]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
Skip gdb.server/ tests if lack of XML support
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2016 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r ${file}
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u ${file} new-${file}
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 while IFS='' read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 case "${class}" in
96 m ) staticdefault="${predefault}" ;;
97 M ) staticdefault="0" ;;
98 * ) test "${staticdefault}" || staticdefault=0 ;;
99 esac
100
101 case "${class}" in
102 F | V | M )
103 case "${invalid_p}" in
104 "" )
105 if test -n "${predefault}"
106 then
107 #invalid_p="gdbarch->${function} == ${predefault}"
108 predicate="gdbarch->${function} != ${predefault}"
109 elif class_is_variable_p
110 then
111 predicate="gdbarch->${function} != 0"
112 elif class_is_function_p
113 then
114 predicate="gdbarch->${function} != NULL"
115 fi
116 ;;
117 * )
118 echo "Predicate function ${function} with invalid_p." 1>&2
119 kill $$
120 exit 1
121 ;;
122 esac
123 esac
124
125 # PREDEFAULT is a valid fallback definition of MEMBER when
126 # multi-arch is not enabled. This ensures that the
127 # default value, when multi-arch is the same as the
128 # default value when not multi-arch. POSTDEFAULT is
129 # always a valid definition of MEMBER as this again
130 # ensures consistency.
131
132 if [ -n "${postdefault}" ]
133 then
134 fallbackdefault="${postdefault}"
135 elif [ -n "${predefault}" ]
136 then
137 fallbackdefault="${predefault}"
138 else
139 fallbackdefault="0"
140 fi
141
142 #NOT YET: See gdbarch.log for basic verification of
143 # database
144
145 break
146 fi
147 done
148 if [ -n "${class}" ]
149 then
150 true
151 else
152 false
153 fi
154 }
155
156
157 fallback_default_p ()
158 {
159 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
160 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
161 }
162
163 class_is_variable_p ()
164 {
165 case "${class}" in
166 *v* | *V* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_function_p ()
172 {
173 case "${class}" in
174 *f* | *F* | *m* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_multiarch_p ()
180 {
181 case "${class}" in
182 *m* | *M* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187 class_is_predicate_p ()
188 {
189 case "${class}" in
190 *F* | *V* | *M* ) true ;;
191 * ) false ;;
192 esac
193 }
194
195 class_is_info_p ()
196 {
197 case "${class}" in
198 *i* ) true ;;
199 * ) false ;;
200 esac
201 }
202
203
204 # dump out/verify the doco
205 for field in ${read}
206 do
207 case ${field} in
208
209 class ) : ;;
210
211 # # -> line disable
212 # f -> function
213 # hiding a function
214 # F -> function + predicate
215 # hiding a function + predicate to test function validity
216 # v -> variable
217 # hiding a variable
218 # V -> variable + predicate
219 # hiding a variable + predicate to test variables validity
220 # i -> set from info
221 # hiding something from the ``struct info'' object
222 # m -> multi-arch function
223 # hiding a multi-arch function (parameterised with the architecture)
224 # M -> multi-arch function + predicate
225 # hiding a multi-arch function + predicate to test function validity
226
227 returntype ) : ;;
228
229 # For functions, the return type; for variables, the data type
230
231 function ) : ;;
232
233 # For functions, the member function name; for variables, the
234 # variable name. Member function names are always prefixed with
235 # ``gdbarch_'' for name-space purity.
236
237 formal ) : ;;
238
239 # The formal argument list. It is assumed that the formal
240 # argument list includes the actual name of each list element.
241 # A function with no arguments shall have ``void'' as the
242 # formal argument list.
243
244 actual ) : ;;
245
246 # The list of actual arguments. The arguments specified shall
247 # match the FORMAL list given above. Functions with out
248 # arguments leave this blank.
249
250 staticdefault ) : ;;
251
252 # To help with the GDB startup a static gdbarch object is
253 # created. STATICDEFAULT is the value to insert into that
254 # static gdbarch object. Since this a static object only
255 # simple expressions can be used.
