]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
* block.h (struct block): Remove "gcc_compile_flag" member.
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 3 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program. If not, see <http://www.gnu.org/licenses/>.
22
23 # Make certain that the script is not running in an internationalized
24 # environment.
25 LANG=c ; export LANG
26 LC_ALL=c ; export LC_ALL
27
28
29 compare_new ()
30 {
31 file=$1
32 if test ! -r ${file}
33 then
34 echo "${file} missing? cp new-${file} ${file}" 1>&2
35 elif diff -u ${file} new-${file}
36 then
37 echo "${file} unchanged" 1>&2
38 else
39 echo "${file} has changed? cp new-${file} ${file}" 1>&2
40 fi
41 }
42
43
44 # Format of the input table
45 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
46
47 do_read ()
48 {
49 comment=""
50 class=""
51 while read line
52 do
53 if test "${line}" = ""
54 then
55 continue
56 elif test "${line}" = "#" -a "${comment}" = ""
57 then
58 continue
59 elif expr "${line}" : "#" > /dev/null
60 then
61 comment="${comment}
62 ${line}"
63 else
64
65 # The semantics of IFS varies between different SH's. Some
66 # treat ``::' as three fields while some treat it as just too.
67 # Work around this by eliminating ``::'' ....
68 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
69
70 OFS="${IFS}" ; IFS="[:]"
71 eval read ${read} <<EOF
72 ${line}
73 EOF
74 IFS="${OFS}"
75
76 if test -n "${garbage_at_eol}"
77 then
78 echo "Garbage at end-of-line in ${line}" 1>&2
79 kill $$
80 exit 1
81 fi
82
83 # .... and then going back through each field and strip out those
84 # that ended up with just that space character.
85 for r in ${read}
86 do
87 if eval test \"\${${r}}\" = \"\ \"
88 then
89 eval ${r}=""
90 fi
91 done
92
93 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
94 if test "x${macro}" = "x="
95 then
96 # Provide a UCASE version of function (for when there isn't MACRO)
97 macro="${FUNCTION}"
98 elif test "${macro}" = "${FUNCTION}"
99 then
100 echo "${function}: Specify = for macro field" 1>&2
101 kill $$
102 exit 1
103 fi
104
105 # Check that macro definition wasn't supplied for multi-arch
106 case "${class}" in
107 [mM] )
108 if test "${macro}" != ""
109 then
110 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
111 kill $$
112 exit 1
113 fi
114 esac
115
116 case "${class}" in
117 m ) staticdefault="${predefault}" ;;
118 M ) staticdefault="0" ;;
119 * ) test "${staticdefault}" || staticdefault=0 ;;
120 esac
121
122 case "${class}" in
123 F | V | M )
124 case "${invalid_p}" in
125 "" )
126 if test -n "${predefault}"
127 then
128 #invalid_p="gdbarch->${function} == ${predefault}"
129 predicate="gdbarch->${function} != ${predefault}"
130 elif class_is_variable_p
131 then
132 predicate="gdbarch->${function} != 0"
133 elif class_is_function_p
134 then
135 predicate="gdbarch->${function} != NULL"
136 fi
137 ;;
138 * )
139 echo "Predicate function ${function} with invalid_p." 1>&2
140 kill $$
141 exit 1
142 ;;
143 esac
144 esac
145
146 # PREDEFAULT is a valid fallback definition of MEMBER when
147 # multi-arch is not enabled. This ensures that the
148 # default value, when multi-arch is the same as the
149 # default value when not multi-arch. POSTDEFAULT is
150 # always a valid definition of MEMBER as this again
151 # ensures consistency.
152
153 if [ -n "${postdefault}" ]
154 then
155 fallbackdefault="${postdefault}"
156 elif [ -n "${predefault}" ]
157 then
158 fallbackdefault="${predefault}"
159 else
160 fallbackdefault="0"
161 fi
162
163 #NOT YET: See gdbarch.log for basic verification of
164 # database
165
166 break
167 fi
168 done
169 if [ -n "${class}" ]
170 then
171 true
172 else
173 false
174 fi
175 }
176
177
178 fallback_default_p ()
179 {
180 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
181 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
182 }
183
184 class_is_variable_p ()
185 {
186 case "${class}" in
187 *v* | *V* ) true ;;
188 * ) false ;;
189 esac
190 }
191
192 class_is_function_p ()
193 {
194 case "${class}" in
195 *f* | *F* | *m* | *M* ) true ;;
196 * ) false ;;
197 esac
198 }
199
200 class_is_multiarch_p ()
201 {
202 case "${class}" in
203 *m* | *M* ) true ;;
204 * ) false ;;
205 esac
206 }
207
208 class_is_predicate_p ()
209 {
210 case "${class}" in
211 *F* | *V* | *M* ) true ;;
212 * ) false ;;
213 esac
214 }
215
216 class_is_info_p ()
217 {
218 case "${class}" in
219 *i* ) true ;;
220 * ) false ;;
221 esac
222 }
223
224
225 # dump out/verify the doco
226 for field in ${read}
227 do
228 case ${field} in
229
230 class ) : ;;
231
232 # # -> line disable
233 # f -> function
234 # hiding a function
235 # F -> function + predicate
236 # hiding a function + predicate to test function validity
237 # v -> variable
238 # hiding a variable
239 # V -> variable + predicate
240 # hiding a variable + predicate to test variables validity
241 # i -> set from info
242 # hiding something from the ``struct info'' object
243 # m -> multi-arch function
244 # hiding a multi-arch function (parameterised with the architecture)
245 # M -> multi-arch function + predicate
246 # hiding a multi-arch function + predicate to test function validity
247
248 macro ) : ;;
249
250 # The name of the legacy C macro by which this method can be
251 # accessed. If empty, no macro is defined. If "=", a macro
252 # formed from the upper-case function name is used.
253
254 returntype ) : ;;
255
256 # For functions, the return type; for variables, the data type
257
258 function ) : ;;
259
260 # For functions, the member function name; for variables, the
261 # variable name. Member function names are always prefixed with
262 # ``gdbarch_'' for name-space purity.
263
264 formal ) : ;;
265
266 # The formal argument list. It is assumed that the formal
267 # argument list includes the actual name of each list element.
268 # A function with no arguments shall have ``void'' as the
269 # formal argument list.
270
271 actual ) : ;;
272
273 # The list of actual arguments. The arguments specified shall
274 # match the FORMAL list given above. Functions with out
275 # arguments leave this blank.
276
277 staticdefault ) : ;;
278
279 # To help with the GDB startup a static gdbarch object is
280 # created. STATICDEFAULT is the value to insert into that
281 # static gdbarch object. Since this a static object only
282 # simple expressions can be used.
283
284 # If STATICDEFAULT is empty, zero is used.
285
286 predefault ) : ;;
287
288 # An initial value to assign to MEMBER of the freshly
289 # malloc()ed gdbarch object. After initialization, the
290 # freshly malloc()ed object is passed to the target
291 # architecture code for further updates.
292
293 # If PREDEFAULT is empty, zero is used.
294
295 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
296 # INVALID_P are specified, PREDEFAULT will be used as the
297 # default for the non- multi-arch target.
298
299 # A zero PREDEFAULT function will force the fallback to call
300 # internal_error().
301
302 # Variable declarations can refer to ``gdbarch'' which will
303 # contain the current architecture. Care should be taken.
304
305 postdefault ) : ;;
306
307 # A value to assign to MEMBER of the new gdbarch object should
308 # the target architecture code fail to change the PREDEFAULT
309 # value.
310
311 # If POSTDEFAULT is empty, no post update is performed.
312
313 # If both INVALID_P and POSTDEFAULT are non-empty then
314 # INVALID_P will be used to determine if MEMBER should be
315 # changed to POSTDEFAULT.
