]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
1601879532fcb849909b56f431eb0a6b84859e06
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
336 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
338 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
340 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
342
343 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
344 # starting with C++11.
345 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
346 # One if \`wchar_t' is signed, zero if unsigned.
347 v;int;wchar_signed;;;1;-1;1
348
349 # Returns the floating-point format to be used for values of length LENGTH.
350 # NAME, if non-NULL, is the type name, which may be used to distinguish
351 # different target formats of the same length.
352 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
353
354 # For most targets, a pointer on the target and its representation as an
355 # address in GDB have the same size and "look the same". For such a
356 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
357 # / addr_bit will be set from it.
358 #
359 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
360 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
361 # gdbarch_address_to_pointer as well.
362 #
363 # ptr_bit is the size of a pointer on the target
364 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
365 # addr_bit is the size of a target address as represented in gdb
366 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
367 #
368 # dwarf2_addr_size is the target address size as used in the Dwarf debug
369 # info. For .debug_frame FDEs, this is supposed to be the target address
370 # size from the associated CU header, and which is equivalent to the
371 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
372 # Unfortunately there is no good way to determine this value. Therefore
373 # dwarf2_addr_size simply defaults to the target pointer size.
374 #
375 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
376 # defined using the target's pointer size so far.
377 #
378 # Note that dwarf2_addr_size only needs to be redefined by a target if the
379 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
380 # and if Dwarf versions < 4 need to be supported.
381 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
382 #
383 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
384 v;int;char_signed;;;1;-1;1
385 #
386 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
387 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
388 # Function for getting target's idea of a frame pointer. FIXME: GDB's
389 # whole scheme for dealing with "frames" and "frame pointers" needs a
390 # serious shakedown.
391 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
392 #
393 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
394 # Read a register into a new struct value. If the register is wholly
395 # or partly unavailable, this should call mark_value_bytes_unavailable
396 # as appropriate. If this is defined, then pseudo_register_read will
397 # never be called.
398 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
399 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
400 #
401 v;int;num_regs;;;0;-1
402 # This macro gives the number of pseudo-registers that live in the
403 # register namespace but do not get fetched or stored on the target.
404 # These pseudo-registers may be aliases for other registers,
405 # combinations of other registers, or they may be computed by GDB.
406 v;int;num_pseudo_regs;;;0;0;;0
407
408 # Assemble agent expression bytecode to collect pseudo-register REG.
409 # Return -1 if something goes wrong, 0 otherwise.
410 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
411
412 # Assemble agent expression bytecode to push the value of pseudo-register
413 # REG on the interpreter stack.
414 # Return -1 if something goes wrong, 0 otherwise.
415 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
416
417 # Some targets/architectures can do extra processing/display of
418 # segmentation faults. E.g., Intel MPX boundary faults.
419 # Call the architecture dependent function to handle the fault.
420 # UIOUT is the output stream where the handler will place information.
421 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
422
423 # Some architectures can display additional information for specific
424 # signals.
425 # UIOUT is the output stream where the handler will place information.
426 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
427
428 # GDB's standard (or well known) register numbers. These can map onto
429 # a real register or a pseudo (computed) register or not be defined at
430 # all (-1).
431 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
432 v;int;sp_regnum;;;-1;-1;;0
433 v;int;pc_regnum;;;-1;-1;;0
434 v;int;ps_regnum;;;-1;-1;;0
435 v;int;fp0_regnum;;;0;-1;;0
436 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
437 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
439 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
440 # Convert from an sdb register number to an internal gdb register number.
441 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
442 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
443 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
444 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
445 m;const char *;register_name;int regnr;regnr;;0
446
447 # Return the type of a register specified by the architecture. Only
448 # the register cache should call this function directly; others should
449 # use "register_type".
450 M;struct type *;register_type;int reg_nr;reg_nr
451
452 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
453 # a dummy frame. A dummy frame is created before an inferior call,
454 # the frame_id returned here must match the frame_id that was built
455 # for the inferior call. Usually this means the returned frame_id's
456 # stack address should match the address returned by
457 # gdbarch_push_dummy_call, and the returned frame_id's code address
458 # should match the address at which the breakpoint was set in the dummy
459 # frame.
460 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
461 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
462 # deprecated_fp_regnum.
463 v;int;deprecated_fp_regnum;;;-1;-1;;0
464
465 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
466 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
467 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
468
469 # Return true if the code of FRAME is writable.
470 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
471
472 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
473 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
474 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
475 # MAP a GDB RAW register number onto a simulator register number. See
476 # also include/...-sim.h.
477 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
478 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
479 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
480
481 # Determine the address where a longjmp will land and save this address
482 # in PC. Return nonzero on success.
483 #
484 # FRAME corresponds to the longjmp frame.
485 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
486
487 #
488 v;int;believe_pcc_promotion;;;;;;;
489 #
490 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
491 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
492 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
493 # Construct a value representing the contents of register REGNUM in
494 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
495 # allocate and return a struct value with all value attributes
496 # (but not the value contents) filled in.
497 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
498 #
499 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
500 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
501 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
502
503 # Return the return-value convention that will be used by FUNCTION
504 # to return a value of type VALTYPE. FUNCTION may be NULL in which
505 # case the return convention is computed based only on VALTYPE.
506 #
507 # If READBUF is not NULL, extract the return value and save it in this buffer.
508 #
509 # If WRITEBUF is not NULL, it contains a return value which will be
510 # stored into the appropriate register. This can be used when we want
511 # to force the value returned by a function (see the "return" command
512 # for instance).
513 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
514
515 # Return true if the return value of function is stored in the first hidden
516 # parameter. In theory, this feature should be language-dependent, specified
517 # by language and its ABI, such as C++. Unfortunately, compiler may
518 # implement it to a target-dependent feature. So that we need such hook here
519 # to be aware of this in GDB.
520 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
521
522 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
523 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
524 # On some platforms, a single function may provide multiple entry points,
525 # e.g. one that is used for function-pointer calls and a different one
526 # that is used for direct function calls.
527 # In order to ensure that breakpoints set on the function will trigger
528 # no matter via which entry point the function is entered, a platform
529 # may provide the skip_entrypoint callback. It is called with IP set
530 # to the main entry point of a function (as determined by the symbol table),
531 # and should return the address of the innermost entry point, where the
532 # actual breakpoint needs to be set. Note that skip_entrypoint is used
533 # by GDB common code even when debugging optimized code, where skip_prologue
534 # is not used.
535 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
536
537 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
538 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
539
540 # Return the breakpoint kind for this target based on *PCPTR.
541 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
542
543 # Return the software breakpoint from KIND. KIND can have target
544 # specific meaning like the Z0 kind parameter.
545 # SIZE is set to the software breakpoint's length in memory.
546 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
547
548 # Return the breakpoint kind for this target based on the current
549 # processor state (e.g. the current instruction mode on ARM) and the
550 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
551 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
552
553 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
554 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
555 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
556 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. gdbarch_deprecated_function_start_offset is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
567
568 # Return the remote protocol register number associated with this
569 # register. Normally the identity mapping.
570 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
571
572 # Fetch the target specific address used to represent a load module.
573 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
574
575 # Return the thread-local address at OFFSET in the thread-local
576 # storage for the thread PTID and the shared library or executable
577 # file given by LM_ADDR. If that block of thread-local storage hasn't
578 # been allocated yet, this function may throw an error. LM_ADDR may
579 # be zero for statically linked multithreaded inferiors.
580
581 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
582 #
583 v;CORE_ADDR;frame_args_skip;;;0;;;0
584 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
585 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
586 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
587 # frame-base. Enable frame-base before frame-unwind.
588 F;int;frame_num_args;struct frame_info *frame;frame
589 #
590 M;CORE_ADDR;frame_align;CORE_ADDR address;address
591 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
592 v;int;frame_red_zone_size
593 #
594 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
595 # On some machines there are bits in addresses which are not really
596 # part of the address, but are used by the kernel, the hardware, etc.
597 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
598 # we get a "real" address such as one would find in a symbol table.
599 # This is used only for addresses of instructions, and even then I'm
600 # not sure it's used in all contexts. It exists to deal with there
601 # being a few stray bits in the PC which would mislead us, not as some
602 # sort of generic thing to handle alignment or segmentation (it's
603 # possible it should be in TARGET_READ_PC instead).
604 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
605
606 # On some machines, not all bits of an address word are significant.
607 # For example, on AArch64, the top bits of an address known as the "tag"
608 # are ignored by the kernel, the hardware, etc. and can be regarded as
609 # additional data associated with the address.
610 v;int;significant_addr_bit;;;;;;0
611
612 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
613 # indicates if the target needs software single step. An ISA method to
614 # implement it.
