]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394
395 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
397 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
399 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
406 #
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
409 #
410 # ptr_bit is the size of a pointer on the target
411 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
416 #
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
419 #
420 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
421 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
422 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
423 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
428 #
429 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
430 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
431 #
432 v:=:int:num_regs:::0:-1
433 # This macro gives the number of pseudo-registers that live in the
434 # register namespace but do not get fetched or stored on the target.
435 # These pseudo-registers may be aliases for other registers,
436 # combinations of other registers, or they may be computed by GDB.
437 v:=:int:num_pseudo_regs:::0:0::0
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
443 v:=:int:sp_regnum:::-1:-1::0
444 v:=:int:pc_regnum:::-1:-1::0
445 v:=:int:ps_regnum:::-1:-1::0
446 v:=:int:fp0_regnum:::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
452 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
453 # Convert from an sdb register number to an internal gdb register number.
454 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
455 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
456 f:=:const char *:register_name:int regnr:regnr
457
458 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
459 M::struct type *:register_type:int reg_nr:reg_nr
460 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
461 # register offsets computed using just REGISTER_TYPE, this can be
462 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
463 # function with predicate has a valid (callable) initial value. As a
464 # consequence, even when the predicate is false, the corresponding
465 # function works. This simplifies the migration process - old code,
466 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
467 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
471 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # DEPRECATED_FP_REGNUM.
473 v:=:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
481
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
493 #
494 v:=:int:believe_pcc_promotion:::::::
495 #
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 # Construct a value representing the contents of register REGNUM in
500 # frame FRAME, interpreted as type TYPE. The routine needs to
501 # allocate and return a struct value with all value attributes
502 # (but not the value contents) filled in.
503 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
504 #
505 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
506 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
507 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
508 #
509 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
510 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
511
512 # It has been suggested that this, well actually its predecessor,
513 # should take the type/value of the function to be called and not the
514 # return type. This is left as an exercise for the reader.
515
516 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
517 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
518 # (via legacy_return_value), when a small struct is involved.
519
520 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
521
522 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
523 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
524 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
525 # RETURN_VALUE.
526
527 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
528 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
529 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
530 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
531 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
532
533 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
534 # ABI suitable for the implementation of a robust extract
535 # struct-convention return-value address method (the sparc saves the
536 # address in the callers frame). All the other cases so far examined,
537 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
538 # erreneous - the code was incorrectly assuming that the return-value
539 # address, stored in a register, was preserved across the entire
540 # function call.
541
542 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
543 # the ABIs that are still to be analyzed - perhaps this should simply
544 # be deleted. The commented out extract_returned_value_address method
545 # is provided as a starting point for the 32-bit SPARC. It, or
546 # something like it, along with changes to both infcmd.c and stack.c
547 # will be needed for that case to work. NB: It is passed the callers
548 # frame since it is only after the callee has returned that this
549 # function is used.
550
551 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
552 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
553
554 #
555 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
556 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
557 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
558 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
559 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
560 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
561 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
562
563 # A function can be addressed by either it's "pointer" (possibly a
564 # descriptor address) or "entry point" (first executable instruction).
565 # The method "convert_from_func_ptr_addr" converting the former to the
566 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
567 # a simplified subset of that functionality - the function's address
568 # corresponds to the "function pointer" and the function's start
569 # corresponds to the "function entry point" - and hence is redundant.
570
571 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
572
573 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
574
575 # Fetch the target specific address used to represent a load module.
576 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
577 #
578 v:=:CORE_ADDR:frame_args_skip:::0:::0
579 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
580 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
581 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
582 # frame-base. Enable frame-base before frame-unwind.
583 F:=:int:frame_num_args:struct frame_info *frame:frame
584 #
585 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
586 # to frame_align and the requirement that methods such as
587 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
588 # alignment.
589 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
590 M::CORE_ADDR:frame_align:CORE_ADDR address:address
591 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
592 # stabs_argument_has_addr.
593 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
594 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
595 v:=:int:frame_red_zone_size
596 #
597 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
598 # On some machines there are bits in addresses which are not really
599 # part of the address, but are used by the kernel, the hardware, etc.
600 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
601 # we get a "real" address such as one would find in a symbol table.
602 # This is used only for addresses of instructions, and even then I'm
603 # not sure it's used in all contexts. It exists to deal with there
604 # being a few stray bits in the PC which would mislead us, not as some
605 # sort of generic thing to handle alignment or segmentation (it's
606 # possible it should be in TARGET_READ_PC instead).
607 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
608 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
609 # ADDR_BITS_REMOVE.
610 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
611 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
612 # the target needs software single step. An ISA method to implement it.
613 #
614 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
615 # using the breakpoint system instead of blatting memory directly (as with rs6000).
616 #
617 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
618 # single step. If not, then implement single step using breakpoints.
619 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
620 # Return non-zero if the processor is executing a delay slot and a
621 # further single-step is needed before the instruction finishes.
622 M::int:single_step_through_delay:struct frame_info *frame:frame
623 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
624 # disassembler. Perhaps objdump can handle it?
625 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
626 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
627
628
629 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
630 # evaluates non-zero, this is the address where the debugger will place
631 # a step-resume breakpoint to get us past the dynamic linker.
632 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
633 # Some systems also have trampoline code for returning from shared libs.
634 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
635
636 # A target might have problems with watchpoints as soon as the stack
637 # frame of the current function has been destroyed. This mostly happens
638 # as the first action in a funtion's epilogue. in_function_epilogue_p()
639 # is defined to return a non-zero value if either the given addr is one
640 # instruction after the stack destroying instruction up to the trailing
641 # return instruction or if we can figure out that the stack frame has
642 # already been invalidated regardless of the value of addr. Targets
643 # which don't suffer from that problem could just let this functionality
644 # untouched.
645 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
646 # Given a vector of command-line arguments, return a newly allocated
647 # string which, when passed to the create_inferior function, will be
648 # parsed (on Unix systems, by the shell) to yield the same vector.
649 # This function should call error() if the argument vector is not
650 # representable for this target or if this target does not support
651 # command-line arguments.
652 # ARGC is the number of elements in the vector.
653 # ARGV is an array of strings, one per argument.
654 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
655 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
656 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
657 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
658 v:=:int:cannot_step_breakpoint:::0:0::0
659 v:=:int:have_nonsteppable_watchpoint:::0:0::0
660 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
661 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
662 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
663 # Is a register in a group
664 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
665 # Fetch the pointer to the ith function argument.
666 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
667
668 # Return the appropriate register set for a core file section with
669 # name SECT_NAME and size SECT_SIZE.
670 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
671
672 # If the elements of C++ vtables are in-place function descriptors rather
673 # than normal function pointers (which may point to code or a descriptor),
674 # set this to one.
