]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2021 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27 # Format of the input table
28 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
29
30 do_read ()
31 {
32 comment=""
33 class=""
34 # On some SH's, 'read' trims leading and trailing whitespace by
35 # default (e.g., bash), while on others (e.g., dash), it doesn't.
36 # Set IFS to empty to disable the trimming everywhere.
37 # shellcheck disable=SC2162
38 while IFS='' read line
39 do
40 if test "${line}" = ""
41 then
42 continue
43 elif test "${line}" = "#" -a "${comment}" = ""
44 then
45 continue
46 elif expr "${line}" : "#" > /dev/null
47 then
48 comment="${comment}
49 ${line}"
50 else
51
52 # The semantics of IFS varies between different SH's. Some
53 # treat ``;;' as three fields while some treat it as just two.
54 # Work around this by eliminating ``;;'' ....
55 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
56
57 OFS="${IFS}" ; IFS="[;]"
58 eval read "${read}" <<EOF
59 ${line}
60 EOF
61 IFS="${OFS}"
62
63 if test -n "${garbage_at_eol:-}"
64 then
65 echo "Garbage at end-of-line in ${line}" 1>&2
66 kill $$
67 exit 1
68 fi
69
70 # .... and then going back through each field and strip out those
71 # that ended up with just that space character.
72 for r in ${read}
73 do
74 if eval test "\"\${${r}}\" = ' '"
75 then
76 eval "${r}="
77 fi
78 done
79
80 case "${class}" in
81 m ) staticdefault="${predefault:-}" ;;
82 M ) staticdefault="0" ;;
83 * ) test "${staticdefault}" || staticdefault=0 ;;
84 esac
85
86 case "${class}" in
87 F | V | M )
88 case "${invalid_p:-}" in
89 "" )
90 if test -n "${predefault}"
91 then
92 #invalid_p="gdbarch->${function} == ${predefault}"
93 predicate="gdbarch->${function:-} != ${predefault}"
94 elif class_is_variable_p
95 then
96 predicate="gdbarch->${function} != 0"
97 elif class_is_function_p
98 then
99 predicate="gdbarch->${function} != NULL"
100 fi
101 ;;
102 * )
103 echo "Predicate function ${function} with invalid_p." 1>&2
104 kill $$
105 exit 1
106 ;;
107 esac
108 esac
109
110 #NOT YET: See gdbarch.log for basic verification of
111 # database
112
113 break
114 fi
115 done
116 if [ -n "${class}" ]
117 then
118 true
119 else
120 false
121 fi
122 }
123
124
125 fallback_default_p ()
126 {
127 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
128 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
129 }
130
131 class_is_variable_p ()
132 {
133 case "${class}" in
134 *v* | *V* ) true ;;
135 * ) false ;;
136 esac
137 }
138
139 class_is_function_p ()
140 {
141 case "${class}" in
142 *f* | *F* | *m* | *M* ) true ;;
143 * ) false ;;
144 esac
145 }
146
147 class_is_multiarch_p ()
148 {
149 case "${class}" in
150 *m* | *M* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_predicate_p ()
156 {
157 case "${class}" in
158 *F* | *V* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_info_p ()
164 {
165 case "${class}" in
166 *i* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171
172 # dump out/verify the doco
173 for field in ${read}
174 do
175 case ${field} in
176
177 class ) : ;;
178
179 # # -> line disable
180 # f -> function
181 # hiding a function
182 # F -> function + predicate
183 # hiding a function + predicate to test function validity
184 # v -> variable
185 # hiding a variable
186 # V -> variable + predicate
187 # hiding a variable + predicate to test variables validity
188 # i -> set from info
189 # hiding something from the ``struct info'' object
190 # m -> multi-arch function
191 # hiding a multi-arch function (parameterised with the architecture)
192 # M -> multi-arch function + predicate
193 # hiding a multi-arch function + predicate to test function validity
194
195 returntype ) : ;;
196
197 # For functions, the return type; for variables, the data type
198
199 function ) : ;;
200
201 # For functions, the member function name; for variables, the
202 # variable name. Member function names are always prefixed with
203 # ``gdbarch_'' for name-space purity.
204
205 formal ) : ;;
206
207 # The formal argument list. It is assumed that the formal
208 # argument list includes the actual name of each list element.
209 # A function with no arguments shall have ``void'' as the
210 # formal argument list.
211
212 actual ) : ;;
213
214 # The list of actual arguments. The arguments specified shall
215 # match the FORMAL list given above. Functions with out
216 # arguments leave this blank.
217
218 staticdefault ) : ;;
219
220 # To help with the GDB startup a static gdbarch object is
221 # created. STATICDEFAULT is the value to insert into that
222 # static gdbarch object. Since this a static object only
223 # simple expressions can be used.
224
225 # If STATICDEFAULT is empty, zero is used.
226
227 predefault ) : ;;
228
229 # An initial value to assign to MEMBER of the freshly
230 # malloc()ed gdbarch object. After initialization, the
231 # freshly malloc()ed object is passed to the target
232 # architecture code for further updates.
233
234 # If PREDEFAULT is empty, zero is used.
235
236 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
237 # INVALID_P are specified, PREDEFAULT will be used as the
238 # default for the non- multi-arch target.
239
240 # A zero PREDEFAULT function will force the fallback to call
241 # internal_error().
242
243 # Variable declarations can refer to ``gdbarch'' which will
244 # contain the current architecture. Care should be taken.
245
246 postdefault ) : ;;
247
248 # A value to assign to MEMBER of the new gdbarch object should
249 # the target architecture code fail to change the PREDEFAULT
250 # value.
251
252 # If POSTDEFAULT is empty, no post update is performed.
253
254 # If both INVALID_P and POSTDEFAULT are non-empty then
255 # INVALID_P will be used to determine if MEMBER should be
256 # changed to POSTDEFAULT.
257
258 # If a non-empty POSTDEFAULT and a zero INVALID_P are
259 # specified, POSTDEFAULT will be used as the default for the
260 # non- multi-arch target (regardless of the value of
261 # PREDEFAULT).
262
263 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
264
265 # Variable declarations can refer to ``gdbarch'' which
266 # will contain the current architecture. Care should be
267 # taken.
268
269 invalid_p ) : ;;
270
271 # A predicate equation that validates MEMBER. Non-zero is
272 # returned if the code creating the new architecture failed to
273 # initialize MEMBER or the initialized the member is invalid.
274 # If POSTDEFAULT is non-empty then MEMBER will be updated to
275 # that value. If POSTDEFAULT is empty then internal_error()
276 # is called.
277
278 # If INVALID_P is empty, a check that MEMBER is no longer
279 # equal to PREDEFAULT is used.
280
281 # The expression ``0'' disables the INVALID_P check making
282 # PREDEFAULT a legitimate value.
283
284 # See also PREDEFAULT and POSTDEFAULT.
285
286 print ) : ;;
287
288 # An optional expression that convers MEMBER to a value
289 # suitable for formatting using %s.
290
291 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
292 # or plongest (anything else) is used.
293
294 garbage_at_eol ) : ;;
295
296 # Catches stray fields.
297
298 *)
299 echo "Bad field ${field}"
300 exit 1;;
301 esac
302 done
303
304
305 function_list ()
306 {
307 # See below (DOCO) for description of each field
308 cat <<EOF
309 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
310 #
311 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
312 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
313 #
314 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
315 #
316 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
317
318 # Number of bits in a short or unsigned short for the target machine.
319 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
320 # Number of bits in an int or unsigned int for the target machine.
321 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
322 # Number of bits in a long or unsigned long for the target machine.
323 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
324 # Number of bits in a long long or unsigned long long for the target
325 # machine.
326 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
327
328 # The ABI default bit-size and format for "bfloat16", "half", "float", "double", and
329 # "long double". These bit/format pairs should eventually be combined
330 # into a single object. For the moment, just initialize them as a pair.
331 # Each format describes both the big and little endian layouts (if
332 # useful).
333
334 v;int;bfloat16_bit;;;16;2*TARGET_CHAR_BIT;;0
335 v;const struct floatformat **;bfloat16_format;;;;;floatformats_bfloat16;;pformat (gdbarch->bfloat16_format)
336 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
337 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
338 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
339 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
340 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
341 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
342 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
343 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
344
345 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
346 # starting with C++11.
347 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
348 # One if \`wchar_t' is signed, zero if unsigned.
349 v;int;wchar_signed;;;1;-1;1
350
351 # Returns the floating-point format to be used for values of length LENGTH.
352 # NAME, if non-NULL, is the type name, which may be used to distinguish
353 # different target formats of the same length.
354 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
355
356 # For most targets, a pointer on the target and its representation as an
357 # address in GDB have the same size and "look the same". For such a
358 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
359 # / addr_bit will be set from it.
360 #
361 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
362 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
363 # gdbarch_address_to_pointer as well.
364 #
365 # ptr_bit is the size of a pointer on the target
366 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
367 # addr_bit is the size of a target address as represented in gdb
368 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
369 #
370 # dwarf2_addr_size is the target address size as used in the Dwarf debug
371 # info. For .debug_frame FDEs, this is supposed to be the target address
372 # size from the associated CU header, and which is equivalent to the
373 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
374 # Unfortunately there is no good way to determine this value. Therefore
375 # dwarf2_addr_size simply defaults to the target pointer size.
376 #
377 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
378 # defined using the target's pointer size so far.
379 #
380 # Note that dwarf2_addr_size only needs to be redefined by a target if the
381 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
382 # and if Dwarf versions < 4 need to be supported.
383 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
384 #
385 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
386 v;int;char_signed;;;1;-1;1
387 #
388 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
389 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
390 # Function for getting target's idea of a frame pointer. FIXME: GDB's
391 # whole scheme for dealing with "frames" and "frame pointers" needs a
392 # serious shakedown.