615 #
616 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
617 # target can single step. If not, then implement single step using breakpoints.
618 #
619 # Return a vector of addresses on which the software single step
620 # breakpoints should be inserted. NULL means software single step is
621 # not used.
622 # Multiple breakpoints may be inserted for some instructions such as
623 # conditional branch. However, each implementation must always evaluate
624 # the condition and only put the breakpoint at the branch destination if
625 # the condition is true, so that we ensure forward progress when stepping
626 # past a conditional branch to self.
627 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
628
629 # Return non-zero if the processor is executing a delay slot and a
630 # further single-step is needed before the instruction finishes.
631 M;int;single_step_through_delay;struct frame_info *frame;frame
632 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
633 # disassembler. Perhaps objdump can handle it?
634 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
635 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
636
637
638 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
639 # evaluates non-zero, this is the address where the debugger will place
640 # a step-resume breakpoint to get us past the dynamic linker.
641 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
642 # Some systems also have trampoline code for returning from shared libs.
643 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
644
645 # Return true if PC lies inside an indirect branch thunk.
646 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
647
648 # A target might have problems with watchpoints as soon as the stack
649 # frame of the current function has been destroyed. This mostly happens
650 # as the first action in a function's epilogue. stack_frame_destroyed_p()
651 # is defined to return a non-zero value if either the given addr is one
652 # instruction after the stack destroying instruction up to the trailing
653 # return instruction or if we can figure out that the stack frame has
654 # already been invalidated regardless of the value of addr. Targets
655 # which don't suffer from that problem could just let this functionality
656 # untouched.
657 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
658 # Process an ELF symbol in the minimal symbol table in a backend-specific
659 # way. Normally this hook is supposed to do nothing, however if required,
660 # then this hook can be used to apply tranformations to symbols that are
661 # considered special in some way. For example the MIPS backend uses it
662 # to interpret \`st_other' information to mark compressed code symbols so
663 # that they can be treated in the appropriate manner in the processing of
664 # the main symbol table and DWARF-2 records.
665 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
666 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
667 # Process a symbol in the main symbol table in a backend-specific way.
668 # Normally this hook is supposed to do nothing, however if required,
669 # then this hook can be used to apply tranformations to symbols that
670 # are considered special in some way. This is currently used by the
671 # MIPS backend to make sure compressed code symbols have the ISA bit
672 # set. This in turn is needed for symbol values seen in GDB to match
673 # the values used at the runtime by the program itself, for function
674 # and label references.
675 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
676 # Adjust the address retrieved from a DWARF-2 record other than a line
677 # entry in a backend-specific way. Normally this hook is supposed to
678 # return the address passed unchanged, however if that is incorrect for
679 # any reason, then this hook can be used to fix the address up in the
680 # required manner. This is currently used by the MIPS backend to make
681 # sure addresses in FDE, range records, etc. referring to compressed
682 # code have the ISA bit set, matching line information and the symbol
683 # table.
684 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
685 # Adjust the address updated by a line entry in a backend-specific way.
686 # Normally this hook is supposed to return the address passed unchanged,
687 # however in the case of inconsistencies in these records, this hook can
688 # be used to fix them up in the required manner. This is currently used
689 # by the MIPS backend to make sure all line addresses in compressed code
690 # are presented with the ISA bit set, which is not always the case. This
691 # in turn ensures breakpoint addresses are correctly matched against the
692 # stop PC.
693 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
694 v;int;cannot_step_breakpoint;;;0;0;;0
695 # See comment in target.h about continuable, steppable and
696 # non-steppable watchpoints.
697 v;int;have_nonsteppable_watchpoint;;;0;0;;0
698 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
699 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
700 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
701 # FS are passed from the generic execute_cfa_program function.
702 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
703
704 # Return the appropriate type_flags for the supplied address class.
705 # This function should return 1 if the address class was recognized and
706 # type_flags was set, zero otherwise.
707 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
708 # Is a register in a group
709 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
710 # Fetch the pointer to the ith function argument.
711 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
712
713 # Iterate over all supported register notes in a core file. For each
714 # supported register note section, the iterator must call CB and pass
715 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
716 # the supported register note sections based on the current register
717 # values. Otherwise it should enumerate all supported register note
718 # sections.
719 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
720
721 # Create core file notes
722 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
723
724 # Find core file memory regions
725 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
726
727 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
728 # core file into buffer READBUF with length LEN. Return the number of bytes read
729 # (zero indicates failure).
730 # failed, otherwise, return the red length of READBUF.
731 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
732
733 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
734 # libraries list from core file into buffer READBUF with length LEN.
735 # Return the number of bytes read (zero indicates failure).
736 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
737
738 # How the core target converts a PTID from a core file to a string.
739 M;std::string;core_pid_to_str;ptid_t ptid;ptid
740
741 # How the core target extracts the name of a thread from a core file.
742 M;const char *;core_thread_name;struct thread_info *thr;thr
743
744 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
745 # from core file into buffer READBUF with length LEN. Return the number
746 # of bytes read (zero indicates EOF, a negative value indicates failure).
747 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
748
749 # BFD target to use when generating a core file.
750 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
751
752 # If the elements of C++ vtables are in-place function descriptors rather
753 # than normal function pointers (which may point to code or a descriptor),
754 # set this to one.
755 v;int;vtable_function_descriptors;;;0;0;;0
756
757 # Set if the least significant bit of the delta is used instead of the least
758 # significant bit of the pfn for pointers to virtual member functions.
759 v;int;vbit_in_delta;;;0;0;;0
760
761 # Advance PC to next instruction in order to skip a permanent breakpoint.
762 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
763
764 # The maximum length of an instruction on this architecture in bytes.
765 V;ULONGEST;max_insn_length;;;0;0
766
767 # Copy the instruction at FROM to TO, and make any adjustments
768 # necessary to single-step it at that address.
769 #
770 # REGS holds the state the thread's registers will have before
771 # executing the copied instruction; the PC in REGS will refer to FROM,
772 # not the copy at TO. The caller should update it to point at TO later.
773 #
774 # Return a pointer to data of the architecture's choice to be passed
775 # to gdbarch_displaced_step_fixup.
776 #
777 # For a general explanation of displaced stepping and how GDB uses it,
778 # see the comments in infrun.c.
779 #
780 # The TO area is only guaranteed to have space for
781 # gdbarch_max_insn_length (arch) bytes, so this function must not
782 # write more bytes than that to that area.
783 #
784 # If you do not provide this function, GDB assumes that the
785 # architecture does not support displaced stepping.
786 #
787 # If the instruction cannot execute out of line, return NULL. The
788 # core falls back to stepping past the instruction in-line instead in
789 # that case.
790 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
791
792 # Return true if GDB should use hardware single-stepping to execute
793 # the displaced instruction identified by CLOSURE. If false,
794 # GDB will simply restart execution at the displaced instruction
795 # location, and it is up to the target to ensure GDB will receive
796 # control again (e.g. by placing a software breakpoint instruction
797 # into the displaced instruction buffer).
798 #
799 # The default implementation returns false on all targets that
800 # provide a gdbarch_software_single_step routine, and true otherwise.
801 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
802
803 # Fix up the state resulting from successfully single-stepping a
804 # displaced instruction, to give the result we would have gotten from
805 # stepping the instruction in its original location.
806 #
807 # REGS is the register state resulting from single-stepping the
808 # displaced instruction.
809 #
810 # CLOSURE is the result from the matching call to
811 # gdbarch_displaced_step_copy_insn.
812 #
813 # If you provide gdbarch_displaced_step_copy_insn.but not this
814 # function, then GDB assumes that no fixup is needed after
815 # single-stepping the instruction.
816 #
817 # For a general explanation of displaced stepping and how GDB uses it,
818 # see the comments in infrun.c.
819 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
820
821 # Return the address of an appropriate place to put displaced
822 # instructions while we step over them. There need only be one such
823 # place, since we're only stepping one thread over a breakpoint at a
824 # time.
825 #
826 # For a general explanation of displaced stepping and how GDB uses it,
827 # see the comments in infrun.c.
828 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
829
830 # Relocate an instruction to execute at a different address. OLDLOC
831 # is the address in the inferior memory where the instruction to
832 # relocate is currently at. On input, TO points to the destination
833 # where we want the instruction to be copied (and possibly adjusted)
834 # to. On output, it points to one past the end of the resulting
835 # instruction(s). The effect of executing the instruction at TO shall
836 # be the same as if executing it at FROM. For example, call
837 # instructions that implicitly push the return address on the stack
838 # should be adjusted to return to the instruction after OLDLOC;
839 # relative branches, and other PC-relative instructions need the
840 # offset adjusted; etc.