256
257 # If STATICDEFAULT is empty, zero is used.
258
259 predefault ) : ;;
260
261 # An initial value to assign to MEMBER of the freshly
262 # malloc()ed gdbarch object. After initialization, the
263 # freshly malloc()ed object is passed to the target
264 # architecture code for further updates.
265
266 # If PREDEFAULT is empty, zero is used.
267
268 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
269 # INVALID_P are specified, PREDEFAULT will be used as the
270 # default for the non- multi-arch target.
271
272 # A zero PREDEFAULT function will force the fallback to call
273 # internal_error().
274
275 # Variable declarations can refer to ``gdbarch'' which will
276 # contain the current architecture. Care should be taken.
277
278 postdefault ) : ;;
279
280 # A value to assign to MEMBER of the new gdbarch object should
281 # the target architecture code fail to change the PREDEFAULT
282 # value.
283
284 # If POSTDEFAULT is empty, no post update is performed.
285
286 # If both INVALID_P and POSTDEFAULT are non-empty then
287 # INVALID_P will be used to determine if MEMBER should be
288 # changed to POSTDEFAULT.
289
290 # If a non-empty POSTDEFAULT and a zero INVALID_P are
291 # specified, POSTDEFAULT will be used as the default for the
292 # non- multi-arch target (regardless of the value of
293 # PREDEFAULT).
294
295 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
296
297 # Variable declarations can refer to ``gdbarch'' which
298 # will contain the current architecture. Care should be
299 # taken.
300
301 invalid_p ) : ;;
302
303 # A predicate equation that validates MEMBER. Non-zero is
304 # returned if the code creating the new architecture failed to
305 # initialize MEMBER or the initialized the member is invalid.
306 # If POSTDEFAULT is non-empty then MEMBER will be updated to
307 # that value. If POSTDEFAULT is empty then internal_error()
308 # is called.
309
310 # If INVALID_P is empty, a check that MEMBER is no longer
311 # equal to PREDEFAULT is used.
312
313 # The expression ``0'' disables the INVALID_P check making
314 # PREDEFAULT a legitimate value.
315
316 # See also PREDEFAULT and POSTDEFAULT.
317
318 print ) : ;;
319
320 # An optional expression that convers MEMBER to a value
321 # suitable for formatting using %s.
322
323 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
324 # or plongest (anything else) is used.
325
326 garbage_at_eol ) : ;;
327
328 # Catches stray fields.
329
330 *)
331 echo "Bad field ${field}"
332 exit 1;;
333 esac
334 done
335
336
337 function_list ()
338 {
339 # See below (DOCO) for description of each field
340 cat <<EOF
341 i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
342 #
343 i:enum bfd_endian:byte_order:::BFD_ENDIAN_BIG
344 i:enum bfd_endian:byte_order_for_code:::BFD_ENDIAN_BIG
345 #
346 i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
347 #
348 i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
349
350 # The bit byte-order has to do just with numbering of bits in debugging symbols
351 # and such. Conceptually, it's quite separate from byte/word byte order.
352 v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
353
354 # Number of bits in a char or unsigned char for the target machine.
355 # Just like CHAR_BIT in <limits.h> but describes the target machine.
356 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
357 #
358 # Number of bits in a short or unsigned short for the target machine.
359 v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
360 # Number of bits in an int or unsigned int for the target machine.
361 v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
362 # Number of bits in a long or unsigned long for the target machine.
363 v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
364 # Number of bits in a long long or unsigned long long for the target
365 # machine.
366 v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
367 # Alignment of a long long or unsigned long long for the target
368 # machine.
369 v:int:long_long_align_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
370
371 # The ABI default bit-size and format for "half", "float", "double", and
372 # "long double". These bit/format pairs should eventually be combined
373 # into a single object. For the moment, just initialize them as a pair.
