]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
GDB: Add support for the new set/show disassembler-options commands.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2017 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # Returns the floating-point format to be used for values of length LENGTH.
387 # NAME, if non-NULL, is the type name, which may be used to distinguish
388 # different target formats of the same length.
389 m:const struct floatformat **:floatformat_for_type:const char *name, int length:name, length:0:default_floatformat_for_type::0
390
391 # For most targets, a pointer on the target and its representation as an
392 # address in GDB have the same size and "look the same". For such a
393 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
394 # / addr_bit will be set from it.
395 #
396 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
397 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
398 # gdbarch_address_to_pointer as well.
399 #
400 # ptr_bit is the size of a pointer on the target
401 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
402 # addr_bit is the size of a target address as represented in gdb
403 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
404 #
405 # dwarf2_addr_size is the target address size as used in the Dwarf debug
406 # info. For .debug_frame FDEs, this is supposed to be the target address
407 # size from the associated CU header, and which is equivalent to the
408 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
409 # Unfortunately there is no good way to determine this value. Therefore
410 # dwarf2_addr_size simply defaults to the target pointer size.
411 #
412 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
413 # defined using the target's pointer size so far.
414 #
415 # Note that dwarf2_addr_size only needs to be redefined by a target if the
416 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
417 # and if Dwarf versions < 4 need to be supported.
418 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
419 #
420 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
421 v:int:char_signed:::1:-1:1
422 #
423 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
424 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
425 # Function for getting target's idea of a frame pointer. FIXME: GDB's
426 # whole scheme for dealing with "frames" and "frame pointers" needs a
427 # serious shakedown.
428 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
429 #
430 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
431 # Read a register into a new struct value. If the register is wholly
432 # or partly unavailable, this should call mark_value_bytes_unavailable
433 # as appropriate. If this is defined, then pseudo_register_read will
434 # never be called.
435 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
436 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
437 #
438 v:int:num_regs:::0:-1
439 # This macro gives the number of pseudo-registers that live in the
440 # register namespace but do not get fetched or stored on the target.
441 # These pseudo-registers may be aliases for other registers,
442 # combinations of other registers, or they may be computed by GDB.
443 v:int:num_pseudo_regs:::0:0::0
444
445 # Assemble agent expression bytecode to collect pseudo-register REG.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
448
449 # Assemble agent expression bytecode to push the value of pseudo-register
450 # REG on the interpreter stack.
451 # Return -1 if something goes wrong, 0 otherwise.
452 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
453
454 # Some targets/architectures can do extra processing/display of
455 # segmentation faults. E.g., Intel MPX boundary faults.
456 # Call the architecture dependent function to handle the fault.
457 # UIOUT is the output stream where the handler will place information.
458 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
459
460 # GDB's standard (or well known) register numbers. These can map onto
461 # a real register or a pseudo (computed) register or not be defined at
462 # all (-1).
463 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
464 v:int:sp_regnum:::-1:-1::0
465 v:int:pc_regnum:::-1:-1::0
466 v:int:ps_regnum:::-1:-1::0
467 v:int:fp0_regnum:::0:-1::0
468 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
469 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
470 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
471 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
472 # Convert from an sdb register number to an internal gdb register number.
473 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
474 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
475 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
476 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
477 m:const char *:register_name:int regnr:regnr::0
478
479 # Return the type of a register specified by the architecture. Only
480 # the register cache should call this function directly; others should
481 # use "register_type".
482 M:struct type *:register_type:int reg_nr:reg_nr
483
484 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
485 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
486 # deprecated_fp_regnum.
487 v:int:deprecated_fp_regnum:::-1:-1::0
488
489 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
490 v:int:call_dummy_location::::AT_ENTRY_POINT::0
491 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
492
493 # Return true if the code of FRAME is writable.
494 m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
495
496 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
497 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
498 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
499 # MAP a GDB RAW register number onto a simulator register number. See
500 # also include/...-sim.h.
501 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
502 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
503 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
504
505 # Determine the address where a longjmp will land and save this address
506 # in PC. Return nonzero on success.
507 #
508 # FRAME corresponds to the longjmp frame.
509 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
510
511 #
512 v:int:believe_pcc_promotion:::::::
513 #
514 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
515 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
516 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
517 # Construct a value representing the contents of register REGNUM in
518 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
519 # allocate and return a struct value with all value attributes
520 # (but not the value contents) filled in.
521 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
522 #
523 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
524 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
525 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
526
527 # Return the return-value convention that will be used by FUNCTION
528 # to return a value of type VALTYPE. FUNCTION may be NULL in which
529 # case the return convention is computed based only on VALTYPE.
530 #
531 # If READBUF is not NULL, extract the return value and save it in this buffer.
532 #
533 # If WRITEBUF is not NULL, it contains a return value which will be
534 # stored into the appropriate register. This can be used when we want
535 # to force the value returned by a function (see the "return" command
536 # for instance).
537 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
538
539 # Return true if the return value of function is stored in the first hidden
540 # parameter. In theory, this feature should be language-dependent, specified
541 # by language and its ABI, such as C++. Unfortunately, compiler may
542 # implement it to a target-dependent feature. So that we need such hook here
543 # to be aware of this in GDB.
544 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
545
546 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
547 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
548 # On some platforms, a single function may provide multiple entry points,
549 # e.g. one that is used for function-pointer calls and a different one
550 # that is used for direct function calls.
551 # In order to ensure that breakpoints set on the function will trigger
552 # no matter via which entry point the function is entered, a platform
553 # may provide the skip_entrypoint callback. It is called with IP set
554 # to the main entry point of a function (as determined by the symbol table),
555 # and should return the address of the innermost entry point, where the
556 # actual breakpoint needs to be set. Note that skip_entrypoint is used
557 # by GDB common code even when debugging optimized code, where skip_prologue
558 # is not used.
559 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
560
561 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
562 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr:0:default_breakpoint_from_pc::0
563
564 # Return the breakpoint kind for this target based on *PCPTR.
565 m:int:breakpoint_kind_from_pc:CORE_ADDR *pcptr:pcptr::0:
566
567 # Return the software breakpoint from KIND. KIND can have target
568 # specific meaning like the Z0 kind parameter.
569 # SIZE is set to the software breakpoint's length in memory.
570 m:const gdb_byte *:sw_breakpoint_from_kind:int kind, int *size:kind, size::NULL::0
571
572 # Return the breakpoint kind for this target based on the current
573 # processor state (e.g. the current instruction mode on ARM) and the
574 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
575 m:int:breakpoint_kind_from_current_state:struct regcache *regcache, CORE_ADDR *pcptr:regcache, pcptr:0:default_breakpoint_kind_from_current_state::0
576
577 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
578 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
579 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
580 v:CORE_ADDR:decr_pc_after_break:::0:::0
581
582 # A function can be addressed by either it's "pointer" (possibly a
583 # descriptor address) or "entry point" (first executable instruction).
584 # The method "convert_from_func_ptr_addr" converting the former to the
585 # latter. gdbarch_deprecated_function_start_offset is being used to implement
586 # a simplified subset of that functionality - the function's address
587 # corresponds to the "function pointer" and the function's start
588 # corresponds to the "function entry point" - and hence is redundant.
589
590 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
591
592 # Return the remote protocol register number associated with this
593 # register. Normally the identity mapping.
594 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
595
596 # Fetch the target specific address used to represent a load module.
597 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
598 #
599 v:CORE_ADDR:frame_args_skip:::0:::0
600 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
601 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
602 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
603 # frame-base. Enable frame-base before frame-unwind.
604 F:int:frame_num_args:struct frame_info *frame:frame
605 #
606 M:CORE_ADDR:frame_align:CORE_ADDR address:address
607 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
608 v:int:frame_red_zone_size
609 #
610 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
611 # On some machines there are bits in addresses which are not really
612 # part of the address, but are used by the kernel, the hardware, etc.
613 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
614 # we get a "real" address such as one would find in a symbol table.
615 # This is used only for addresses of instructions, and even then I'm
616 # not sure it's used in all contexts. It exists to deal with there
617 # being a few stray bits in the PC which would mislead us, not as some
618 # sort of generic thing to handle alignment or segmentation (it's
619 # possible it should be in TARGET_READ_PC instead).
620 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
621
622 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
623 # indicates if the target needs software single step. An ISA method to
624 # implement it.
625 #
626 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
627 # target can single step. If not, then implement single step using breakpoints.
628 #
629 # Return a vector of addresses on which the software single step
630 # breakpoints should be inserted. NULL means software single step is
631 # not used.