316
317 # If a non-empty POSTDEFAULT and a zero INVALID_P are
318 # specified, POSTDEFAULT will be used as the default for the
319 # non- multi-arch target (regardless of the value of
320 # PREDEFAULT).
321
322 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
323
324 # Variable declarations can refer to ``current_gdbarch'' which
325 # will contain the current architecture. Care should be
326 # taken.
327
328 invalid_p ) : ;;
329
330 # A predicate equation that validates MEMBER. Non-zero is
331 # returned if the code creating the new architecture failed to
332 # initialize MEMBER or the initialized the member is invalid.
333 # If POSTDEFAULT is non-empty then MEMBER will be updated to
334 # that value. If POSTDEFAULT is empty then internal_error()
335 # is called.
336
337 # If INVALID_P is empty, a check that MEMBER is no longer
338 # equal to PREDEFAULT is used.
339
340 # The expression ``0'' disables the INVALID_P check making
341 # PREDEFAULT a legitimate value.
342
343 # See also PREDEFAULT and POSTDEFAULT.
344
345 print ) : ;;
346
347 # An optional expression that convers MEMBER to a value
348 # suitable for formatting using %s.
349
350 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
351 # (anything else) is used.
352
353 garbage_at_eol ) : ;;
354
355 # Catches stray fields.
356
357 *)
358 echo "Bad field ${field}"
359 exit 1;;
360 esac
361 done
362
363
364 function_list ()
365 {
366 # See below (DOCO) for description of each field
367 cat <<EOF
368 i::const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (current_gdbarch)->printable_name
369 #
370 i::int:byte_order:::BFD_ENDIAN_BIG
371 #
372 i::enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
373 #
374 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
375 # Number of bits in a char or unsigned char for the target machine.
376 # Just like CHAR_BIT in <limits.h> but describes the target machine.
377 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
378 #
379 # Number of bits in a short or unsigned short for the target machine.
380 v::int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
381 # Number of bits in an int or unsigned int for the target machine.
382 v::int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
383 # Number of bits in a long or unsigned long for the target machine.
384 v::int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long long or unsigned long long for the target
386 # machine.
387 v::int:long_long_bit:::8 * sizeof (LONGEST):2*current_gdbarch->long_bit::0
388
389 # The ABI default bit-size and format for "float", "double", and "long
390 # double". These bit/format pairs should eventually be combined into
391 # a single object. For the moment, just initialize them as a pair.
392 # Each format describes both the big and little endian layouts (if
393 # useful).
394
395 v::int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v::const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (current_gdbarch->float_format)
397 v::int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v::const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (current_gdbarch->double_format)
399 v::int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v::const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
405 # / addr_bit will be set from it.
406 #
407 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
408 # also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
409 # as well.
410 #
411 # ptr_bit is the size of a pointer on the target
412 v::int:ptr_bit:::8 * sizeof (void*):current_gdbarch->int_bit::0
413 # addr_bit is the size of a target address as represented in gdb
414 v::int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (current_gdbarch):
415 #
416 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
417 v::int:char_signed:::1:-1:1
418 #
419 F::CORE_ADDR:read_pc:struct regcache *regcache:regcache
420 F::void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
421 # Function for getting target's idea of a frame pointer. FIXME: GDB's
422 # whole scheme for dealing with "frames" and "frame pointers" needs a
423 # serious shakedown.
424 f::void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
425 #
426 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
427 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
428 #
429 v::int:num_regs:::0:-1
430 # This macro gives the number of pseudo-registers that live in the
431 # register namespace but do not get fetched or stored on the target.
432 # These pseudo-registers may be aliases for other registers,
433 # combinations of other registers, or they may be computed by GDB.
434 v::int:num_pseudo_regs:::0:0::0
435
436 # GDB's standard (or well known) register numbers. These can map onto
437 # a real register or a pseudo (computed) register or not be defined at
438 # all (-1).
439 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
440 v::int:sp_regnum:::-1:-1::0
441 v::int:pc_regnum:::-1:-1::0
442 v::int:ps_regnum:::-1:-1::0
443 v::int:fp0_regnum:::0:-1::0
444 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
445 f::int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
446 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
447 f::int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
448 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
449 f::int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
450 # Convert from an sdb register number to an internal gdb register number.
451 f::int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
452 f::int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
453 f::const char *:register_name:int regnr:regnr
454
455 # Return the type of a register specified by the architecture. Only
456 # the register cache should call this function directly; others should
457 # use "register_type".
458 M::struct type *:register_type:int reg_nr:reg_nr
459
460 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
461 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
462 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
463 # deprecated_fp_regnum.
464 v::int:deprecated_fp_regnum:::-1:-1::0
465
466 # See gdbint.texinfo. See infcall.c.
467 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
468 v::int:call_dummy_location::::AT_ENTRY_POINT::0
469 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
470
471 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
472 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
473 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
474 # MAP a GDB RAW register number onto a simulator register number. See
475 # also include/...-sim.h.
476 f::int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
477 f::int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
478 f::int:cannot_store_register:int regnum:regnum::cannot_register_not::0
479 # setjmp/longjmp support.
480 F::int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
481 #
482 v::int:believe_pcc_promotion:::::::
483 #
484 f::int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
485 f::void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
486 f::void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
487 # Construct a value representing the contents of register REGNUM in
488 # frame FRAME, interpreted as type TYPE. The routine needs to
489 # allocate and return a struct value with all value attributes
490 # (but not the value contents) filled in.
491 f::struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
492 #
493 f::CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
494 f::void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
495 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
496
497 # It has been suggested that this, well actually its predecessor,
498 # should take the type/value of the function to be called and not the
499 # return type. This is left as an exercise for the reader.
500
501 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
502 # the predicate with default hack to avoid calling store_return_value
503 # (via legacy_return_value), when a small struct is involved.
504
505 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
506
507 # The deprecated methods extract_return_value, store_return_value,
508 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
509 # deprecated_use_struct_convention have all been folded into
510 # RETURN_VALUE.
511
512 f::void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf:0
513 f::void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf:0
514 f::int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
515
516 f::CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
517 f::int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
518 f::const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
519 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
520 f::int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
521 f::int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
522 v::CORE_ADDR:decr_pc_after_break:::0:::0
523
524 # A function can be addressed by either it's "pointer" (possibly a
525 # descriptor address) or "entry point" (first executable instruction).
526 # The method "convert_from_func_ptr_addr" converting the former to the
527 # latter. gdbarch_deprecated_function_start_offset is being used to implement
528 # a simplified subset of that functionality - the function's address
529 # corresponds to the "function pointer" and the function's start
530 # corresponds to the "function entry point" - and hence is redundant.
531
532 v::CORE_ADDR:deprecated_function_start_offset:::0:::0
533
534 # Return the remote protocol register number associated with this
535 # register. Normally the identity mapping.
536 m::int:remote_register_number:int regno:regno::default_remote_register_number::0
537
538 # Fetch the target specific address used to represent a load module.
539 F::CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
540 #
541 v::CORE_ADDR:frame_args_skip:::0:::0
542 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
543 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
544 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
545 # frame-base. Enable frame-base before frame-unwind.
546 F::int:frame_num_args:struct frame_info *frame:frame
547 #
548 M::CORE_ADDR:frame_align:CORE_ADDR address:address
549 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
550 v::int:frame_red_zone_size
551 #
552 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
553 # On some machines there are bits in addresses which are not really
554 # part of the address, but are used by the kernel, the hardware, etc.
555 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
556 # we get a "real" address such as one would find in a symbol table.
557 # This is used only for addresses of instructions, and even then I'm
558 # not sure it's used in all contexts. It exists to deal with there
559 # being a few stray bits in the PC which would mislead us, not as some
560 # sort of generic thing to handle alignment or segmentation (it's
561 # possible it should be in TARGET_READ_PC instead).
562 f::CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
563 # It is not at all clear why gdbarch_smash_text_address is not folded into
564 # gdbarch_addr_bits_remove.