675 v::int:vtable_function_descriptors:::0:0::0
676
677 # Set if the least significant bit of the delta is used instead of the least
678 # significant bit of the pfn for pointers to virtual member functions.
679 v::int:vbit_in_delta:::0:0::0
680 EOF
681 }
682
683 #
684 # The .log file
685 #
686 exec > new-gdbarch.log
687 function_list | while do_read
688 do
689 cat <<EOF
690 ${class} ${returntype} ${function} ($formal)
691 EOF
692 for r in ${read}
693 do
694 eval echo \"\ \ \ \ ${r}=\${${r}}\"
695 done
696 if class_is_predicate_p && fallback_default_p
697 then
698 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
699 kill $$
700 exit 1
701 fi
702 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
703 then
704 echo "Error: postdefault is useless when invalid_p=0" 1>&2
705 kill $$
706 exit 1
707 fi
708 if class_is_multiarch_p
709 then
710 if class_is_predicate_p ; then :
711 elif test "x${predefault}" = "x"
712 then
713 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
714 kill $$
715 exit 1
716 fi
717 fi
718 echo ""
719 done
720
721 exec 1>&2
722 compare_new gdbarch.log
723
724
725 copyright ()
726 {
727 cat <<EOF
728 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
729
730 /* Dynamic architecture support for GDB, the GNU debugger.
731
732 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
733 Free Software Foundation, Inc.
734
735 This file is part of GDB.
736
737 This program is free software; you can redistribute it and/or modify
738 it under the terms of the GNU General Public License as published by
739 the Free Software Foundation; either version 2 of the License, or
740 (at your option) any later version.
741
742 This program is distributed in the hope that it will be useful,
743 but WITHOUT ANY WARRANTY; without even the implied warranty of
744 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
745 GNU General Public License for more details.
746
747 You should have received a copy of the GNU General Public License
748 along with this program; if not, write to the Free Software
749 Foundation, Inc., 51 Franklin Street, Fifth Floor,
750 Boston, MA 02110-1301, USA. */
751
752 /* This file was created with the aid of \`\`gdbarch.sh''.
753
754 The Bourne shell script \`\`gdbarch.sh'' creates the files
755 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
756 against the existing \`\`gdbarch.[hc]''. Any differences found
757 being reported.
758
759 If editing this file, please also run gdbarch.sh and merge any
760 changes into that script. Conversely, when making sweeping changes
761 to this file, modifying gdbarch.sh and using its output may prove
762 easier. */
763
764 EOF
765 }
766
767 #
768 # The .h file
769 #
770
771 exec > new-gdbarch.h
772 copyright
773 cat <<EOF
774 #ifndef GDBARCH_H
775 #define GDBARCH_H
776
777 struct floatformat;
778 struct ui_file;
779 struct frame_info;
780 struct value;
781 struct objfile;
782 struct minimal_symbol;
783 struct regcache;
784 struct reggroup;
785 struct regset;
786 struct disassemble_info;
787 struct target_ops;
788 struct obstack;
789 struct bp_target_info;
790 struct target_desc;
791
792 extern struct gdbarch *current_gdbarch;
793 EOF
794
795 # function typedef's
796 printf "\n"
797 printf "\n"
798 printf "/* The following are pre-initialized by GDBARCH. */\n"
799 function_list | while do_read
800 do
801 if class_is_info_p
802 then
803 printf "\n"
804 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
805 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
806 if test -n "${macro}"
807 then
808 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
809 printf "#error \"Non multi-arch definition of ${macro}\"\n"
810 printf "#endif\n"
811 printf "#if !defined (${macro})\n"
812 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
813 printf "#endif\n"
814 fi
815 fi
816 done
817
818 # function typedef's
819 printf "\n"
820 printf "\n"
821 printf "/* The following are initialized by the target dependent code. */\n"
822 function_list | while do_read
823 do
824 if [ -n "${comment}" ]
825 then
826 echo "${comment}" | sed \
827 -e '2 s,#,/*,' \
828 -e '3,$ s,#, ,' \
829 -e '$ s,$, */,'
830 fi
831
832 if class_is_predicate_p
833 then
834 if test -n "${macro}"
835 then
836 printf "\n"
837 printf "#if defined (${macro})\n"
838 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
839 printf "#if !defined (${macro}_P)\n"
840 printf "#define ${macro}_P() (1)\n"
841 printf "#endif\n"
842 printf "#endif\n"
843 fi
844 printf "\n"
845 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
846 if test -n "${macro}"
847 then
848 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
849 printf "#error \"Non multi-arch definition of ${macro}\"\n"
850 printf "#endif\n"
851 printf "#if !defined (${macro}_P)\n"
852 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
853 printf "#endif\n"
854 fi
855 fi
856 if class_is_variable_p
857 then
858 printf "\n"
859 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
860 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
861 if test -n "${macro}"
862 then
863 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
864 printf "#error \"Non multi-arch definition of ${macro}\"\n"
865 printf "#endif\n"
866 printf "#if !defined (${macro})\n"
867 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
868 printf "#endif\n"
869 fi
870 fi
871 if class_is_function_p
872 then
873 printf "\n"
874 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
875 then
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
877 elif class_is_multiarch_p
878 then
879 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
880 else
881 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
882 fi
883 if [ "x${formal}" = "xvoid" ]
884 then
885 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
886 else
887 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
888 fi
889 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
890 if test -n "${macro}"
891 then
892 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
893 printf "#error \"Non multi-arch definition of ${macro}\"\n"
894 printf "#endif\n"
895 if [ "x${actual}" = "x" ]
896 then
897 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
898 elif [ "x${actual}" = "x-" ]
899 then
900 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
901 else
902 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
903 fi
904 printf "#if !defined (${macro})\n"
905 if [ "x${actual}" = "x" ]
906 then
907 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
908 elif [ "x${actual}" = "x-" ]
909 then
910 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
911 else
912 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
913 fi
914 printf "#endif\n"
915 fi
916 fi
917 done
918
919 # close it off
920 cat <<EOF
921
922 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
923
924
925 /* Mechanism for co-ordinating the selection of a specific
926 architecture.
927
928 GDB targets (*-tdep.c) can register an interest in a specific
929 architecture. Other GDB components can register a need to maintain
930 per-architecture data.
931
932 The mechanisms below ensures that there is only a loose connection
933 between the set-architecture command and the various GDB
934 components. Each component can independently register their need
935 to maintain architecture specific data with gdbarch.
936
937 Pragmatics:
938
939 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
940 didn't scale.
941
942 The more traditional mega-struct containing architecture specific
943 data for all the various GDB components was also considered. Since
944 GDB is built from a variable number of (fairly independent)
945 components it was determined that the global aproach was not
946 applicable. */
947
948
949 /* Register a new architectural family with GDB.
950
951 Register support for the specified ARCHITECTURE with GDB. When
952 gdbarch determines that the specified architecture has been
953 selected, the corresponding INIT function is called.