632 # Multiple breakpoints may be inserted for some instructions such as
633 # conditional branch. However, each implementation must always evaluate
634 # the condition and only put the breakpoint at the branch destination if
635 # the condition is true, so that we ensure forward progress when stepping
636 # past a conditional branch to self.
637 F:VEC (CORE_ADDR) *:software_single_step:struct regcache *regcache:regcache
638
639 # Return non-zero if the processor is executing a delay slot and a
640 # further single-step is needed before the instruction finishes.
641 M:int:single_step_through_delay:struct frame_info *frame:frame
642 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
643 # disassembler. Perhaps objdump can handle it?
644 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
645 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
646
647
648 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
649 # evaluates non-zero, this is the address where the debugger will place
650 # a step-resume breakpoint to get us past the dynamic linker.
651 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
652 # Some systems also have trampoline code for returning from shared libs.
653 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
654
655 # A target might have problems with watchpoints as soon as the stack
656 # frame of the current function has been destroyed. This mostly happens
657 # as the first action in a function's epilogue. stack_frame_destroyed_p()
658 # is defined to return a non-zero value if either the given addr is one
659 # instruction after the stack destroying instruction up to the trailing
660 # return instruction or if we can figure out that the stack frame has
661 # already been invalidated regardless of the value of addr. Targets
662 # which don't suffer from that problem could just let this functionality
663 # untouched.
664 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
665 # Process an ELF symbol in the minimal symbol table in a backend-specific
666 # way. Normally this hook is supposed to do nothing, however if required,
667 # then this hook can be used to apply tranformations to symbols that are
668 # considered special in some way. For example the MIPS backend uses it
669 # to interpret \`st_other' information to mark compressed code symbols so
670 # that they can be treated in the appropriate manner in the processing of
671 # the main symbol table and DWARF-2 records.
672 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
673 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
674 # Process a symbol in the main symbol table in a backend-specific way.
675 # Normally this hook is supposed to do nothing, however if required,
676 # then this hook can be used to apply tranformations to symbols that
677 # are considered special in some way. This is currently used by the
678 # MIPS backend to make sure compressed code symbols have the ISA bit
679 # set. This in turn is needed for symbol values seen in GDB to match
680 # the values used at the runtime by the program itself, for function
681 # and label references.
682 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
683 # Adjust the address retrieved from a DWARF-2 record other than a line
684 # entry in a backend-specific way. Normally this hook is supposed to
685 # return the address passed unchanged, however if that is incorrect for
686 # any reason, then this hook can be used to fix the address up in the
687 # required manner. This is currently used by the MIPS backend to make
688 # sure addresses in FDE, range records, etc. referring to compressed
689 # code have the ISA bit set, matching line information and the symbol
690 # table.
691 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
692 # Adjust the address updated by a line entry in a backend-specific way.
693 # Normally this hook is supposed to return the address passed unchanged,
694 # however in the case of inconsistencies in these records, this hook can
695 # be used to fix them up in the required manner. This is currently used
696 # by the MIPS backend to make sure all line addresses in compressed code
697 # are presented with the ISA bit set, which is not always the case. This
698 # in turn ensures breakpoint addresses are correctly matched against the
699 # stop PC.
700 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
701 v:int:cannot_step_breakpoint:::0:0::0
702 v:int:have_nonsteppable_watchpoint:::0:0::0
703 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
704 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
705
706 # Return the appropriate type_flags for the supplied address class.
707 # This function should return 1 if the address class was recognized and
708 # type_flags was set, zero otherwise.
709 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
710 # Is a register in a group
711 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
712 # Fetch the pointer to the ith function argument.
713 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
714
715 # Iterate over all supported register notes in a core file. For each
716 # supported register note section, the iterator must call CB and pass
717 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
718 # the supported register note sections based on the current register
719 # values. Otherwise it should enumerate all supported register note
720 # sections.
721 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
722
723 # Create core file notes
724 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
725
726 # The elfcore writer hook to use to write Linux prpsinfo notes to core
727 # files. Most Linux architectures use the same prpsinfo32 or
728 # prpsinfo64 layouts, and so won't need to provide this hook, as we
729 # call the Linux generic routines in bfd to write prpsinfo notes by
730 # default.
731 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
732
733 # Find core file memory regions
734 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
735
736 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
737 # core file into buffer READBUF with length LEN. Return the number of bytes read
738 # (zero indicates failure).
739 # failed, otherwise, return the red length of READBUF.
740 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
741
742 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
743 # libraries list from core file into buffer READBUF with length LEN.
744 # Return the number of bytes read (zero indicates failure).
745 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
746
747 # How the core target converts a PTID from a core file to a string.
748 M:char *:core_pid_to_str:ptid_t ptid:ptid
749
750 # How the core target extracts the name of a thread from a core file.
751 M:const char *:core_thread_name:struct thread_info *thr:thr
752
753 # BFD target to use when generating a core file.
754 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
755
756 # If the elements of C++ vtables are in-place function descriptors rather
757 # than normal function pointers (which may point to code or a descriptor),
758 # set this to one.
759 v:int:vtable_function_descriptors:::0:0::0
760
761 # Set if the least significant bit of the delta is used instead of the least
762 # significant bit of the pfn for pointers to virtual member functions.
763 v:int:vbit_in_delta:::0:0::0
764
765 # Advance PC to next instruction in order to skip a permanent breakpoint.
766 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
767
768 # The maximum length of an instruction on this architecture in bytes.
769 V:ULONGEST:max_insn_length:::0:0
770
771 # Copy the instruction at FROM to TO, and make any adjustments
772 # necessary to single-step it at that address.
773 #
774 # REGS holds the state the thread's registers will have before
775 # executing the copied instruction; the PC in REGS will refer to FROM,
776 # not the copy at TO. The caller should update it to point at TO later.
777 #
778 # Return a pointer to data of the architecture's choice to be passed
779 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
780 # the instruction's effects have been completely simulated, with the
781 # resulting state written back to REGS.
782 #
783 # For a general explanation of displaced stepping and how GDB uses it,
784 # see the comments in infrun.c.
785 #
786 # The TO area is only guaranteed to have space for
787 # gdbarch_max_insn_length (arch) bytes, so this function must not
788 # write more bytes than that to that area.
789 #
790 # If you do not provide this function, GDB assumes that the
791 # architecture does not support displaced stepping.
792 #
793 # If your architecture doesn't need to adjust instructions before
794 # single-stepping them, consider using simple_displaced_step_copy_insn
795 # here.
796 #
797 # If the instruction cannot execute out of line, return NULL. The
798 # core falls back to stepping past the instruction in-line instead in
799 # that case.
800 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
801
802 # Return true if GDB should use hardware single-stepping to execute
803 # the displaced instruction identified by CLOSURE. If false,
804 # GDB will simply restart execution at the displaced instruction
805 # location, and it is up to the target to ensure GDB will receive
806 # control again (e.g. by placing a software breakpoint instruction
807 # into the displaced instruction buffer).
808 #
809 # The default implementation returns false on all targets that
810 # provide a gdbarch_software_single_step routine, and true otherwise.
811 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
812
813 # Fix up the state resulting from successfully single-stepping a
814 # displaced instruction, to give the result we would have gotten from
815 # stepping the instruction in its original location.
816 #
817 # REGS is the register state resulting from single-stepping the
818 # displaced instruction.
819 #
820 # CLOSURE is the result from the matching call to
821 # gdbarch_displaced_step_copy_insn.
822 #
823 # If you provide gdbarch_displaced_step_copy_insn.but not this
824 # function, then GDB assumes that no fixup is needed after
825 # single-stepping the instruction.
826 #
827 # For a general explanation of displaced stepping and how GDB uses it,
828 # see the comments in infrun.c.
829 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
830
831 # Free a closure returned by gdbarch_displaced_step_copy_insn.
832 #
833 # If you provide gdbarch_displaced_step_copy_insn, you must provide
834 # this function as well.
835 #
836 # If your architecture uses closures that don't need to be freed, then
837 # you can use simple_displaced_step_free_closure here.
838 #
839 # For a general explanation of displaced stepping and how GDB uses it,
840 # see the comments in infrun.c.
841 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
842
843 # Return the address of an appropriate place to put displaced
844 # instructions while we step over them. There need only be one such
845 # place, since we're only stepping one thread over a breakpoint at a
846 # time.
847 #
848 # For a general explanation of displaced stepping and how GDB uses it,
849 # see the comments in infrun.c.