565 f::CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
566
567 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
568 # indicates if the target needs software single step. An ISA method to
569 # implement it.
570 #
571 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts
572 # breakpoints using the breakpoint system instead of blatting memory directly
573 # (as with rs6000).
574 #
575 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
576 # target can single step. If not, then implement single step using breakpoints.
577 #
578 # A return value of 1 means that the software_single_step breakpoints
579 # were inserted; 0 means they were not.
580 F::int:software_single_step:struct frame_info *frame:frame
581
582 # Return non-zero if the processor is executing a delay slot and a
583 # further single-step is needed before the instruction finishes.
584 M::int:single_step_through_delay:struct frame_info *frame:frame
585 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
586 # disassembler. Perhaps objdump can handle it?
587 f::int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
588 f::CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
589
590
591 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
592 # evaluates non-zero, this is the address where the debugger will place
593 # a step-resume breakpoint to get us past the dynamic linker.
594 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
595 # Some systems also have trampoline code for returning from shared libs.
596 f::int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
597
598 # A target might have problems with watchpoints as soon as the stack
599 # frame of the current function has been destroyed. This mostly happens
600 # as the first action in a funtion's epilogue. in_function_epilogue_p()
601 # is defined to return a non-zero value if either the given addr is one
602 # instruction after the stack destroying instruction up to the trailing
603 # return instruction or if we can figure out that the stack frame has
604 # already been invalidated regardless of the value of addr. Targets
605 # which don't suffer from that problem could just let this functionality
606 # untouched.
607 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
608 # Given a vector of command-line arguments, return a newly allocated
609 # string which, when passed to the create_inferior function, will be
610 # parsed (on Unix systems, by the shell) to yield the same vector.
611 # This function should call error() if the argument vector is not
612 # representable for this target or if this target does not support
613 # command-line arguments.
614 # ARGC is the number of elements in the vector.
615 # ARGV is an array of strings, one per argument.
616 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
617 f::void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
618 f::void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
619 v::const char *:name_of_malloc:::"malloc":"malloc"::0:current_gdbarch->name_of_malloc
620 v::int:cannot_step_breakpoint:::0:0::0
621 v::int:have_nonsteppable_watchpoint:::0:0::0
622 F::int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
623 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
624 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
625 # Is a register in a group
626 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
627 # Fetch the pointer to the ith function argument.
628 F::CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
629
630 # Return the appropriate register set for a core file section with
631 # name SECT_NAME and size SECT_SIZE.
632 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
633
634 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
635 # core file into buffer READBUF with length LEN.
636 M::LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
637
638 # If the elements of C++ vtables are in-place function descriptors rather
639 # than normal function pointers (which may point to code or a descriptor),
640 # set this to one.
641 v::int:vtable_function_descriptors:::0:0::0
642
643 # Set if the least significant bit of the delta is used instead of the least
644 # significant bit of the pfn for pointers to virtual member functions.
645 v::int:vbit_in_delta:::0:0::0
646
647 # Advance PC to next instruction in order to skip a permanent breakpoint.
648 F::void:skip_permanent_breakpoint:struct regcache *regcache:regcache
649
650 # Refresh overlay mapped state for section OSECT.
651 F::void:overlay_update:struct obj_section *osect:osect
652
653 M::const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
654 EOF
655 }
656
657 #
658 # The .log file
659 #
660 exec > new-gdbarch.log
661 function_list | while do_read
662 do
663 cat <<EOF
664 ${class} ${returntype} ${function} ($formal)
665 EOF
666 for r in ${read}
667 do
668 eval echo \"\ \ \ \ ${r}=\${${r}}\"
669 done
670 if class_is_predicate_p && fallback_default_p
671 then
672 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
673 kill $$
674 exit 1
675 fi
676 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
677 then
678 echo "Error: postdefault is useless when invalid_p=0" 1>&2
679 kill $$
680 exit 1
681 fi
682 if class_is_multiarch_p
683 then
684 if class_is_predicate_p ; then :
685 elif test "x${predefault}" = "x"
686 then
687 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
688 kill $$
689 exit 1
690 fi
691 fi
692 echo ""
693 done
694
695 exec 1>&2
696 compare_new gdbarch.log
697
698
699 copyright ()
700 {
701 cat <<EOF
702 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
703
704 /* Dynamic architecture support for GDB, the GNU debugger.
705
706 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
707 Free Software Foundation, Inc.
708
709 This file is part of GDB.
710
711 This program is free software; you can redistribute it and/or modify
712 it under the terms of the GNU General Public License as published by
713 the Free Software Foundation; either version 3 of the License, or
714 (at your option) any later version.
715
716 This program is distributed in the hope that it will be useful,
717 but WITHOUT ANY WARRANTY; without even the implied warranty of
718 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
719 GNU General Public License for more details.
720
721 You should have received a copy of the GNU General Public License
722 along with this program. If not, see <http://www.gnu.org/licenses/>. */
723
724 /* This file was created with the aid of \`\`gdbarch.sh''.
725
726 The Bourne shell script \`\`gdbarch.sh'' creates the files
727 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
728 against the existing \`\`gdbarch.[hc]''. Any differences found
729 being reported.
730
731 If editing this file, please also run gdbarch.sh and merge any
732 changes into that script. Conversely, when making sweeping changes
733 to this file, modifying gdbarch.sh and using its output may prove
734 easier. */
735
736 EOF
737 }
738
739 #
740 # The .h file
741 #
742
743 exec > new-gdbarch.h
744 copyright
745 cat <<EOF
746 #ifndef GDBARCH_H
747 #define GDBARCH_H
748
749 struct floatformat;
750 struct ui_file;
751 struct frame_info;
752 struct value;
753 struct objfile;
754 struct obj_section;
755 struct minimal_symbol;
756 struct regcache;
757 struct reggroup;
758 struct regset;
759 struct disassemble_info;
760 struct target_ops;
761 struct obstack;
762 struct bp_target_info;
763 struct target_desc;
764
765 extern struct gdbarch *current_gdbarch;
766 EOF
767
768 # function typedef's
769 printf "\n"
770 printf "\n"
771 printf "/* The following are pre-initialized by GDBARCH. */\n"
772 function_list | while do_read
773 do
774 if class_is_info_p
775 then
776 printf "\n"
777 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
778 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
779 if test -n "${macro}"
780 then
781 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
782 printf "#error \"Non multi-arch definition of ${macro}\"\n"
783 printf "#endif\n"
784 printf "#if !defined (${macro})\n"
785 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
786 printf "#endif\n"
787 fi
788 fi
789 done
790
791 # function typedef's
792 printf "\n"
793 printf "\n"
794 printf "/* The following are initialized by the target dependent code. */\n"
795 function_list | while do_read
796 do
797 if [ -n "${comment}" ]
798 then
799 echo "${comment}" | sed \
800 -e '2 s,#,/*,' \
801 -e '3,$ s,#, ,' \
802 -e '$ s,$, */,'
803 fi
804
805 if class_is_predicate_p
806 then
807 if test -n "${macro}"
808 then
809 printf "\n"
810 printf "#if defined (${macro})\n"
811 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
812 printf "#if !defined (${macro}_P)\n"
813 printf "#define ${macro}_P() (1)\n"
814 printf "#endif\n"
815 printf "#endif\n"
816 fi
817 printf "\n"
818 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
819 if test -n "${macro}"
820 then
821 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
822 printf "#error \"Non multi-arch definition of ${macro}\"\n"
823 printf "#endif\n"
824 printf "#if !defined (${macro}_P)\n"
825 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
826 printf "#endif\n"
827 fi
828 fi
829 if class_is_variable_p
830 then
831 printf "\n"
832 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
833 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
834 if test -n "${macro}"
835 then
836 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
837 printf "#error \"Non multi-arch definition of ${macro}\"\n"
838 printf "#endif\n"
839 printf "#if !defined (${macro})\n"
840 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
841 printf "#endif\n"
842 fi
843 fi
844 if class_is_function_p
845 then
846 printf "\n"
847 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
848 then
849 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
850 elif class_is_multiarch_p
851 then
852 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
853 else
854 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
855 fi
856 if [ "x${formal}" = "xvoid" ]
857 then
858 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
859 else
860 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
861 fi
862 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
863 if test -n "${macro}"
864 then
865 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
866 printf "#error \"Non multi-arch definition of ${macro}\"\n"
867 printf "#endif\n"
868 if [ "x${actual}" = "x" ]
869 then
870 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
871 elif [ "x${actual}" = "x-" ]
872 then
873 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
874 else
875 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
876 fi
877 printf "#if !defined (${macro})\n"
878 if [ "x${actual}" = "x" ]
879 then
880 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
881 elif [ "x${actual}" = "x-" ]
882 then
883 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
884 else
885 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
886 fi
887 printf "#endif\n"
888 fi
889 fi
890 done
891
892 # close it off
893 cat <<EOF
894
895 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
896
897
898 /* Mechanism for co-ordinating the selection of a specific
899 architecture.