393 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
394 #
395 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
396 # Read a register into a new struct value. If the register is wholly
397 # or partly unavailable, this should call mark_value_bytes_unavailable
398 # as appropriate. If this is defined, then pseudo_register_read will
399 # never be called.
400 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
401 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
402 #
403 v;int;num_regs;;;0;-1
404 # This macro gives the number of pseudo-registers that live in the
405 # register namespace but do not get fetched or stored on the target.
406 # These pseudo-registers may be aliases for other registers,
407 # combinations of other registers, or they may be computed by GDB.
408 v;int;num_pseudo_regs;;;0;0;;0
409
410 # Assemble agent expression bytecode to collect pseudo-register REG.
411 # Return -1 if something goes wrong, 0 otherwise.
412 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
413
414 # Assemble agent expression bytecode to push the value of pseudo-register
415 # REG on the interpreter stack.
416 # Return -1 if something goes wrong, 0 otherwise.
417 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
418
419 # Some architectures can display additional information for specific
420 # signals.
421 # UIOUT is the output stream where the handler will place information.
422 M;void;report_signal_info;struct ui_out *uiout, enum gdb_signal siggnal;uiout, siggnal
423
424 # GDB's standard (or well known) register numbers. These can map onto
425 # a real register or a pseudo (computed) register or not be defined at
426 # all (-1).
427 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
428 v;int;sp_regnum;;;-1;-1;;0
429 v;int;pc_regnum;;;-1;-1;;0
430 v;int;ps_regnum;;;-1;-1;;0
431 v;int;fp0_regnum;;;0;-1;;0
432 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
433 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
434 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
435 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
436 # Convert from an sdb register number to an internal gdb register number.
437 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
438 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
439 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
440 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
441 m;const char *;register_name;int regnr;regnr;;0
442
443 # Return the type of a register specified by the architecture. Only
444 # the register cache should call this function directly; others should
445 # use "register_type".
446 M;struct type *;register_type;int reg_nr;reg_nr
447
448 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
449 # a dummy frame. A dummy frame is created before an inferior call,
450 # the frame_id returned here must match the frame_id that was built
451 # for the inferior call. Usually this means the returned frame_id's
452 # stack address should match the address returned by
453 # gdbarch_push_dummy_call, and the returned frame_id's code address
454 # should match the address at which the breakpoint was set in the dummy
455 # frame.
456 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
457 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
458 # deprecated_fp_regnum.
459 v;int;deprecated_fp_regnum;;;-1;-1;;0
460
461 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
462 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
463 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
464
465 # Return true if the code of FRAME is writable.
466 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
467
468 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
469 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
470 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
471 # MAP a GDB RAW register number onto a simulator register number. See
472 # also include/...-sim.h.
473 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
474 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
475 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
476
477 # Determine the address where a longjmp will land and save this address
478 # in PC. Return nonzero on success.
479 #
480 # FRAME corresponds to the longjmp frame.
481 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
482
483 #
484 v;int;believe_pcc_promotion;;;;;;;
485 #
486 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
487 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
488 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
489 # Construct a value representing the contents of register REGNUM in
490 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
491 # allocate and return a struct value with all value attributes
492 # (but not the value contents) filled in.
493 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
494 #
495 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
496 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
497 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
498
499 # Return the return-value convention that will be used by FUNCTION
500 # to return a value of type VALTYPE. FUNCTION may be NULL in which
501 # case the return convention is computed based only on VALTYPE.
502 #
503 # If READBUF is not NULL, extract the return value and save it in this buffer.
504 #
505 # If WRITEBUF is not NULL, it contains a return value which will be
506 # stored into the appropriate register. This can be used when we want
507 # to force the value returned by a function (see the "return" command
508 # for instance).
509 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
510
511 # Return true if the return value of function is stored in the first hidden
512 # parameter. In theory, this feature should be language-dependent, specified
513 # by language and its ABI, such as C++. Unfortunately, compiler may
514 # implement it to a target-dependent feature. So that we need such hook here
515 # to be aware of this in GDB.
516 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
517
518 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
519 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
520 # On some platforms, a single function may provide multiple entry points,
521 # e.g. one that is used for function-pointer calls and a different one
522 # that is used for direct function calls.
523 # In order to ensure that breakpoints set on the function will trigger
524 # no matter via which entry point the function is entered, a platform
525 # may provide the skip_entrypoint callback. It is called with IP set
526 # to the main entry point of a function (as determined by the symbol table),
527 # and should return the address of the innermost entry point, where the
528 # actual breakpoint needs to be set. Note that skip_entrypoint is used
529 # by GDB common code even when debugging optimized code, where skip_prologue
530 # is not used.
531 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
532
533 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
534 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
535
536 # Return the breakpoint kind for this target based on *PCPTR.
537 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
538
539 # Return the software breakpoint from KIND. KIND can have target
540 # specific meaning like the Z0 kind parameter.
541 # SIZE is set to the software breakpoint's length in memory.
542 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
543
544 # Return the breakpoint kind for this target based on the current
545 # processor state (e.g. the current instruction mode on ARM) and the
546 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
547 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
548
549 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
550 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
551 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
552 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
553
554 # A function can be addressed by either it's "pointer" (possibly a
555 # descriptor address) or "entry point" (first executable instruction).
556 # The method "convert_from_func_ptr_addr" converting the former to the
557 # latter. gdbarch_deprecated_function_start_offset is being used to implement
558 # a simplified subset of that functionality - the function's address
559 # corresponds to the "function pointer" and the function's start
560 # corresponds to the "function entry point" - and hence is redundant.
561
562 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
563
564 # Return the remote protocol register number associated with this
565 # register. Normally the identity mapping.
566 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
567
568 # Fetch the target specific address used to represent a load module.
569 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
570
571 # Return the thread-local address at OFFSET in the thread-local
572 # storage for the thread PTID and the shared library or executable
573 # file given by LM_ADDR. If that block of thread-local storage hasn't
574 # been allocated yet, this function may throw an error. LM_ADDR may
575 # be zero for statically linked multithreaded inferiors.
576
577 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
578 #
579 v;CORE_ADDR;frame_args_skip;;;0;;;0
580 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
581 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
582 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
583 # frame-base. Enable frame-base before frame-unwind.
584 F;int;frame_num_args;struct frame_info *frame;frame
585 #
586 M;CORE_ADDR;frame_align;CORE_ADDR address;address
587 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
588 v;int;frame_red_zone_size
589 #
590 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
591 # On some machines there are bits in addresses which are not really
592 # part of the address, but are used by the kernel, the hardware, etc.
593 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
594 # we get a "real" address such as one would find in a symbol table.
595 # This is used only for addresses of instructions, and even then I'm
596 # not sure it's used in all contexts. It exists to deal with there
597 # being a few stray bits in the PC which would mislead us, not as some
598 # sort of generic thing to handle alignment or segmentation (it's
599 # possible it should be in TARGET_READ_PC instead).
600 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
601
602 # On some machines, not all bits of an address word are significant.
603 # For example, on AArch64, the top bits of an address known as the "tag"
604 # are ignored by the kernel, the hardware, etc. and can be regarded as
605 # additional data associated with the address.
606 v;int;significant_addr_bit;;;;;;0
607
608 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
609 # indicates if the target needs software single step. An ISA method to
610 # implement it.
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
613 # target can single step. If not, then implement single step using breakpoints.
614 #
615 # Return a vector of addresses on which the software single step
616 # breakpoints should be inserted. NULL means software single step is
617 # not used.
618 # Multiple breakpoints may be inserted for some instructions such as
619 # conditional branch. However, each implementation must always evaluate
620 # the condition and only put the breakpoint at the branch destination if
621 # the condition is true, so that we ensure forward progress when stepping
622 # past a conditional branch to self.
623 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
624
625 # Return non-zero if the processor is executing a delay slot and a
626 # further single-step is needed before the instruction finishes.
627 M;int;single_step_through_delay;struct frame_info *frame;frame
628 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
629 # disassembler. Perhaps objdump can handle it?
630 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
631 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
632
633
634 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
635 # evaluates non-zero, this is the address where the debugger will place
636 # a step-resume breakpoint to get us past the dynamic linker.
637 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
638 # Some systems also have trampoline code for returning from shared libs.
639 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
640
641 # Return true if PC lies inside an indirect branch thunk.
642 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
643
644 # A target might have problems with watchpoints as soon as the stack
645 # frame of the current function has been destroyed. This mostly happens
646 # as the first action in a function's epilogue. stack_frame_destroyed_p()
647 # is defined to return a non-zero value if either the given addr is one
648 # instruction after the stack destroying instruction up to the trailing
649 # return instruction or if we can figure out that the stack frame has
650 # already been invalidated regardless of the value of addr. Targets
651 # which don't suffer from that problem could just let this functionality
652 # untouched.
653 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
654 # Process an ELF symbol in the minimal symbol table in a backend-specific
655 # way. Normally this hook is supposed to do nothing, however if required,
656 # then this hook can be used to apply tranformations to symbols that are
657 # considered special in some way. For example the MIPS backend uses it
658 # to interpret \`st_other' information to mark compressed code symbols so
659 # that they can be treated in the appropriate manner in the processing of
660 # the main symbol table and DWARF-2 records.
661 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
662 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
663 # Process a symbol in the main symbol table in a backend-specific way.
664 # Normally this hook is supposed to do nothing, however if required,
665 # then this hook can be used to apply tranformations to symbols that
666 # are considered special in some way. This is currently used by the
667 # MIPS backend to make sure compressed code symbols have the ISA bit
668 # set. This in turn is needed for symbol values seen in GDB to match
669 # the values used at the runtime by the program itself, for function
670 # and label references.
671 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
672 # Adjust the address retrieved from a DWARF-2 record other than a line
673 # entry in a backend-specific way. Normally this hook is supposed to
674 # return the address passed unchanged, however if that is incorrect for
675 # any reason, then this hook can be used to fix the address up in the
676 # required manner. This is currently used by the MIPS backend to make
677 # sure addresses in FDE, range records, etc. referring to compressed
678 # code have the ISA bit set, matching line information and the symbol
679 # table.