850 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
851
852 # Relocate an instruction to execute at a different address. OLDLOC
853 # is the address in the inferior memory where the instruction to
854 # relocate is currently at. On input, TO points to the destination
855 # where we want the instruction to be copied (and possibly adjusted)
856 # to. On output, it points to one past the end of the resulting
857 # instruction(s). The effect of executing the instruction at TO shall
858 # be the same as if executing it at FROM. For example, call
859 # instructions that implicitly push the return address on the stack
860 # should be adjusted to return to the instruction after OLDLOC;
861 # relative branches, and other PC-relative instructions need the
862 # offset adjusted; etc.
863 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
864
865 # Refresh overlay mapped state for section OSECT.
866 F:void:overlay_update:struct obj_section *osect:osect
867
868 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
869
870 # Handle special encoding of static variables in stabs debug info.
871 F:const char *:static_transform_name:const char *name:name
872 # Set if the address in N_SO or N_FUN stabs may be zero.
873 v:int:sofun_address_maybe_missing:::0:0::0
874
875 # Parse the instruction at ADDR storing in the record execution log
876 # the registers REGCACHE and memory ranges that will be affected when
877 # the instruction executes, along with their current values.
878 # Return -1 if something goes wrong, 0 otherwise.
879 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
880
881 # Save process state after a signal.
882 # Return -1 if something goes wrong, 0 otherwise.
883 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
884
885 # Signal translation: translate inferior's signal (target's) number
886 # into GDB's representation. The implementation of this method must
887 # be host independent. IOW, don't rely on symbols of the NAT_FILE
888 # header (the nm-*.h files), the host <signal.h> header, or similar
889 # headers. This is mainly used when cross-debugging core files ---
890 # "Live" targets hide the translation behind the target interface
891 # (target_wait, target_resume, etc.).
892 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
893
894 # Signal translation: translate the GDB's internal signal number into
895 # the inferior's signal (target's) representation. The implementation
896 # of this method must be host independent. IOW, don't rely on symbols
897 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
898 # header, or similar headers.
899 # Return the target signal number if found, or -1 if the GDB internal
900 # signal number is invalid.
901 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
902
903 # Extra signal info inspection.
904 #
905 # Return a type suitable to inspect extra signal information.
906 M:struct type *:get_siginfo_type:void:
907
908 # Record architecture-specific information from the symbol table.
909 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
910
911 # Function for the 'catch syscall' feature.
912
913 # Get architecture-specific system calls information from registers.
914 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
915
916 # The filename of the XML syscall for this architecture.
917 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
918
919 # Information about system calls from this architecture
920 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
921
922 # SystemTap related fields and functions.
923
924 # A NULL-terminated array of prefixes used to mark an integer constant
925 # on the architecture's assembly.
926 # For example, on x86 integer constants are written as:
927 #
928 # \$10 ;; integer constant 10
929 #
930 # in this case, this prefix would be the character \`\$\'.
931 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
932
933 # A NULL-terminated array of suffixes used to mark an integer constant
934 # on the architecture's assembly.
935 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
936
937 # A NULL-terminated array of prefixes used to mark a register name on
938 # the architecture's assembly.
939 # For example, on x86 the register name is written as:
940 #
941 # \%eax ;; register eax
942 #
943 # in this case, this prefix would be the character \`\%\'.
944 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
945
946 # A NULL-terminated array of suffixes used to mark a register name on
947 # the architecture's assembly.
948 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
949
950 # A NULL-terminated array of prefixes used to mark a register
951 # indirection on the architecture's assembly.
952 # For example, on x86 the register indirection is written as:
953 #
954 # \(\%eax\) ;; indirecting eax
955 #
956 # in this case, this prefix would be the charater \`\(\'.
957 #
958 # Please note that we use the indirection prefix also for register
959 # displacement, e.g., \`4\(\%eax\)\' on x86.
960 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
961
962 # A NULL-terminated array of suffixes used to mark a register
963 # indirection on the architecture's assembly.
964 # For example, on x86 the register indirection is written as:
965 #
966 # \(\%eax\) ;; indirecting eax
967 #
968 # in this case, this prefix would be the charater \`\)\'.
969 #
970 # Please note that we use the indirection suffix also for register
971 # displacement, e.g., \`4\(\%eax\)\' on x86.
972 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
973
974 # Prefix(es) used to name a register using GDB's nomenclature.
975 #
976 # For example, on PPC a register is represented by a number in the assembly
977 # language (e.g., \`10\' is the 10th general-purpose register). However,
978 # inside GDB this same register has an \`r\' appended to its name, so the 10th
979 # register would be represented as \`r10\' internally.
980 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
981
982 # Suffix used to name a register using GDB's nomenclature.
983 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
984
985 # Check if S is a single operand.
986 #
987 # Single operands can be:
988 # \- Literal integers, e.g. \`\$10\' on x86
989 # \- Register access, e.g. \`\%eax\' on x86
990 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
991 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
992 #
993 # This function should check for these patterns on the string
994 # and return 1 if some were found, or zero otherwise. Please try to match
995 # as much info as you can from the string, i.e., if you have to match
996 # something like \`\(\%\', do not match just the \`\(\'.
997 M:int:stap_is_single_operand:const char *s:s
998
999 # Function used to handle a "special case" in the parser.
1000 #
1001 # A "special case" is considered to be an unknown token, i.e., a token
1002 # that the parser does not know how to parse. A good example of special
1003 # case would be ARM's register displacement syntax:
1004 #
1005 # [R0, #4] ;; displacing R0 by 4
1006 #
1007 # Since the parser assumes that a register displacement is of the form:
1008 #
1009 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1010 #
1011 # it means that it will not be able to recognize and parse this odd syntax.
1012 # Therefore, we should add a special case function that will handle this token.
1013 #
1014 # This function should generate the proper expression form of the expression
1015 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1016 # and so on). It should also return 1 if the parsing was successful, or zero
1017 # if the token was not recognized as a special token (in this case, returning
1018 # zero means that the special parser is deferring the parsing to the generic
1019 # parser), and should advance the buffer pointer (p->arg).
1020 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1021
1022 # DTrace related functions.
1023
1024 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1025 # NARG must be >= 0.
1026 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1027
1028 # True if the given ADDR does not contain the instruction sequence
1029 # corresponding to a disabled DTrace is-enabled probe.
1030 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1031
1032 # Enable a DTrace is-enabled probe at ADDR.
1033 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1034
1035 # Disable a DTrace is-enabled probe at ADDR.
1036 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1037
1038 # True if the list of shared libraries is one and only for all
1039 # processes, as opposed to a list of shared libraries per inferior.
1040 # This usually means that all processes, although may or may not share
1041 # an address space, will see the same set of symbols at the same
1042 # addresses.
1043 v:int:has_global_solist:::0:0::0
1044
1045 # On some targets, even though each inferior has its own private
1046 # address space, the debug interface takes care of making breakpoints
1047 # visible to all address spaces automatically. For such cases,
1048 # this property should be set to true.
1049 v:int:has_global_breakpoints:::0:0::0
1050
1051 # True if inferiors share an address space (e.g., uClinux).
1052 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1053
1054 # True if a fast tracepoint can be set at an address.
1055 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1056
1057 # Guess register state based on tracepoint location. Used for tracepoints
1058 # where no registers have been collected, but there's only one location,
1059 # allowing us to guess the PC value, and perhaps some other registers.
1060 # On entry, regcache has all registers marked as unavailable.
1061 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1062
1063 # Return the "auto" target charset.
1064 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1065 # Return the "auto" target wide charset.
1066 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1067
1068 # If non-empty, this is a file extension that will be opened in place
1069 # of the file extension reported by the shared library list.
1070 #
1071 # This is most useful for toolchains that use a post-linker tool,
1072 # where the names of the files run on the target differ in extension
1073 # compared to the names of the files GDB should load for debug info.
1074 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1075
1076 # If true, the target OS has DOS-based file system semantics. That
1077 # is, absolute paths include a drive name, and the backslash is
1078 # considered a directory separator.
1079 v:int:has_dos_based_file_system:::0:0::0
1080
1081 # Generate bytecodes to collect the return address in a frame.
1082 # Since the bytecodes run on the target, possibly with GDB not even
1083 # connected, the full unwinding machinery is not available, and
1084 # typically this function will issue bytecodes for one or more likely
1085 # places that the return address may be found.
1086 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1087
1088 # Implement the "info proc" command.
1089 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1090
1091 # Implement the "info proc" command for core files. Noe that there
1092 # are two "info_proc"-like methods on gdbarch -- one for core files,
1093 # one for live targets.
