byte_order);
1288 #if 0
1289 printf(" Argnum %d data %x -> reg %d\n",
1290 argnum, (int) regval, argreg);
1291 #endif
1292 regcache_cooked_write_unsigned (regcache, argreg, regval);
1293 ++argreg;
1294 }
1295 else
1296 {
1297 #if 0
1298 printf(" Argnum %d data %x -> offset %d (%x)\n",
1299 argnum, *((int *)val), stack_offset,
1300 (int) (sp + stack_offset));
1301 #endif
1302 write_memory (sp + stack_offset, val, partial_len);
1303 stack_offset += align_up (partial_len, 4);
1304 }
1305 len -= partial_len;
1306 val += partial_len;
1307 }
1308 }
1309
1310 /* Set the return address. For the frv, the return breakpoint is
1311 always at BP_ADDR. */
1312 regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
1313
1314 if (abi == FRV_ABI_FDPIC)
1315 {
1316 /* Set the GOT register for the FDPIC ABI. */
1317 regcache_cooked_write_unsigned
1318 (regcache, first_gpr_regnum + 15,
1319 frv_fdpic_find_global_pointer (func_addr));
1320 }
1321
1322 /* Finally, update the SP register. */
1323 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
1324
1325 return sp;
1326 }
1327
1328 static void
1329 frv_store_return_value (struct type *type, struct regcache *regcache,
1330 const gdb_byte *valbuf)
1331 {
1332 int len = TYPE_LENGTH (type);
1333
1334 if (len <= 4)
1335 {
1336 bfd_byte val[4];
1337 memset (val, 0, sizeof (val));
1338 memcpy (val + (4 - len), valbuf, len);
1339 regcache_cooked_write (regcache, 8, val);
1340 }
1341 else if (len == 8)
1342 {
1343 regcache_cooked_write (regcache, 8, valbuf);
1344 regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
1345 }
1346 else
1347 internal_error (__FILE__, __LINE__,
1348 _("Don't know how to return a %d-byte value."), len);
1349 }
1350
1351 static enum return_value_convention
1352 frv_return_value (struct gdbarch *gdbarch, struct value *function,
1353 struct type *valtype, struct regcache *regcache,
1354 gdb_byte *readbuf, const gdb_byte *writebuf)
1355 {
1356 int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1357 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1358 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
1359
1360 if (writebuf != NULL)
1361 {
1362 gdb_assert (!struct_return);
1363 frv_store_return_value (valtype, regcache, writebuf);
1364 }
1365
1366 if (readbuf != NULL)
1367 {
1368 gdb_assert (!struct_return);
1369 frv_extract_return_value (valtype, regcache, readbuf);
1370 }
1371
1372 if (struct_return)
1373 return RETURN_VALUE_STRUCT_CONVENTION;
1374 else
1375 return RETURN_VALUE_REGISTER_CONVENTION;
1376 }
1377
1378 static CORE_ADDR
1379 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1380 {
1381 return frame_unwind_register_unsigned (next_frame, pc_regnum);
1382 }
1383
1384 /* Given a GDB frame, determine the address of the calling function's
1385 frame. This will be used to create a new GDB frame struct. */
1386
1387 static void
1388 frv_frame_this_id (struct frame_info *this_frame,
1389 void **this_prologue_cache, struct frame_id *this_id)
1390 {
1391 struct frv_unwind_cache *info
1392 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1393 CORE_ADDR base;
1394 CORE_ADDR func;
1395 struct bound_minimal_symbol msym_stack;
1396 struct frame_id id;
1397
1398 /* The FUNC is easy. */
1399 func = get_frame_func (this_frame);
1400
1401 /* Check if the stack is empty. */
1402 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
1403 if (msym_stack.minsym && info->base == BMSYMBOL_VALUE_ADDRESS (msym_stack))
1404 return;
1405
1406 /* Hopefully the prologue analysis either correctly determined the
1407 frame's base (which is the SP from the previous frame), or set
1408 that base to "NULL". */
1409 base = info->prev_sp;
1410 if (base == 0)
1411 return;
1412
1413 id = frame_id_build (base, func);
1414 (*this_id) = id;
1415 }
1416
1417 static struct value *
1418 frv_frame_prev_register (struct frame_info *this_frame,
1419 void **this_prologue_cache, int regnum)
1420 {
1421 struct frv_unwind_cache *info
1422 = frv_frame_unwind_cache (this_frame, this_prologue_cache);
1423 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1424 }
1425
1426 static const struct frame_unwind frv_frame_unwind = {
1427 NORMAL_FRAME,
1428 default_frame_unwind_stop_reason,
1429 frv_frame_this_id,
1430 frv_frame_prev_register,
1431 NULL,
1432 default_frame_sniffer
1433 };
1434
1435 static CORE_ADDR
1436 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
1437 {
1438 struct frv_unwind_cache *info
1439 = frv_frame_unwind_cache (this_frame, this_cache);
1440 return info->base;
1441 }
1442
1443 static const struct frame_base frv_frame_base = {
1444 &frv_frame_unwind,
1445 frv_frame_base_address,
1446 frv_frame_base_address,
1447 frv_frame_base_address
1448 };
1449
1450 static CORE_ADDR
1451 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1452 {
1453 return frame_unwind_register_unsigned (next_frame, sp_regnum);
1454 }
1455
1456
1457 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1458 frame. The frame ID's base needs to match the TOS value saved by
1459 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1460