954
955 --
956
957 The INIT function takes two parameters: INFO which contains the
958 information available to gdbarch about the (possibly new)
959 architecture; ARCHES which is a list of the previously created
960 \`\`struct gdbarch'' for this architecture.
961
962 The INFO parameter is, as far as possible, be pre-initialized with
963 information obtained from INFO.ABFD or the global defaults.
964
965 The ARCHES parameter is a linked list (sorted most recently used)
966 of all the previously created architures for this architecture
967 family. The (possibly NULL) ARCHES->gdbarch can used to access
968 values from the previously selected architecture for this
969 architecture family. The global \`\`current_gdbarch'' shall not be
970 used.
971
972 The INIT function shall return any of: NULL - indicating that it
973 doesn't recognize the selected architecture; an existing \`\`struct
974 gdbarch'' from the ARCHES list - indicating that the new
975 architecture is just a synonym for an earlier architecture (see
976 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
977 - that describes the selected architecture (see gdbarch_alloc()).
978
979 The DUMP_TDEP function shall print out all target specific values.
980 Care should be taken to ensure that the function works in both the
981 multi-arch and non- multi-arch cases. */
982
983 struct gdbarch_list
984 {
985 struct gdbarch *gdbarch;
986 struct gdbarch_list *next;
987 };
988
989 struct gdbarch_info
990 {
991 /* Use default: NULL (ZERO). */
992 const struct bfd_arch_info *bfd_arch_info;
993
994 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
995 int byte_order;
996
997 /* Use default: NULL (ZERO). */
998 bfd *abfd;
999
1000 /* Use default: NULL (ZERO). */
1001 struct gdbarch_tdep_info *tdep_info;
1002
1003 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1004 enum gdb_osabi osabi;
1005
1006 /* Use default: NULL (ZERO). */
1007 const struct target_desc *target_desc;
1008 };
1009
1010 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1011 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1012
1013 /* DEPRECATED - use gdbarch_register() */
1014 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1015
1016 extern void gdbarch_register (enum bfd_architecture architecture,
1017 gdbarch_init_ftype *,
1018 gdbarch_dump_tdep_ftype *);
1019
1020
1021 /* Return a freshly allocated, NULL terminated, array of the valid
1022 architecture names. Since architectures are registered during the
1023 _initialize phase this function only returns useful information
1024 once initialization has been completed. */
1025
1026 extern const char **gdbarch_printable_names (void);
1027
1028
1029 /* Helper function. Search the list of ARCHES for a GDBARCH that
1030 matches the information provided by INFO. */
1031
1032 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1033
1034
1035 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1036 basic initialization using values obtained from the INFO and TDEP
1037 parameters. set_gdbarch_*() functions are called to complete the
1038 initialization of the object. */
1039
1040 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1041
1042
1043 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1044 It is assumed that the caller freeds the \`\`struct
1045 gdbarch_tdep''. */
1046
1047 extern void gdbarch_free (struct gdbarch *);
1048
1049
1050 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1051 obstack. The memory is freed when the corresponding architecture
1052 is also freed. */
1053
1054 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1055 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1056 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1057
1058
1059 /* Helper function. Force an update of the current architecture.
1060
1061 The actual architecture selected is determined by INFO, \`\`(gdb) set
1062 architecture'' et.al., the existing architecture and BFD's default
1063 architecture. INFO should be initialized to zero and then selected
1064 fields should be updated.
1065
1066 Returns non-zero if the update succeeds */
1067
1068 extern int gdbarch_update_p (struct gdbarch_info info);
1069
1070
1071 /* Helper function. Find an architecture matching info.
1072
1073 INFO should be initialized using gdbarch_info_init, relevant fields
1074 set, and then finished using gdbarch_info_fill.
1075
1076 Returns the corresponding architecture, or NULL if no matching
1077 architecture was found. "current_gdbarch" is not updated. */
1078
1079 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1080
1081
1082 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1083
1084 FIXME: kettenis/20031124: Of the functions that follow, only
1085 gdbarch_from_bfd is supposed to survive. The others will
1086 dissappear since in the future GDB will (hopefully) be truly
1087 multi-arch. However, for now we're still stuck with the concept of
1088 a single active architecture. */
1089
1090 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1091
1092
1093 /* Register per-architecture data-pointer.
1094
1095 Reserve space for a per-architecture data-pointer. An identifier
1096 for the reserved data-pointer is returned. That identifer should
1097 be saved in a local static variable.
1098
1099 Memory for the per-architecture data shall be allocated using
1100 gdbarch_obstack_zalloc. That memory will be deleted when the
1101 corresponding architecture object is deleted.
1102
1103 When a previously created architecture is re-selected, the
1104 per-architecture data-pointer for that previous architecture is
1105 restored. INIT() is not re-called.
1106
1107 Multiple registrarants for any architecture are allowed (and
1108 strongly encouraged). */
1109
1110 struct gdbarch_data;
1111
1112 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1113 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1114 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1115 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1116 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1117 struct gdbarch_data *data,
1118 void *pointer);
1119
1120 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1121
1122
1123
1124 /* Register per-architecture memory region.
1125
1126 Provide a memory-region swap mechanism. Per-architecture memory
1127 region are created. These memory regions are swapped whenever the
1128 architecture is changed. For a new architecture, the memory region
1129 is initialized with zero (0) and the INIT function is called.
1130
1131 Memory regions are swapped / initialized in the order that they are
1132 registered. NULL DATA and/or INIT values can be specified.