1094 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1095
1096 # Iterate over all objfiles in the order that makes the most sense
1097 # for the architecture to make global symbol searches.
1098 #
1099 # CB is a callback function where OBJFILE is the objfile to be searched,
1100 # and CB_DATA a pointer to user-defined data (the same data that is passed
1101 # when calling this gdbarch method). The iteration stops if this function
1102 # returns nonzero.
1103 #
1104 # CB_DATA is a pointer to some user-defined data to be passed to
1105 # the callback.
1106 #
1107 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1108 # inspected when the symbol search was requested.
1109 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1110
1111 # Ravenscar arch-dependent ops.
1112 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1113
1114 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1115 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1116
1117 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1118 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1119
1120 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1121 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1122
1123 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1124 # Return 0 if *READPTR is already at the end of the buffer.
1125 # Return -1 if there is insufficient buffer for a whole entry.
1126 # Return 1 if an entry was read into *TYPEP and *VALP.
1127 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1128
1129 # Print the description of a single auxv entry described by TYPE and VAL
1130 # to FILE.
1131 m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1132
1133 # Find the address range of the current inferior's vsyscall/vDSO, and
1134 # write it to *RANGE. If the vsyscall's length can't be determined, a
1135 # range with zero length is returned. Returns true if the vsyscall is
1136 # found, false otherwise.
1137 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1138
1139 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1140 # PROT has GDB_MMAP_PROT_* bitmask format.
1141 # Throw an error if it is not possible. Returned address is always valid.
1142 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1143
1144 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1145 # Print a warning if it is not possible.
1146 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1147
1148 # Return string (caller has to use xfree for it) with options for GCC
1149 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1150 # These options are put before CU's DW_AT_producer compilation options so that
1151 # they can override it. Method may also return NULL.
1152 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1153
1154 # Return a regular expression that matches names used by this
1155 # architecture in GNU configury triplets. The result is statically
1156 # allocated and must not be freed. The default implementation simply
1157 # returns the BFD architecture name, which is correct in nearly every
1158 # case.
1159 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1160
1161 # Return the size in 8-bit bytes of an addressable memory unit on this
1162 # architecture. This corresponds to the number of 8-bit bytes associated to
1163 # each address in memory.
1164 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1165
1166 # Functions for allowing a target to modify its disassembler options.
1167 v:char **:disassembler_options:::0:0::0:pstring (*gdbarch->disassembler_options)
1168 v:const disasm_options_t *:valid_disassembler_options:::0:0::0:host_address_to_string (gdbarch->valid_disassembler_options->name)
1169
1170 EOF
1171 }
1172
1173 #
1174 # The .log file
1175 #
1176 exec > new-gdbarch.log
1177 function_list | while do_read
1178 do
1179 cat <<EOF
1180 ${class} ${returntype} ${function} ($formal)
1181 EOF
1182 for r in ${read}
1183 do
1184 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1185 done
1186 if class_is_predicate_p && fallback_default_p
1187 then
1188 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1189 kill $$
1190 exit 1
1191 fi
1192 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1193 then
1194 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1195 kill $$
1196 exit 1
1197 fi
1198 if class_is_multiarch_p
1199 then
1200 if class_is_predicate_p ; then :
1201 elif test "x${predefault}" = "x"
1202 then
1203 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1204 kill $$
1205 exit 1
1206 fi
1207 fi
1208 echo ""
1209 done
1210
1211 exec 1>&2
1212 compare_new gdbarch.log
1213
1214
1215 copyright ()
1216 {
1217 cat <<EOF
1218 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1219 /* vi:set ro: */
1220
1221 /* Dynamic architecture support for GDB, the GNU debugger.
1222
1223 Copyright (C) 1998-2017 Free Software Foundation, Inc.
1224
1225 This file is part of GDB.
1226
1227 This program is free software; you can redistribute it and/or modify
1228 it under the terms of the GNU General Public License as published by
1229 the Free Software Foundation; either version 3 of the License, or
1230 (at your option) any later version.
1231
1232 This program is distributed in the hope that it will be useful,
1233 but WITHOUT ANY WARRANTY; without even the implied warranty of
1234 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1235 GNU General Public License for more details.
1236
1237 You should have received a copy of the GNU General Public License
1238 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1239
1240 /* This file was created with the aid of \`\`gdbarch.sh''.
1241
1242 The Bourne shell script \`\`gdbarch.sh'' creates the files
1243 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1244 against the existing \`\`gdbarch.[hc]''. Any differences found
1245 being reported.
1246
1247 If editing this file, please also run gdbarch.sh and merge any
1248 changes into that script. Conversely, when making sweeping changes
1249 to this file, modifying gdbarch.sh and using its output may prove
1250 easier. */
1251
1252 EOF
1253 }
1254
1255 #
1256 # The .h file
1257 #
1258
1259 exec > new-gdbarch.h
1260 copyright
1261 cat <<EOF
1262 #ifndef GDBARCH_H
1263 #define GDBARCH_H
1264
1265 #include "frame.h"
1266 #include "dis-asm.h"
1267
1268 struct floatformat;
1269 struct ui_file;
1270 struct value;
1271 struct objfile;
1272 struct obj_section;
1273 struct minimal_symbol;
1274 struct regcache;
1275 struct reggroup;
1276 struct regset;
1277 struct disassemble_info;
1278 struct target_ops;
1279 struct obstack;
1280 struct bp_target_info;
1281 struct target_desc;
1282 struct objfile;
1283 struct symbol;
1284 struct displaced_step_closure;
1285 struct syscall;
1286 struct agent_expr;
1287 struct axs_value;
1288 struct stap_parse_info;
1289 struct parser_state;
1290 struct ravenscar_arch_ops;
1291 struct elf_internal_linux_prpsinfo;
1292 struct mem_range;
1293 struct syscalls_info;
1294 struct thread_info;
1295 struct ui_out;
1296
1297 #include "regcache.h"
1298
1299 /* The architecture associated with the inferior through the
1300 connection to the target.
1301
1302 The architecture vector provides some information that is really a
1303 property of the inferior, accessed through a particular target:
1304 ptrace operations; the layout of certain RSP packets; the solib_ops
1305 vector; etc. To differentiate architecture accesses to
1306 per-inferior/target properties from
1307 per-thread/per-frame/per-objfile properties, accesses to
1308 per-inferior/target properties should be made through this
1309 gdbarch. */
1310
1311 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1312 extern struct gdbarch *target_gdbarch (void);
1313
1314 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1315 gdbarch method. */
1316
1317 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1318 (struct objfile *objfile, void *cb_data);
1319
1320 /* Callback type for regset section iterators. The callback usually
1321 invokes the REGSET's supply or collect method, to which it must
1322 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1323 section name, and HUMAN_NAME is used for diagnostic messages.
1324 CB_DATA should have been passed unchanged through the iterator. */
1325
1326 typedef void (iterate_over_regset_sections_cb)
1327 (const char *sect_name, int size, const struct regset *regset,
1328 const char *human_name, void *cb_data);
1329 EOF
1330
1331 # function typedef's
1332 printf "\n"
1333 printf "\n"
1334 printf "/* The following are pre-initialized by GDBARCH. */\n"
1335 function_list | while do_read
1336 do
1337 if class_is_info_p
1338 then
1339 printf "\n"
1340 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1341 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1342 fi
1343 done
1344
1345 # function typedef's
1346 printf "\n"
1347 printf "\n"
1348 printf "/* The following are initialized by the target dependent code. */\n"
1349 function_list | while do_read
1350 do
1351 if [ -n "${comment}" ]
1352 then
1353 echo "${comment}" | sed \
1354 -e '2 s,#,/*,' \
1355 -e '3,$ s,#, ,' \
1356 -e '$ s,$, */,'
1357 fi
1358
1359 if class_is_predicate_p
1360 then
1361 printf "\n"
1362 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1363 fi
1364 if class_is_variable_p
1365 then
1366 printf "\n"
1367 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1368 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1369 fi
1370 if class_is_function_p
1371 then
1372 printf "\n"
1373 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1374 then
1375 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1376 elif class_is_multiarch_p
1377 then
1378 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1379 else
1380 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1381 fi
1382 if [ "x${formal}" = "xvoid" ]
1383 then
1384 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1385 else
1386 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1387 fi
1388 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1389 fi
1390 done
1391
1392 # close it off
1393 cat <<EOF
1394
1395 /* Definition for an unknown syscall, used basically in error-cases. */
1396 #define UNKNOWN_SYSCALL (-1)
1397
1398 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1399
1400
1401 /* Mechanism for co-ordinating the selection of a specific
1402 architecture.