680 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
681 # Adjust the address updated by a line entry in a backend-specific way.
682 # Normally this hook is supposed to return the address passed unchanged,
683 # however in the case of inconsistencies in these records, this hook can
684 # be used to fix them up in the required manner. This is currently used
685 # by the MIPS backend to make sure all line addresses in compressed code
686 # are presented with the ISA bit set, which is not always the case. This
687 # in turn ensures breakpoint addresses are correctly matched against the
688 # stop PC.
689 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
690 v;int;cannot_step_breakpoint;;;0;0;;0
691 # See comment in target.h about continuable, steppable and
692 # non-steppable watchpoints.
693 v;int;have_nonsteppable_watchpoint;;;0;0;;0
694 F;type_instance_flags;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
695 M;const char *;address_class_type_flags_to_name;type_instance_flags type_flags;type_flags
696 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
697 # FS are passed from the generic execute_cfa_program function.
698 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
699
700 # Return the appropriate type_flags for the supplied address class.
701 # This function should return true if the address class was recognized and
702 # type_flags was set, false otherwise.
703 M;bool;address_class_name_to_type_flags;const char *name, type_instance_flags *type_flags_ptr;name, type_flags_ptr
704 # Is a register in a group
705 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
706 # Fetch the pointer to the ith function argument.
707 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
708
709 # Iterate over all supported register notes in a core file. For each
710 # supported register note section, the iterator must call CB and pass
711 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
712 # the supported register note sections based on the current register
713 # values. Otherwise it should enumerate all supported register note
714 # sections.
715 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
716
717 # Create core file notes
718 M;gdb::unique_xmalloc_ptr<char>;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
719
720 # Find core file memory regions
721 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
722
723 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
724 # core file into buffer READBUF with length LEN. Return the number of bytes read
725 # (zero indicates failure).
726 # failed, otherwise, return the red length of READBUF.
727 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
728
729 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
730 # libraries list from core file into buffer READBUF with length LEN.
731 # Return the number of bytes read (zero indicates failure).
732 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
733
734 # How the core target converts a PTID from a core file to a string.
735 M;std::string;core_pid_to_str;ptid_t ptid;ptid
736
737 # How the core target extracts the name of a thread from a core file.
738 M;const char *;core_thread_name;struct thread_info *thr;thr
739
740 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
741 # from core file into buffer READBUF with length LEN. Return the number
742 # of bytes read (zero indicates EOF, a negative value indicates failure).
743 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
744
745 # BFD target to use when generating a core file.
746 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
747
748 # If the elements of C++ vtables are in-place function descriptors rather
749 # than normal function pointers (which may point to code or a descriptor),
750 # set this to one.
751 v;int;vtable_function_descriptors;;;0;0;;0
752
753 # Set if the least significant bit of the delta is used instead of the least
754 # significant bit of the pfn for pointers to virtual member functions.
755 v;int;vbit_in_delta;;;0;0;;0
756
757 # Advance PC to next instruction in order to skip a permanent breakpoint.
758 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
759
760 # The maximum length of an instruction on this architecture in bytes.
761 V;ULONGEST;max_insn_length;;;0;0
762
763 # Copy the instruction at FROM to TO, and make any adjustments
764 # necessary to single-step it at that address.
765 #
766 # REGS holds the state the thread's registers will have before
767 # executing the copied instruction; the PC in REGS will refer to FROM,
768 # not the copy at TO. The caller should update it to point at TO later.
769 #
770 # Return a pointer to data of the architecture's choice to be passed
771 # to gdbarch_displaced_step_fixup.
772 #
773 # For a general explanation of displaced stepping and how GDB uses it,
774 # see the comments in infrun.c.
775 #
776 # The TO area is only guaranteed to have space for
777 # gdbarch_max_insn_length (arch) bytes, so this function must not
778 # write more bytes than that to that area.
779 #
780 # If you do not provide this function, GDB assumes that the
781 # architecture does not support displaced stepping.
782 #
783 # If the instruction cannot execute out of line, return NULL. The
784 # core falls back to stepping past the instruction in-line instead in
785 # that case.
786 M;displaced_step_copy_insn_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
787
788 # Return true if GDB should use hardware single-stepping to execute a displaced
789 # step instruction. If false, GDB will simply restart execution at the
790 # displaced instruction location, and it is up to the target to ensure GDB will
791 # receive control again (e.g. by placing a software breakpoint instruction into
792 # the displaced instruction buffer).
793 #
794 # The default implementation returns false on all targets that provide a
795 # gdbarch_software_single_step routine, and true otherwise.
796 m;bool;displaced_step_hw_singlestep;void;;;default_displaced_step_hw_singlestep;;0
797
798 # Fix up the state resulting from successfully single-stepping a
799 # displaced instruction, to give the result we would have gotten from
800 # stepping the instruction in its original location.
801 #
802 # REGS is the register state resulting from single-stepping the
803 # displaced instruction.
804 #
805 # CLOSURE is the result from the matching call to
806 # gdbarch_displaced_step_copy_insn.
807 #
808 # If you provide gdbarch_displaced_step_copy_insn.but not this
809 # function, then GDB assumes that no fixup is needed after
810 # single-stepping the instruction.
811 #
812 # For a general explanation of displaced stepping and how GDB uses it,
813 # see the comments in infrun.c.
814 M;void;displaced_step_fixup;struct displaced_step_copy_insn_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
815
816 # Prepare THREAD for it to displaced step the instruction at its current PC.
817 #
818 # Throw an exception if any unexpected error happens.
819 M;displaced_step_prepare_status;displaced_step_prepare;thread_info *thread, CORE_ADDR &displaced_pc;thread, displaced_pc
820
821 # Clean up after a displaced step of THREAD.
822 m;displaced_step_finish_status;displaced_step_finish;thread_info *thread, gdb_signal sig;thread, sig;;NULL;;(! gdbarch->displaced_step_finish) != (! gdbarch->displaced_step_prepare)
823
824 # Return the closure associated to the displaced step buffer that is at ADDR.
825 F;const displaced_step_copy_insn_closure *;displaced_step_copy_insn_closure_by_addr;inferior *inf, CORE_ADDR addr;inf, addr
826
827 # PARENT_INF has forked and CHILD_PTID is the ptid of the child. Restore the
828 # contents of all displaced step buffers in the child's address space.
829 f;void;displaced_step_restore_all_in_ptid;inferior *parent_inf, ptid_t child_ptid;parent_inf, child_ptid
830
831 # Relocate an instruction to execute at a different address. OLDLOC
832 # is the address in the inferior memory where the instruction to
833 # relocate is currently at. On input, TO points to the destination
834 # where we want the instruction to be copied (and possibly adjusted)
835 # to. On output, it points to one past the end of the resulting
836 # instruction(s). The effect of executing the instruction at TO shall
837 # be the same as if executing it at FROM. For example, call
838 # instructions that implicitly push the return address on the stack
839 # should be adjusted to return to the instruction after OLDLOC;
840 # relative branches, and other PC-relative instructions need the
841 # offset adjusted; etc.
842 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
843
844 # Refresh overlay mapped state for section OSECT.
845 F;void;overlay_update;struct obj_section *osect;osect
846
847 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
848
849 # Set if the address in N_SO or N_FUN stabs may be zero.
850 v;int;sofun_address_maybe_missing;;;0;0;;0
851
852 # Parse the instruction at ADDR storing in the record execution log
853 # the registers REGCACHE and memory ranges that will be affected when
854 # the instruction executes, along with their current values.
855 # Return -1 if something goes wrong, 0 otherwise.
856 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
857
858 # Save process state after a signal.
859 # Return -1 if something goes wrong, 0 otherwise.
860 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
861
862 # Signal translation: translate inferior's signal (target's) number
863 # into GDB's representation. The implementation of this method must
864 # be host independent. IOW, don't rely on symbols of the NAT_FILE
865 # header (the nm-*.h files), the host <signal.h> header, or similar
866 # headers. This is mainly used when cross-debugging core files ---
867 # "Live" targets hide the translation behind the target interface
868 # (target_wait, target_resume, etc.).
869 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
870
871 # Signal translation: translate the GDB's internal signal number into
872 # the inferior's signal (target's) representation. The implementation
873 # of this method must be host independent. IOW, don't rely on symbols
874 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
875 # header, or similar headers.
876 # Return the target signal number if found, or -1 if the GDB internal
877 # signal number is invalid.
878 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
879
880 # Extra signal info inspection.
881 #
882 # Return a type suitable to inspect extra signal information.
883 M;struct type *;get_siginfo_type;void;
884
885 # Record architecture-specific information from the symbol table.
886 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
887
888 # Function for the 'catch syscall' feature.
889
890 # Get architecture-specific system calls information from registers.
891 M;LONGEST;get_syscall_number;thread_info *thread;thread
892
893 # The filename of the XML syscall for this architecture.
894 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
895
896 # Information about system calls from this architecture
897 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
898
899 # SystemTap related fields and functions.
900
901 # A NULL-terminated array of prefixes used to mark an integer constant
902 # on the architecture's assembly.
903 # For example, on x86 integer constants are written as:
904 #
905 # \$10 ;; integer constant 10
906 #
907 # in this case, this prefix would be the character \`\$\'.
908 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
909
910 # A NULL-terminated array of suffixes used to mark an integer constant
911 # on the architecture's assembly.
912 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
913
914 # A NULL-terminated array of prefixes used to mark a register name on
915 # the architecture's assembly.
916 # For example, on x86 the register name is written as:
917 #
918 # \%eax ;; register eax
919 #
920 # in this case, this prefix would be the character \`\%\'.
921 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
922
923 # A NULL-terminated array of suffixes used to mark a register name on
924 # the architecture's assembly.
925 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
926
927 # A NULL-terminated array of prefixes used to mark a register
928 # indirection on the architecture's assembly.