1133
1134 New code should use gdbarch_data_register_*(). */
1135
1136 typedef void (gdbarch_swap_ftype) (void);
1137 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1138 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1139
1140
1141
1142 /* Set the dynamic target-system-dependent parameters (architecture,
1143 byte-order, ...) using information found in the BFD */
1144
1145 extern void set_gdbarch_from_file (bfd *);
1146
1147
1148 /* Initialize the current architecture to the "first" one we find on
1149 our list. */
1150
1151 extern void initialize_current_architecture (void);
1152
1153 /* gdbarch trace variable */
1154 extern int gdbarch_debug;
1155
1156 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1157
1158 #endif
1159 EOF
1160 exec 1>&2
1161 #../move-if-change new-gdbarch.h gdbarch.h
1162 compare_new gdbarch.h
1163
1164
1165 #
1166 # C file
1167 #
1168
1169 exec > new-gdbarch.c
1170 copyright
1171 cat <<EOF
1172
1173 #include "defs.h"
1174 #include "arch-utils.h"
1175
1176 #include "gdbcmd.h"
1177 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1178 #include "symcat.h"
1179
1180 #include "floatformat.h"
1181
1182 #include "gdb_assert.h"
1183 #include "gdb_string.h"
1184 #include "gdb-events.h"
1185 #include "reggroups.h"
1186 #include "osabi.h"
1187 #include "gdb_obstack.h"
1188
1189 /* Static function declarations */
1190
1191 static void alloc_gdbarch_data (struct gdbarch *);
1192
1193 /* Non-zero if we want to trace architecture code. */
1194
1195 #ifndef GDBARCH_DEBUG
1196 #define GDBARCH_DEBUG 0
1197 #endif
1198 int gdbarch_debug = GDBARCH_DEBUG;
1199 static void
1200 show_gdbarch_debug (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c, const char *value)
1202 {
1203 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1204 }
1205
1206 static const char *
1207 pformat (const struct floatformat *format)
1208 {
1209 if (format == NULL)
1210 return "(null)";
1211 else
1212 return format->name;
1213 }
1214
1215 EOF
1216
1217 # gdbarch open the gdbarch object
1218 printf "\n"
1219 printf "/* Maintain the struct gdbarch object */\n"
1220 printf "\n"
1221 printf "struct gdbarch\n"
1222 printf "{\n"
1223 printf " /* Has this architecture been fully initialized? */\n"
1224 printf " int initialized_p;\n"
1225 printf "\n"
1226 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1227 printf " struct obstack *obstack;\n"
1228 printf "\n"
1229 printf " /* basic architectural information */\n"
1230 function_list | while do_read
1231 do
1232 if class_is_info_p
1233 then
1234 printf " ${returntype} ${function};\n"
1235 fi
1236 done
1237 printf "\n"
1238 printf " /* target specific vector. */\n"
1239 printf " struct gdbarch_tdep *tdep;\n"
1240 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1241 printf "\n"
1242 printf " /* per-architecture data-pointers */\n"
1243 printf " unsigned nr_data;\n"
1244 printf " void **data;\n"
1245 printf "\n"
1246 printf " /* per-architecture swap-regions */\n"
1247 printf " struct gdbarch_swap *swap;\n"
1248 printf "\n"
1249 cat <<EOF
1250 /* Multi-arch values.
1251
1252 When extending this structure you must:
1253
1254 Add the field below.
1255
1256 Declare set/get functions and define the corresponding
1257 macro in gdbarch.h.
1258
1259 gdbarch_alloc(): If zero/NULL is not a suitable default,
1260 initialize the new field.
1261
1262 verify_gdbarch(): Confirm that the target updated the field
1263 correctly.
1264
1265 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1266 field is dumped out
1267
1268 \`\`startup_gdbarch()'': Append an initial value to the static
1269 variable (base values on the host's c-type system).
1270
1271 get_gdbarch(): Implement the set/get functions (probably using
1272 the macro's as shortcuts).
1273
1274 */
1275
1276 EOF
1277 function_list | while do_read
1278 do
1279 if class_is_variable_p
1280 then
1281 printf " ${returntype} ${function};\n"
1282 elif class_is_function_p
1283 then
1284 printf " gdbarch_${function}_ftype *${function};\n"
1285 fi
1286 done
1287 printf "};\n"
1288
1289 # A pre-initialized vector
1290 printf "\n"
1291 printf "\n"
1292 cat <<EOF
1293 /* The default architecture uses host values (for want of a better
1294 choice). */
1295 EOF
1296 printf "\n"
1297 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1298 printf "\n"
1299 printf "struct gdbarch startup_gdbarch =\n"
1300 printf "{\n"
1301 printf " 1, /* Always initialized. */\n"
1302 printf " NULL, /* The obstack. */\n"
1303 printf " /* basic architecture information */\n"
1304 function_list | while do_read
1305 do
1306 if class_is_info_p
1307 then
1308 printf " ${staticdefault}, /* ${function} */\n"
1309 fi
1310 done
1311 cat <<EOF
1312 /* target specific vector and its dump routine */
1313 NULL, NULL,
1314 /*per-architecture data-pointers and swap regions */
1315 0, NULL, NULL,
1316 /* Multi-arch values */
1317 EOF
1318 function_list | while do_read
1319 do
1320 if class_is_function_p || class_is_variable_p
1321 then
1322 printf " ${staticdefault}, /* ${function} */\n"
1323 fi
1324 done
1325 cat <<EOF
1326 /* startup_gdbarch() */
1327 };
1328
1329 struct gdbarch *current_gdbarch = &startup_gdbarch;
1330 EOF
1331
1332 # Create a new gdbarch struct
1333 cat <<EOF
1334
1335 /* Create a new \`\`struct gdbarch'' based on information provided by
1336 \`\`struct gdbarch_info''. */
1337 EOF
1338 printf "\n"
1339 cat <<EOF
1340 struct gdbarch *
1341 gdbarch_alloc (const struct gdbarch_info *info,
1342 struct gdbarch_tdep *tdep)
1343 {
1344 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1345 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1346 the current local architecture and not the previous global
1347 architecture. This ensures that the new architectures initial
1348 values are not influenced by the previous architecture. Once
1349 everything is parameterised with gdbarch, this will go away. */
1350 struct gdbarch *current_gdbarch;
1351
1352 /* Create an obstack for allocating all the per-architecture memory,
1353 then use that to allocate the architecture vector. */
1354 struct obstack *obstack = XMALLOC (struct obstack);
1355 obstack_init (obstack);
1356 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1357 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1358 current_gdbarch->obstack = obstack;
1359
1360 alloc_gdbarch_data (current_gdbarch);
1361
1362 current_gdbarch->tdep = tdep;
1363 EOF
1364 printf "\n"
1365 function_list | while do_read
1366 do
1367 if class_is_info_p
1368 then
1369 printf " current_gdbarch->${function} = info->${function};\n"
1370 fi
1371 done
1372 printf "\n"
1373 printf " /* Force the explicit initialization of these. */\n"
1374 function_list | while do_read
1375 do
1376 if class_is_function_p || class_is_variable_p
1377 then
1378 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1379 then
1380 printf " current_gdbarch->${function} = ${predefault};\n"
1381 fi
1382 fi
1383 done
1384 cat <<EOF
1385 /* gdbarch_alloc() */
1386
1387 return current_gdbarch;
1388 }
1389 EOF
1390
1391 # Free a gdbarch struct.
1392 printf "\n"
1393 printf "\n"
1394 cat <<EOF
1395 /* Allocate extra space using the per-architecture obstack. */
1396
1397 void *
1398 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1399 {
1400 void *data = obstack_alloc (arch->obstack, size);
1401 memset (data, 0, size);
1402 return data;
1403 }
1404
1405
1406 /* Free a gdbarch struct. This should never happen in normal
1407 operation --- once you've created a gdbarch, you keep it around.