1403
1404 GDB targets (*-tdep.c) can register an interest in a specific
1405 architecture. Other GDB components can register a need to maintain
1406 per-architecture data.
1407
1408 The mechanisms below ensures that there is only a loose connection
1409 between the set-architecture command and the various GDB
1410 components. Each component can independently register their need
1411 to maintain architecture specific data with gdbarch.
1412
1413 Pragmatics:
1414
1415 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1416 didn't scale.
1417
1418 The more traditional mega-struct containing architecture specific
1419 data for all the various GDB components was also considered. Since
1420 GDB is built from a variable number of (fairly independent)
1421 components it was determined that the global aproach was not
1422 applicable. */
1423
1424
1425 /* Register a new architectural family with GDB.
1426
1427 Register support for the specified ARCHITECTURE with GDB. When
1428 gdbarch determines that the specified architecture has been
1429 selected, the corresponding INIT function is called.
1430
1431 --
1432
1433 The INIT function takes two parameters: INFO which contains the
1434 information available to gdbarch about the (possibly new)
1435 architecture; ARCHES which is a list of the previously created
1436 \`\`struct gdbarch'' for this architecture.
1437
1438 The INFO parameter is, as far as possible, be pre-initialized with
1439 information obtained from INFO.ABFD or the global defaults.
1440
1441 The ARCHES parameter is a linked list (sorted most recently used)
1442 of all the previously created architures for this architecture
1443 family. The (possibly NULL) ARCHES->gdbarch can used to access
1444 values from the previously selected architecture for this
1445 architecture family.
1446
1447 The INIT function shall return any of: NULL - indicating that it
1448 doesn't recognize the selected architecture; an existing \`\`struct
1449 gdbarch'' from the ARCHES list - indicating that the new
1450 architecture is just a synonym for an earlier architecture (see
1451 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1452 - that describes the selected architecture (see gdbarch_alloc()).
1453
1454 The DUMP_TDEP function shall print out all target specific values.
1455 Care should be taken to ensure that the function works in both the
1456 multi-arch and non- multi-arch cases. */
1457
1458 struct gdbarch_list
1459 {
1460 struct gdbarch *gdbarch;
1461 struct gdbarch_list *next;
1462 };
1463
1464 struct gdbarch_info
1465 {
1466 /* Use default: NULL (ZERO). */
1467 const struct bfd_arch_info *bfd_arch_info;
1468
1469 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1470 enum bfd_endian byte_order;
1471
1472 enum bfd_endian byte_order_for_code;
1473
1474 /* Use default: NULL (ZERO). */
1475 bfd *abfd;
1476
1477 /* Use default: NULL (ZERO). */
1478 void *tdep_info;
1479
1480 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1481 enum gdb_osabi osabi;
1482
1483 /* Use default: NULL (ZERO). */
1484 const struct target_desc *target_desc;
1485 };
1486
1487 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1488 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1489
1490 /* DEPRECATED - use gdbarch_register() */
1491 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1492
1493 extern void gdbarch_register (enum bfd_architecture architecture,
1494 gdbarch_init_ftype *,
1495 gdbarch_dump_tdep_ftype *);
1496
1497
1498 /* Return a freshly allocated, NULL terminated, array of the valid
1499 architecture names. Since architectures are registered during the
1500 _initialize phase this function only returns useful information
1501 once initialization has been completed. */
1502
1503 extern const char **gdbarch_printable_names (void);
1504
1505
1506 /* Helper function. Search the list of ARCHES for a GDBARCH that
1507 matches the information provided by INFO. */
1508
1509 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1510
1511
1512 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1513 basic initialization using values obtained from the INFO and TDEP
1514 parameters. set_gdbarch_*() functions are called to complete the
1515 initialization of the object. */
1516
1517 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1518
1519
1520 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1521 It is assumed that the caller freeds the \`\`struct
1522 gdbarch_tdep''. */
1523
1524 extern void gdbarch_free (struct gdbarch *);
1525
1526
1527 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1528 obstack. The memory is freed when the corresponding architecture
1529 is also freed. */
1530
1531 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1532 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1533 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1534
1535 /* Duplicate STRING, returning an equivalent string that's allocated on the
1536 obstack associated with GDBARCH. The string is freed when the corresponding
1537 architecture is also freed. */
1538
1539 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1540
1541 /* Helper function. Force an update of the current architecture.
1542
1543 The actual architecture selected is determined by INFO, \`\`(gdb) set
1544 architecture'' et.al., the existing architecture and BFD's default
1545 architecture. INFO should be initialized to zero and then selected
1546 fields should be updated.
1547
1548 Returns non-zero if the update succeeds. */
1549
1550 extern int gdbarch_update_p (struct gdbarch_info info);
1551
1552
1553 /* Helper function. Find an architecture matching info.
1554
1555 INFO should be initialized using gdbarch_info_init, relevant fields
1556 set, and then finished using gdbarch_info_fill.
1557
1558 Returns the corresponding architecture, or NULL if no matching
1559 architecture was found. */
1560
1561 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1562
1563
1564 /* Helper function. Set the target gdbarch to "gdbarch". */
1565
1566 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1567
1568
1569 /* Register per-architecture data-pointer.
1570
1571 Reserve space for a per-architecture data-pointer. An identifier
1572 for the reserved data-pointer is returned. That identifer should
1573 be saved in a local static variable.
1574
1575 Memory for the per-architecture data shall be allocated using
1576 gdbarch_obstack_zalloc. That memory will be deleted when the
1577 corresponding architecture object is deleted.
1578
1579 When a previously created architecture is re-selected, the
1580 per-architecture data-pointer for that previous architecture is
1581 restored. INIT() is not re-called.
1582
1583 Multiple registrarants for any architecture are allowed (and
1584 strongly encouraged). */
1585
1586 struct gdbarch_data;
1587
1588 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1589 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1590 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1591 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1592 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1593 struct gdbarch_data *data,
1594 void *pointer);
1595
1596 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1597
1598
1599 /* Set the dynamic target-system-dependent parameters (architecture,
1600 byte-order, ...) using information found in the BFD. */
1601
1602 extern void set_gdbarch_from_file (bfd *);
1603
1604
1605 /* Initialize the current architecture to the "first" one we find on
1606 our list. */
1607
1608 extern void initialize_current_architecture (void);
1609
1610 /* gdbarch trace variable */
1611 extern unsigned int gdbarch_debug;
1612
1613 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1614
1615 #endif
1616 EOF
1617 exec 1>&2
1618 #../move-if-change new-gdbarch.h gdbarch.h
1619 compare_new gdbarch.h
1620
1621
1622 #
1623 # C file
1624 #
1625
1626 exec > new-gdbarch.c
1627 copyright
1628 cat <<EOF
1629
1630 #include "defs.h"
1631 #include "arch-utils.h"
1632
1633 #include "gdbcmd.h"
1634 #include "inferior.h"
1635 #include "symcat.h"
1636
1637 #include "floatformat.h"
1638 #include "reggroups.h"
1639 #include "osabi.h"
1640 #include "gdb_obstack.h"
1641 #include "observer.h"
1642 #include "regcache.h"
1643 #include "objfiles.h"
1644 #include "auxv.h"
1645
1646 /* Static function declarations */
1647
1648 static void alloc_gdbarch_data (struct gdbarch *);
1649
1650 /* Non-zero if we want to trace architecture code. */
1651
1652 #ifndef GDBARCH_DEBUG
1653 #define GDBARCH_DEBUG 0
1654 #endif
1655 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1656 static void
1657 show_gdbarch_debug (struct ui_file *file, int from_tty,
1658 struct cmd_list_element *c, const char *value)
1659 {
1660 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1661 }
1662
1663 static const char *
1664 pformat (const struct floatformat **format)
1665 {
1666 if (format == NULL)
1667 return "(null)";
1668 else
1669 /* Just print out one of them - this is only for diagnostics. */
1670 return format[0]->name;
1671 }
1672
1673 static const char *
1674 pstring (const char *string)
1675 {
1676 if (string == NULL)
1677 return "(null)";
1678 return string;
1679 }
1680
1681 /* Helper function to print a list of strings, represented as "const
1682 char *const *". The list is printed comma-separated. */
1683
1684 static char *
1685 pstring_list (const char *const *list)
1686 {
1687 static char ret[100];
1688 const char *const *p;
1689 size_t offset = 0;
1690
1691 if (list == NULL)
1692 return "(null)";
1693
1694 ret[0] = '\0';
1695 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1696 {
1697 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1698 offset += 2 + s;
1699 }
1700
1701 if (offset > 0)
1702 {
1703 gdb_assert (offset - 2 < sizeof (ret));
1704 ret[offset - 2] = '\0';
1705 }
1706
1707 return ret;
1708 }
1709
1710 EOF
1711
1712 # gdbarch open the gdbarch object
1713 printf "\n"
1714 printf "/* Maintain the struct gdbarch object. */\n"
1715 printf "\n"
1716 printf "struct gdbarch\n"
1717 printf "{\n"
1718 printf " /* Has this architecture been fully initialized? */\n"
1719 printf " int initialized_p;\n"
1720 printf "\n"
1721 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1722 printf " struct obstack *obstack;\n"
1723 printf "\n"
1724 printf " /* basic architectural information. */\n"
1725 function_list | while do_read
1726 do
1727 if class_is_info_p
1728 then
1729 printf " ${returntype} ${function};\n"
1730 fi
1731 done
1732 printf "\n"
1733 printf " /* target specific vector. */\n"
1734 printf " struct gdbarch_tdep *tdep;\n"
1735 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1736 printf "\n"
1737 printf " /* per-architecture data-pointers. */\n"
1738 printf " unsigned nr_data;\n"
1739 printf " void **data;\n"
1740 printf "\n"
1741 cat <<EOF
1742 /* Multi-arch values.