900
901 GDB targets (*-tdep.c) can register an interest in a specific
902 architecture. Other GDB components can register a need to maintain
903 per-architecture data.
904
905 The mechanisms below ensures that there is only a loose connection
906 between the set-architecture command and the various GDB
907 components. Each component can independently register their need
908 to maintain architecture specific data with gdbarch.
909
910 Pragmatics:
911
912 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
913 didn't scale.
914
915 The more traditional mega-struct containing architecture specific
916 data for all the various GDB components was also considered. Since
917 GDB is built from a variable number of (fairly independent)
918 components it was determined that the global aproach was not
919 applicable. */
920
921
922 /* Register a new architectural family with GDB.
923
924 Register support for the specified ARCHITECTURE with GDB. When
925 gdbarch determines that the specified architecture has been
926 selected, the corresponding INIT function is called.
927
928 --
929
930 The INIT function takes two parameters: INFO which contains the
931 information available to gdbarch about the (possibly new)
932 architecture; ARCHES which is a list of the previously created
933 \`\`struct gdbarch'' for this architecture.
934
935 The INFO parameter is, as far as possible, be pre-initialized with
936 information obtained from INFO.ABFD or the global defaults.
937
938 The ARCHES parameter is a linked list (sorted most recently used)
939 of all the previously created architures for this architecture
940 family. The (possibly NULL) ARCHES->gdbarch can used to access
941 values from the previously selected architecture for this
942 architecture family. The global \`\`current_gdbarch'' shall not be
943 used.
944
945 The INIT function shall return any of: NULL - indicating that it
946 doesn't recognize the selected architecture; an existing \`\`struct
947 gdbarch'' from the ARCHES list - indicating that the new
948 architecture is just a synonym for an earlier architecture (see
949 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
950 - that describes the selected architecture (see gdbarch_alloc()).
951
952 The DUMP_TDEP function shall print out all target specific values.
953 Care should be taken to ensure that the function works in both the
954 multi-arch and non- multi-arch cases. */
955
956 struct gdbarch_list
957 {
958 struct gdbarch *gdbarch;
959 struct gdbarch_list *next;
960 };
961
962 struct gdbarch_info
963 {
964 /* Use default: NULL (ZERO). */
965 const struct bfd_arch_info *bfd_arch_info;
966
967 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
968 int byte_order;
969
970 /* Use default: NULL (ZERO). */
971 bfd *abfd;
972
973 /* Use default: NULL (ZERO). */
974 struct gdbarch_tdep_info *tdep_info;
975
976 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
977 enum gdb_osabi osabi;
978
979 /* Use default: NULL (ZERO). */
980 const struct target_desc *target_desc;
981 };
982
983 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
984 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
985
986 /* DEPRECATED - use gdbarch_register() */
987 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
988
989 extern void gdbarch_register (enum bfd_architecture architecture,
990 gdbarch_init_ftype *,
991 gdbarch_dump_tdep_ftype *);
992
993
994 /* Return a freshly allocated, NULL terminated, array of the valid
995 architecture names. Since architectures are registered during the
996 _initialize phase this function only returns useful information
997 once initialization has been completed. */
998
999 extern const char **gdbarch_printable_names (void);
1000
1001
1002 /* Helper function. Search the list of ARCHES for a GDBARCH that
1003 matches the information provided by INFO. */
1004
1005 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1006
1007
1008 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1009 basic initialization using values obtained from the INFO and TDEP
1010 parameters. set_gdbarch_*() functions are called to complete the
1011 initialization of the object. */
1012
1013 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1014
1015
1016 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1017 It is assumed that the caller freeds the \`\`struct
1018 gdbarch_tdep''. */
1019
1020 extern void gdbarch_free (struct gdbarch *);
1021
1022
1023 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1024 obstack. The memory is freed when the corresponding architecture
1025 is also freed. */
1026
1027 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1028 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1029 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1030
1031
1032 /* Helper function. Force an update of the current architecture.
1033
1034 The actual architecture selected is determined by INFO, \`\`(gdb) set
1035 architecture'' et.al., the existing architecture and BFD's default
1036 architecture. INFO should be initialized to zero and then selected
1037 fields should be updated.
1038
1039 Returns non-zero if the update succeeds */
1040
1041 extern int gdbarch_update_p (struct gdbarch_info info);
1042
1043
1044 /* Helper function. Find an architecture matching info.
1045
1046 INFO should be initialized using gdbarch_info_init, relevant fields
1047 set, and then finished using gdbarch_info_fill.
1048
1049 Returns the corresponding architecture, or NULL if no matching
1050 architecture was found. "current_gdbarch" is not updated. */
1051
1052 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1053
1054
1055 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1056
1057 FIXME: kettenis/20031124: Of the functions that follow, only
1058 gdbarch_from_bfd is supposed to survive. The others will
1059 dissappear since in the future GDB will (hopefully) be truly
1060 multi-arch. However, for now we're still stuck with the concept of
1061 a single active architecture. */
1062
1063 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1064
1065
1066 /* Register per-architecture data-pointer.
1067
1068 Reserve space for a per-architecture data-pointer. An identifier
1069 for the reserved data-pointer is returned. That identifer should
1070 be saved in a local static variable.
1071
1072 Memory for the per-architecture data shall be allocated using
1073 gdbarch_obstack_zalloc. That memory will be deleted when the
1074 corresponding architecture object is deleted.
1075
1076 When a previously created architecture is re-selected, the
1077 per-architecture data-pointer for that previous architecture is
1078 restored. INIT() is not re-called.