1461 static struct frame_id
1462 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1463 {
1464 CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
1465 return frame_id_build (sp, get_frame_pc (this_frame));
1466 }
1467
1468 static struct gdbarch *
1469 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1470 {
1471 struct gdbarch *gdbarch;
1472 struct gdbarch_tdep *var;
1473 int elf_flags = 0;
1474
1475 /* Check to see if we've already built an appropriate architecture
1476 object for this executable. */
1477 arches = gdbarch_list_lookup_by_info (arches, &info);
1478 if (arches)
1479 return arches->gdbarch;
1480
1481 /* Select the right tdep structure for this variant. */
1482 var = new_variant ();
1483 switch (info.bfd_arch_info->mach)
1484 {
1485 case bfd_mach_frv:
1486 case bfd_mach_frvsimple:
1487 case bfd_mach_fr500:
1488 case bfd_mach_frvtomcat:
1489 case bfd_mach_fr550:
1490 set_variant_num_gprs (var, 64);
1491 set_variant_num_fprs (var, 64);
1492 break;
1493
1494 case bfd_mach_fr400:
1495 case bfd_mach_fr450:
1496 set_variant_num_gprs (var, 32);
1497 set_variant_num_fprs (var, 32);
1498 break;
1499
1500 default:
1501 /* Never heard of this variant. */
1502 return 0;
1503 }
1504
1505 /* Extract the ELF flags, if available. */
1506 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1507 elf_flags = elf_elfheader (info.abfd)->e_flags;
1508
1509 if (elf_flags & EF_FRV_FDPIC)
1510 set_variant_abi_fdpic (var);
1511
1512 if (elf_flags & EF_FRV_CPU_FR450)
1513 set_variant_scratch_registers (var);
1514
1515 gdbarch = gdbarch_alloc (&info, var);
1516
1517 set_gdbarch_short_bit (gdbarch, 16);
1518 set_gdbarch_int_bit (gdbarch, 32);
1519 set_gdbarch_long_bit (gdbarch, 32);
1520 set_gdbarch_long_long_bit (gdbarch, 64);
1521 set_gdbarch_float_bit (gdbarch, 32);
1522 set_gdbarch_double_bit (gdbarch, 64);
1523 set_gdbarch_long_double_bit (gdbarch, 64);
1524 set_gdbarch_ptr_bit (gdbarch, 32);
1525
1526 set_gdbarch_num_regs (gdbarch, frv_num_regs);
1527 set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
1528
1529 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
1530 set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
1531 set_gdbarch_pc_regnum (gdbarch, pc_regnum);
1532
1533 set_gdbarch_register_name (gdbarch, frv_register_name);
1534 set_gdbarch_register_type (gdbarch, frv_register_type);
1535 set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
1536
1537 set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
1538 set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
1539
1540 set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
1541 set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
1542 set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
1543 set_gdbarch_adjust_breakpoint_address
1544 (gdbarch, frv_adjust_breakpoint_address);
1545
1546 set_gdbarch_return_value (gdbarch, frv_return_value);
1547
1548 /* Frame stuff. */
1549 set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
1550 set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
1551 set_gdbarch_frame_align (gdbarch, frv_frame_align);
1552 frame_base_set_default (gdbarch, &frv_frame_base);
1553 /* We set the sniffer lower down after the OSABI hooks have been
1554 established. */
1555
1556 /* Settings for calling functions in the inferior. */
1557 set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
1558 set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
1559
1560 /* Settings that should be unnecessary. */
1561 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1562
1563 /* Hardware watchpoint / breakpoint support. */
1564 switch (info.bfd_arch_info->mach)
1565 {
1566 case bfd_mach_frv:
1567 case bfd_mach_frvsimple:
1568 case bfd_mach_fr500:
1569 case bfd_mach_frvtomcat:
1570 /* fr500-style hardware debugging support. */
1571 var->num_hw_watchpoints = 4;
1572 var->num_hw_breakpoints = 4;
1573 break;
1574
1575 case bfd_mach_fr400:
1576 case bfd_mach_fr450:
1577 /* fr400-style hardware debugging support. */
1578 var->num_hw_watchpoints = 2;
1579 var->num_hw_breakpoints = 4;
1580 break;
1581
1582 default:
1583 /* Otherwise, assume we don't have hardware debugging support. */
1584 var->num_hw_watchpoints = 0;
1585 var->num_hw_breakpoints = 0;
1586 break;
1587 }
1588
1589 set_gdbarch_print_insn (gdbarch, print_insn_frv);
1590 if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
1591 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1592 frv_convert_from_func_ptr_addr);
1593
1594 set_solib_ops (gdbarch, &frv_so_ops);
1595
1596 /* Hook in ABI-specific overrides, if they have been registered. */
1597 gdbarch_init_osabi (info, gdbarch);
1598
1599 /* Set the fallback (prologue based) frame sniffer. */
1600 frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
1601
1602 /* Enable TLS support. */
1603 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1604 frv_fetch_objfile_link_map);
1605
1606 return gdbarch;
1607 }
1608
1609 void
1610 _initialize_frv_tdep (void)
1611 {
1612 register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
1613 }