1743
1744 When extending this structure you must:
1745
1746 Add the field below.
1747
1748 Declare set/get functions and define the corresponding
1749 macro in gdbarch.h.
1750
1751 gdbarch_alloc(): If zero/NULL is not a suitable default,
1752 initialize the new field.
1753
1754 verify_gdbarch(): Confirm that the target updated the field
1755 correctly.
1756
1757 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1758 field is dumped out
1759
1760 get_gdbarch(): Implement the set/get functions (probably using
1761 the macro's as shortcuts).
1762
1763 */
1764
1765 EOF
1766 function_list | while do_read
1767 do
1768 if class_is_variable_p
1769 then
1770 printf " ${returntype} ${function};\n"
1771 elif class_is_function_p
1772 then
1773 printf " gdbarch_${function}_ftype *${function};\n"
1774 fi
1775 done
1776 printf "};\n"
1777
1778 # Create a new gdbarch struct
1779 cat <<EOF
1780
1781 /* Create a new \`\`struct gdbarch'' based on information provided by
1782 \`\`struct gdbarch_info''. */
1783 EOF
1784 printf "\n"
1785 cat <<EOF
1786 struct gdbarch *
1787 gdbarch_alloc (const struct gdbarch_info *info,
1788 struct gdbarch_tdep *tdep)
1789 {
1790 struct gdbarch *gdbarch;
1791
1792 /* Create an obstack for allocating all the per-architecture memory,
1793 then use that to allocate the architecture vector. */
1794 struct obstack *obstack = XNEW (struct obstack);
1795 obstack_init (obstack);
1796 gdbarch = XOBNEW (obstack, struct gdbarch);
1797 memset (gdbarch, 0, sizeof (*gdbarch));
1798 gdbarch->obstack = obstack;
1799
1800 alloc_gdbarch_data (gdbarch);
1801
1802 gdbarch->tdep = tdep;
1803 EOF
1804 printf "\n"
1805 function_list | while do_read
1806 do
1807 if class_is_info_p
1808 then
1809 printf " gdbarch->${function} = info->${function};\n"
1810 fi
1811 done
1812 printf "\n"
1813 printf " /* Force the explicit initialization of these. */\n"
1814 function_list | while do_read
1815 do
1816 if class_is_function_p || class_is_variable_p
1817 then
1818 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1819 then
1820 printf " gdbarch->${function} = ${predefault};\n"
1821 fi
1822 fi
1823 done
1824 cat <<EOF
1825 /* gdbarch_alloc() */
1826
1827 return gdbarch;
1828 }
1829 EOF
1830
1831 # Free a gdbarch struct.
1832 printf "\n"
1833 printf "\n"
1834 cat <<EOF
1835 /* Allocate extra space using the per-architecture obstack. */
1836
1837 void *
1838 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1839 {
1840 void *data = obstack_alloc (arch->obstack, size);
1841
1842 memset (data, 0, size);
1843 return data;
1844 }
1845
1846 /* See gdbarch.h. */
1847
1848 char *
1849 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1850 {
1851 return obstack_strdup (arch->obstack, string);
1852 }
1853
1854
1855 /* Free a gdbarch struct. This should never happen in normal
1856 operation --- once you've created a gdbarch, you keep it around.
1857 However, if an architecture's init function encounters an error
1858 building the structure, it may need to clean up a partially
1859 constructed gdbarch. */
1860
1861 void
1862 gdbarch_free (struct gdbarch *arch)
1863 {
1864 struct obstack *obstack;
1865
1866 gdb_assert (arch != NULL);
1867 gdb_assert (!arch->initialized_p);
1868 obstack = arch->obstack;
1869 obstack_free (obstack, 0); /* Includes the ARCH. */
1870 xfree (obstack);
1871 }
1872 EOF
1873
1874 # verify a new architecture
1875 cat <<EOF
1876
1877
1878 /* Ensure that all values in a GDBARCH are reasonable. */
1879
1880 static void
1881 verify_gdbarch (struct gdbarch *gdbarch)
1882 {
1883 string_file log;
1884
1885 /* fundamental */
1886 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1887 log.puts ("\n\tbyte-order");
1888 if (gdbarch->bfd_arch_info == NULL)
1889 log.puts ("\n\tbfd_arch_info");
1890 /* Check those that need to be defined for the given multi-arch level. */
1891 EOF
1892 function_list | while do_read
1893 do
1894 if class_is_function_p || class_is_variable_p
1895 then
1896 if [ "x${invalid_p}" = "x0" ]
1897 then
1898 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1899 elif class_is_predicate_p
1900 then
1901 printf " /* Skip verify of ${function}, has predicate. */\n"
1902 # FIXME: See do_read for potential simplification
1903 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1904 then
1905 printf " if (${invalid_p})\n"
1906 printf " gdbarch->${function} = ${postdefault};\n"
1907 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1908 then
1909 printf " if (gdbarch->${function} == ${predefault})\n"
1910 printf " gdbarch->${function} = ${postdefault};\n"
1911 elif [ -n "${postdefault}" ]
1912 then
1913 printf " if (gdbarch->${function} == 0)\n"
1914 printf " gdbarch->${function} = ${postdefault};\n"
1915 elif [ -n "${invalid_p}" ]
1916 then
1917 printf " if (${invalid_p})\n"
1918 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1919 elif [ -n "${predefault}" ]
1920 then
1921 printf " if (gdbarch->${function} == ${predefault})\n"
1922 printf " log.puts (\"\\\\n\\\\t${function}\");\n"
1923 fi
1924 fi
1925 done
1926 cat <<EOF
1927 if (!log.empty ())
1928 internal_error (__FILE__, __LINE__,
1929 _("verify_gdbarch: the following are invalid ...%s"),
1930 log.c_str ());
1931 }
1932 EOF
1933
1934 # dump the structure
1935 printf "\n"
1936 printf "\n"
1937 cat <<EOF
1938 /* Print out the details of the current architecture. */
1939
1940 void
1941 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1942 {
1943 const char *gdb_nm_file = "<not-defined>";
1944
1945 #if defined (GDB_NM_FILE)
1946 gdb_nm_file = GDB_NM_FILE;
1947 #endif
1948 fprintf_unfiltered (file,
1949 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1950 gdb_nm_file);
1951 EOF
1952 function_list | sort -t: -k 3 | while do_read
1953 do
1954 # First the predicate
1955 if class_is_predicate_p
1956 then
1957 printf " fprintf_unfiltered (file,\n"
1958 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1959 printf " gdbarch_${function}_p (gdbarch));\n"
1960 fi
1961 # Print the corresponding value.