841 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
842
843 # Refresh overlay mapped state for section OSECT.
844 F;void;overlay_update;struct obj_section *osect;osect
845
846 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
847
848 # Set if the address in N_SO or N_FUN stabs may be zero.
849 v;int;sofun_address_maybe_missing;;;0;0;;0
850
851 # Parse the instruction at ADDR storing in the record execution log
852 # the registers REGCACHE and memory ranges that will be affected when
853 # the instruction executes, along with their current values.
854 # Return -1 if something goes wrong, 0 otherwise.
855 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
856
857 # Save process state after a signal.
858 # Return -1 if something goes wrong, 0 otherwise.
859 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
860
861 # Signal translation: translate inferior's signal (target's) number
862 # into GDB's representation. The implementation of this method must
863 # be host independent. IOW, don't rely on symbols of the NAT_FILE
864 # header (the nm-*.h files), the host <signal.h> header, or similar
865 # headers. This is mainly used when cross-debugging core files ---
866 # "Live" targets hide the translation behind the target interface
867 # (target_wait, target_resume, etc.).
868 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
869
870 # Signal translation: translate the GDB's internal signal number into
871 # the inferior's signal (target's) representation. The implementation
872 # of this method must be host independent. IOW, don't rely on symbols
873 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
874 # header, or similar headers.
875 # Return the target signal number if found, or -1 if the GDB internal
876 # signal number is invalid.
877 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
878
879 # Extra signal info inspection.
880 #
881 # Return a type suitable to inspect extra signal information.
882 M;struct type *;get_siginfo_type;void;
883
884 # Record architecture-specific information from the symbol table.
885 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
886
887 # Function for the 'catch syscall' feature.
888
889 # Get architecture-specific system calls information from registers.
890 M;LONGEST;get_syscall_number;thread_info *thread;thread
891
892 # The filename of the XML syscall for this architecture.
893 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
894
895 # Information about system calls from this architecture
896 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
897
898 # SystemTap related fields and functions.
899
900 # A NULL-terminated array of prefixes used to mark an integer constant
901 # on the architecture's assembly.
902 # For example, on x86 integer constants are written as:
903 #
904 # \$10 ;; integer constant 10
905 #
906 # in this case, this prefix would be the character \`\$\'.
907 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
908
909 # A NULL-terminated array of suffixes used to mark an integer constant
910 # on the architecture's assembly.
911 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
912
913 # A NULL-terminated array of prefixes used to mark a register name on
914 # the architecture's assembly.
915 # For example, on x86 the register name is written as:
916 #
917 # \%eax ;; register eax
918 #
919 # in this case, this prefix would be the character \`\%\'.
920 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
921
922 # A NULL-terminated array of suffixes used to mark a register name on
923 # the architecture's assembly.
924 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
925
926 # A NULL-terminated array of prefixes used to mark a register
927 # indirection on the architecture's assembly.
928 # For example, on x86 the register indirection is written as:
929 #
930 # \(\%eax\) ;; indirecting eax
931 #
932 # in this case, this prefix would be the charater \`\(\'.
933 #
934 # Please note that we use the indirection prefix also for register
935 # displacement, e.g., \`4\(\%eax\)\' on x86.
936 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
937
938 # A NULL-terminated array of suffixes used to mark a register
939 # indirection on the architecture's assembly.
940 # For example, on x86 the register indirection is written as:
941 #
942 # \(\%eax\) ;; indirecting eax
943 #
944 # in this case, this prefix would be the charater \`\)\'.
945 #
946 # Please note that we use the indirection suffix also for register
947 # displacement, e.g., \`4\(\%eax\)\' on x86.
948 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
949
950 # Prefix(es) used to name a register using GDB's nomenclature.
951 #
952 # For example, on PPC a register is represented by a number in the assembly
953 # language (e.g., \`10\' is the 10th general-purpose register). However,
954 # inside GDB this same register has an \`r\' appended to its name, so the 10th
955 # register would be represented as \`r10\' internally.
956 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
957
958 # Suffix used to name a register using GDB's nomenclature.
959 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
960
961 # Check if S is a single operand.
962 #
963 # Single operands can be:
964 # \- Literal integers, e.g. \`\$10\' on x86
965 # \- Register access, e.g. \`\%eax\' on x86
966 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
967 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
968 #
969 # This function should check for these patterns on the string
970 # and return 1 if some were found, or zero otherwise. Please try to match
971 # as much info as you can from the string, i.e., if you have to match
972 # something like \`\(\%\', do not match just the \`\(\'.
973 M;int;stap_is_single_operand;const char *s;s
974
975 # Function used to handle a "special case" in the parser.
976 #
977 # A "special case" is considered to be an unknown token, i.e., a token
978 # that the parser does not know how to parse. A good example of special
979 # case would be ARM's register displacement syntax:
980 #
981 # [R0, #4] ;; displacing R0 by 4
982 #
983 # Since the parser assumes that a register displacement is of the form:
984 #
985 # <number> <indirection_prefix> <register_name> <indirection_suffix>
986 #
987 # it means that it will not be able to recognize and parse this odd syntax.
988 # Therefore, we should add a special case function that will handle this token.
989 #
990 # This function should generate the proper expression form of the expression
991 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
992 # and so on). It should also return 1 if the parsing was successful, or zero
993 # if the token was not recognized as a special token (in this case, returning
994 # zero means that the special parser is deferring the parsing to the generic
995 # parser), and should advance the buffer pointer (p->arg).
996 M;int;stap_parse_special_token;struct stap_parse_info *p;p
997
998 # Perform arch-dependent adjustments to a register name.
999 #
1000 # In very specific situations, it may be necessary for the register
1001 # name present in a SystemTap probe's argument to be handled in a
1002 # special way. For example, on i386, GCC may over-optimize the
1003 # register allocation and use smaller registers than necessary. In
1004 # such cases, the client that is reading and evaluating the SystemTap
1005 # probe (ourselves) will need to actually fetch values from the wider
1006 # version of the register in question.
1007 #
1008 # To illustrate the example, consider the following probe argument
1009 # (i386):
1010 #
1011 # 4@%ax
1012 #
1013 # This argument says that its value can be found at the %ax register,
1014 # which is a 16-bit register. However, the argument's prefix says
1015 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1016 # this case, GDB should actually fetch the probe's value from register
1017 # %eax, not %ax. In this scenario, this function would actually
1018 # replace the register name from %ax to %eax.
1019 #
1020 # The rationale for this can be found at PR breakpoints/24541.
1021 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1022
1023 # DTrace related functions.
1024
1025 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1026 # NARG must be >= 0.
1027 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1028
1029 # True if the given ADDR does not contain the instruction sequence
1030 # corresponding to a disabled DTrace is-enabled probe.
1031 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1032
1033 # Enable a DTrace is-enabled probe at ADDR.
1034 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1035
1036 # Disable a DTrace is-enabled probe at ADDR.
1037 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1038
1039 # True if the list of shared libraries is one and only for all
1040 # processes, as opposed to a list of shared libraries per inferior.
1041 # This usually means that all processes, although may or may not share
1042 # an address space, will see the same set of symbols at the same
1043 # addresses.
1044 v;int;has_global_solist;;;0;0;;0
1045
1046 # On some targets, even though each inferior has its own private
1047 # address space, the debug interface takes care of making breakpoints
1048 # visible to all address spaces automatically. For such cases,
1049 # this property should be set to true.
1050 v;int;has_global_breakpoints;;;0;0;;0
1051
1052 # True if inferiors share an address space (e.g., uClinux).
1053 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1054
1055 # True if a fast tracepoint can be set at an address.
1056 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1057
1058 # Guess register state based on tracepoint location. Used for tracepoints
1059 # where no registers have been collected, but there's only one location,
1060 # allowing us to guess the PC value, and perhaps some other registers.
1061 # On entry, regcache has all registers marked as unavailable.
1062 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1063
1064 # Return the "auto" target charset.
1065 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1066 # Return the "auto" target wide charset.
1067 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1068
1069 # If non-empty, this is a file extension that will be opened in place
1070 # of the file extension reported by the shared library list.
1071 #
1072 # This is most useful for toolchains that use a post-linker tool,
1073 # where the names of the files run on the target differ in extension
1074 # compared to the names of the files GDB should load for debug info.
1075 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1076
1077 # If true, the target OS has DOS-based file system semantics. That
1078 # is, absolute paths include a drive name, and the backslash is
1079 # considered a directory separator.
1080 v;int;has_dos_based_file_system;;;0;0;;0
1081
1082 # Generate bytecodes to collect the return address in a frame.