929 # For example, on x86 the register indirection is written as:
930 #
931 # \(\%eax\) ;; indirecting eax
932 #
933 # in this case, this prefix would be the charater \`\(\'.
934 #
935 # Please note that we use the indirection prefix also for register
936 # displacement, e.g., \`4\(\%eax\)\' on x86.
937 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
938
939 # A NULL-terminated array of suffixes used to mark a register
940 # indirection on the architecture's assembly.
941 # For example, on x86 the register indirection is written as:
942 #
943 # \(\%eax\) ;; indirecting eax
944 #
945 # in this case, this prefix would be the charater \`\)\'.
946 #
947 # Please note that we use the indirection suffix also for register
948 # displacement, e.g., \`4\(\%eax\)\' on x86.
949 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
950
951 # Prefix(es) used to name a register using GDB's nomenclature.
952 #
953 # For example, on PPC a register is represented by a number in the assembly
954 # language (e.g., \`10\' is the 10th general-purpose register). However,
955 # inside GDB this same register has an \`r\' appended to its name, so the 10th
956 # register would be represented as \`r10\' internally.
957 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
958
959 # Suffix used to name a register using GDB's nomenclature.
960 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
961
962 # Check if S is a single operand.
963 #
964 # Single operands can be:
965 # \- Literal integers, e.g. \`\$10\' on x86
966 # \- Register access, e.g. \`\%eax\' on x86
967 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
968 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
969 #
970 # This function should check for these patterns on the string
971 # and return 1 if some were found, or zero otherwise. Please try to match
972 # as much info as you can from the string, i.e., if you have to match
973 # something like \`\(\%\', do not match just the \`\(\'.
974 M;int;stap_is_single_operand;const char *s;s
975
976 # Function used to handle a "special case" in the parser.
977 #
978 # A "special case" is considered to be an unknown token, i.e., a token
979 # that the parser does not know how to parse. A good example of special
980 # case would be ARM's register displacement syntax:
981 #
982 # [R0, #4] ;; displacing R0 by 4
983 #
984 # Since the parser assumes that a register displacement is of the form:
985 #
986 # <number> <indirection_prefix> <register_name> <indirection_suffix>
987 #
988 # it means that it will not be able to recognize and parse this odd syntax.
989 # Therefore, we should add a special case function that will handle this token.
990 #
991 # This function should generate the proper expression form of the expression
992 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
993 # and so on). It should also return 1 if the parsing was successful, or zero
994 # if the token was not recognized as a special token (in this case, returning
995 # zero means that the special parser is deferring the parsing to the generic
996 # parser), and should advance the buffer pointer (p->arg).
997 M;int;stap_parse_special_token;struct stap_parse_info *p;p
998
999 # Perform arch-dependent adjustments to a register name.
1000 #
1001 # In very specific situations, it may be necessary for the register
1002 # name present in a SystemTap probe's argument to be handled in a
1003 # special way. For example, on i386, GCC may over-optimize the
1004 # register allocation and use smaller registers than necessary. In
1005 # such cases, the client that is reading and evaluating the SystemTap
1006 # probe (ourselves) will need to actually fetch values from the wider
1007 # version of the register in question.
1008 #
1009 # To illustrate the example, consider the following probe argument
1010 # (i386):
1011 #
1012 # 4@%ax
1013 #
1014 # This argument says that its value can be found at the %ax register,
1015 # which is a 16-bit register. However, the argument's prefix says
1016 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1017 # this case, GDB should actually fetch the probe's value from register
1018 # %eax, not %ax. In this scenario, this function would actually
1019 # replace the register name from %ax to %eax.
1020 #
1021 # The rationale for this can be found at PR breakpoints/24541.
1022 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1023
1024 # DTrace related functions.
1025
1026 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1027 # NARG must be >= 0.
1028 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1029
1030 # True if the given ADDR does not contain the instruction sequence
1031 # corresponding to a disabled DTrace is-enabled probe.
1032 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1033
1034 # Enable a DTrace is-enabled probe at ADDR.
1035 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1036
1037 # Disable a DTrace is-enabled probe at ADDR.
1038 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1039
1040 # True if the list of shared libraries is one and only for all
1041 # processes, as opposed to a list of shared libraries per inferior.
1042 # This usually means that all processes, although may or may not share
1043 # an address space, will see the same set of symbols at the same
1044 # addresses.
1045 v;int;has_global_solist;;;0;0;;0
1046
1047 # On some targets, even though each inferior has its own private
1048 # address space, the debug interface takes care of making breakpoints
1049 # visible to all address spaces automatically. For such cases,
1050 # this property should be set to true.
1051 v;int;has_global_breakpoints;;;0;0;;0
1052
1053 # True if inferiors share an address space (e.g., uClinux).
1054 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1055
1056 # True if a fast tracepoint can be set at an address.
1057 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1058
1059 # Guess register state based on tracepoint location. Used for tracepoints
1060 # where no registers have been collected, but there's only one location,
1061 # allowing us to guess the PC value, and perhaps some other registers.
1062 # On entry, regcache has all registers marked as unavailable.
1063 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1064
1065 # Return the "auto" target charset.
1066 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1067 # Return the "auto" target wide charset.
1068 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1069
1070 # If non-empty, this is a file extension that will be opened in place
1071 # of the file extension reported by the shared library list.
1072 #
1073 # This is most useful for toolchains that use a post-linker tool,
1074 # where the names of the files run on the target differ in extension
1075 # compared to the names of the files GDB should load for debug info.
1076 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1077
1078 # If true, the target OS has DOS-based file system semantics. That
1079 # is, absolute paths include a drive name, and the backslash is
1080 # considered a directory separator.
1081 v;int;has_dos_based_file_system;;;0;0;;0
1082
1083 # Generate bytecodes to collect the return address in a frame.
1084 # Since the bytecodes run on the target, possibly with GDB not even
1085 # connected, the full unwinding machinery is not available, and
1086 # typically this function will issue bytecodes for one or more likely
1087 # places that the return address may be found.
1088 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1089
1090 # Implement the "info proc" command.
1091 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1092
1093 # Implement the "info proc" command for core files. Noe that there
1094 # are two "info_proc"-like methods on gdbarch -- one for core files,
1095 # one for live targets.
1096 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1097
1098 # Iterate over all objfiles in the order that makes the most sense
1099 # for the architecture to make global symbol searches.
1100 #
1101 # CB is a callback function where OBJFILE is the objfile to be searched,
1102 # and CB_DATA a pointer to user-defined data (the same data that is passed
1103 # when calling this gdbarch method). The iteration stops if this function
1104 # returns nonzero.
1105 #
1106 # CB_DATA is a pointer to some user-defined data to be passed to
1107 # the callback.
1108 #
1109 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1110 # inspected when the symbol search was requested.
1111 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1112
1113 # Ravenscar arch-dependent ops.
1114 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1115
1116 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1117 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1118
1119 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1120 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1121
1122 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1123 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1124
1125 # Return true if there's a program/permanent breakpoint planted in
1126 # memory at ADDRESS, return false otherwise.
1127 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1128
1129 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1130 # Return 0 if *READPTR is already at the end of the buffer.
1131 # Return -1 if there is insufficient buffer for a whole entry.
1132 # Return 1 if an entry was read into *TYPEP and *VALP.
1133 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1134
1135 # Print the description of a single auxv entry described by TYPE and VAL
1136 # to FILE.
1137 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1138
1139 # Find the address range of the current inferior's vsyscall/vDSO, and
1140 # write it to *RANGE. If the vsyscall's length can't be determined, a
1141 # range with zero length is returned. Returns true if the vsyscall is
1142 # found, false otherwise.
1143 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1144
1145 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1146 # PROT has GDB_MMAP_PROT_* bitmask format.
1147 # Throw an error if it is not possible. Returned address is always valid.
1148 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1149
1150 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1151 # Print a warning if it is not possible.
1152 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1153
1154 # Return string (caller has to use xfree for it) with options for GCC
1155 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1156 # These options are put before CU's DW_AT_producer compilation options so that
1157 # they can override it.
1158 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1159
1160 # Return a regular expression that matches names used by this
1161 # architecture in GNU configury triplets. The result is statically
1162 # allocated and must not be freed. The default implementation simply
1163 # returns the BFD architecture name, which is correct in nearly every
1164 # case.
1165 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1166
1167 # Return the size in 8-bit bytes of an addressable memory unit on this
1168 # architecture. This corresponds to the number of 8-bit bytes associated to
1169 # each address in memory.
1170 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1171
1172 # Functions for allowing a target to modify its disassembler options.
1173 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1174 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1175 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1176
1177 # Type alignment override method. Return the architecture specific
1178 # alignment required for TYPE. If there is no special handling
1179 # required for TYPE then return the value 0, GDB will then apply the
1180 # default rules as laid out in gdbtypes.c:type_align.
1181 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1182
1183 # Return a string containing any flags for the given PC in the given FRAME.
1184 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1185
1186 # Read core file mappings
1187 m;void;read_core_file_mappings;struct bfd *cbfd, gdb::function_view<void (ULONGEST count)> pre_loop_cb, gdb::function_view<void (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, const char *filename)> loop_cb;cbfd, pre_loop_cb, loop_cb;;default_read_core_file_mappings;;0
1188
1189 EOF
1190 }
1191
1192 #
1193 # The .log file
1194 #
1195 exec > gdbarch.log
1196 function_list | while do_read
1197 do
1198 cat <<EOF
1199 ${class} ${returntype:-} ${function} (${formal:-})
1200 EOF
1201 for r in ${read}
1202 do
1203 eval echo "\" ${r}=\${${r}}\""
1204 done
1205 if class_is_predicate_p && fallback_default_p
1206 then
1207 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1208 kill $$
1209 exit 1
1210 fi
1211 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1212 then
1213 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1214 kill $$
1215 exit 1
1216 fi
1217 if class_is_multiarch_p
1218 then
1219 if class_is_predicate_p ; then :
1220 elif test "x${predefault}" = "x"
1221 then
1222 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1223 kill $$
1224 exit 1
1225 fi
1226 fi
1227 echo ""
1228 done
1229
1230 exec 1>&2
1231
1232
1233 copyright ()
1234 {
1235 cat <<EOF
1236 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1237 /* vi:set ro: */
1238
1239 /* Dynamic architecture support for GDB, the GNU debugger.