1408 However, if an architecture's init function encounters an error
1409 building the structure, it may need to clean up a partially
1410 constructed gdbarch. */
1411
1412 void
1413 gdbarch_free (struct gdbarch *arch)
1414 {
1415 struct obstack *obstack;
1416 gdb_assert (arch != NULL);
1417 gdb_assert (!arch->initialized_p);
1418 obstack = arch->obstack;
1419 obstack_free (obstack, 0); /* Includes the ARCH. */
1420 xfree (obstack);
1421 }
1422 EOF
1423
1424 # verify a new architecture
1425 cat <<EOF
1426
1427
1428 /* Ensure that all values in a GDBARCH are reasonable. */
1429
1430 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1431 just happens to match the global variable \`\`current_gdbarch''. That
1432 way macros refering to that variable get the local and not the global
1433 version - ulgh. Once everything is parameterised with gdbarch, this
1434 will go away. */
1435
1436 static void
1437 verify_gdbarch (struct gdbarch *current_gdbarch)
1438 {
1439 struct ui_file *log;
1440 struct cleanup *cleanups;
1441 long dummy;
1442 char *buf;
1443 log = mem_fileopen ();
1444 cleanups = make_cleanup_ui_file_delete (log);
1445 /* fundamental */
1446 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1447 fprintf_unfiltered (log, "\n\tbyte-order");
1448 if (current_gdbarch->bfd_arch_info == NULL)
1449 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1450 /* Check those that need to be defined for the given multi-arch level. */
1451 EOF
1452 function_list | while do_read
1453 do
1454 if class_is_function_p || class_is_variable_p
1455 then
1456 if [ "x${invalid_p}" = "x0" ]
1457 then
1458 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1459 elif class_is_predicate_p
1460 then
1461 printf " /* Skip verify of ${function}, has predicate */\n"
1462 # FIXME: See do_read for potential simplification
1463 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1464 then
1465 printf " if (${invalid_p})\n"
1466 printf " current_gdbarch->${function} = ${postdefault};\n"
1467 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1468 then
1469 printf " if (current_gdbarch->${function} == ${predefault})\n"
1470 printf " current_gdbarch->${function} = ${postdefault};\n"
1471 elif [ -n "${postdefault}" ]
1472 then
1473 printf " if (current_gdbarch->${function} == 0)\n"
1474 printf " current_gdbarch->${function} = ${postdefault};\n"
1475 elif [ -n "${invalid_p}" ]
1476 then
1477 printf " if (${invalid_p})\n"
1478 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1479 elif [ -n "${predefault}" ]
1480 then
1481 printf " if (current_gdbarch->${function} == ${predefault})\n"
1482 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1483 fi
1484 fi
1485 done
1486 cat <<EOF
1487 buf = ui_file_xstrdup (log, &dummy);
1488 make_cleanup (xfree, buf);
1489 if (strlen (buf) > 0)
1490 internal_error (__FILE__, __LINE__,
1491 _("verify_gdbarch: the following are invalid ...%s"),
1492 buf);
1493 do_cleanups (cleanups);
1494 }
1495 EOF
1496
1497 # dump the structure
1498 printf "\n"
1499 printf "\n"
1500 cat <<EOF
1501 /* Print out the details of the current architecture. */
1502
1503 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1504 just happens to match the global variable \`\`current_gdbarch''. That
1505 way macros refering to that variable get the local and not the global
1506 version - ulgh. Once everything is parameterised with gdbarch, this
1507 will go away. */
1508
1509 void
1510 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1511 {
1512 const char *gdb_xm_file = "<not-defined>";
1513 const char *gdb_nm_file = "<not-defined>";
1514 const char *gdb_tm_file = "<not-defined>";
1515 #if defined (GDB_XM_FILE)
1516 gdb_xm_file = GDB_XM_FILE;
1517 #endif
1518 fprintf_unfiltered (file,
1519 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1520 gdb_xm_file);
1521 #if defined (GDB_NM_FILE)
1522 gdb_nm_file = GDB_NM_FILE;
1523 #endif
1524 fprintf_unfiltered (file,
1525 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1526 gdb_nm_file);
1527 #if defined (GDB_TM_FILE)
1528 gdb_tm_file = GDB_TM_FILE;
1529 #endif
1530 fprintf_unfiltered (file,
1531 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1532 gdb_tm_file);
1533 EOF
1534 function_list | sort -t: -k 4 | while do_read
1535 do
1536 # First the predicate
1537 if class_is_predicate_p
1538 then
1539 if test -n "${macro}"
1540 then
1541 printf "#ifdef ${macro}_P\n"
1542 printf " fprintf_unfiltered (file,\n"
1543 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1544 printf " \"${macro}_P()\",\n"
1545 printf " XSTRING (${macro}_P ()));\n"
1546 printf "#endif\n"
1547 fi
1548 printf " fprintf_unfiltered (file,\n"
1549 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1550 printf " gdbarch_${function}_p (current_gdbarch));\n"
1551 fi
1552 # Print the macro definition.
1553 if test -n "${macro}"
1554 then
1555 printf "#ifdef ${macro}\n"
1556 if class_is_function_p
1557 then
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1560 printf " \"${macro}(${actual})\",\n"
1561 printf " XSTRING (${macro} (${actual})));\n"
1562 else
1563 printf " fprintf_unfiltered (file,\n"
1564 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1565 printf " XSTRING (${macro}));\n"
1566 fi
1567 printf "#endif\n"
1568 fi
1569 # Print the corresponding value.
1570 if class_is_function_p
1571 then
1572 printf " fprintf_unfiltered (file,\n"
1573 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1574 printf " (long) current_gdbarch->${function});\n"
1575 else
1576 # It is a variable
1577 case "${print}:${returntype}" in
1578 :CORE_ADDR )
1579 fmt="0x%s"
1580 print="paddr_nz (current_gdbarch->${function})"
1581 ;;
1582 :* )
1583 fmt="%s"
1584 print="paddr_d (current_gdbarch->${function})"
1585 ;;
1586 * )
1587 fmt="%s"
1588 ;;
1589 esac
1590 printf " fprintf_unfiltered (file,\n"
1591 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1592 printf " ${print});\n"
1593 fi
1594 done
1595 cat <<EOF
1596 if (current_gdbarch->dump_tdep != NULL)
1597 current_gdbarch->dump_tdep (current_gdbarch, file);
1598 }
1599 EOF
1600
1601
1602 # GET/SET
1603 printf "\n"
1604 cat <<EOF
1605 struct gdbarch_tdep *
1606 gdbarch_tdep (struct gdbarch *gdbarch)
1607 {
1608 if (gdbarch_debug >= 2)
1609 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1610 return gdbarch->tdep;
1611 }
1612 EOF
1613 printf "\n"
1614 function_list | while do_read
1615 do
1616 if class_is_predicate_p
1617 then
1618 printf "\n"
1619 printf "int\n"
1620 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1621 printf "{\n"
1622 printf " gdb_assert (gdbarch != NULL);\n"
1623 printf " return ${predicate};\n"
1624 printf "}\n"
1625 fi
1626 if class_is_function_p
1627 then
1628 printf "\n"
1629 printf "${returntype}\n"
1630 if [ "x${formal}" = "xvoid" ]
1631 then
1632 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1633 else
1634 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1635 fi
1636 printf "{\n"
1637 printf " gdb_assert (gdbarch != NULL);\n"
1638 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1639 if class_is_predicate_p && test -n "${predefault}"
1640 then
1641 # Allow a call to a function with a predicate.