1083 # Since the bytecodes run on the target, possibly with GDB not even
1084 # connected, the full unwinding machinery is not available, and
1085 # typically this function will issue bytecodes for one or more likely
1086 # places that the return address may be found.
1087 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1088
1089 # Implement the "info proc" command.
1090 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1091
1092 # Implement the "info proc" command for core files. Noe that there
1093 # are two "info_proc"-like methods on gdbarch -- one for core files,
1094 # one for live targets.
1095 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1096
1097 # Iterate over all objfiles in the order that makes the most sense
1098 # for the architecture to make global symbol searches.
1099 #
1100 # CB is a callback function where OBJFILE is the objfile to be searched,
1101 # and CB_DATA a pointer to user-defined data (the same data that is passed
1102 # when calling this gdbarch method). The iteration stops if this function
1103 # returns nonzero.
1104 #
1105 # CB_DATA is a pointer to some user-defined data to be passed to
1106 # the callback.
1107 #
1108 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1109 # inspected when the symbol search was requested.
1110 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1111
1112 # Ravenscar arch-dependent ops.
1113 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1114
1115 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1116 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1117
1118 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1119 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1120
1121 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1122 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1123
1124 # Return true if there's a program/permanent breakpoint planted in
1125 # memory at ADDRESS, return false otherwise.
1126 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1127
1128 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1129 # Return 0 if *READPTR is already at the end of the buffer.
1130 # Return -1 if there is insufficient buffer for a whole entry.
1131 # Return 1 if an entry was read into *TYPEP and *VALP.
1132 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1133
1134 # Print the description of a single auxv entry described by TYPE and VAL
1135 # to FILE.
1136 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1137
1138 # Find the address range of the current inferior's vsyscall/vDSO, and
1139 # write it to *RANGE. If the vsyscall's length can't be determined, a
1140 # range with zero length is returned. Returns true if the vsyscall is
1141 # found, false otherwise.
1142 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1143
1144 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1145 # PROT has GDB_MMAP_PROT_* bitmask format.
1146 # Throw an error if it is not possible. Returned address is always valid.
1147 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1148
1149 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1150 # Print a warning if it is not possible.
1151 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1152
1153 # Return string (caller has to use xfree for it) with options for GCC
1154 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1155 # These options are put before CU's DW_AT_producer compilation options so that
1156 # they can override it.
1157 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1158
1159 # Return a regular expression that matches names used by this
1160 # architecture in GNU configury triplets. The result is statically
1161 # allocated and must not be freed. The default implementation simply
1162 # returns the BFD architecture name, which is correct in nearly every
1163 # case.
1164 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1165
1166 # Return the size in 8-bit bytes of an addressable memory unit on this
1167 # architecture. This corresponds to the number of 8-bit bytes associated to
1168 # each address in memory.
1169 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1170
1171 # Functions for allowing a target to modify its disassembler options.
1172 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1173 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1174 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1175
1176 # Type alignment override method. Return the architecture specific
1177 # alignment required for TYPE. If there is no special handling
1178 # required for TYPE then return the value 0, GDB will then apply the
1179 # default rules as laid out in gdbtypes.c:type_align.
1180 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1181
1182 # Return a string containing any flags for the given PC in the given FRAME.
1183 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1184
1185 EOF
1186 }
1187
1188 #
1189 # The .log file
1190 #
1191 exec > gdbarch.log
1192 function_list | while do_read
1193 do
1194 cat <<EOF
1195 ${class} ${returntype:-} ${function} (${formal:-})
1196 EOF
1197 for r in ${read}
1198 do
1199 eval echo "\" ${r}=\${${r}}\""
1200 done
1201 if class_is_predicate_p && fallback_default_p
1202 then
1203 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1204 kill $$
1205 exit 1
1206 fi
1207 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1208 then
1209 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1210 kill $$
1211 exit 1
1212 fi
1213 if class_is_multiarch_p
1214 then
1215 if class_is_predicate_p ; then :
1216 elif test "x${predefault}" = "x"
1217 then
1218 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1219 kill $$
1220 exit 1
1221 fi
1222 fi
1223 echo ""
1224 done
1225
1226 exec 1>&2
1227
1228
1229 copyright ()
1230 {
1231 cat <<EOF
1232 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1233 /* vi:set ro: */
1234
1235 /* Dynamic architecture support for GDB, the GNU debugger.
1236
1237 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1238
1239 This file is part of GDB.
1240
1241 This program is free software; you can redistribute it and/or modify
1242 it under the terms of the GNU General Public License as published by
1243 the Free Software Foundation; either version 3 of the License, or
1244 (at your option) any later version.
1245
1246 This program is distributed in the hope that it will be useful,
1247 but WITHOUT ANY WARRANTY; without even the implied warranty of
1248 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1249 GNU General Public License for more details.
1250
1251 You should have received a copy of the GNU General Public License
1252 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1253
1254 /* This file was created with the aid of \`\`gdbarch.sh''. */
1255
1256 EOF
1257 }
1258
1259 #
1260 # The .h file
1261 #
1262
1263 exec > new-gdbarch.h
1264 copyright
1265 cat <<EOF
1266 #ifndef GDBARCH_H
1267 #define GDBARCH_H
1268
1269 #include <vector>
1270 #include "frame.h"
1271 #include "dis-asm.h"
1272 #include "gdb_obstack.h"
1273 #include "infrun.h"
1274 #include "osabi.h"
1275
1276 struct floatformat;
1277 struct ui_file;
1278 struct value;
1279 struct objfile;
1280 struct obj_section;
1281 struct minimal_symbol;
1282 struct regcache;
1283 struct reggroup;
1284 struct regset;
1285 struct disassemble_info;
1286 struct target_ops;
1287 struct obstack;
1288 struct bp_target_info;
1289 struct target_desc;
1290 struct symbol;
1291 struct syscall;
1292 struct agent_expr;
1293 struct axs_value;
1294 struct stap_parse_info;
1295 struct expr_builder;
1296 struct ravenscar_arch_ops;
1297 struct mem_range;
1298 struct syscalls_info;
1299 struct thread_info;
1300 struct ui_out;
1301
1302 #include "regcache.h"
1303
1304 /* The architecture associated with the inferior through the
1305 connection to the target.
1306
1307 The architecture vector provides some information that is really a
1308 property of the inferior, accessed through a particular target:
1309 ptrace operations; the layout of certain RSP packets; the solib_ops
1310 vector; etc. To differentiate architecture accesses to
1311 per-inferior/target properties from
1312 per-thread/per-frame/per-objfile properties, accesses to
1313 per-inferior/target properties should be made through this
1314 gdbarch. */
1315
1316 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1317 extern struct gdbarch *target_gdbarch (void);
1318
1319 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1320 gdbarch method. */
1321
1322 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1323 (struct objfile *objfile, void *cb_data);
1324
1325 /* Callback type for regset section iterators. The callback usually
1326 invokes the REGSET's supply or collect method, to which it must
1327 pass a buffer - for collects this buffer will need to be created using
1328 COLLECT_SIZE, for supply the existing buffer being read from should
1329 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1330 is used for diagnostic messages. CB_DATA should have been passed
1331 unchanged through the iterator. */
1332
1333 typedef void (iterate_over_regset_sections_cb)
1334 (const char *sect_name, int supply_size, int collect_size,
1335 const struct regset *regset, const char *human_name, void *cb_data);
1336
1337 /* For a function call, does the function return a value using a
1338 normal value return or a structure return - passing a hidden
1339 argument pointing to storage. For the latter, there are two
1340 cases: language-mandated structure return and target ABI
1341 structure return. */
1342
1343 enum function_call_return_method
1344 {
1345 /* Standard value return. */
1346 return_method_normal = 0,
1347
1348 /* Language ABI structure return. This is handled
1349 by passing the return location as the first parameter to
1350 the function, even preceding "this". */
1351 return_method_hidden_param,
1352
1353 /* Target ABI struct return. This is target-specific; for instance,
1354 on ia64 the first argument is passed in out0 but the hidden
1355 structure return pointer would normally be passed in r8. */
1356 return_method_struct,
1357 };
1358
1359 EOF
1360
1361 # function typedef's
1362 printf "\n"
1363 printf "\n"
1364 printf "/* The following are pre-initialized by GDBARCH. */\n"
1365 function_list | while do_read
1366 do
1367 if class_is_info_p
1368 then
1369 printf "\n"
1370 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1371 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1372 fi
1373 done
1374
1375 # function typedef's
1376 printf "\n"
1377 printf "\n"
1378 printf "/* The following are initialized by the target dependent code. */\n"
1379 function_list | while do_read
1380 do
1381 if [ -n "${comment}" ]
1382 then
1383 echo "${comment}" | sed \
1384 -e '2 s,#,/*,' \
1385 -e '3,$ s,#, ,' \
1386 -e '$ s,$, */,'
1387 fi
1388
1389 if class_is_predicate_p
1390 then
1391 printf "\n"
1392 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1393 fi
1394 if class_is_variable_p
1395 then
1396 printf "\n"
1397 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1398 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1399 fi
1400 if class_is_function_p
1401 then
1402 printf "\n"
1403 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1404 then
1405 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1406 elif class_is_multiarch_p
1407 then
1408 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1409 else
1410 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1411 fi
1412 if [ "x${formal}" = "xvoid" ]
1413 then
1414 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1415 else
1416 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1417 fi
1418 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1419 fi
1420 done
1421
1422 # close it off
1423 cat <<EOF
1424
1425 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1426
1427
1428 /* Mechanism for co-ordinating the selection of a specific
1429 architecture.