1240
1241 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1242
1243 This file is part of GDB.
1244
1245 This program is free software; you can redistribute it and/or modify
1246 it under the terms of the GNU General Public License as published by
1247 the Free Software Foundation; either version 3 of the License, or
1248 (at your option) any later version.
1249
1250 This program is distributed in the hope that it will be useful,
1251 but WITHOUT ANY WARRANTY; without even the implied warranty of
1252 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1253 GNU General Public License for more details.
1254
1255 You should have received a copy of the GNU General Public License
1256 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1257
1258 /* This file was created with the aid of \`\`gdbarch.sh''. */
1259
1260 EOF
1261 }
1262
1263 #
1264 # The .h file
1265 #
1266
1267 exec > new-gdbarch.h
1268 copyright
1269 cat <<EOF
1270 #ifndef GDBARCH_H
1271 #define GDBARCH_H
1272
1273 #include <vector>
1274 #include "frame.h"
1275 #include "dis-asm.h"
1276 #include "gdb_obstack.h"
1277 #include "infrun.h"
1278 #include "osabi.h"
1279 #include "displaced-stepping.h"
1280
1281 struct floatformat;
1282 struct ui_file;
1283 struct value;
1284 struct objfile;
1285 struct obj_section;
1286 struct minimal_symbol;
1287 struct regcache;
1288 struct reggroup;
1289 struct regset;
1290 struct disassemble_info;
1291 struct target_ops;
1292 struct obstack;
1293 struct bp_target_info;
1294 struct target_desc;
1295 struct symbol;
1296 struct syscall;
1297 struct agent_expr;
1298 struct axs_value;
1299 struct stap_parse_info;
1300 struct expr_builder;
1301 struct ravenscar_arch_ops;
1302 struct mem_range;
1303 struct syscalls_info;
1304 struct thread_info;
1305 struct ui_out;
1306 struct inferior;
1307
1308 #include "regcache.h"
1309
1310 /* The architecture associated with the inferior through the
1311 connection to the target.
1312
1313 The architecture vector provides some information that is really a
1314 property of the inferior, accessed through a particular target:
1315 ptrace operations; the layout of certain RSP packets; the solib_ops
1316 vector; etc. To differentiate architecture accesses to
1317 per-inferior/target properties from
1318 per-thread/per-frame/per-objfile properties, accesses to
1319 per-inferior/target properties should be made through this
1320 gdbarch. */
1321
1322 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1323 extern struct gdbarch *target_gdbarch (void);
1324
1325 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1326 gdbarch method. */
1327
1328 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1329 (struct objfile *objfile, void *cb_data);
1330
1331 /* Callback type for regset section iterators. The callback usually
1332 invokes the REGSET's supply or collect method, to which it must
1333 pass a buffer - for collects this buffer will need to be created using
1334 COLLECT_SIZE, for supply the existing buffer being read from should
1335 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1336 is used for diagnostic messages. CB_DATA should have been passed
1337 unchanged through the iterator. */
1338
1339 typedef void (iterate_over_regset_sections_cb)
1340 (const char *sect_name, int supply_size, int collect_size,
1341 const struct regset *regset, const char *human_name, void *cb_data);
1342
1343 /* For a function call, does the function return a value using a
1344 normal value return or a structure return - passing a hidden
1345 argument pointing to storage. For the latter, there are two
1346 cases: language-mandated structure return and target ABI
1347 structure return. */
1348
1349 enum function_call_return_method
1350 {
1351 /* Standard value return. */
1352 return_method_normal = 0,
1353
1354 /* Language ABI structure return. This is handled
1355 by passing the return location as the first parameter to
1356 the function, even preceding "this". */
1357 return_method_hidden_param,
1358
1359 /* Target ABI struct return. This is target-specific; for instance,
1360 on ia64 the first argument is passed in out0 but the hidden
1361 structure return pointer would normally be passed in r8. */
1362 return_method_struct,
1363 };
1364
1365 EOF
1366
1367 # function typedef's
1368 printf "\n"
1369 printf "\n"
1370 printf "/* The following are pre-initialized by GDBARCH. */\n"
1371 function_list | while do_read
1372 do
1373 if class_is_info_p
1374 then
1375 printf "\n"
1376 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1377 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1378 fi
1379 done
1380
1381 # function typedef's
1382 printf "\n"
1383 printf "\n"
1384 printf "/* The following are initialized by the target dependent code. */\n"
1385 function_list | while do_read
1386 do
1387 if [ -n "${comment}" ]
1388 then
1389 echo "${comment}" | sed \
1390 -e '2 s,#,/*,' \
1391 -e '3,$ s,#, ,' \
1392 -e '$ s,$, */,'
1393 fi
1394
1395 if class_is_predicate_p
1396 then
1397 printf "\n"
1398 printf "extern bool gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1399 fi
1400 if class_is_variable_p
1401 then
1402 printf "\n"
1403 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1404 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1405 fi
1406 if class_is_function_p
1407 then
1408 printf "\n"
1409 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1410 then
1411 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1412 elif class_is_multiarch_p
1413 then
1414 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1415 else
1416 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1417 fi
1418 if [ "x${formal}" = "xvoid" ]
1419 then
1420 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1421 else
1422 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1423 fi
1424 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1425 fi
1426 done
1427
1428 # close it off
1429 cat <<EOF
1430
1431 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1432
1433
1434 /* Mechanism for co-ordinating the selection of a specific
1435 architecture.
1436
1437 GDB targets (*-tdep.c) can register an interest in a specific
1438 architecture. Other GDB components can register a need to maintain
1439 per-architecture data.
1440
1441 The mechanisms below ensures that there is only a loose connection
1442 between the set-architecture command and the various GDB
1443 components. Each component can independently register their need
1444 to maintain architecture specific data with gdbarch.
1445
1446 Pragmatics:
1447
1448 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1449 didn't scale.
1450
1451 The more traditional mega-struct containing architecture specific
1452 data for all the various GDB components was also considered. Since
1453 GDB is built from a variable number of (fairly independent)
1454 components it was determined that the global aproach was not
1455 applicable. */
1456
1457
1458 /* Register a new architectural family with GDB.
1459
1460 Register support for the specified ARCHITECTURE with GDB. When
1461 gdbarch determines that the specified architecture has been
1462 selected, the corresponding INIT function is called.
1463
1464 --
1465
1466 The INIT function takes two parameters: INFO which contains the
1467 information available to gdbarch about the (possibly new)
1468 architecture; ARCHES which is a list of the previously created
1469 \`\`struct gdbarch'' for this architecture.
1470
1471 The INFO parameter is, as far as possible, be pre-initialized with
1472 information obtained from INFO.ABFD or the global defaults.
1473
1474 The ARCHES parameter is a linked list (sorted most recently used)
1475 of all the previously created architures for this architecture
1476 family. The (possibly NULL) ARCHES->gdbarch can used to access
1477 values from the previously selected architecture for this
1478 architecture family.
1479
1480 The INIT function shall return any of: NULL - indicating that it
1481 doesn't recognize the selected architecture; an existing \`\`struct
1482 gdbarch'' from the ARCHES list - indicating that the new
1483 architecture is just a synonym for an earlier architecture (see
1484 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1485 - that describes the selected architecture (see gdbarch_alloc()).
1486
1487 The DUMP_TDEP function shall print out all target specific values.
1488 Care should be taken to ensure that the function works in both the
1489 multi-arch and non- multi-arch cases. */
1490
1491 struct gdbarch_list
1492 {
1493 struct gdbarch *gdbarch;
1494 struct gdbarch_list *next;
1495 };
1496
1497 struct gdbarch_info
1498 {
1499 /* Use default: NULL (ZERO). */
1500 const struct bfd_arch_info *bfd_arch_info;
1501
1502 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1503 enum bfd_endian byte_order;
1504
1505 enum bfd_endian byte_order_for_code;
1506
1507 /* Use default: NULL (ZERO). */
1508 bfd *abfd;
1509
1510 /* Use default: NULL (ZERO). */
1511 union
1512 {
1513 /* Architecture-specific information. The generic form for targets
1514 that have extra requirements. */
1515 struct gdbarch_tdep_info *tdep_info;
1516
1517 /* Architecture-specific target description data. Numerous targets
1518 need only this, so give them an easy way to hold it. */
1519 struct tdesc_arch_data *tdesc_data;
1520
1521 /* SPU file system ID. This is a single integer, so using the
1522 generic form would only complicate code. Other targets may
1523 reuse this member if suitable. */
1524 int *id;
1525 };
1526
1527 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1528 enum gdb_osabi osabi;
1529
1530 /* Use default: NULL (ZERO). */
1531 const struct target_desc *target_desc;
1532 };
1533
1534 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1535 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1536
1537 /* DEPRECATED - use gdbarch_register() */
1538 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1539
1540 extern void gdbarch_register (enum bfd_architecture architecture,
1541 gdbarch_init_ftype *,
1542 gdbarch_dump_tdep_ftype *);
1543
1544
1545 /* Return a freshly allocated, NULL terminated, array of the valid
1546 architecture names. Since architectures are registered during the
1547 _initialize phase this function only returns useful information
1548 once initialization has been completed. */
1549
1550 extern const char **gdbarch_printable_names (void);
1551
1552
1553 /* Helper function. Search the list of ARCHES for a GDBARCH that
1554 matches the information provided by INFO. */
1555
1556 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1557
1558
1559 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1560 basic initialization using values obtained from the INFO and TDEP
1561 parameters. set_gdbarch_*() functions are called to complete the
1562 initialization of the object. */
1563
1564 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1565
1566
1567 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1568 It is assumed that the caller freeds the \`\`struct
1569 gdbarch_tdep''. */
1570
1571 extern void gdbarch_free (struct gdbarch *);
1572
1573 /* Get the obstack owned by ARCH. */
1574
1575 extern obstack *gdbarch_obstack (gdbarch *arch);
1576
1577 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1578 obstack. The memory is freed when the corresponding architecture
1579 is also freed. */
1580
1581 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1582 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1583
1584 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1585 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1586
1587 /* Duplicate STRING, returning an equivalent string that's allocated on the
1588 obstack associated with GDBARCH. The string is freed when the corresponding
1589 architecture is also freed. */
1590
1591 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1592
1593 /* Helper function. Force an update of the current architecture.