1642 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1643 fi
1644 printf " if (gdbarch_debug >= 2)\n"
1645 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1646 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1647 then
1648 if class_is_multiarch_p
1649 then
1650 params="gdbarch"
1651 else
1652 params=""
1653 fi
1654 else
1655 if class_is_multiarch_p
1656 then
1657 params="gdbarch, ${actual}"
1658 else
1659 params="${actual}"
1660 fi
1661 fi
1662 if [ "x${returntype}" = "xvoid" ]
1663 then
1664 printf " gdbarch->${function} (${params});\n"
1665 else
1666 printf " return gdbarch->${function} (${params});\n"
1667 fi
1668 printf "}\n"
1669 printf "\n"
1670 printf "void\n"
1671 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1672 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1673 printf "{\n"
1674 printf " gdbarch->${function} = ${function};\n"
1675 printf "}\n"
1676 elif class_is_variable_p
1677 then
1678 printf "\n"
1679 printf "${returntype}\n"
1680 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1681 printf "{\n"
1682 printf " gdb_assert (gdbarch != NULL);\n"
1683 if [ "x${invalid_p}" = "x0" ]
1684 then
1685 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1686 elif [ -n "${invalid_p}" ]
1687 then
1688 printf " /* Check variable is valid. */\n"
1689 printf " gdb_assert (!(${invalid_p}));\n"
1690 elif [ -n "${predefault}" ]
1691 then
1692 printf " /* Check variable changed from pre-default. */\n"
1693 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1694 fi
1695 printf " if (gdbarch_debug >= 2)\n"
1696 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1697 printf " return gdbarch->${function};\n"
1698 printf "}\n"
1699 printf "\n"
1700 printf "void\n"
1701 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1702 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1703 printf "{\n"
1704 printf " gdbarch->${function} = ${function};\n"
1705 printf "}\n"
1706 elif class_is_info_p
1707 then
1708 printf "\n"
1709 printf "${returntype}\n"
1710 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1711 printf "{\n"
1712 printf " gdb_assert (gdbarch != NULL);\n"
1713 printf " if (gdbarch_debug >= 2)\n"
1714 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1715 printf " return gdbarch->${function};\n"
1716 printf "}\n"
1717 fi
1718 done
1719
1720 # All the trailing guff
1721 cat <<EOF
1722
1723
1724 /* Keep a registry of per-architecture data-pointers required by GDB
1725 modules. */
1726
1727 struct gdbarch_data
1728 {
1729 unsigned index;
1730 int init_p;
1731 gdbarch_data_pre_init_ftype *pre_init;
1732 gdbarch_data_post_init_ftype *post_init;
1733 };
1734
1735 struct gdbarch_data_registration
1736 {
1737 struct gdbarch_data *data;
1738 struct gdbarch_data_registration *next;
1739 };
1740
1741 struct gdbarch_data_registry
1742 {
1743 unsigned nr;
1744 struct gdbarch_data_registration *registrations;
1745 };
1746
1747 struct gdbarch_data_registry gdbarch_data_registry =
1748 {
1749 0, NULL,
1750 };
1751
1752 static struct gdbarch_data *
1753 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1754 gdbarch_data_post_init_ftype *post_init)
1755 {
1756 struct gdbarch_data_registration **curr;
1757 /* Append the new registraration. */
1758 for (curr = &gdbarch_data_registry.registrations;
1759 (*curr) != NULL;
1760 curr = &(*curr)->next);
1761 (*curr) = XMALLOC (struct gdbarch_data_registration);
1762 (*curr)->next = NULL;
1763 (*curr)->data = XMALLOC (struct gdbarch_data);
1764 (*curr)->data->index = gdbarch_data_registry.nr++;
1765 (*curr)->data->pre_init = pre_init;
1766 (*curr)->data->post_init = post_init;
1767 (*curr)->data->init_p = 1;
1768 return (*curr)->data;
1769 }
1770
1771 struct gdbarch_data *
1772 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1773 {
1774 return gdbarch_data_register (pre_init, NULL);
1775 }
1776
1777 struct gdbarch_data *
1778 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1779 {
1780 return gdbarch_data_register (NULL, post_init);
1781 }
1782
1783 /* Create/delete the gdbarch data vector. */
1784
1785 static void
1786 alloc_gdbarch_data (struct gdbarch *gdbarch)
1787 {
1788 gdb_assert (gdbarch->data == NULL);
1789 gdbarch->nr_data = gdbarch_data_registry.nr;
1790 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1791 }
1792
1793 /* Initialize the current value of the specified per-architecture
1794 data-pointer. */
1795
1796 void
1797 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1798 struct gdbarch_data *data,
1799 void *pointer)
1800 {
1801 gdb_assert (data->index < gdbarch->nr_data);
1802 gdb_assert (gdbarch->data[data->index] == NULL);
1803 gdb_assert (data->pre_init == NULL);
1804 gdbarch->data[data->index] = pointer;
1805 }
1806
1807 /* Return the current value of the specified per-architecture
1808 data-pointer. */
1809
1810 void *
1811 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1812 {
1813 gdb_assert (data->index < gdbarch->nr_data);
1814 if (gdbarch->data[data->index] == NULL)
1815 {
1816 /* The data-pointer isn't initialized, call init() to get a
1817 value. */
1818 if (data->pre_init != NULL)
1819 /* Mid architecture creation: pass just the obstack, and not
1820 the entire architecture, as that way it isn't possible for
1821 pre-init code to refer to undefined architecture
1822 fields. */
1823 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1824 else if (gdbarch->initialized_p
1825 && data->post_init != NULL)
1826 /* Post architecture creation: pass the entire architecture
1827 (as all fields are valid), but be careful to also detect
1828 recursive references. */
1829 {
1830 gdb_assert (data->init_p);
1831 data->init_p = 0;
1832 gdbarch->data[data->index] = data->post_init (gdbarch);
1833 data->init_p = 1;
1834 }
1835 else
1836 /* The architecture initialization hasn't completed - punt -
1837 hope that the caller knows what they are doing. Once
1838 deprecated_set_gdbarch_data has been initialized, this can be
1839 changed to an internal error. */
1840 return NULL;
1841 gdb_assert (gdbarch->data[data->index] != NULL);
1842 }
1843 return gdbarch->data[data->index];
1844 }
1845
1846
1847
1848 /* Keep a registry of swapped data required by GDB modules. */
1849