1430
1431 GDB targets (*-tdep.c) can register an interest in a specific
1432 architecture. Other GDB components can register a need to maintain
1433 per-architecture data.
1434
1435 The mechanisms below ensures that there is only a loose connection
1436 between the set-architecture command and the various GDB
1437 components. Each component can independently register their need
1438 to maintain architecture specific data with gdbarch.
1439
1440 Pragmatics:
1441
1442 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1443 didn't scale.
1444
1445 The more traditional mega-struct containing architecture specific
1446 data for all the various GDB components was also considered. Since
1447 GDB is built from a variable number of (fairly independent)
1448 components it was determined that the global aproach was not
1449 applicable. */
1450
1451
1452 /* Register a new architectural family with GDB.
1453
1454 Register support for the specified ARCHITECTURE with GDB. When
1455 gdbarch determines that the specified architecture has been
1456 selected, the corresponding INIT function is called.
1457
1458 --
1459
1460 The INIT function takes two parameters: INFO which contains the
1461 information available to gdbarch about the (possibly new)
1462 architecture; ARCHES which is a list of the previously created
1463 \`\`struct gdbarch'' for this architecture.
1464
1465 The INFO parameter is, as far as possible, be pre-initialized with
1466 information obtained from INFO.ABFD or the global defaults.
1467
1468 The ARCHES parameter is a linked list (sorted most recently used)
1469 of all the previously created architures for this architecture
1470 family. The (possibly NULL) ARCHES->gdbarch can used to access
1471 values from the previously selected architecture for this
1472 architecture family.
1473
1474 The INIT function shall return any of: NULL - indicating that it
1475 doesn't recognize the selected architecture; an existing \`\`struct
1476 gdbarch'' from the ARCHES list - indicating that the new
1477 architecture is just a synonym for an earlier architecture (see
1478 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1479 - that describes the selected architecture (see gdbarch_alloc()).
1480
1481 The DUMP_TDEP function shall print out all target specific values.
1482 Care should be taken to ensure that the function works in both the
1483 multi-arch and non- multi-arch cases. */
1484
1485 struct gdbarch_list
1486 {
1487 struct gdbarch *gdbarch;
1488 struct gdbarch_list *next;
1489 };
1490
1491 struct gdbarch_info
1492 {
1493 /* Use default: NULL (ZERO). */
1494 const struct bfd_arch_info *bfd_arch_info;
1495
1496 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1497 enum bfd_endian byte_order;
1498
1499 enum bfd_endian byte_order_for_code;
1500
1501 /* Use default: NULL (ZERO). */
1502 bfd *abfd;
1503
1504 /* Use default: NULL (ZERO). */
1505 union
1506 {
1507 /* Architecture-specific information. The generic form for targets
1508 that have extra requirements. */
1509 struct gdbarch_tdep_info *tdep_info;
1510
1511 /* Architecture-specific target description data. Numerous targets
1512 need only this, so give them an easy way to hold it. */
1513 struct tdesc_arch_data *tdesc_data;
1514
1515 /* SPU file system ID. This is a single integer, so using the
1516 generic form would only complicate code. Other targets may
1517 reuse this member if suitable. */
1518 int *id;
1519 };
1520
1521 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1522 enum gdb_osabi osabi;
1523
1524 /* Use default: NULL (ZERO). */
1525 const struct target_desc *target_desc;
1526 };
1527
1528 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1529 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1530
1531 /* DEPRECATED - use gdbarch_register() */
1532 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1533
1534 extern void gdbarch_register (enum bfd_architecture architecture,
1535 gdbarch_init_ftype *,
1536 gdbarch_dump_tdep_ftype *);
1537
1538
1539 /* Return a freshly allocated, NULL terminated, array of the valid
1540 architecture names. Since architectures are registered during the
1541 _initialize phase this function only returns useful information
1542 once initialization has been completed. */
1543
1544 extern const char **gdbarch_printable_names (void);
1545
1546
1547 /* Helper function. Search the list of ARCHES for a GDBARCH that
1548 matches the information provided by INFO. */
1549
1550 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1551
1552
1553 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1554 basic initialization using values obtained from the INFO and TDEP
1555 parameters. set_gdbarch_*() functions are called to complete the
1556 initialization of the object. */
1557
1558 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1559
1560
1561 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1562 It is assumed that the caller freeds the \`\`struct
1563 gdbarch_tdep''. */
1564
1565 extern void gdbarch_free (struct gdbarch *);
1566
1567 /* Get the obstack owned by ARCH. */
1568
1569 extern obstack *gdbarch_obstack (gdbarch *arch);
1570
1571 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1572 obstack. The memory is freed when the corresponding architecture
1573 is also freed. */
1574
1575 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1576 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1577
1578 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1579 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1580
1581 /* Duplicate STRING, returning an equivalent string that's allocated on the
1582 obstack associated with GDBARCH. The string is freed when the corresponding
1583 architecture is also freed. */
1584
1585 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1586
1587 /* Helper function. Force an update of the current architecture.
1588
1589 The actual architecture selected is determined by INFO, \`\`(gdb) set
1590 architecture'' et.al., the existing architecture and BFD's default
1591 architecture. INFO should be initialized to zero and then selected
1592 fields should be updated.
1593
1594 Returns non-zero if the update succeeds. */
1595
1596 extern int gdbarch_update_p (struct gdbarch_info info);
1597
1598
1599 /* Helper function. Find an architecture matching info.
1600
1601 INFO should be initialized using gdbarch_info_init, relevant fields
1602 set, and then finished using gdbarch_info_fill.
1603
1604 Returns the corresponding architecture, or NULL if no matching
1605 architecture was found. */
1606
1607 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1608
1609
1610 /* Helper function. Set the target gdbarch to "gdbarch". */
1611
1612 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1613
1614
1615 /* Register per-architecture data-pointer.
1616
1617 Reserve space for a per-architecture data-pointer. An identifier
1618 for the reserved data-pointer is returned. That identifer should
1619 be saved in a local static variable.
1620
1621 Memory for the per-architecture data shall be allocated using
1622 gdbarch_obstack_zalloc. That memory will be deleted when the
1623 corresponding architecture object is deleted.
1624
1625 When a previously created architecture is re-selected, the
1626 per-architecture data-pointer for that previous architecture is
1627 restored. INIT() is not re-called.