1594
1595 The actual architecture selected is determined by INFO, \`\`(gdb) set
1596 architecture'' et.al., the existing architecture and BFD's default
1597 architecture. INFO should be initialized to zero and then selected
1598 fields should be updated.
1599
1600 Returns non-zero if the update succeeds. */
1601
1602 extern int gdbarch_update_p (struct gdbarch_info info);
1603
1604
1605 /* Helper function. Find an architecture matching info.
1606
1607 INFO should be initialized using gdbarch_info_init, relevant fields
1608 set, and then finished using gdbarch_info_fill.
1609
1610 Returns the corresponding architecture, or NULL if no matching
1611 architecture was found. */
1612
1613 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1614
1615
1616 /* Helper function. Set the target gdbarch to "gdbarch". */
1617
1618 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1619
1620
1621 /* Register per-architecture data-pointer.
1622
1623 Reserve space for a per-architecture data-pointer. An identifier
1624 for the reserved data-pointer is returned. That identifer should
1625 be saved in a local static variable.
1626
1627 Memory for the per-architecture data shall be allocated using
1628 gdbarch_obstack_zalloc. That memory will be deleted when the
1629 corresponding architecture object is deleted.
1630
1631 When a previously created architecture is re-selected, the
1632 per-architecture data-pointer for that previous architecture is
1633 restored. INIT() is not re-called.
1634
1635 Multiple registrarants for any architecture are allowed (and
1636 strongly encouraged). */
1637
1638 struct gdbarch_data;
1639
1640 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1641 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1642 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1643 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1644
1645 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1646
1647
1648 /* Set the dynamic target-system-dependent parameters (architecture,
1649 byte-order, ...) using information found in the BFD. */
1650
1651 extern void set_gdbarch_from_file (bfd *);
1652
1653
1654 /* Initialize the current architecture to the "first" one we find on
1655 our list. */
1656
1657 extern void initialize_current_architecture (void);
1658
1659 /* gdbarch trace variable */
1660 extern unsigned int gdbarch_debug;
1661
1662 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1663
1664 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1665
1666 static inline int
1667 gdbarch_num_cooked_regs (gdbarch *arch)
1668 {
1669 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1670 }
1671
1672 #endif
1673 EOF
1674 exec 1>&2
1675 ../move-if-change new-gdbarch.h gdbarch.h
1676 rm -f new-gdbarch.h
1677
1678
1679 #
1680 # C file
1681 #
1682
1683 exec > new-gdbarch.c
1684 copyright
1685 cat <<EOF
1686
1687 #include "defs.h"
1688 #include "arch-utils.h"
1689
1690 #include "gdbcmd.h"
1691 #include "inferior.h"
1692 #include "symcat.h"
1693
1694 #include "floatformat.h"
1695 #include "reggroups.h"
1696 #include "osabi.h"
1697 #include "gdb_obstack.h"
1698 #include "observable.h"
1699 #include "regcache.h"
1700 #include "objfiles.h"
1701 #include "auxv.h"
1702 #include "frame-unwind.h"
1703 #include "dummy-frame.h"
1704
1705 /* Static function declarations */
1706
1707 static void alloc_gdbarch_data (struct gdbarch *);
1708
1709 /* Non-zero if we want to trace architecture code. */
1710
1711 #ifndef GDBARCH_DEBUG
1712 #define GDBARCH_DEBUG 0
1713 #endif
1714 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1715 static void
1716 show_gdbarch_debug (struct ui_file *file, int from_tty,
1717 struct cmd_list_element *c, const char *value)
1718 {
1719 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1720 }
1721
1722 static const char *
1723 pformat (const struct floatformat **format)
1724 {
1725 if (format == NULL)
1726 return "(null)";
1727 else
1728 /* Just print out one of them - this is only for diagnostics. */
1729 return format[0]->name;
1730 }
1731
1732 static const char *
1733 pstring (const char *string)
1734 {
1735 if (string == NULL)
1736 return "(null)";
1737 return string;
1738 }
1739
1740 static const char *
1741 pstring_ptr (char **string)
1742 {
1743 if (string == NULL || *string == NULL)
1744 return "(null)";
1745 return *string;
1746 }
1747
1748 /* Helper function to print a list of strings, represented as "const
1749 char *const *". The list is printed comma-separated. */
1750
1751 static const char *
1752 pstring_list (const char *const *list)
1753 {
1754 static char ret[100];
1755 const char *const *p;
1756 size_t offset = 0;
1757
1758 if (list == NULL)
1759 return "(null)";
1760
1761 ret[0] = '\0';
1762 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1763 {
1764 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1765 offset += 2 + s;
1766 }
1767
1768 if (offset > 0)
1769 {
1770 gdb_assert (offset - 2 < sizeof (ret));
1771 ret[offset - 2] = '\0';
1772 }
1773
1774 return ret;
1775 }
1776
1777 EOF
1778
1779 # gdbarch open the gdbarch object
1780 printf "\n"
1781 printf "/* Maintain the struct gdbarch object. */\n"
1782 printf "\n"
1783 printf "struct gdbarch\n"
1784 printf "{\n"
1785 printf " /* Has this architecture been fully initialized? */\n"
1786 printf " int initialized_p;\n"
1787 printf "\n"
1788 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1789 printf " struct obstack *obstack;\n"
1790 printf "\n"
1791 printf " /* basic architectural information. */\n"
1792 function_list | while do_read
1793 do
1794 if class_is_info_p
1795 then
1796 printf " %s %s;\n" "$returntype" "$function"
1797 fi
1798 done
1799 printf "\n"
1800 printf " /* target specific vector. */\n"
1801 printf " struct gdbarch_tdep *tdep;\n"
1802 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1803 printf "\n"
1804 printf " /* per-architecture data-pointers. */\n"
1805 printf " unsigned nr_data;\n"
1806 printf " void **data;\n"
1807 printf "\n"
1808 cat <<EOF
1809 /* Multi-arch values.
1810
1811 When extending this structure you must:
1812
1813 Add the field below.
1814
1815 Declare set/get functions and define the corresponding
1816 macro in gdbarch.h.
1817
1818 gdbarch_alloc(): If zero/NULL is not a suitable default,
1819 initialize the new field.
1820
1821 verify_gdbarch(): Confirm that the target updated the field
1822 correctly.
1823
1824 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1825 field is dumped out
1826
1827 get_gdbarch(): Implement the set/get functions (probably using
1828 the macro's as shortcuts).
1829
1830 */
1831
1832 EOF
1833 function_list | while do_read
1834 do
1835 if class_is_variable_p
1836 then
1837 printf " %s %s;\n" "$returntype" "$function"
1838 elif class_is_function_p
1839 then
1840 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1841 fi
1842 done
1843 printf "};\n"
1844
1845 # Create a new gdbarch struct
1846 cat <<EOF
1847
1848 /* Create a new \`\`struct gdbarch'' based on information provided by
1849 \`\`struct gdbarch_info''. */
1850 EOF
1851 printf "\n"
1852 cat <<EOF
1853 struct gdbarch *
1854 gdbarch_alloc (const struct gdbarch_info *info,
1855 struct gdbarch_tdep *tdep)
1856 {
1857 struct gdbarch *gdbarch;
1858
1859 /* Create an obstack for allocating all the per-architecture memory,
1860 then use that to allocate the architecture vector. */
1861 struct obstack *obstack = XNEW (struct obstack);
1862 obstack_init (obstack);
1863 gdbarch = XOBNEW (obstack, struct gdbarch);
1864 memset (gdbarch, 0, sizeof (*gdbarch));
1865 gdbarch->obstack = obstack;
1866
1867 alloc_gdbarch_data (gdbarch);
1868
1869 gdbarch->tdep = tdep;
1870 EOF
1871 printf "\n"
1872 function_list | while do_read
1873 do
1874 if class_is_info_p
1875 then
1876 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1877 fi
1878 done
1879 printf "\n"
1880 printf " /* Force the explicit initialization of these. */\n"
1881 function_list | while do_read
1882 do
1883 if class_is_function_p || class_is_variable_p
1884 then
1885 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1886 then
1887 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1888 fi
1889 fi
1890 done
1891 cat <<EOF
1892 /* gdbarch_alloc() */
1893
1894 return gdbarch;
1895 }
1896 EOF
1897
1898 # Free a gdbarch struct.
1899 printf "\n"
1900 printf "\n"
1901 cat <<EOF
1902
1903 obstack *gdbarch_obstack (gdbarch *arch)
1904 {
1905 return arch->obstack;
1906 }
1907
1908 /* See gdbarch.h. */
1909
1910 char *
1911 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1912 {
1913 return obstack_strdup (arch->obstack, string);
1914 }
1915
1916
1917 /* Free a gdbarch struct. This should never happen in normal
1918 operation --- once you've created a gdbarch, you keep it around.