1962 if class_is_function_p
1963 then
1964 printf " fprintf_unfiltered (file,\n"
1965 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1966 printf " host_address_to_string (gdbarch->${function}));\n"
1967 else
1968 # It is a variable
1969 case "${print}:${returntype}" in
1970 :CORE_ADDR )
1971 fmt="%s"
1972 print="core_addr_to_string_nz (gdbarch->${function})"
1973 ;;
1974 :* )
1975 fmt="%s"
1976 print="plongest (gdbarch->${function})"
1977 ;;
1978 * )
1979 fmt="%s"
1980 ;;
1981 esac
1982 printf " fprintf_unfiltered (file,\n"
1983 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1984 printf " ${print});\n"
1985 fi
1986 done
1987 cat <<EOF
1988 if (gdbarch->dump_tdep != NULL)
1989 gdbarch->dump_tdep (gdbarch, file);
1990 }
1991 EOF
1992
1993
1994 # GET/SET
1995 printf "\n"
1996 cat <<EOF
1997 struct gdbarch_tdep *
1998 gdbarch_tdep (struct gdbarch *gdbarch)
1999 {
2000 if (gdbarch_debug >= 2)
2001 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2002 return gdbarch->tdep;
2003 }
2004 EOF
2005 printf "\n"
2006 function_list | while do_read
2007 do
2008 if class_is_predicate_p
2009 then
2010 printf "\n"
2011 printf "int\n"
2012 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2013 printf "{\n"
2014 printf " gdb_assert (gdbarch != NULL);\n"
2015 printf " return ${predicate};\n"
2016 printf "}\n"
2017 fi
2018 if class_is_function_p
2019 then
2020 printf "\n"
2021 printf "${returntype}\n"
2022 if [ "x${formal}" = "xvoid" ]
2023 then
2024 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2025 else
2026 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2027 fi
2028 printf "{\n"
2029 printf " gdb_assert (gdbarch != NULL);\n"
2030 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2031 if class_is_predicate_p && test -n "${predefault}"
2032 then
2033 # Allow a call to a function with a predicate.
2034 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2035 fi
2036 printf " if (gdbarch_debug >= 2)\n"
2037 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2038 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2039 then
2040 if class_is_multiarch_p
2041 then
2042 params="gdbarch"
2043 else
2044 params=""
2045 fi
2046 else
2047 if class_is_multiarch_p
2048 then
2049 params="gdbarch, ${actual}"
2050 else
2051 params="${actual}"
2052 fi
2053 fi
2054 if [ "x${returntype}" = "xvoid" ]
2055 then
2056 printf " gdbarch->${function} (${params});\n"
2057 else
2058 printf " return gdbarch->${function} (${params});\n"
2059 fi
2060 printf "}\n"
2061 printf "\n"
2062 printf "void\n"
2063 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2064 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2065 printf "{\n"
2066 printf " gdbarch->${function} = ${function};\n"
2067 printf "}\n"
2068 elif class_is_variable_p
2069 then
2070 printf "\n"
2071 printf "${returntype}\n"
2072 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2073 printf "{\n"
2074 printf " gdb_assert (gdbarch != NULL);\n"
2075 if [ "x${invalid_p}" = "x0" ]
2076 then
2077 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2078 elif [ -n "${invalid_p}" ]
2079 then
2080 printf " /* Check variable is valid. */\n"
2081 printf " gdb_assert (!(${invalid_p}));\n"
2082 elif [ -n "${predefault}" ]
2083 then
2084 printf " /* Check variable changed from pre-default. */\n"
2085 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2086 fi
2087 printf " if (gdbarch_debug >= 2)\n"
2088 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2089 printf " return gdbarch->${function};\n"
2090 printf "}\n"
2091 printf "\n"
2092 printf "void\n"
2093 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2094 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2095 printf "{\n"
2096 printf " gdbarch->${function} = ${function};\n"
2097 printf "}\n"
2098 elif class_is_info_p
2099 then
2100 printf "\n"
2101 printf "${returntype}\n"
2102 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2103 printf "{\n"
2104 printf " gdb_assert (gdbarch != NULL);\n"
2105 printf " if (gdbarch_debug >= 2)\n"
2106 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2107 printf " return gdbarch->${function};\n"
2108 printf "}\n"
2109 fi
2110 done
2111
2112 # All the trailing guff
2113 cat <<EOF
2114
2115
2116 /* Keep a registry of per-architecture data-pointers required by GDB
2117 modules. */
2118
2119 struct gdbarch_data
2120 {
2121 unsigned index;
2122 int init_p;
2123 gdbarch_data_pre_init_ftype *pre_init;
2124 gdbarch_data_post_init_ftype *post_init;
2125 };
2126
2127 struct gdbarch_data_registration
2128 {
2129 struct gdbarch_data *data;
2130 struct gdbarch_data_registration *next;
2131 };
2132
2133 struct gdbarch_data_registry
2134 {
2135 unsigned nr;
2136 struct gdbarch_data_registration *registrations;
2137 };
2138
2139 struct gdbarch_data_registry gdbarch_data_registry =
2140 {
2141 0, NULL,
2142 };
2143
2144 static struct gdbarch_data *
2145 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2146 gdbarch_data_post_init_ftype *post_init)
2147 {
2148 struct gdbarch_data_registration **curr;
2149
2150 /* Append the new registration. */
2151 for (curr = &gdbarch_data_registry.registrations;
2152 (*curr) != NULL;
2153 curr = &(*curr)->next);
2154 (*curr) = XNEW (struct gdbarch_data_registration);
2155 (*curr)->next = NULL;
2156 (*curr)->data = XNEW (struct gdbarch_data);
2157 (*curr)->data->index = gdbarch_data_registry.nr++;
2158 (*curr)->data->pre_init = pre_init;
2159 (*curr)->data->post_init = post_init;
2160 (*curr)->data->init_p = 1;
2161 return (*curr)->data;
2162 }
2163
2164 struct gdbarch_data *
2165 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2166 {
2167 return gdbarch_data_register (pre_init, NULL);
2168 }
2169
2170 struct gdbarch_data *
2171 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2172 {
2173 return gdbarch_data_register (NULL, post_init);
2174 }
2175
2176 /* Create/delete the gdbarch data vector. */
2177
2178 static void
2179 alloc_gdbarch_data (struct gdbarch *gdbarch)
2180 {
2181 gdb_assert (gdbarch->data == NULL);
2182 gdbarch->nr_data = gdbarch_data_registry.nr;
2183 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2184 }
2185
2186 /* Initialize the current value of the specified per-architecture
2187 data-pointer. */
2188
2189 void
2190 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2191 struct gdbarch_data *data,
2192 void *pointer)
2193 {
2194 gdb_assert (data->index < gdbarch->nr_data);
2195 gdb_assert (gdbarch->data[data->index] == NULL);
2196 gdb_assert (data->pre_init == NULL);
2197 gdbarch->data[data->index] = pointer;
2198 }
2199
2200 /* Return the current value of the specified per-architecture
2201 data-pointer. */
2202
2203 void *
2204 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2205 {
2206 gdb_assert (data->index < gdbarch->nr_data);
2207 if (gdbarch->data[data->index] == NULL)
2208 {
2209 /* The data-pointer isn't initialized, call init() to get a
2210 value. */
2211 if (data->pre_init != NULL)
2212 /* Mid architecture creation: pass just the obstack, and not
2213 the entire architecture, as that way it isn't possible for
2214 pre-init code to refer to undefined architecture
2215 fields. */
2216 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2217 else if (gdbarch->initialized_p
2218 && data->post_init != NULL)
2219 /* Post architecture creation: pass the entire architecture
2220 (as all fields are valid), but be careful to also detect
2221 recursive references. */
2222 {
2223 gdb_assert (data->init_p);
2224 data->init_p = 0;
2225 gdbarch->data[data->index] = data->post_init (gdbarch);
2226 data->init_p = 1;
2227 }
2228 else
2229 /* The architecture initialization hasn't completed - punt -
2230 hope that the caller knows what they are doing. Once
2231 deprecated_set_gdbarch_data has been initialized, this can be
2232 changed to an internal error. */
2233 return NULL;
2234 gdb_assert (gdbarch->data[data->index] != NULL);
2235 }
2236 return gdbarch->data[data->index];
2237 }
2238
2239
2240 /* Keep a registry of the architectures known by GDB. */
2241
2242 struct gdbarch_registration
2243 {
2244 enum bfd_architecture bfd_architecture;
2245 gdbarch_init_ftype *init;
2246 gdbarch_dump_tdep_ftype *dump_tdep;
2247 struct gdbarch_list *arches;
2248 struct gdbarch_registration *next;
2249 };
2250
2251 static struct gdbarch_registration *gdbarch_registry = NULL;
2252