1628
1629 Multiple registrarants for any architecture are allowed (and
1630 strongly encouraged). */
1631
1632 struct gdbarch_data;
1633
1634 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1635 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1636 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1637 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1638
1639 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1640
1641
1642 /* Set the dynamic target-system-dependent parameters (architecture,
1643 byte-order, ...) using information found in the BFD. */
1644
1645 extern void set_gdbarch_from_file (bfd *);
1646
1647
1648 /* Initialize the current architecture to the "first" one we find on
1649 our list. */
1650
1651 extern void initialize_current_architecture (void);
1652
1653 /* gdbarch trace variable */
1654 extern unsigned int gdbarch_debug;
1655
1656 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1657
1658 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1659
1660 static inline int
1661 gdbarch_num_cooked_regs (gdbarch *arch)
1662 {
1663 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1664 }
1665
1666 #endif
1667 EOF
1668 exec 1>&2
1669 ../move-if-change new-gdbarch.h gdbarch.h
1670 rm -f new-gdbarch.h
1671
1672
1673 #
1674 # C file
1675 #
1676
1677 exec > new-gdbarch.c
1678 copyright
1679 cat <<EOF
1680
1681 #include "defs.h"
1682 #include "arch-utils.h"
1683
1684 #include "gdbcmd.h"
1685 #include "inferior.h"
1686 #include "symcat.h"
1687
1688 #include "floatformat.h"
1689 #include "reggroups.h"
1690 #include "osabi.h"
1691 #include "gdb_obstack.h"
1692 #include "observable.h"
1693 #include "regcache.h"
1694 #include "objfiles.h"
1695 #include "auxv.h"
1696 #include "frame-unwind.h"
1697 #include "dummy-frame.h"
1698
1699 /* Static function declarations */
1700
1701 static void alloc_gdbarch_data (struct gdbarch *);
1702
1703 /* Non-zero if we want to trace architecture code. */
1704
1705 #ifndef GDBARCH_DEBUG
1706 #define GDBARCH_DEBUG 0
1707 #endif
1708 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1709 static void
1710 show_gdbarch_debug (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c, const char *value)
1712 {
1713 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1714 }
1715
1716 static const char *
1717 pformat (const struct floatformat **format)
1718 {
1719 if (format == NULL)
1720 return "(null)";
1721 else
1722 /* Just print out one of them - this is only for diagnostics. */
1723 return format[0]->name;
1724 }
1725
1726 static const char *
1727 pstring (const char *string)
1728 {
1729 if (string == NULL)
1730 return "(null)";
1731 return string;
1732 }
1733
1734 static const char *
1735 pstring_ptr (char **string)
1736 {
1737 if (string == NULL || *string == NULL)
1738 return "(null)";
1739 return *string;
1740 }
1741
1742 /* Helper function to print a list of strings, represented as "const
1743 char *const *". The list is printed comma-separated. */
1744
1745 static const char *
1746 pstring_list (const char *const *list)
1747 {
1748 static char ret[100];
1749 const char *const *p;
1750 size_t offset = 0;
1751
1752 if (list == NULL)
1753 return "(null)";
1754
1755 ret[0] = '\0';
1756 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1757 {
1758 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1759 offset += 2 + s;
1760 }
1761
1762 if (offset > 0)
1763 {
1764 gdb_assert (offset - 2 < sizeof (ret));
1765 ret[offset - 2] = '\0';
1766 }
1767
1768 return ret;
1769 }
1770
1771 EOF
1772
1773 # gdbarch open the gdbarch object
1774 printf "\n"
1775 printf "/* Maintain the struct gdbarch object. */\n"
1776 printf "\n"
1777 printf "struct gdbarch\n"
1778 printf "{\n"
1779 printf " /* Has this architecture been fully initialized? */\n"
1780 printf " int initialized_p;\n"
1781 printf "\n"
1782 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1783 printf " struct obstack *obstack;\n"
1784 printf "\n"
1785 printf " /* basic architectural information. */\n"
1786 function_list | while do_read
1787 do
1788 if class_is_info_p
1789 then
1790 printf " %s %s;\n" "$returntype" "$function"
1791 fi
1792 done
1793 printf "\n"
1794 printf " /* target specific vector. */\n"
1795 printf " struct gdbarch_tdep *tdep;\n"
1796 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1797 printf "\n"
1798 printf " /* per-architecture data-pointers. */\n"
1799 printf " unsigned nr_data;\n"
1800 printf " void **data;\n"
1801 printf "\n"
1802 cat <<EOF
1803 /* Multi-arch values.
1804
1805 When extending this structure you must:
1806
1807 Add the field below.
1808
1809 Declare set/get functions and define the corresponding
1810 macro in gdbarch.h.
1811
1812 gdbarch_alloc(): If zero/NULL is not a suitable default,
1813 initialize the new field.
1814
1815 verify_gdbarch(): Confirm that the target updated the field
1816 correctly.
1817
1818 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1819 field is dumped out
1820
1821 get_gdbarch(): Implement the set/get functions (probably using
1822 the macro's as shortcuts).
1823
1824 */
1825
1826 EOF
1827 function_list | while do_read
1828 do
1829 if class_is_variable_p
1830 then
1831 printf " %s %s;\n" "$returntype" "$function"
1832 elif class_is_function_p
1833 then
1834 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1835 fi
1836 done
1837 printf "};\n"
1838
1839 # Create a new gdbarch struct
1840 cat <<EOF
1841
1842 /* Create a new \`\`struct gdbarch'' based on information provided by
1843 \`\`struct gdbarch_info''. */
1844 EOF
1845 printf "\n"
1846 cat <<EOF
1847 struct gdbarch *
1848 gdbarch_alloc (const struct gdbarch_info *info,
1849 struct gdbarch_tdep *tdep)
1850 {
1851 struct gdbarch *gdbarch;
1852
1853 /* Create an obstack for allocating all the per-architecture memory,
1854 then use that to allocate the architecture vector. */
1855 struct obstack *obstack = XNEW (struct obstack);
1856 obstack_init (obstack);
1857 gdbarch = XOBNEW (obstack, struct gdbarch);
1858 memset (gdbarch, 0, sizeof (*gdbarch));
1859 gdbarch->obstack = obstack;
1860
1861 alloc_gdbarch_data (gdbarch);
1862
1863 gdbarch->tdep = tdep;
1864 EOF
1865 printf "\n"
1866 function_list | while do_read
1867 do
1868 if class_is_info_p
1869 then
1870 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1871 fi
1872 done
1873 printf "\n"
1874 printf " /* Force the explicit initialization of these. */\n"
1875 function_list | while do_read
1876 do
1877 if class_is_function_p || class_is_variable_p
1878 then
1879 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1880 then
1881 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1882 fi
1883 fi
1884 done
1885 cat <<EOF
1886 /* gdbarch_alloc() */
1887
1888 return gdbarch;
1889 }
1890 EOF
1891
1892 # Free a gdbarch struct.
1893 printf "\n"
1894 printf "\n"
1895 cat <<EOF
1896
1897 obstack *gdbarch_obstack (gdbarch *arch)
1898 {
1899 return arch->obstack;
1900 }
1901
1902 /* See gdbarch.h. */
1903
1904 char *
1905 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1906 {
1907 return obstack_strdup (arch->obstack, string);
1908 }
1909
1910
1911 /* Free a gdbarch struct. This should never happen in normal
1912 operation --- once you've created a gdbarch, you keep it around.
1913 However, if an architecture's init function encounters an error
1914 building the structure, it may need to clean up a partially
1915 constructed gdbarch. */
1916
1917 void
1918 gdbarch_free (struct gdbarch *arch)
1919 {
1920 struct obstack *obstack;
1921
1922 gdb_assert (arch != NULL);
1923 gdb_assert (!arch->initialized_p);
1924 obstack = arch->obstack;
1925 obstack_free (obstack, 0); /* Includes the ARCH. */
1926 xfree (obstack);
1927 }
1928 EOF
1929
1930 # verify a new architecture
1931 cat <<EOF
1932
1933
1934 /* Ensure that all values in a GDBARCH are reasonable. */
1935
1936 static void
1937 verify_gdbarch (struct gdbarch *gdbarch)
1938 {
1939 string_file log;
1940
1941 /* fundamental */
1942 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1943 log.puts ("\n\tbyte-order");
1944 if (gdbarch->bfd_arch_info == NULL)
1945 log.puts ("\n\tbfd_arch_info");
1946 /* Check those that need to be defined for the given multi-arch level. */
1947 EOF
1948 function_list | while do_read
1949 do
1950 if class_is_function_p || class_is_variable_p
1951 then
1952 if [ "x${invalid_p}" = "x0" ]
1953 then
1954 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1955 elif class_is_predicate_p
1956 then
1957 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1958 # FIXME: See do_read for potential simplification
1959 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1960 then
1961 printf " if (%s)\n" "$invalid_p"
1962 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1963 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1964 then
1965 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1966 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1967 elif [ -n "${postdefault}" ]
1968 then
1969 printf " if (gdbarch->%s == 0)\n" "$function"
1970 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1971 elif [ -n "${invalid_p}" ]
1972 then
1973 printf " if (%s)\n" "$invalid_p"
1974 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1975 elif [ -n "${predefault}" ]
1976 then
1977 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1978 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1979 fi
1980 fi
1981 done
1982 cat <<EOF
1983 if (!log.empty ())
1984 internal_error (__FILE__, __LINE__,
1985 _("verify_gdbarch: the following are invalid ...%s"),
1986 log.c_str ());
1987 }
1988 EOF
1989
1990 # dump the structure
1991 printf "\n"
1992 printf "\n"
1993 cat <<EOF
1994 /* Print out the details of the current architecture. */
1995
1996 void
1997 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1998 {
1999 const char *gdb_nm_file = "<not-defined>";
2000
2001 #if defined (GDB_NM_FILE)
2002 gdb_nm_file = GDB_NM_FILE;
2003 #endif
2004 fprintf_unfiltered (file,
2005 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2006 gdb_nm_file);
2007 EOF
2008 function_list | sort '-t;' -k 3 | while do_read
2009 do
2010 # First the predicate
2011 if class_is_predicate_p
2012 then
2013 printf " fprintf_unfiltered (file,\n"
2014 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2015 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2016 fi
2017 # Print the corresponding value.