374 # Each format describes both the big and little endian layouts (if
375 # useful).
376
377 v:int:half_bit:::16:2*TARGET_CHAR_BIT::0
378 v:const struct floatformat **:half_format:::::floatformats_ieee_half::pformat (gdbarch->half_format)
379 v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
380 v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
381 v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
382 v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
383 v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
384 v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
385
386 # For most targets, a pointer on the target and its representation as an
387 # address in GDB have the same size and "look the same". For such a
388 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
389 # / addr_bit will be set from it.
390 #
391 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
392 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
393 # gdbarch_address_to_pointer as well.
394 #
395 # ptr_bit is the size of a pointer on the target
396 v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
397 # addr_bit is the size of a target address as represented in gdb
398 v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
399 #
400 # dwarf2_addr_size is the target address size as used in the Dwarf debug
401 # info. For .debug_frame FDEs, this is supposed to be the target address
402 # size from the associated CU header, and which is equivalent to the
403 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
404 # Unfortunately there is no good way to determine this value. Therefore
405 # dwarf2_addr_size simply defaults to the target pointer size.
406 #
407 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
408 # defined using the target's pointer size so far.
409 #
410 # Note that dwarf2_addr_size only needs to be redefined by a target if the
411 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
412 # and if Dwarf versions < 4 need to be supported.
413 v:int:dwarf2_addr_size:::sizeof (void*):0:gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT:
414 #
415 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
416 v:int:char_signed:::1:-1:1
417 #
418 F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
419 F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
420 # Function for getting target's idea of a frame pointer. FIXME: GDB's
421 # whole scheme for dealing with "frames" and "frame pointers" needs a
422 # serious shakedown.
423 m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
424 #
425 M:enum register_status:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
426 # Read a register into a new struct value. If the register is wholly
427 # or partly unavailable, this should call mark_value_bytes_unavailable
428 # as appropriate. If this is defined, then pseudo_register_read will
429 # never be called.
430 M:struct value *:pseudo_register_read_value:struct regcache *regcache, int cookednum:regcache, cookednum
431 M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
432 #
433 v:int:num_regs:::0:-1
434 # This macro gives the number of pseudo-registers that live in the
435 # register namespace but do not get fetched or stored on the target.
436 # These pseudo-registers may be aliases for other registers,
437 # combinations of other registers, or they may be computed by GDB.
438 v:int:num_pseudo_regs:::0:0::0
439
440 # Assemble agent expression bytecode to collect pseudo-register REG.
441 # Return -1 if something goes wrong, 0 otherwise.
442 M:int:ax_pseudo_register_collect:struct agent_expr *ax, int reg:ax, reg
443
444 # Assemble agent expression bytecode to push the value of pseudo-register
445 # REG on the interpreter stack.
446 # Return -1 if something goes wrong, 0 otherwise.
447 M:int:ax_pseudo_register_push_stack:struct agent_expr *ax, int reg:ax, reg
448
449 # Some targets/architectures can do extra processing/display of
450 # segmentation faults. E.g., Intel MPX boundary faults.
451 # Call the architecture dependent function to handle the fault.
452 # UIOUT is the output stream where the handler will place information.
453 M:void:handle_segmentation_fault:struct ui_out *uiout:uiout
454
455 # GDB's standard (or well known) register numbers. These can map onto
456 # a real register or a pseudo (computed) register or not be defined at
457 # all (-1).
458 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
459 v:int:sp_regnum:::-1:-1::0
460 v:int:pc_regnum:::-1:-1::0
461 v:int:ps_regnum:::-1:-1::0
462 v:int:fp0_regnum:::0:-1::0
463 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
464 m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
465 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
466 m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
467 # Convert from an sdb register number to an internal gdb register number.
468 m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
469 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
470 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
471 m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
472 m:const char *:register_name:int regnr:regnr::0
473
474 # Return the type of a register specified by the architecture. Only
475 # the register cache should call this function directly; others should
476 # use "register_type".