1079
1080 Multiple registrarants for any architecture are allowed (and
1081 strongly encouraged). */
1082
1083 struct gdbarch_data;
1084
1085 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1086 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1087 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1088 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1089 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1090 struct gdbarch_data *data,
1091 void *pointer);
1092
1093 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1094
1095
1096 /* Set the dynamic target-system-dependent parameters (architecture,
1097 byte-order, ...) using information found in the BFD */
1098
1099 extern void set_gdbarch_from_file (bfd *);
1100
1101
1102 /* Initialize the current architecture to the "first" one we find on
1103 our list. */
1104
1105 extern void initialize_current_architecture (void);
1106
1107 /* gdbarch trace variable */
1108 extern int gdbarch_debug;
1109
1110 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1111
1112 #endif
1113 EOF
1114 exec 1>&2
1115 #../move-if-change new-gdbarch.h gdbarch.h
1116 compare_new gdbarch.h
1117
1118
1119 #
1120 # C file
1121 #
1122
1123 exec > new-gdbarch.c
1124 copyright
1125 cat <<EOF
1126
1127 #include "defs.h"
1128 #include "arch-utils.h"
1129
1130 #include "gdbcmd.h"
1131 #include "inferior.h"
1132 #include "symcat.h"
1133
1134 #include "floatformat.h"
1135
1136 #include "gdb_assert.h"
1137 #include "gdb_string.h"
1138 #include "gdb-events.h"
1139 #include "reggroups.h"
1140 #include "osabi.h"
1141 #include "gdb_obstack.h"
1142
1143 /* Static function declarations */
1144
1145 static void alloc_gdbarch_data (struct gdbarch *);
1146
1147 /* Non-zero if we want to trace architecture code. */
1148
1149 #ifndef GDBARCH_DEBUG
1150 #define GDBARCH_DEBUG 0
1151 #endif
1152 int gdbarch_debug = GDBARCH_DEBUG;
1153 static void
1154 show_gdbarch_debug (struct ui_file *file, int from_tty,
1155 struct cmd_list_element *c, const char *value)
1156 {
1157 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1158 }
1159
1160 static const char *
1161 pformat (const struct floatformat **format)
1162 {
1163 if (format == NULL)
1164 return "(null)";
1165 else
1166 /* Just print out one of them - this is only for diagnostics. */
1167 return format[0]->name;
1168 }
1169
1170 EOF
1171
1172 # gdbarch open the gdbarch object
1173 printf "\n"
1174 printf "/* Maintain the struct gdbarch object */\n"
1175 printf "\n"
1176 printf "struct gdbarch\n"
1177 printf "{\n"
1178 printf " /* Has this architecture been fully initialized? */\n"
1179 printf " int initialized_p;\n"
1180 printf "\n"
1181 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1182 printf " struct obstack *obstack;\n"
1183 printf "\n"
1184 printf " /* basic architectural information */\n"
1185 function_list | while do_read
1186 do
1187 if class_is_info_p
1188 then
1189 printf " ${returntype} ${function};\n"
1190 fi
1191 done
1192 printf "\n"
1193 printf " /* target specific vector. */\n"
1194 printf " struct gdbarch_tdep *tdep;\n"
1195 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1196 printf "\n"
1197 printf " /* per-architecture data-pointers */\n"
1198 printf " unsigned nr_data;\n"
1199 printf " void **data;\n"
1200 printf "\n"
1201 printf " /* per-architecture swap-regions */\n"
1202 printf " struct gdbarch_swap *swap;\n"
1203 printf "\n"
1204 cat <<EOF
1205 /* Multi-arch values.
1206
1207 When extending this structure you must:
1208
1209 Add the field below.
1210
1211 Declare set/get functions and define the corresponding
1212 macro in gdbarch.h.
1213
1214 gdbarch_alloc(): If zero/NULL is not a suitable default,
1215 initialize the new field.
1216
1217 verify_gdbarch(): Confirm that the target updated the field
1218 correctly.
1219
1220 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1221 field is dumped out
1222
1223 \`\`startup_gdbarch()'': Append an initial value to the static
1224 variable (base values on the host's c-type system).
1225
1226 get_gdbarch(): Implement the set/get functions (probably using
1227 the macro's as shortcuts).
1228
1229 */
1230
1231 EOF
1232 function_list | while do_read
1233 do
1234 if class_is_variable_p
1235 then
1236 printf " ${returntype} ${function};\n"
1237 elif class_is_function_p
1238 then
1239 printf " gdbarch_${function}_ftype *${function};\n"
1240 fi
1241 done
1242 printf "};\n"
1243
1244 # A pre-initialized vector
1245 printf "\n"
1246 printf "\n"
1247 cat <<EOF
1248 /* The default architecture uses host values (for want of a better
1249 choice). */
1250 EOF
1251 printf "\n"
1252 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1253 printf "\n"
1254 printf "struct gdbarch startup_gdbarch =\n"
1255 printf "{\n"
1256 printf " 1, /* Always initialized. */\n"
1257 printf " NULL, /* The obstack. */\n"
1258 printf " /* basic architecture information */\n"
1259 function_list | while do_read
1260 do
1261 if class_is_info_p
1262 then
1263 printf " ${staticdefault}, /* ${function} */\n"
1264 fi
1265 done
1266 cat <<EOF
1267 /* target specific vector and its dump routine */
1268 NULL, NULL,
1269 /*per-architecture data-pointers and swap regions */
1270 0, NULL, NULL,
1271 /* Multi-arch values */
1272 EOF
1273 function_list | while do_read
1274 do
1275 if class_is_function_p || class_is_variable_p
1276 then
1277 printf " ${staticdefault}, /* ${function} */\n"
1278 fi
1279 done
1280 cat <<EOF
1281 /* startup_gdbarch() */
1282 };
1283
1284 struct gdbarch *current_gdbarch = &startup_gdbarch;
1285 EOF
1286
1287 # Create a new gdbarch struct
1288 cat <<EOF
1289
1290 /* Create a new \`\`struct gdbarch'' based on information provided by
1291 \`\`struct gdbarch_info''. */
1292 EOF
1293 printf "\n"
1294 cat <<EOF
1295 struct gdbarch *
1296 gdbarch_alloc (const struct gdbarch_info *info,
1297 struct gdbarch_tdep *tdep)
1298 {
1299 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1300 so that macros such as TARGET_ARCHITECTURE, when expanded, refer to
1301 the current local architecture and not the previous global
1302 architecture. This ensures that the new architectures initial
1303 values are not influenced by the previous architecture. Once
1304 everything is parameterised with gdbarch, this will go away. */
1305 struct gdbarch *current_gdbarch;
1306
1307 /* Create an obstack for allocating all the per-architecture memory,
1308 then use that to allocate the architecture vector. */
1309 struct obstack *obstack = XMALLOC (struct obstack);
1310 obstack_init (obstack);
1311 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1312 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1313 current_gdbarch->obstack = obstack;
1314
1315 alloc_gdbarch_data (current_gdbarch);
1316
1317 current_gdbarch->tdep = tdep;
1318 EOF
1319 printf "\n"
1320 function_list | while do_read
1321 do
1322 if class_is_info_p
1323 then
1324 printf " current_gdbarch->${function} = info->${function};\n"
1325 fi
1326 done
1327 printf "\n"
1328 printf " /* Force the explicit initialization of these. */\n"
1329 function_list | while do_read
1330 do
1331 if class_is_function_p || class_is_variable_p
1332 then
1333 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1334 then
1335 printf " current_gdbarch->${function} = ${predefault};\n"
1336 fi
1337 fi
1338 done
1339 cat <<EOF
1340 /* gdbarch_alloc() */
1341
1342 return current_gdbarch;
1343 }
1344 EOF
1345
1346 # Free a gdbarch struct.
1347 printf "\n"
1348 printf "\n"
1349 cat <<EOF
1350 /* Allocate extra space using the per-architecture obstack. */
1351
1352 void *
1353 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1354 {
1355 void *data = obstack_alloc (arch->obstack, size);
1356 memset (data, 0, size);
1357 return data;
1358 }
1359
1360
1361 /* Free a gdbarch struct. This should never happen in normal
1362 operation --- once you've created a gdbarch, you keep it around.