2018 if class_is_function_p
2019 then
2020 printf " fprintf_unfiltered (file,\n"
2021 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2022 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2023 else
2024 # It is a variable
2025 case "${print}:${returntype}" in
2026 :CORE_ADDR )
2027 fmt="%s"
2028 print="core_addr_to_string_nz (gdbarch->${function})"
2029 ;;
2030 :* )
2031 fmt="%s"
2032 print="plongest (gdbarch->${function})"
2033 ;;
2034 * )
2035 fmt="%s"
2036 ;;
2037 esac
2038 printf " fprintf_unfiltered (file,\n"
2039 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2040 printf " %s);\n" "$print"
2041 fi
2042 done
2043 cat <<EOF
2044 if (gdbarch->dump_tdep != NULL)
2045 gdbarch->dump_tdep (gdbarch, file);
2046 }
2047 EOF
2048
2049
2050 # GET/SET
2051 printf "\n"
2052 cat <<EOF
2053 struct gdbarch_tdep *
2054 gdbarch_tdep (struct gdbarch *gdbarch)
2055 {
2056 if (gdbarch_debug >= 2)
2057 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2058 return gdbarch->tdep;
2059 }
2060 EOF
2061 printf "\n"
2062 function_list | while do_read
2063 do
2064 if class_is_predicate_p
2065 then
2066 printf "\n"
2067 printf "int\n"
2068 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2069 printf "{\n"
2070 printf " gdb_assert (gdbarch != NULL);\n"
2071 printf " return %s;\n" "$predicate"
2072 printf "}\n"
2073 fi
2074 if class_is_function_p
2075 then
2076 printf "\n"
2077 printf "%s\n" "$returntype"
2078 if [ "x${formal}" = "xvoid" ]
2079 then
2080 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2081 else
2082 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2083 fi
2084 printf "{\n"
2085 printf " gdb_assert (gdbarch != NULL);\n"
2086 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2087 if class_is_predicate_p && test -n "${predefault}"
2088 then
2089 # Allow a call to a function with a predicate.
2090 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2091 fi
2092 printf " if (gdbarch_debug >= 2)\n"
2093 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2094 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2095 then
2096 if class_is_multiarch_p
2097 then
2098 params="gdbarch"
2099 else
2100 params=""
2101 fi
2102 else
2103 if class_is_multiarch_p
2104 then
2105 params="gdbarch, ${actual}"
2106 else
2107 params="${actual}"
2108 fi
2109 fi
2110 if [ "x${returntype}" = "xvoid" ]
2111 then
2112 printf " gdbarch->%s (%s);\n" "$function" "$params"
2113 else
2114 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2115 fi
2116 printf "}\n"
2117 printf "\n"
2118 printf "void\n"
2119 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2120 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2121 printf "{\n"
2122 printf " gdbarch->%s = %s;\n" "$function" "$function"
2123 printf "}\n"
2124 elif class_is_variable_p
2125 then
2126 printf "\n"
2127 printf "%s\n" "$returntype"
2128 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2129 printf "{\n"
2130 printf " gdb_assert (gdbarch != NULL);\n"
2131 if [ "x${invalid_p}" = "x0" ]
2132 then
2133 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2134 elif [ -n "${invalid_p}" ]
2135 then
2136 printf " /* Check variable is valid. */\n"
2137 printf " gdb_assert (!(%s));\n" "$invalid_p"
2138 elif [ -n "${predefault}" ]
2139 then
2140 printf " /* Check variable changed from pre-default. */\n"
2141 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2142 fi
2143 printf " if (gdbarch_debug >= 2)\n"
2144 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2145 printf " return gdbarch->%s;\n" "$function"
2146 printf "}\n"
2147 printf "\n"
2148 printf "void\n"
2149 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2150 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2151 printf "{\n"
2152 printf " gdbarch->%s = %s;\n" "$function" "$function"
2153 printf "}\n"
2154 elif class_is_info_p
2155 then
2156 printf "\n"
2157 printf "%s\n" "$returntype"
2158 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2159 printf "{\n"
2160 printf " gdb_assert (gdbarch != NULL);\n"
2161 printf " if (gdbarch_debug >= 2)\n"
2162 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2163 printf " return gdbarch->%s;\n" "$function"
2164 printf "}\n"
2165 fi
2166 done
2167
2168 # All the trailing guff
2169 cat <<EOF
2170
2171
2172 /* Keep a registry of per-architecture data-pointers required by GDB
2173 modules. */
2174
2175 struct gdbarch_data
2176 {
2177 unsigned index;
2178 int init_p;
2179 gdbarch_data_pre_init_ftype *pre_init;
2180 gdbarch_data_post_init_ftype *post_init;
2181 };
2182
2183 struct gdbarch_data_registration
2184 {
2185 struct gdbarch_data *data;
2186 struct gdbarch_data_registration *next;
2187 };
2188
2189 struct gdbarch_data_registry
2190 {
2191 unsigned nr;
2192 struct gdbarch_data_registration *registrations;
2193 };
2194
2195 struct gdbarch_data_registry gdbarch_data_registry =
2196 {
2197 0, NULL,
2198 };
2199
2200 static struct gdbarch_data *
2201 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2202 gdbarch_data_post_init_ftype *post_init)
2203 {
2204 struct gdbarch_data_registration **curr;
2205
2206 /* Append the new registration. */
2207 for (curr = &gdbarch_data_registry.registrations;
2208 (*curr) != NULL;
2209 curr = &(*curr)->next);
2210 (*curr) = XNEW (struct gdbarch_data_registration);
2211 (*curr)->next = NULL;
2212 (*curr)->data = XNEW (struct gdbarch_data);
2213 (*curr)->data->index = gdbarch_data_registry.nr++;
2214 (*curr)->data->pre_init = pre_init;
2215 (*curr)->data->post_init = post_init;
2216 (*curr)->data->init_p = 1;
2217 return (*curr)->data;
2218 }
2219
2220 struct gdbarch_data *
2221 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2222 {
2223 return gdbarch_data_register (pre_init, NULL);
2224 }
2225
2226 struct gdbarch_data *
2227 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2228 {
2229 return gdbarch_data_register (NULL, post_init);
2230 }
2231
2232 /* Create/delete the gdbarch data vector. */
2233
2234 static void
2235 alloc_gdbarch_data (struct gdbarch *gdbarch)
2236 {
2237 gdb_assert (gdbarch->data == NULL);
2238 gdbarch->nr_data = gdbarch_data_registry.nr;
2239 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2240 }
2241
2242 /* Return the current value of the specified per-architecture
2243 data-pointer. */
2244
2245 void *
2246 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2247 {
2248 gdb_assert (data->index < gdbarch->nr_data);
2249 if (gdbarch->data[data->index] == NULL)
2250 {
2251 /* The data-pointer isn't initialized, call init() to get a
2252 value. */
2253 if (data->pre_init != NULL)
2254 /* Mid architecture creation: pass just the obstack, and not
2255 the entire architecture, as that way it isn't possible for
2256 pre-init code to refer to undefined architecture
2257 fields. */
2258 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2259 else if (gdbarch->initialized_p
2260 && data->post_init != NULL)
2261 /* Post architecture creation: pass the entire architecture
2262 (as all fields are valid), but be careful to also detect
2263 recursive references. */
2264 {
2265 gdb_assert (data->init_p);
2266 data->init_p = 0;
2267 gdbarch->data[data->index] = data->post_init (gdbarch);
2268 data->init_p = 1;
2269 }
2270 else
2271 internal_error (__FILE__, __LINE__,
2272 _("gdbarch post-init data field can only be used "
2273 "after gdbarch is fully initialised"));
2274 gdb_assert (gdbarch->data[data->index] != NULL);
2275 }
2276 return gdbarch->data[data->index];
2277 }
2278
2279
2280 /* Keep a registry of the architectures known by GDB. */
2281
2282 struct gdbarch_registration
2283 {
2284 enum bfd_architecture bfd_architecture;
2285 gdbarch_init_ftype *init;
2286 gdbarch_dump_tdep_ftype *dump_tdep;
2287 struct gdbarch_list *arches;
2288 struct gdbarch_registration *next;
2289 };
2290
2291 static struct gdbarch_registration *gdbarch_registry = NULL;
2292
2293 static void
2294 append_name (const char ***buf, int *nr, const char *name)
2295 {
2296 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2297 (*buf)[*nr] = name;
2298 *nr += 1;
2299 }
2300
2301 const char **