477 M:struct type *:register_type:int reg_nr:reg_nr
478
479 M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
480 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
481 # deprecated_fp_regnum.
482 v:int:deprecated_fp_regnum:::-1:-1::0
483
484 M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
485 v:int:call_dummy_location::::AT_ENTRY_POINT::0
486 M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
487
488 # Return true if the code of FRAME is writable.
489 m:int:code_of_frame_writable:struct frame_info *frame:frame::default_code_of_frame_writable::0
490
491 m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
492 m:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args::default_print_float_info::0
493 M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
494 # MAP a GDB RAW register number onto a simulator register number. See
495 # also include/...-sim.h.
496 m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
497 m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
498 m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
499
500 # Determine the address where a longjmp will land and save this address
501 # in PC. Return nonzero on success.
502 #
503 # FRAME corresponds to the longjmp frame.
504 F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
505
506 #
507 v:int:believe_pcc_promotion:::::::
508 #
509 m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
510 f:int:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep:frame, regnum, type, buf, optimizedp, unavailablep:0
511 f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
512 # Construct a value representing the contents of register REGNUM in
513 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
514 # allocate and return a struct value with all value attributes
515 # (but not the value contents) filled in.
516 m:struct value *:value_from_register:struct type *type, int regnum, struct frame_id frame_id:type, regnum, frame_id::default_value_from_register::0
517 #
518 m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
519 m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
520 M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
521
522 # Return the return-value convention that will be used by FUNCTION
523 # to return a value of type VALTYPE. FUNCTION may be NULL in which
524 # case the return convention is computed based only on VALTYPE.
525 #
526 # If READBUF is not NULL, extract the return value and save it in this buffer.
527 #
528 # If WRITEBUF is not NULL, it contains a return value which will be
529 # stored into the appropriate register. This can be used when we want
530 # to force the value returned by a function (see the "return" command
531 # for instance).
532 M:enum return_value_convention:return_value:struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:function, valtype, regcache, readbuf, writebuf
533
534 # Return true if the return value of function is stored in the first hidden
535 # parameter. In theory, this feature should be language-dependent, specified
536 # by language and its ABI, such as C++. Unfortunately, compiler may
537 # implement it to a target-dependent feature. So that we need such hook here
538 # to be aware of this in GDB.
539 m:int:return_in_first_hidden_param_p:struct type *type:type::default_return_in_first_hidden_param_p::0
540
541 m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
542 M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
543 # On some platforms, a single function may provide multiple entry points,
544 # e.g. one that is used for function-pointer calls and a different one
545 # that is used for direct function calls.
546 # In order to ensure that breakpoints set on the function will trigger
547 # no matter via which entry point the function is entered, a platform
548 # may provide the skip_entrypoint callback. It is called with IP set
549 # to the main entry point of a function (as determined by the symbol table),
550 # and should return the address of the innermost entry point, where the
551 # actual breakpoint needs to be set. Note that skip_entrypoint is used
552 # by GDB common code even when debugging optimized code, where skip_prologue
553 # is not used.
554 M:CORE_ADDR:skip_entrypoint:CORE_ADDR ip:ip
555
556 f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
557 m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
558 # Return the adjusted address and kind to use for Z0/Z1 packets.
559 # KIND is usually the memory length of the breakpoint, but may have a
560 # different target-specific meaning.
561 m:void:remote_breakpoint_from_pc:CORE_ADDR *pcptr, int *kindptr:pcptr, kindptr:0:default_remote_breakpoint_from_pc::0
562 M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
563 m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
564 m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
565 v:CORE_ADDR:decr_pc_after_break:::0:::0
566
567 # A function can be addressed by either it's "pointer" (possibly a
568 # descriptor address) or "entry point" (first executable instruction).