1850 struct gdbarch_swap
1851 {
1852 void *swap;
1853 struct gdbarch_swap_registration *source;
1854 struct gdbarch_swap *next;
1855 };
1856
1857 struct gdbarch_swap_registration
1858 {
1859 void *data;
1860 unsigned long sizeof_data;
1861 gdbarch_swap_ftype *init;
1862 struct gdbarch_swap_registration *next;
1863 };
1864
1865 struct gdbarch_swap_registry
1866 {
1867 int nr;
1868 struct gdbarch_swap_registration *registrations;
1869 };
1870
1871 struct gdbarch_swap_registry gdbarch_swap_registry =
1872 {
1873 0, NULL,
1874 };
1875
1876 void
1877 deprecated_register_gdbarch_swap (void *data,
1878 unsigned long sizeof_data,
1879 gdbarch_swap_ftype *init)
1880 {
1881 struct gdbarch_swap_registration **rego;
1882 for (rego = &gdbarch_swap_registry.registrations;
1883 (*rego) != NULL;
1884 rego = &(*rego)->next);
1885 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1886 (*rego)->next = NULL;
1887 (*rego)->init = init;
1888 (*rego)->data = data;
1889 (*rego)->sizeof_data = sizeof_data;
1890 }
1891
1892 static void
1893 current_gdbarch_swap_init_hack (void)
1894 {
1895 struct gdbarch_swap_registration *rego;
1896 struct gdbarch_swap **curr = &current_gdbarch->swap;
1897 for (rego = gdbarch_swap_registry.registrations;
1898 rego != NULL;
1899 rego = rego->next)
1900 {
1901 if (rego->data != NULL)
1902 {
1903 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1904 struct gdbarch_swap);
1905 (*curr)->source = rego;
1906 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1907 rego->sizeof_data);
1908 (*curr)->next = NULL;
1909 curr = &(*curr)->next;
1910 }
1911 if (rego->init != NULL)
1912 rego->init ();
1913 }
1914 }
1915
1916 static struct gdbarch *
1917 current_gdbarch_swap_out_hack (void)
1918 {
1919 struct gdbarch *old_gdbarch = current_gdbarch;
1920 struct gdbarch_swap *curr;
1921
1922 gdb_assert (old_gdbarch != NULL);
1923 for (curr = old_gdbarch->swap;
1924 curr != NULL;
1925 curr = curr->next)
1926 {
1927 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1928 memset (curr->source->data, 0, curr->source->sizeof_data);
1929 }
1930 current_gdbarch = NULL;
1931 return old_gdbarch;
1932 }
1933
1934 static void
1935 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1936 {
1937 struct gdbarch_swap *curr;
1938
1939 gdb_assert (current_gdbarch == NULL);
1940 for (curr = new_gdbarch->swap;
1941 curr != NULL;
1942 curr = curr->next)
1943 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1944 current_gdbarch = new_gdbarch;
1945 }
1946
1947
1948 /* Keep a registry of the architectures known by GDB. */
1949
1950 struct gdbarch_registration
1951 {
1952 enum bfd_architecture bfd_architecture;
1953 gdbarch_init_ftype *init;
1954 gdbarch_dump_tdep_ftype *dump_tdep;
1955 struct gdbarch_list *arches;
1956 struct gdbarch_registration *next;
1957 };
1958
1959 static struct gdbarch_registration *gdbarch_registry = NULL;
1960
1961 static void
1962 append_name (const char ***buf, int *nr, const char *name)
1963 {
1964 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1965 (*buf)[*nr] = name;
1966 *nr += 1;
1967 }
1968
1969 const char **
1970 gdbarch_printable_names (void)
1971 {
1972 /* Accumulate a list of names based on the registed list of
1973 architectures. */
1974 enum bfd_architecture a;
1975 int nr_arches = 0;
1976 const char **arches = NULL;
1977 struct gdbarch_registration *rego;
1978 for (rego = gdbarch_registry;
1979 rego != NULL;
1980 rego = rego->next)
1981 {
1982 const struct bfd_arch_info *ap;
1983 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1984 if (ap == NULL)
1985 internal_error (__FILE__, __LINE__,
1986 _("gdbarch_architecture_names: multi-arch unknown"));
1987 do
1988 {
1989 append_name (&arches, &nr_arches, ap->printable_name);
1990 ap = ap->next;
1991 }
1992 while (ap != NULL);
1993 }
1994 append_name (&arches, &nr_arches, NULL);
1995 return arches;
1996 }
1997
1998
1999 void
2000 gdbarch_register (enum bfd_architecture bfd_architecture,
2001 gdbarch_init_ftype *init,
2002 gdbarch_dump_tdep_ftype *dump_tdep)
2003 {
2004 struct gdbarch_registration **curr;
2005 const struct bfd_arch_info *bfd_arch_info;
2006 /* Check that BFD recognizes this architecture */
2007 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2008 if (bfd_arch_info == NULL)
2009 {
2010 internal_error (__FILE__, __LINE__,
2011 _("gdbarch: Attempt to register unknown architecture (%d)"),
2012 bfd_architecture);
2013 }
2014 /* Check that we haven't seen this architecture before */
2015 for (curr = &gdbarch_registry;
2016 (*curr) != NULL;
2017 curr = &(*curr)->next)
2018 {
2019 if (bfd_architecture == (*curr)->bfd_architecture)
2020 internal_error (__FILE__, __LINE__,
2021 _("gdbarch: Duplicate registraration of architecture (%s)"),
2022 bfd_arch_info->printable_name);
2023 }
2024 /* log it */
2025 if (gdbarch_debug)
2026 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2027 bfd_arch_info->printable_name,
2028 (long) init);
2029 /* Append it */
2030 (*curr) = XMALLOC (struct gdbarch_registration);
2031 (*curr)->bfd_architecture = bfd_architecture;
2032 (*curr)->init = init;
2033 (*curr)->dump_tdep = dump_tdep;
2034 (*curr)->arches = NULL;
2035 (*curr)->next = NULL;
2036 }
2037
2038 void
2039 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2040 gdbarch_init_ftype *init)
2041 {
2042 gdbarch_register (bfd_architecture, init, NULL);
2043 }
2044
2045
2046 /* Look for an architecture using gdbarch_info. */
2047
2048 struct gdbarch_list *
2049 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2050 const struct gdbarch_info *info)
2051 {
2052 for (; arches != NULL; arches = arches->next)
2053 {
2054 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2055 continue;
2056 if (info->byte_order != arches->gdbarch->byte_order)
2057 continue;
2058 if (info->osabi != arches->gdbarch->osabi)
2059 continue;
2060 if (info->target_desc != arches->gdbarch->target_desc)
2061 continue;
2062 return arches;
2063 }
2064 return NULL;
2065 }
2066
2067
2068 /* Find an architecture that matches the specified INFO. Create a new
2069 architecture if needed. Return that new architecture. Assumes
2070 that there is no current architecture. */
2071
2072 static struct gdbarch *
2073 find_arch_by_info (struct gdbarch_info info)