1919 However, if an architecture's init function encounters an error
1920 building the structure, it may need to clean up a partially
1921 constructed gdbarch. */
1922
1923 void
1924 gdbarch_free (struct gdbarch *arch)
1925 {
1926 struct obstack *obstack;
1927
1928 gdb_assert (arch != NULL);
1929 gdb_assert (!arch->initialized_p);
1930 obstack = arch->obstack;
1931 obstack_free (obstack, 0); /* Includes the ARCH. */
1932 xfree (obstack);
1933 }
1934 EOF
1935
1936 # verify a new architecture
1937 cat <<EOF
1938
1939
1940 /* Ensure that all values in a GDBARCH are reasonable. */
1941
1942 static void
1943 verify_gdbarch (struct gdbarch *gdbarch)
1944 {
1945 string_file log;
1946
1947 /* fundamental */
1948 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1949 log.puts ("\n\tbyte-order");
1950 if (gdbarch->bfd_arch_info == NULL)
1951 log.puts ("\n\tbfd_arch_info");
1952 /* Check those that need to be defined for the given multi-arch level. */
1953 EOF
1954 function_list | while do_read
1955 do
1956 if class_is_function_p || class_is_variable_p
1957 then
1958 if [ "x${invalid_p}" = "x0" ]
1959 then
1960 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1961 elif class_is_predicate_p
1962 then
1963 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1964 # FIXME: See do_read for potential simplification
1965 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1966 then
1967 printf " if (%s)\n" "$invalid_p"
1968 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1969 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1970 then
1971 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1972 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1973 elif [ -n "${postdefault}" ]
1974 then
1975 printf " if (gdbarch->%s == 0)\n" "$function"
1976 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1977 elif [ -n "${invalid_p}" ]
1978 then
1979 printf " if (%s)\n" "$invalid_p"
1980 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1981 elif [ -n "${predefault}" ]
1982 then
1983 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1984 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
1985 fi
1986 fi
1987 done
1988 cat <<EOF
1989 if (!log.empty ())
1990 internal_error (__FILE__, __LINE__,
1991 _("verify_gdbarch: the following are invalid ...%s"),
1992 log.c_str ());
1993 }
1994 EOF
1995
1996 # dump the structure
1997 printf "\n"
1998 printf "\n"
1999 cat <<EOF
2000 /* Print out the details of the current architecture. */
2001
2002 void
2003 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2004 {
2005 const char *gdb_nm_file = "<not-defined>";
2006
2007 #if defined (GDB_NM_FILE)
2008 gdb_nm_file = GDB_NM_FILE;
2009 #endif
2010 fprintf_unfiltered (file,
2011 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2012 gdb_nm_file);
2013 EOF
2014 function_list | sort '-t;' -k 3 | while do_read
2015 do
2016 # First the predicate
2017 if class_is_predicate_p
2018 then
2019 printf " fprintf_unfiltered (file,\n"
2020 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2021 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2022 fi
2023 # Print the corresponding value.
2024 if class_is_function_p
2025 then
2026 printf " fprintf_unfiltered (file,\n"
2027 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2028 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2029 else
2030 # It is a variable
2031 case "${print}:${returntype}" in
2032 :CORE_ADDR )
2033 fmt="%s"
2034 print="core_addr_to_string_nz (gdbarch->${function})"
2035 ;;
2036 :* )
2037 fmt="%s"
2038 print="plongest (gdbarch->${function})"
2039 ;;
2040 * )
2041 fmt="%s"
2042 ;;
2043 esac
2044 printf " fprintf_unfiltered (file,\n"
2045 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2046 printf " %s);\n" "$print"
2047 fi
2048 done
2049 cat <<EOF
2050 if (gdbarch->dump_tdep != NULL)
2051 gdbarch->dump_tdep (gdbarch, file);
2052 }
2053 EOF
2054
2055
2056 # GET/SET
2057 printf "\n"
2058 cat <<EOF
2059 struct gdbarch_tdep *
2060 gdbarch_tdep (struct gdbarch *gdbarch)
2061 {
2062 if (gdbarch_debug >= 2)
2063 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2064 return gdbarch->tdep;
2065 }
2066 EOF
2067 printf "\n"
2068 function_list | while do_read
2069 do
2070 if class_is_predicate_p
2071 then
2072 printf "\n"
2073 printf "bool\n"
2074 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2075 printf "{\n"
2076 printf " gdb_assert (gdbarch != NULL);\n"
2077 printf " return %s;\n" "$predicate"
2078 printf "}\n"
2079 fi
2080 if class_is_function_p
2081 then
2082 printf "\n"
2083 printf "%s\n" "$returntype"
2084 if [ "x${formal}" = "xvoid" ]
2085 then
2086 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2087 else
2088 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2089 fi
2090 printf "{\n"
2091 printf " gdb_assert (gdbarch != NULL);\n"
2092 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2093 if class_is_predicate_p && test -n "${predefault}"
2094 then
2095 # Allow a call to a function with a predicate.
2096 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2097 fi
2098 printf " if (gdbarch_debug >= 2)\n"
2099 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2100 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2101 then
2102 if class_is_multiarch_p
2103 then
2104 params="gdbarch"
2105 else
2106 params=""
2107 fi
2108 else
2109 if class_is_multiarch_p
2110 then
2111 params="gdbarch, ${actual}"
2112 else
2113 params="${actual}"
2114 fi
2115 fi
2116 if [ "x${returntype}" = "xvoid" ]
2117 then
2118 printf " gdbarch->%s (%s);\n" "$function" "$params"
2119 else
2120 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2121 fi
2122 printf "}\n"
2123 printf "\n"
2124 printf "void\n"
2125 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2126 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2127 printf "{\n"
2128 printf " gdbarch->%s = %s;\n" "$function" "$function"
2129 printf "}\n"
2130 elif class_is_variable_p
2131 then
2132 printf "\n"
2133 printf "%s\n" "$returntype"
2134 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2135 printf "{\n"
2136 printf " gdb_assert (gdbarch != NULL);\n"
2137 if [ "x${invalid_p}" = "x0" ]
2138 then
2139 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2140 elif [ -n "${invalid_p}" ]
2141 then
2142 printf " /* Check variable is valid. */\n"
2143 printf " gdb_assert (!(%s));\n" "$invalid_p"
2144 elif [ -n "${predefault}" ]
2145 then
2146 printf " /* Check variable changed from pre-default. */\n"
2147 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2148 fi
2149 printf " if (gdbarch_debug >= 2)\n"
2150 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2151 printf " return gdbarch->%s;\n" "$function"
2152 printf "}\n"
2153 printf "\n"
2154 printf "void\n"
2155 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2156 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2157 printf "{\n"
2158 printf " gdbarch->%s = %s;\n" "$function" "$function"
2159 printf "}\n"
2160 elif class_is_info_p
2161 then
2162 printf "\n"
2163 printf "%s\n" "$returntype"
2164 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2165 printf "{\n"
2166 printf " gdb_assert (gdbarch != NULL);\n"
2167 printf " if (gdbarch_debug >= 2)\n"
2168 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2169 printf " return gdbarch->%s;\n" "$function"
2170 printf "}\n"
2171 fi
2172 done
2173
2174 # All the trailing guff
2175 cat <<EOF
2176
2177
2178 /* Keep a registry of per-architecture data-pointers required by GDB
2179 modules. */
2180
2181 struct gdbarch_data
2182 {
2183 unsigned index;
2184 int init_p;
2185 gdbarch_data_pre_init_ftype *pre_init;
2186 gdbarch_data_post_init_ftype *post_init;
2187 };
2188
2189 struct gdbarch_data_registration
2190 {
2191 struct gdbarch_data *data;
2192 struct gdbarch_data_registration *next;
2193 };
2194
2195 struct gdbarch_data_registry
2196 {
2197 unsigned nr;
2198 struct gdbarch_data_registration *registrations;
2199 };
2200
2201 struct gdbarch_data_registry gdbarch_data_registry =
2202 {
2203 0, NULL,
2204 };
2205
2206 static struct gdbarch_data *
2207 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2208 gdbarch_data_post_init_ftype *post_init)
2209 {
2210 struct gdbarch_data_registration **curr;
2211
2212 /* Append the new registration. */
2213 for (curr = &gdbarch_data_registry.registrations;
2214 (*curr) != NULL;
2215 curr = &(*curr)->next);
2216 (*curr) = XNEW (struct gdbarch_data_registration);
2217 (*curr)->next = NULL;
2218 (*curr)->data = XNEW (struct gdbarch_data);
2219 (*curr)->data->index = gdbarch_data_registry.nr++;
2220 (*curr)->data->pre_init = pre_init;
2221 (*curr)->data->post_init = post_init;
2222 (*curr)->data->init_p = 1;
2223 return (*curr)->data;
2224 }
2225
2226 struct gdbarch_data *
2227 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2228 {
2229 return gdbarch_data_register (pre_init, NULL);
2230 }
2231
2232 struct gdbarch_data *
2233 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2234 {
2235 return gdbarch_data_register (NULL, post_init);
2236 }
2237
2238 /* Create/delete the gdbarch data vector. */
2239
2240 static void
2241 alloc_gdbarch_data (struct gdbarch *gdbarch)
2242 {
2243 gdb_assert (gdbarch->data == NULL);
2244 gdbarch->nr_data = gdbarch_data_registry.nr;
2245 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2246 }
2247
2248 /* Return the current value of the specified per-architecture
2249 data-pointer. */
2250
2251 void *
2252 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2253 {
2254 gdb_assert (data->index < gdbarch->nr_data);
2255 if (gdbarch->data[data->index] == NULL)
2256 {
2257 /* The data-pointer isn't initialized, call init() to get a
2258 value. */