2302 gdbarch_printable_names (void)
2303 {
2304 /* Accumulate a list of names based on the registed list of
2305 architectures. */
2306 int nr_arches = 0;
2307 const char **arches = NULL;
2308 struct gdbarch_registration *rego;
2309
2310 for (rego = gdbarch_registry;
2311 rego != NULL;
2312 rego = rego->next)
2313 {
2314 const struct bfd_arch_info *ap;
2315 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2316 if (ap == NULL)
2317 internal_error (__FILE__, __LINE__,
2318 _("gdbarch_architecture_names: multi-arch unknown"));
2319 do
2320 {
2321 append_name (&arches, &nr_arches, ap->printable_name);
2322 ap = ap->next;
2323 }
2324 while (ap != NULL);
2325 }
2326 append_name (&arches, &nr_arches, NULL);
2327 return arches;
2328 }
2329
2330
2331 void
2332 gdbarch_register (enum bfd_architecture bfd_architecture,
2333 gdbarch_init_ftype *init,
2334 gdbarch_dump_tdep_ftype *dump_tdep)
2335 {
2336 struct gdbarch_registration **curr;
2337 const struct bfd_arch_info *bfd_arch_info;
2338
2339 /* Check that BFD recognizes this architecture */
2340 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2341 if (bfd_arch_info == NULL)
2342 {
2343 internal_error (__FILE__, __LINE__,
2344 _("gdbarch: Attempt to register "
2345 "unknown architecture (%d)"),
2346 bfd_architecture);
2347 }
2348 /* Check that we haven't seen this architecture before. */
2349 for (curr = &gdbarch_registry;
2350 (*curr) != NULL;
2351 curr = &(*curr)->next)
2352 {
2353 if (bfd_architecture == (*curr)->bfd_architecture)
2354 internal_error (__FILE__, __LINE__,
2355 _("gdbarch: Duplicate registration "
2356 "of architecture (%s)"),
2357 bfd_arch_info->printable_name);
2358 }
2359 /* log it */
2360 if (gdbarch_debug)
2361 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2362 bfd_arch_info->printable_name,
2363 host_address_to_string (init));
2364 /* Append it */
2365 (*curr) = XNEW (struct gdbarch_registration);
2366 (*curr)->bfd_architecture = bfd_architecture;
2367 (*curr)->init = init;
2368 (*curr)->dump_tdep = dump_tdep;
2369 (*curr)->arches = NULL;
2370 (*curr)->next = NULL;
2371 }
2372
2373 void
2374 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2375 gdbarch_init_ftype *init)
2376 {
2377 gdbarch_register (bfd_architecture, init, NULL);
2378 }
2379
2380
2381 /* Look for an architecture using gdbarch_info. */
2382
2383 struct gdbarch_list *
2384 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2385 const struct gdbarch_info *info)
2386 {
2387 for (; arches != NULL; arches = arches->next)
2388 {
2389 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2390 continue;
2391 if (info->byte_order != arches->gdbarch->byte_order)
2392 continue;
2393 if (info->osabi != arches->gdbarch->osabi)
2394 continue;
2395 if (info->target_desc != arches->gdbarch->target_desc)
2396 continue;
2397 return arches;
2398 }
2399 return NULL;
2400 }
2401
2402
2403 /* Find an architecture that matches the specified INFO. Create a new
2404 architecture if needed. Return that new architecture. */
2405
2406 struct gdbarch *
2407 gdbarch_find_by_info (struct gdbarch_info info)
2408 {
2409 struct gdbarch *new_gdbarch;
2410 struct gdbarch_registration *rego;
2411
2412 /* Fill in missing parts of the INFO struct using a number of
2413 sources: "set ..."; INFOabfd supplied; and the global
2414 defaults. */
2415 gdbarch_info_fill (&info);
2416
2417 /* Must have found some sort of architecture. */
2418 gdb_assert (info.bfd_arch_info != NULL);
2419
2420 if (gdbarch_debug)
2421 {
2422 fprintf_unfiltered (gdb_stdlog,
2423 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2424 (info.bfd_arch_info != NULL
2425 ? info.bfd_arch_info->printable_name
2426 : "(null)"));
2427 fprintf_unfiltered (gdb_stdlog,
2428 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2429 info.byte_order,
2430 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2431 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2432 : "default"));
2433 fprintf_unfiltered (gdb_stdlog,
2434 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2435 info.osabi, gdbarch_osabi_name (info.osabi));
2436 fprintf_unfiltered (gdb_stdlog,
2437 "gdbarch_find_by_info: info.abfd %s\n",
2438 host_address_to_string (info.abfd));
2439 fprintf_unfiltered (gdb_stdlog,
2440 "gdbarch_find_by_info: info.tdep_info %s\n",
2441 host_address_to_string (info.tdep_info));
2442 }
2443
2444 /* Find the tdep code that knows about this architecture. */
2445 for (rego = gdbarch_registry;
2446 rego != NULL;
2447 rego = rego->next)
2448 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2449 break;
2450 if (rego == NULL)
2451 {
2452 if (gdbarch_debug)
2453 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2454 "No matching architecture\n");
2455 return 0;
2456 }
2457
2458 /* Ask the tdep code for an architecture that matches "info". */
2459 new_gdbarch = rego->init (info, rego->arches);
2460
2461 /* Did the tdep code like it? No. Reject the change and revert to
2462 the old architecture. */
2463 if (new_gdbarch == NULL)
2464 {
2465 if (gdbarch_debug)
2466 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2467 "Target rejected architecture\n");
2468 return NULL;
2469 }
2470
2471 /* Is this a pre-existing architecture (as determined by already
2472 being initialized)? Move it to the front of the architecture
2473 list (keeping the list sorted Most Recently Used). */
2474 if (new_gdbarch->initialized_p)
2475 {
2476 struct gdbarch_list **list;
2477 struct gdbarch_list *self;
2478 if (gdbarch_debug)
2479 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2480 "Previous architecture %s (%s) selected\n",
2481 host_address_to_string (new_gdbarch),
2482 new_gdbarch->bfd_arch_info->printable_name);
2483 /* Find the existing arch in the list. */
2484 for (list = &rego->arches;
2485 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2486 list = &(*list)->next);
2487 /* It had better be in the list of architectures. */
2488 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2489 /* Unlink SELF. */
2490 self = (*list);
2491 (*list) = self->next;
2492 /* Insert SELF at the front. */
2493 self->next = rego->arches;
2494 rego->arches = self;
2495 /* Return it. */
2496 return new_gdbarch;
2497 }
2498
2499 /* It's a new architecture. */
2500 if (gdbarch_debug)
2501 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2502 "New architecture %s (%s) selected\n",
2503 host_address_to_string (new_gdbarch),
2504 new_gdbarch->bfd_arch_info->printable_name);
2505
2506 /* Insert the new architecture into the front of the architecture
2507 list (keep the list sorted Most Recently Used). */
2508 {
2509 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2510 self->next = rego->arches;
2511 self->gdbarch = new_gdbarch;
2512 rego->arches = self;
2513 }
2514
2515 /* Check that the newly installed architecture is valid. Plug in
2516 any post init values. */
2517 new_gdbarch->dump_tdep = rego->dump_tdep;
2518 verify_gdbarch (new_gdbarch);
2519 new_gdbarch->initialized_p = 1;
2520
2521 if (gdbarch_debug)
2522 gdbarch_dump (new_gdbarch, gdb_stdlog);
2523
2524 return new_gdbarch;
2525 }
2526
2527 /* Make the specified architecture current. */
2528
2529 void
2530 set_target_gdbarch (struct gdbarch *new_gdbarch)
2531 {
2532 gdb_assert (new_gdbarch != NULL);
2533 gdb_assert (new_gdbarch->initialized_p);
2534 current_inferior ()->gdbarch = new_gdbarch;
2535 gdb::observers::architecture_changed.notify (new_gdbarch);
2536 registers_changed ();
2537 }
2538
2539 /* Return the current inferior's arch. */
2540
2541 struct gdbarch *
2542 target_gdbarch (void)
2543 {
2544 return current_inferior ()->gdbarch;
2545 }
2546
2547 void _initialize_gdbarch ();
2548 void
2549 _initialize_gdbarch ()
2550 {
2551 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2552 Set architecture debugging."), _("\\
2553 Show architecture debugging."), _("\\
2554 When non-zero, architecture debugging is enabled."),
2555 NULL,
2556 show_gdbarch_debug,
2557 &setdebuglist, &showdebuglist);
2558 }
2559 EOF
2560
2561 # close things off
2562 exec 1>&2
2563 ../move-if-change new-gdbarch.c gdbarch.c
2564 rm -f new-gdbarch.c