2074 {
2075 struct gdbarch *new_gdbarch;
2076 struct gdbarch_registration *rego;
2077
2078 /* The existing architecture has been swapped out - all this code
2079 works from a clean slate. */
2080 gdb_assert (current_gdbarch == NULL);
2081
2082 /* Fill in missing parts of the INFO struct using a number of
2083 sources: "set ..."; INFOabfd supplied; and the global
2084 defaults. */
2085 gdbarch_info_fill (&info);
2086
2087 /* Must have found some sort of architecture. */
2088 gdb_assert (info.bfd_arch_info != NULL);
2089
2090 if (gdbarch_debug)
2091 {
2092 fprintf_unfiltered (gdb_stdlog,
2093 "find_arch_by_info: info.bfd_arch_info %s\n",
2094 (info.bfd_arch_info != NULL
2095 ? info.bfd_arch_info->printable_name
2096 : "(null)"));
2097 fprintf_unfiltered (gdb_stdlog,
2098 "find_arch_by_info: info.byte_order %d (%s)\n",
2099 info.byte_order,
2100 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2101 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2102 : "default"));
2103 fprintf_unfiltered (gdb_stdlog,
2104 "find_arch_by_info: info.osabi %d (%s)\n",
2105 info.osabi, gdbarch_osabi_name (info.osabi));
2106 fprintf_unfiltered (gdb_stdlog,
2107 "find_arch_by_info: info.abfd 0x%lx\n",
2108 (long) info.abfd);
2109 fprintf_unfiltered (gdb_stdlog,
2110 "find_arch_by_info: info.tdep_info 0x%lx\n",
2111 (long) info.tdep_info);
2112 }
2113
2114 /* Find the tdep code that knows about this architecture. */
2115 for (rego = gdbarch_registry;
2116 rego != NULL;
2117 rego = rego->next)
2118 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2119 break;
2120 if (rego == NULL)
2121 {
2122 if (gdbarch_debug)
2123 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2124 "No matching architecture\n");
2125 return 0;
2126 }
2127
2128 /* Ask the tdep code for an architecture that matches "info". */
2129 new_gdbarch = rego->init (info, rego->arches);
2130
2131 /* Did the tdep code like it? No. Reject the change and revert to
2132 the old architecture. */
2133 if (new_gdbarch == NULL)
2134 {
2135 if (gdbarch_debug)
2136 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2137 "Target rejected architecture\n");
2138 return NULL;
2139 }
2140
2141 /* Is this a pre-existing architecture (as determined by already
2142 being initialized)? Move it to the front of the architecture
2143 list (keeping the list sorted Most Recently Used). */
2144 if (new_gdbarch->initialized_p)
2145 {
2146 struct gdbarch_list **list;
2147 struct gdbarch_list *this;
2148 if (gdbarch_debug)
2149 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2150 "Previous architecture 0x%08lx (%s) selected\n",
2151 (long) new_gdbarch,
2152 new_gdbarch->bfd_arch_info->printable_name);
2153 /* Find the existing arch in the list. */
2154 for (list = &rego->arches;
2155 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2156 list = &(*list)->next);
2157 /* It had better be in the list of architectures. */
2158 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2159 /* Unlink THIS. */
2160 this = (*list);
2161 (*list) = this->next;
2162 /* Insert THIS at the front. */
2163 this->next = rego->arches;
2164 rego->arches = this;
2165 /* Return it. */
2166 return new_gdbarch;
2167 }
2168
2169 /* It's a new architecture. */
2170 if (gdbarch_debug)
2171 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2172 "New architecture 0x%08lx (%s) selected\n",
2173 (long) new_gdbarch,
2174 new_gdbarch->bfd_arch_info->printable_name);
2175
2176 /* Insert the new architecture into the front of the architecture
2177 list (keep the list sorted Most Recently Used). */
2178 {
2179 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2180 this->next = rego->arches;
2181 this->gdbarch = new_gdbarch;
2182 rego->arches = this;
2183 }
2184
2185 /* Check that the newly installed architecture is valid. Plug in
2186 any post init values. */
2187 new_gdbarch->dump_tdep = rego->dump_tdep;
2188 verify_gdbarch (new_gdbarch);
2189 new_gdbarch->initialized_p = 1;
2190
2191 /* Initialize any per-architecture swap areas. This phase requires
2192 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2193 swap the entire architecture out. */
2194 current_gdbarch = new_gdbarch;
2195 current_gdbarch_swap_init_hack ();
2196 current_gdbarch_swap_out_hack ();
2197
2198 if (gdbarch_debug)
2199 gdbarch_dump (new_gdbarch, gdb_stdlog);
2200
2201 return new_gdbarch;
2202 }
2203
2204 struct gdbarch *
2205 gdbarch_find_by_info (struct gdbarch_info info)
2206 {
2207 /* Save the previously selected architecture, setting the global to
2208 NULL. This stops things like gdbarch->init() trying to use the
2209 previous architecture's configuration. The previous architecture
2210 may not even be of the same architecture family. The most recent
2211 architecture of the same family is found at the head of the
2212 rego->arches list. */
2213 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2214
2215 /* Find the specified architecture. */
2216 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2217
2218 /* Restore the existing architecture. */
2219 gdb_assert (current_gdbarch == NULL);
2220 current_gdbarch_swap_in_hack (old_gdbarch);
2221
2222 return new_gdbarch;
2223 }
2224
2225 /* Make the specified architecture current, swapping the existing one
2226 out. */
2227
2228 void
2229 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2230 {
2231 gdb_assert (new_gdbarch != NULL);
2232 gdb_assert (current_gdbarch != NULL);
2233 gdb_assert (new_gdbarch->initialized_p);
2234 current_gdbarch_swap_out_hack ();
2235 current_gdbarch_swap_in_hack (new_gdbarch);
2236 architecture_changed_event ();
2237 flush_cached_frames ();
2238 }
2239
2240 extern void _initialize_gdbarch (void);
2241
2242 void
2243 _initialize_gdbarch (void)
2244 {
2245 struct cmd_list_element *c;
2246
2247 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2248 Set architecture debugging."), _("\\
2249 Show architecture debugging."), _("\\
2250 When non-zero, architecture debugging is enabled."),
2251 NULL,
2252 show_gdbarch_debug,
2253 &setdebuglist, &showdebuglist);
2254 }
2255 EOF
2256
2257 # close things off
2258 exec 1>&2
2259 #../move-if-change new-gdbarch.c gdbarch.c
2260 compare_new gdbarch.c