2259 if (data->pre_init != NULL)
2260 /* Mid architecture creation: pass just the obstack, and not
2261 the entire architecture, as that way it isn't possible for
2262 pre-init code to refer to undefined architecture
2263 fields. */
2264 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2265 else if (gdbarch->initialized_p
2266 && data->post_init != NULL)
2267 /* Post architecture creation: pass the entire architecture
2268 (as all fields are valid), but be careful to also detect
2269 recursive references. */
2270 {
2271 gdb_assert (data->init_p);
2272 data->init_p = 0;
2273 gdbarch->data[data->index] = data->post_init (gdbarch);
2274 data->init_p = 1;
2275 }
2276 else
2277 internal_error (__FILE__, __LINE__,
2278 _("gdbarch post-init data field can only be used "
2279 "after gdbarch is fully initialised"));
2280 gdb_assert (gdbarch->data[data->index] != NULL);
2281 }
2282 return gdbarch->data[data->index];
2283 }
2284
2285
2286 /* Keep a registry of the architectures known by GDB. */
2287
2288 struct gdbarch_registration
2289 {
2290 enum bfd_architecture bfd_architecture;
2291 gdbarch_init_ftype *init;
2292 gdbarch_dump_tdep_ftype *dump_tdep;
2293 struct gdbarch_list *arches;
2294 struct gdbarch_registration *next;
2295 };
2296
2297 static struct gdbarch_registration *gdbarch_registry = NULL;
2298
2299 static void
2300 append_name (const char ***buf, int *nr, const char *name)
2301 {
2302 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2303 (*buf)[*nr] = name;
2304 *nr += 1;
2305 }
2306
2307 const char **
2308 gdbarch_printable_names (void)
2309 {
2310 /* Accumulate a list of names based on the registed list of
2311 architectures. */
2312 int nr_arches = 0;
2313 const char **arches = NULL;
2314 struct gdbarch_registration *rego;
2315
2316 for (rego = gdbarch_registry;
2317 rego != NULL;
2318 rego = rego->next)
2319 {
2320 const struct bfd_arch_info *ap;
2321 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2322 if (ap == NULL)
2323 internal_error (__FILE__, __LINE__,
2324 _("gdbarch_architecture_names: multi-arch unknown"));
2325 do
2326 {
2327 append_name (&arches, &nr_arches, ap->printable_name);
2328 ap = ap->next;
2329 }
2330 while (ap != NULL);
2331 }
2332 append_name (&arches, &nr_arches, NULL);
2333 return arches;
2334 }
2335
2336
2337 void
2338 gdbarch_register (enum bfd_architecture bfd_architecture,
2339 gdbarch_init_ftype *init,
2340 gdbarch_dump_tdep_ftype *dump_tdep)
2341 {
2342 struct gdbarch_registration **curr;
2343 const struct bfd_arch_info *bfd_arch_info;
2344
2345 /* Check that BFD recognizes this architecture */
2346 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2347 if (bfd_arch_info == NULL)
2348 {
2349 internal_error (__FILE__, __LINE__,
2350 _("gdbarch: Attempt to register "
2351 "unknown architecture (%d)"),
2352 bfd_architecture);
2353 }
2354 /* Check that we haven't seen this architecture before. */
2355 for (curr = &gdbarch_registry;
2356 (*curr) != NULL;
2357 curr = &(*curr)->next)
2358 {
2359 if (bfd_architecture == (*curr)->bfd_architecture)
2360 internal_error (__FILE__, __LINE__,
2361 _("gdbarch: Duplicate registration "
2362 "of architecture (%s)"),
2363 bfd_arch_info->printable_name);
2364 }
2365 /* log it */
2366 if (gdbarch_debug)
2367 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2368 bfd_arch_info->printable_name,
2369 host_address_to_string (init));
2370 /* Append it */
2371 (*curr) = XNEW (struct gdbarch_registration);
2372 (*curr)->bfd_architecture = bfd_architecture;
2373 (*curr)->init = init;
2374 (*curr)->dump_tdep = dump_tdep;
2375 (*curr)->arches = NULL;
2376 (*curr)->next = NULL;
2377 }
2378
2379 void
2380 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2381 gdbarch_init_ftype *init)
2382 {
2383 gdbarch_register (bfd_architecture, init, NULL);
2384 }
2385
2386
2387 /* Look for an architecture using gdbarch_info. */
2388
2389 struct gdbarch_list *
2390 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2391 const struct gdbarch_info *info)
2392 {
2393 for (; arches != NULL; arches = arches->next)
2394 {
2395 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2396 continue;
2397 if (info->byte_order != arches->gdbarch->byte_order)
2398 continue;
2399 if (info->osabi != arches->gdbarch->osabi)
2400 continue;
2401 if (info->target_desc != arches->gdbarch->target_desc)
2402 continue;
2403 return arches;
2404 }
2405 return NULL;
2406 }
2407
2408
2409 /* Find an architecture that matches the specified INFO. Create a new
2410 architecture if needed. Return that new architecture. */
2411
2412 struct gdbarch *
2413 gdbarch_find_by_info (struct gdbarch_info info)
2414 {
2415 struct gdbarch *new_gdbarch;
2416 struct gdbarch_registration *rego;
2417
2418 /* Fill in missing parts of the INFO struct using a number of
2419 sources: "set ..."; INFOabfd supplied; and the global
2420 defaults. */
2421 gdbarch_info_fill (&info);
2422
2423 /* Must have found some sort of architecture. */
2424 gdb_assert (info.bfd_arch_info != NULL);
2425
2426 if (gdbarch_debug)
2427 {
2428 fprintf_unfiltered (gdb_stdlog,
2429 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2430 (info.bfd_arch_info != NULL
2431 ? info.bfd_arch_info->printable_name
2432 : "(null)"));
2433 fprintf_unfiltered (gdb_stdlog,
2434 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2435 info.byte_order,
2436 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2437 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2438 : "default"));
2439 fprintf_unfiltered (gdb_stdlog,
2440 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2441 info.osabi, gdbarch_osabi_name (info.osabi));
2442 fprintf_unfiltered (gdb_stdlog,
2443 "gdbarch_find_by_info: info.abfd %s\n",
2444 host_address_to_string (info.abfd));
2445 fprintf_unfiltered (gdb_stdlog,
2446 "gdbarch_find_by_info: info.tdep_info %s\n",
2447 host_address_to_string (info.tdep_info));
2448 }
2449
2450 /* Find the tdep code that knows about this architecture. */
2451 for (rego = gdbarch_registry;
2452 rego != NULL;
2453 rego = rego->next)
2454 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2455 break;
2456 if (rego == NULL)
2457 {
2458 if (gdbarch_debug)
2459 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2460 "No matching architecture\n");
2461 return 0;
2462 }
2463
2464 /* Ask the tdep code for an architecture that matches "info". */
2465 new_gdbarch = rego->init (info, rego->arches);
2466
2467 /* Did the tdep code like it? No. Reject the change and revert to
2468 the old architecture. */
2469 if (new_gdbarch == NULL)
2470 {
2471 if (gdbarch_debug)
2472 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2473 "Target rejected architecture\n");
2474 return NULL;
2475 }
2476
2477 /* Is this a pre-existing architecture (as determined by already
2478 being initialized)? Move it to the front of the architecture
2479 list (keeping the list sorted Most Recently Used). */
2480 if (new_gdbarch->initialized_p)
2481 {
2482 struct gdbarch_list **list;
2483 struct gdbarch_list *self;
2484 if (gdbarch_debug)
2485 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2486 "Previous architecture %s (%s) selected\n",
2487 host_address_to_string (new_gdbarch),
2488 new_gdbarch->bfd_arch_info->printable_name);
2489 /* Find the existing arch in the list. */
2490 for (list = &rego->arches;
2491 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2492 list = &(*list)->next);
2493 /* It had better be in the list of architectures. */
2494 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2495 /* Unlink SELF. */
2496 self = (*list);
2497 (*list) = self->next;
2498 /* Insert SELF at the front. */
2499 self->next = rego->arches;
2500 rego->arches = self;
2501 /* Return it. */
2502 return new_gdbarch;
2503 }
2504
2505 /* It's a new architecture. */
2506 if (gdbarch_debug)
2507 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2508 "New architecture %s (%s) selected\n",
2509 host_address_to_string (new_gdbarch),
2510 new_gdbarch->bfd_arch_info->printable_name);
2511
2512 /* Insert the new architecture into the front of the architecture
2513 list (keep the list sorted Most Recently Used). */
2514 {
2515 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2516 self->next = rego->arches;
2517 self->gdbarch = new_gdbarch;
2518 rego->arches = self;
2519 }
2520
2521 /* Check that the newly installed architecture is valid. Plug in
2522 any post init values. */
2523 new_gdbarch->dump_tdep = rego->dump_tdep;
2524 verify_gdbarch (new_gdbarch);
2525 new_gdbarch->initialized_p = 1;
2526
2527 if (gdbarch_debug)
2528 gdbarch_dump (new_gdbarch, gdb_stdlog);
2529
2530 return new_gdbarch;
2531 }
2532
2533 /* Make the specified architecture current. */
2534
2535 void
2536 set_target_gdbarch (struct gdbarch *new_gdbarch)
2537 {
2538 gdb_assert (new_gdbarch != NULL);
2539 gdb_assert (new_gdbarch->initialized_p);
2540 current_inferior ()->gdbarch = new_gdbarch;
2541 gdb::observers::architecture_changed.notify (new_gdbarch);
2542 registers_changed ();
2543 }
2544
2545 /* Return the current inferior's arch. */
2546
2547 struct gdbarch *
2548 target_gdbarch (void)
2549 {
2550 return current_inferior ()->gdbarch;
2551 }
2552
2553 void _initialize_gdbarch ();
2554 void
2555 _initialize_gdbarch ()
2556 {
2557 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2558 Set architecture debugging."), _("\\
2559 Show architecture debugging."), _("\\
2560 When non-zero, architecture debugging is enabled."),
2561 NULL,
2562 show_gdbarch_debug,
2563 &setdebuglist, &showdebuglist);
2564 }
2565 EOF
2566
2567 # close things off
2568 exec 1>&2
2569 ../move-if-change new-gdbarch.c gdbarch.c
2570 rm -f new-gdbarch.c