1363 However, if an architecture's init function encounters an error
1364 building the structure, it may need to clean up a partially
1365 constructed gdbarch. */
1366
1367 void
1368 gdbarch_free (struct gdbarch *arch)
1369 {
1370 struct obstack *obstack;
1371 gdb_assert (arch != NULL);
1372 gdb_assert (!arch->initialized_p);
1373 obstack = arch->obstack;
1374 obstack_free (obstack, 0); /* Includes the ARCH. */
1375 xfree (obstack);
1376 }
1377 EOF
1378
1379 # verify a new architecture
1380 cat <<EOF
1381
1382
1383 /* Ensure that all values in a GDBARCH are reasonable. */
1384
1385 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1386 just happens to match the global variable \`\`current_gdbarch''. That
1387 way macros refering to that variable get the local and not the global
1388 version - ulgh. Once everything is parameterised with gdbarch, this
1389 will go away. */
1390
1391 static void
1392 verify_gdbarch (struct gdbarch *current_gdbarch)
1393 {
1394 struct ui_file *log;
1395 struct cleanup *cleanups;
1396 long dummy;
1397 char *buf;
1398 log = mem_fileopen ();
1399 cleanups = make_cleanup_ui_file_delete (log);
1400 /* fundamental */
1401 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1402 fprintf_unfiltered (log, "\n\tbyte-order");
1403 if (current_gdbarch->bfd_arch_info == NULL)
1404 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1405 /* Check those that need to be defined for the given multi-arch level. */
1406 EOF
1407 function_list | while do_read
1408 do
1409 if class_is_function_p || class_is_variable_p
1410 then
1411 if [ "x${invalid_p}" = "x0" ]
1412 then
1413 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1414 elif class_is_predicate_p
1415 then
1416 printf " /* Skip verify of ${function}, has predicate */\n"
1417 # FIXME: See do_read for potential simplification
1418 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1419 then
1420 printf " if (${invalid_p})\n"
1421 printf " current_gdbarch->${function} = ${postdefault};\n"
1422 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1423 then
1424 printf " if (current_gdbarch->${function} == ${predefault})\n"
1425 printf " current_gdbarch->${function} = ${postdefault};\n"
1426 elif [ -n "${postdefault}" ]
1427 then
1428 printf " if (current_gdbarch->${function} == 0)\n"
1429 printf " current_gdbarch->${function} = ${postdefault};\n"
1430 elif [ -n "${invalid_p}" ]
1431 then
1432 printf " if (${invalid_p})\n"
1433 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1434 elif [ -n "${predefault}" ]
1435 then
1436 printf " if (current_gdbarch->${function} == ${predefault})\n"
1437 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1438 fi
1439 fi
1440 done
1441 cat <<EOF
1442 buf = ui_file_xstrdup (log, &dummy);
1443 make_cleanup (xfree, buf);
1444 if (strlen (buf) > 0)
1445 internal_error (__FILE__, __LINE__,
1446 _("verify_gdbarch: the following are invalid ...%s"),
1447 buf);
1448 do_cleanups (cleanups);
1449 }
1450 EOF
1451
1452 # dump the structure
1453 printf "\n"
1454 printf "\n"
1455 cat <<EOF
1456 /* Print out the details of the current architecture. */
1457
1458 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1459 just happens to match the global variable \`\`current_gdbarch''. That
1460 way macros refering to that variable get the local and not the global
1461 version - ulgh. Once everything is parameterised with gdbarch, this
1462 will go away. */
1463
1464 void
1465 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1466 {
1467 const char *gdb_xm_file = "<not-defined>";
1468 const char *gdb_nm_file = "<not-defined>";
1469 const char *gdb_tm_file = "<not-defined>";
1470 #if defined (GDB_XM_FILE)
1471 gdb_xm_file = GDB_XM_FILE;
1472 #endif
1473 fprintf_unfiltered (file,
1474 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1475 gdb_xm_file);
1476 #if defined (GDB_NM_FILE)
1477 gdb_nm_file = GDB_NM_FILE;
1478 #endif
1479 fprintf_unfiltered (file,
1480 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1481 gdb_nm_file);
1482 #if defined (GDB_TM_FILE)
1483 gdb_tm_file = GDB_TM_FILE;
1484 #endif
1485 fprintf_unfiltered (file,
1486 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1487 gdb_tm_file);
1488 EOF
1489 function_list | sort -t: -k 4 | while do_read
1490 do
1491 # First the predicate
1492 if class_is_predicate_p
1493 then
1494 if test -n "${macro}"
1495 then
1496 printf "#ifdef ${macro}_P\n"
1497 printf " fprintf_unfiltered (file,\n"
1498 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1499 printf " \"${macro}_P()\",\n"
1500 printf " XSTRING (${macro}_P ()));\n"
1501 printf "#endif\n"
1502 fi
1503 printf " fprintf_unfiltered (file,\n"
1504 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1505 printf " gdbarch_${function}_p (current_gdbarch));\n"
1506 fi
1507 # Print the macro definition.
1508 if test -n "${macro}"
1509 then
1510 printf "#ifdef ${macro}\n"
1511 if class_is_function_p
1512 then
1513 printf " fprintf_unfiltered (file,\n"
1514 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1515 printf " \"${macro}(${actual})\",\n"
1516 printf " XSTRING (${macro} (${actual})));\n"
1517 else
1518 printf " fprintf_unfiltered (file,\n"
1519 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1520 printf " XSTRING (${macro}));\n"
1521 fi
1522 printf "#endif\n"
1523 fi
1524 # Print the corresponding value.
1525 if class_is_function_p
1526 then
1527 printf " fprintf_unfiltered (file,\n"
1528 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1529 printf " (long) current_gdbarch->${function});\n"
1530 else
1531 # It is a variable
1532 case "${print}:${returntype}" in
1533 :CORE_ADDR )
1534 fmt="0x%s"
1535 print="paddr_nz (current_gdbarch->${function})"
1536 ;;
1537 :* )
1538 fmt="%s"
1539 print="paddr_d (current_gdbarch->${function})"
1540 ;;
1541 * )
1542 fmt="%s"
1543 ;;
1544 esac
1545 printf " fprintf_unfiltered (file,\n"
1546 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1547 printf " ${print});\n"
1548 fi
1549 done
1550 cat <<EOF
1551 if (current_gdbarch->dump_tdep != NULL)
1552 current_gdbarch->dump_tdep (current_gdbarch, file);
1553 }
1554 EOF
1555
1556
1557 # GET/SET
1558 printf "\n"
1559 cat <<EOF
1560 struct gdbarch_tdep *
1561 gdbarch_tdep (struct gdbarch *gdbarch)
1562 {
1563 if (gdbarch_debug >= 2)
1564 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1565 return gdbarch->tdep;
1566 }
1567 EOF
1568 printf "\n"
1569 function_list | while do_read
1570 do
1571 if class_is_predicate_p
1572 then
1573 printf "\n"
1574 printf "int\n"
1575 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1576 printf "{\n"
1577 printf " gdb_assert (gdbarch != NULL);\n"
1578 printf " return ${predicate};\n"
1579 printf "}\n"
1580 fi
1581 if class_is_function_p
1582 then
1583 printf "\n"
1584 printf "${returntype}\n"
1585 if [ "x${formal}" = "xvoid" ]
1586 then
1587 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1588 else
1589 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1590 fi
1591 printf "{\n"
1592 printf " gdb_assert (gdbarch != NULL);\n"
1593 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1594 if class_is_predicate_p && test -n "${predefault}"
1595 then
1596 # Allow a call to a function with a predicate.