2253 static void
2254 append_name (const char ***buf, int *nr, const char *name)
2255 {
2256 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2257 (*buf)[*nr] = name;
2258 *nr += 1;
2259 }
2260
2261 const char **
2262 gdbarch_printable_names (void)
2263 {
2264 /* Accumulate a list of names based on the registed list of
2265 architectures. */
2266 int nr_arches = 0;
2267 const char **arches = NULL;
2268 struct gdbarch_registration *rego;
2269
2270 for (rego = gdbarch_registry;
2271 rego != NULL;
2272 rego = rego->next)
2273 {
2274 const struct bfd_arch_info *ap;
2275 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2276 if (ap == NULL)
2277 internal_error (__FILE__, __LINE__,
2278 _("gdbarch_architecture_names: multi-arch unknown"));
2279 do
2280 {
2281 append_name (&arches, &nr_arches, ap->printable_name);
2282 ap = ap->next;
2283 }
2284 while (ap != NULL);
2285 }
2286 append_name (&arches, &nr_arches, NULL);
2287 return arches;
2288 }
2289
2290
2291 void
2292 gdbarch_register (enum bfd_architecture bfd_architecture,
2293 gdbarch_init_ftype *init,
2294 gdbarch_dump_tdep_ftype *dump_tdep)
2295 {
2296 struct gdbarch_registration **curr;
2297 const struct bfd_arch_info *bfd_arch_info;
2298
2299 /* Check that BFD recognizes this architecture */
2300 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2301 if (bfd_arch_info == NULL)
2302 {
2303 internal_error (__FILE__, __LINE__,
2304 _("gdbarch: Attempt to register "
2305 "unknown architecture (%d)"),
2306 bfd_architecture);
2307 }
2308 /* Check that we haven't seen this architecture before. */
2309 for (curr = &gdbarch_registry;
2310 (*curr) != NULL;
2311 curr = &(*curr)->next)
2312 {
2313 if (bfd_architecture == (*curr)->bfd_architecture)
2314 internal_error (__FILE__, __LINE__,
2315 _("gdbarch: Duplicate registration "
2316 "of architecture (%s)"),
2317 bfd_arch_info->printable_name);
2318 }
2319 /* log it */
2320 if (gdbarch_debug)
2321 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2322 bfd_arch_info->printable_name,
2323 host_address_to_string (init));
2324 /* Append it */
2325 (*curr) = XNEW (struct gdbarch_registration);
2326 (*curr)->bfd_architecture = bfd_architecture;
2327 (*curr)->init = init;
2328 (*curr)->dump_tdep = dump_tdep;
2329 (*curr)->arches = NULL;
2330 (*curr)->next = NULL;
2331 }
2332
2333 void
2334 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2335 gdbarch_init_ftype *init)
2336 {
2337 gdbarch_register (bfd_architecture, init, NULL);
2338 }
2339
2340
2341 /* Look for an architecture using gdbarch_info. */
2342
2343 struct gdbarch_list *
2344 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2345 const struct gdbarch_info *info)
2346 {
2347 for (; arches != NULL; arches = arches->next)
2348 {
2349 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2350 continue;
2351 if (info->byte_order != arches->gdbarch->byte_order)
2352 continue;
2353 if (info->osabi != arches->gdbarch->osabi)
2354 continue;
2355 if (info->target_desc != arches->gdbarch->target_desc)
2356 continue;
2357 return arches;
2358 }
2359 return NULL;
2360 }
2361
2362
2363 /* Find an architecture that matches the specified INFO. Create a new
2364 architecture if needed. Return that new architecture. */
2365
2366 struct gdbarch *
2367 gdbarch_find_by_info (struct gdbarch_info info)
2368 {
2369 struct gdbarch *new_gdbarch;
2370 struct gdbarch_registration *rego;
2371
2372 /* Fill in missing parts of the INFO struct using a number of
2373 sources: "set ..."; INFOabfd supplied; and the global
2374 defaults. */
2375 gdbarch_info_fill (&info);
2376
2377 /* Must have found some sort of architecture. */
2378 gdb_assert (info.bfd_arch_info != NULL);
2379
2380 if (gdbarch_debug)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
2383 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2384 (info.bfd_arch_info != NULL
2385 ? info.bfd_arch_info->printable_name
2386 : "(null)"));
2387 fprintf_unfiltered (gdb_stdlog,
2388 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2389 info.byte_order,
2390 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2391 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2392 : "default"));
2393 fprintf_unfiltered (gdb_stdlog,
2394 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2395 info.osabi, gdbarch_osabi_name (info.osabi));
2396 fprintf_unfiltered (gdb_stdlog,
2397 "gdbarch_find_by_info: info.abfd %s\n",
2398 host_address_to_string (info.abfd));
2399 fprintf_unfiltered (gdb_stdlog,
2400 "gdbarch_find_by_info: info.tdep_info %s\n",
2401 host_address_to_string (info.tdep_info));
2402 }
2403
2404 /* Find the tdep code that knows about this architecture. */
2405 for (rego = gdbarch_registry;
2406 rego != NULL;
2407 rego = rego->next)
2408 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2409 break;
2410 if (rego == NULL)
2411 {
2412 if (gdbarch_debug)
2413 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2414 "No matching architecture\n");
2415 return 0;
2416 }
2417
2418 /* Ask the tdep code for an architecture that matches "info". */
2419 new_gdbarch = rego->init (info, rego->arches);
2420
2421 /* Did the tdep code like it? No. Reject the change and revert to
2422 the old architecture. */
2423 if (new_gdbarch == NULL)
2424 {
2425 if (gdbarch_debug)
2426 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2427 "Target rejected architecture\n");
2428 return NULL;
2429 }
2430
2431 /* Is this a pre-existing architecture (as determined by already
2432 being initialized)? Move it to the front of the architecture
2433 list (keeping the list sorted Most Recently Used). */
2434 if (new_gdbarch->initialized_p)
2435 {
2436 struct gdbarch_list **list;
2437 struct gdbarch_list *self;
2438 if (gdbarch_debug)
2439 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2440 "Previous architecture %s (%s) selected\n",
2441 host_address_to_string (new_gdbarch),
2442 new_gdbarch->bfd_arch_info->printable_name);
2443 /* Find the existing arch in the list. */
2444 for (list = &rego->arches;
2445 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2446 list = &(*list)->next);
2447 /* It had better be in the list of architectures. */
2448 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2449 /* Unlink SELF. */
2450 self = (*list);
2451 (*list) = self->next;
2452 /* Insert SELF at the front. */
2453 self->next = rego->arches;
2454 rego->arches = self;
2455 /* Return it. */
2456 return new_gdbarch;
2457 }
2458
2459 /* It's a new architecture. */
2460 if (gdbarch_debug)
2461 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2462 "New architecture %s (%s) selected\n",
2463 host_address_to_string (new_gdbarch),
2464 new_gdbarch->bfd_arch_info->printable_name);
2465
2466 /* Insert the new architecture into the front of the architecture
2467 list (keep the list sorted Most Recently Used). */
2468 {
2469 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2470 self->next = rego->arches;
2471 self->gdbarch = new_gdbarch;
2472 rego->arches = self;
2473 }
2474
2475 /* Check that the newly installed architecture is valid. Plug in
2476 any post init values. */
2477 new_gdbarch->dump_tdep = rego->dump_tdep;
2478 verify_gdbarch (new_gdbarch);
2479 new_gdbarch->initialized_p = 1;
2480
2481 if (gdbarch_debug)
2482 gdbarch_dump (new_gdbarch, gdb_stdlog);
2483
2484 return new_gdbarch;
2485 }
2486
2487 /* Make the specified architecture current. */
2488
2489 void
2490 set_target_gdbarch (struct gdbarch *new_gdbarch)
2491 {
2492 gdb_assert (new_gdbarch != NULL);
2493 gdb_assert (new_gdbarch->initialized_p);
2494 current_inferior ()->gdbarch = new_gdbarch;
2495 observer_notify_architecture_changed (new_gdbarch);
2496 registers_changed ();
2497 }
2498
2499 /* Return the current inferior's arch. */
2500
2501 struct gdbarch *
2502 target_gdbarch (void)
2503 {
2504 return current_inferior ()->gdbarch;
2505 }
2506
2507 extern void _initialize_gdbarch (void);
2508
2509 void
2510 _initialize_gdbarch (void)
2511 {
2512 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2513 Set architecture debugging."), _("\\
2514 Show architecture debugging."), _("\\
2515 When non-zero, architecture debugging is enabled."),
2516 NULL,
2517 show_gdbarch_debug,
2518 &setdebuglist, &showdebuglist);
2519 }
2520 EOF
2521
2522 # close things off
2523 exec 1>&2
2524 #../move-if-change new-gdbarch.c gdbarch.c
2525 compare_new gdbarch.c