1597 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1598 fi
1599 printf " if (gdbarch_debug >= 2)\n"
1600 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1601 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1602 then
1603 if class_is_multiarch_p
1604 then
1605 params="gdbarch"
1606 else
1607 params=""
1608 fi
1609 else
1610 if class_is_multiarch_p
1611 then
1612 params="gdbarch, ${actual}"
1613 else
1614 params="${actual}"
1615 fi
1616 fi
1617 if [ "x${returntype}" = "xvoid" ]
1618 then
1619 printf " gdbarch->${function} (${params});\n"
1620 else
1621 printf " return gdbarch->${function} (${params});\n"
1622 fi
1623 printf "}\n"
1624 printf "\n"
1625 printf "void\n"
1626 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1627 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1628 printf "{\n"
1629 printf " gdbarch->${function} = ${function};\n"
1630 printf "}\n"
1631 elif class_is_variable_p
1632 then
1633 printf "\n"
1634 printf "${returntype}\n"
1635 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1636 printf "{\n"
1637 printf " gdb_assert (gdbarch != NULL);\n"
1638 if [ "x${invalid_p}" = "x0" ]
1639 then
1640 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1641 elif [ -n "${invalid_p}" ]
1642 then
1643 printf " /* Check variable is valid. */\n"
1644 printf " gdb_assert (!(${invalid_p}));\n"
1645 elif [ -n "${predefault}" ]
1646 then
1647 printf " /* Check variable changed from pre-default. */\n"
1648 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1649 fi
1650 printf " if (gdbarch_debug >= 2)\n"
1651 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1652 printf " return gdbarch->${function};\n"
1653 printf "}\n"
1654 printf "\n"
1655 printf "void\n"
1656 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1657 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1658 printf "{\n"
1659 printf " gdbarch->${function} = ${function};\n"
1660 printf "}\n"
1661 elif class_is_info_p
1662 then
1663 printf "\n"
1664 printf "${returntype}\n"
1665 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1666 printf "{\n"
1667 printf " gdb_assert (gdbarch != NULL);\n"
1668 printf " if (gdbarch_debug >= 2)\n"
1669 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1670 printf " return gdbarch->${function};\n"
1671 printf "}\n"
1672 fi
1673 done
1674
1675 # All the trailing guff
1676 cat <<EOF
1677
1678
1679 /* Keep a registry of per-architecture data-pointers required by GDB
1680 modules. */
1681
1682 struct gdbarch_data
1683 {
1684 unsigned index;
1685 int init_p;
1686 gdbarch_data_pre_init_ftype *pre_init;
1687 gdbarch_data_post_init_ftype *post_init;
1688 };
1689
1690 struct gdbarch_data_registration
1691 {
1692 struct gdbarch_data *data;
1693 struct gdbarch_data_registration *next;
1694 };
1695
1696 struct gdbarch_data_registry
1697 {
1698 unsigned nr;
1699 struct gdbarch_data_registration *registrations;
1700 };
1701
1702 struct gdbarch_data_registry gdbarch_data_registry =
1703 {
1704 0, NULL,
1705 };
1706
1707 static struct gdbarch_data *
1708 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1709 gdbarch_data_post_init_ftype *post_init)
1710 {
1711 struct gdbarch_data_registration **curr;
1712 /* Append the new registraration. */
1713 for (curr = &gdbarch_data_registry.registrations;
1714 (*curr) != NULL;
1715 curr = &(*curr)->next);
1716 (*curr) = XMALLOC (struct gdbarch_data_registration);
1717 (*curr)->next = NULL;
1718 (*curr)->data = XMALLOC (struct gdbarch_data);
1719 (*curr)->data->index = gdbarch_data_registry.nr++;
1720 (*curr)->data->pre_init = pre_init;
1721 (*curr)->data->post_init = post_init;
1722 (*curr)->data->init_p = 1;
1723 return (*curr)->data;
1724 }
1725
1726 struct gdbarch_data *
1727 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1728 {
1729 return gdbarch_data_register (pre_init, NULL);
1730 }
1731
1732 struct gdbarch_data *
1733 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1734 {
1735 return gdbarch_data_register (NULL, post_init);
1736 }
1737
1738 /* Create/delete the gdbarch data vector. */
1739
1740 static void
1741 alloc_gdbarch_data (struct gdbarch *gdbarch)
1742 {
1743 gdb_assert (gdbarch->data == NULL);
1744 gdbarch->nr_data = gdbarch_data_registry.nr;
1745 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1746 }
1747
1748 /* Initialize the current value of the specified per-architecture
1749 data-pointer. */
1750
1751 void
1752 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1753 struct gdbarch_data *data,
1754 void *pointer)
1755 {
1756 gdb_assert (data->index < gdbarch->nr_data);
1757 gdb_assert (gdbarch->data[data->index] == NULL);
1758 gdb_assert (data->pre_init == NULL);
1759 gdbarch->data[data->index] = pointer;
1760 }
1761
1762 /* Return the current value of the specified per-architecture
1763 data-pointer. */
1764
1765 void *
1766 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1767 {
1768 gdb_assert (data->index < gdbarch->nr_data);
1769 if (gdbarch->data[data->index] == NULL)
1770 {
1771 /* The data-pointer isn't initialized, call init() to get a
1772 value. */
1773 if (data->pre_init != NULL)
1774 /* Mid architecture creation: pass just the obstack, and not
1775 the entire architecture, as that way it isn't possible for
1776 pre-init code to refer to undefined architecture
1777 fields. */
1778 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1779 else if (gdbarch->initialized_p
1780 && data->post_init != NULL)
1781 /* Post architecture creation: pass the entire architecture
1782 (as all fields are valid), but be careful to also detect
1783 recursive references. */
1784 {
1785 gdb_assert (data->init_p);
1786 data->init_p = 0;
1787 gdbarch->data[data->index] = data->post_init (gdbarch);
1788 data->init_p = 1;
1789 }
1790 else
1791 /* The architecture initialization hasn't completed - punt -
1792 hope that the caller knows what they are doing. Once
1793 deprecated_set_gdbarch_data has been initialized, this can be
1794 changed to an internal error. */
1795 return NULL;
1796 gdb_assert (gdbarch->data[data->index] != NULL);
1797 }
1798 return gdbarch->data[data->index];
1799 }
1800
1801
1802 /* Keep a registry of the architectures known by GDB. */
1803
1804 struct gdbarch_registration
1805 {
1806 enum bfd_architecture bfd_architecture;
1807 gdbarch_init_ftype *init;
1808 gdbarch_dump_tdep_ftype *dump_tdep;
1809 struct gdbarch_list *arches;
1810 struct gdbarch_registration *next;
1811 };
1812
1813 static struct gdbarch_registration *gdbarch_registry = NULL;
1814
1815 static void
1816 append_name (const char ***buf, int *nr, const char *name)
1817 {
1818 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1819 (*buf)[*nr] = name;
1820 *nr += 1;
1821 }
1822
1823 const char **
1824 gdbarch_printable_names (void)
1825 {
1826 /* Accumulate a list of names based on the registed list of
1827 architectures. */
1828 enum bfd_architecture a;
1829 int nr_arches = 0;
1830 const char **arches = NULL;
1831 struct gdbarch_registration *rego;
1832 for (rego = gdbarch_registry;
1833 rego != NULL;
1834 rego = rego->next)
1835 {
1836 const struct bfd_arch_info *ap;
1837 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1838 if (ap == NULL)
1839 internal_error (__FILE__, __LINE__,
1840 _("gdbarch_architecture_names: multi-arch unknown"));
1841 do
1842 {
1843 append_name (&arches, &nr_arches, ap->printable_name);
1844 ap = ap->next;
1845 }
1846 while (ap != NULL);
1847 }
1848 append_name (&arches, &nr_arches, NULL);
1849 return arches;
1850 }
1851
1852
1853 void
1854 gdbarch_register (enum bfd_architecture bfd_architecture,
1855 gdbarch_init_ftype *init,
1856 gdbarch_dump_tdep_ftype *dump_tdep)
1857 {
1858 struct gdbarch_registration **curr;
1859 const struct bfd_arch_info *bfd_arch_info;
1860 /* Check that BFD recognizes this architecture */
1861 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
1862 if (bfd_arch_info == NULL)
1863 {
1864 internal_error (__FILE__, __LINE__,
1865 _("gdbarch: Attempt to register unknown architecture (%d)"),
1866 bfd_architecture);
1867 }
1868 /* Check that we haven't seen this architecture before */
1869 for (curr = &gdbarch_registry;
1870 (*curr) != NULL;
1871 curr = &(*curr)->next)
1872 {
1873 if (bfd_architecture == (*curr)->bfd_architecture)
1874 internal_error (__FILE__, __LINE__,
1875 _("gdbarch: Duplicate registraration of architecture (%s)"),
1876 bfd_arch_info->printable_name);
1877 }
1878 /* log it */
1879 if (gdbarch_debug)
1880 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
1881 bfd_arch_info->printable_name,
1882 (long) init);
1883 /* Append it */
1884 (*curr) = XMALLOC (struct gdbarch_registration);
1885 (*curr)->bfd_architecture = bfd_architecture;
1886 (*curr)->init = init;
1887 (*curr)->dump_tdep = dump_tdep;
1888 (*curr)->arches = NULL;
1889 (*curr)->next = NULL;
1890 }
1891
1892 void
1893 register_gdbarch_init (enum bfd_architecture bfd_architecture,
1894 gdbarch_init_ftype *init)
1895 {
1896 gdbarch_register (bfd_architecture, init, NULL);
1897 }
1898
1899
1900 /* Look for an architecture using gdbarch_info. */
1901
1902 struct gdbarch_list *
1903 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
1904 const struct gdbarch_info *info)
1905 {
1906 for (; arches != NULL; arches = arches->next)
1907 {
1908 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
1909 continue;
1910 if (info->byte_order != arches->gdbarch->byte_order)
1911 continue;
1912 if (info->osabi != arches->gdbarch->osabi)
1913 continue;
1914 if (info->target_desc != arches->gdbarch->target_desc)
1915 continue;
1916 return arches;
1917 }
1918 return NULL;
1919 }
1920
1921
1922 /* Find an architecture that matches the specified INFO. Create a new
1923 architecture if needed. Return that new architecture. Assumes
1924 that there is no current architecture. */
1925
1926 static struct gdbarch *
1927 find_arch_by_info (struct gdbarch_info info)
1928 {
1929 struct gdbarch *new_gdbarch;
1930 struct gdbarch_registration *rego;
1931
1932 /* The existing architecture has been swapped out - all this code
1933 works from a clean slate. */
1934 gdb_assert (current_gdbarch == NULL);
1935
1936 /* Fill in missing parts of the INFO struct using a number of
1937 sources: "set ..."; INFOabfd supplied; and the global
1938 defaults. */
1939 gdbarch_info_fill (&info);
1940
1941 /* Must have found some sort of architecture. */
1942 gdb_assert (info.bfd_arch_info != NULL);
1943
1944 if (gdbarch_debug)
1945 {
1946 fprintf_unfiltered (gdb_stdlog,
1947 "find_arch_by_info: info.bfd_arch_info %s\n",
1948 (info.bfd_arch_info != NULL
1949 ? info.bfd_arch_info->printable_name
1950 : "(null)"));
1951 fprintf_unfiltered (gdb_stdlog,
1952 "find_arch_by_info: info.byte_order %d (%s)\n",
1953 info.byte_order,
1954 (info.byte_order == BFD_ENDIAN_BIG ? "big"
1955 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
1956 : "default"));
1957 fprintf_unfiltered (gdb_stdlog,
1958 "find_arch_by_info: info.osabi %d (%s)\n",
1959 info.osabi, gdbarch_osabi_name (info.osabi));
1960 fprintf_unfiltered (gdb_stdlog,
1961 "find_arch_by_info: info.abfd 0x%lx\n",
1962 (long) info.abfd);
1963 fprintf_unfiltered (gdb_stdlog,
1964 "find_arch_by_info: info.tdep_info 0x%lx\n",
1965 (long) info.tdep_info);
1966 }
1967
1968 /* Find the tdep code that knows about this architecture. */
1969 for (rego = gdbarch_registry;
1970 rego != NULL;
1971 rego = rego->next)
1972 if (rego->bfd_architecture == info.bfd_arch_info->arch)
1973 break;
1974 if (rego == NULL)
1975 {
1976 if (gdbarch_debug)
1977 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1978 "No matching architecture\n");
1979 return 0;
1980 }
1981
1982 /* Ask the tdep code for an architecture that matches "info". */
1983 new_gdbarch = rego->init (info, rego->arches);
1984
1985 /* Did the tdep code like it? No. Reject the change and revert to
1986 the old architecture. */
1987 if (new_gdbarch == NULL)
1988 {
1989 if (gdbarch_debug)
1990 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
1991 "Target rejected architecture\n");
1992 return NULL;
1993 }
1994
1995 /* Is this a pre-existing architecture (as determined by already
1996 being initialized)? Move it to the front of the architecture
1997 list (keeping the list sorted Most Recently Used). */
1998 if (new_gdbarch->initialized_p)
1999 {
2000 struct gdbarch_list **list;
2001 struct gdbarch_list *this;
2002 if (gdbarch_debug)
2003 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2004 "Previous architecture 0x%08lx (%s) selected\n",
2005 (long) new_gdbarch,
2006 new_gdbarch->bfd_arch_info->printable_name);
2007 /* Find the existing arch in the list. */
2008 for (list = &rego->arches;
2009 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2010 list = &(*list)->next);
2011 /* It had better be in the list of architectures. */
2012 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2013 /* Unlink THIS. */
2014 this = (*list);
2015 (*list) = this->next;
2016 /* Insert THIS at the front. */
2017 this->next = rego->arches;
2018 rego->arches = this;
2019 /* Return it. */
2020 return new_gdbarch;
2021 }
2022
2023 /* It's a new architecture. */
2024 if (gdbarch_debug)
2025 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2026 "New architecture 0x%08lx (%s) selected\n",
2027 (long) new_gdbarch,
2028 new_gdbarch->bfd_arch_info->printable_name);
2029
2030 /* Insert the new architecture into the front of the architecture
2031 list (keep the list sorted Most Recently Used). */
2032 {
2033 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2034 this->next = rego->arches;
2035 this->gdbarch = new_gdbarch;
2036 rego->arches = this;
2037 }
2038
2039 /* Check that the newly installed architecture is valid. Plug in
2040 any post init values. */
2041 new_gdbarch->dump_tdep = rego->dump_tdep;
2042 verify_gdbarch (new_gdbarch);
2043 new_gdbarch->initialized_p = 1;
2044
2045 if (gdbarch_debug)
2046 gdbarch_dump (new_gdbarch, gdb_stdlog);
2047
2048 return new_gdbarch;
2049 }
2050
2051 struct gdbarch *
2052 gdbarch_find_by_info (struct gdbarch_info info)
2053 {
2054 struct gdbarch *new_gdbarch;
2055
2056 /* Save the previously selected architecture, setting the global to
2057 NULL. This stops things like gdbarch->init() trying to use the
2058 previous architecture's configuration. The previous architecture
2059 may not even be of the same architecture family. The most recent
2060 architecture of the same family is found at the head of the
2061 rego->arches list. */
2062 struct gdbarch *old_gdbarch = current_gdbarch;
2063 current_gdbarch = NULL;
2064
2065 /* Find the specified architecture. */
2066 new_gdbarch = find_arch_by_info (info);
2067
2068 /* Restore the existing architecture. */
2069 gdb_assert (current_gdbarch == NULL);
2070 current_gdbarch = old_gdbarch;
2071
2072 return new_gdbarch;
2073 }
2074
2075 /* Make the specified architecture current. */
2076
2077 void
2078 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2079 {
2080 gdb_assert (new_gdbarch != NULL);
2081 gdb_assert (current_gdbarch != NULL);
2082 gdb_assert (new_gdbarch->initialized_p);
2083 current_gdbarch = new_gdbarch;
2084 architecture_changed_event ();
2085 reinit_frame_cache ();
2086 }
2087
2088 extern void _initialize_gdbarch (void);
2089
2090 void
2091 _initialize_gdbarch (void)
2092 {
2093 struct cmd_list_element *c;
2094
2095 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2096 Set architecture debugging."), _("\\
2097 Show architecture debugging."), _("\\
2098 When non-zero, architecture debugging is enabled."),
2099 NULL,
2100 show_gdbarch_debug,
2101 &setdebuglist, &showdebuglist);
2102 }
2103 EOF
2104
2105 # close things off
2106 exec 1>&2
2107 #../move-if-change new-gdbarch.c gdbarch.c
2108 compare_new gdbarch.c