569 # The method "convert_from_func_ptr_addr" converting the former to the
570 # latter. gdbarch_deprecated_function_start_offset is being used to implement
571 # a simplified subset of that functionality - the function's address
572 # corresponds to the "function pointer" and the function's start
573 # corresponds to the "function entry point" - and hence is redundant.
574
575 v:CORE_ADDR:deprecated_function_start_offset:::0:::0
576
577 # Return the remote protocol register number associated with this
578 # register. Normally the identity mapping.
579 m:int:remote_register_number:int regno:regno::default_remote_register_number::0
580
581 # Fetch the target specific address used to represent a load module.
582 F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
583 #
584 v:CORE_ADDR:frame_args_skip:::0:::0
585 M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
586 M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
587 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
588 # frame-base. Enable frame-base before frame-unwind.
589 F:int:frame_num_args:struct frame_info *frame:frame
590 #
591 M:CORE_ADDR:frame_align:CORE_ADDR address:address
592 m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
593 v:int:frame_red_zone_size
594 #
595 m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
596 # On some machines there are bits in addresses which are not really
597 # part of the address, but are used by the kernel, the hardware, etc.
598 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
599 # we get a "real" address such as one would find in a symbol table.
600 # This is used only for addresses of instructions, and even then I'm
601 # not sure it's used in all contexts. It exists to deal with there
602 # being a few stray bits in the PC which would mislead us, not as some
603 # sort of generic thing to handle alignment or segmentation (it's
604 # possible it should be in TARGET_READ_PC instead).
605 m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
606
607 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
608 # indicates if the target needs software single step. An ISA method to
609 # implement it.
610 #
611 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
612 # target can single step. If not, then implement single step using breakpoints.
613 #
614 # A return value of 1 means that the software_single_step breakpoints
615 # were inserted; 0 means they were not. Multiple breakpoints may be
616 # inserted for some instructions such as conditional branch. However,
617 # each implementation must always evaluate the condition and only put
618 # the breakpoint at the branch destination if the condition is true, so
619 # that we ensure forward progress when stepping past a conditional
620 # branch to self.
621 F:int:software_single_step:struct frame_info *frame:frame
622
623 # Return non-zero if the processor is executing a delay slot and a
624 # further single-step is needed before the instruction finishes.
625 M:int:single_step_through_delay:struct frame_info *frame:frame
626 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
627 # disassembler. Perhaps objdump can handle it?
628 f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
629 f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
630
631
632 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
633 # evaluates non-zero, this is the address where the debugger will place
634 # a step-resume breakpoint to get us past the dynamic linker.
635 m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
636 # Some systems also have trampoline code for returning from shared libs.
637 m:int:in_solib_return_trampoline:CORE_ADDR pc, const char *name:pc, name::generic_in_solib_return_trampoline::0
638
639 # A target might have problems with watchpoints as soon as the stack
640 # frame of the current function has been destroyed. This mostly happens
641 # as the first action in a function's epilogue. stack_frame_destroyed_p()
642 # is defined to return a non-zero value if either the given addr is one
643 # instruction after the stack destroying instruction up to the trailing
644 # return instruction or if we can figure out that the stack frame has
645 # already been invalidated regardless of the value of addr. Targets
646 # which don't suffer from that problem could just let this functionality
647 # untouched.
648 m:int:stack_frame_destroyed_p:CORE_ADDR addr:addr:0:generic_stack_frame_destroyed_p::0
649 # Process an ELF symbol in the minimal symbol table in a backend-specific
650 # way. Normally this hook is supposed to do nothing, however if required,
651 # then this hook can be used to apply tranformations to symbols that are
652 # considered special in some way. For example the MIPS backend uses it
653 # to interpret \`st_other' information to mark compressed code symbols so
654 # that they can be treated in the appropriate manner in the processing of
655 # the main symbol table and DWARF-2 records.
656 F:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym
657 f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
658 # Process a symbol in the main symbol table in a backend-specific way.
659 # Normally this hook is supposed to do nothing, however if required,
660 # then this hook can be used to apply tranformations to symbols that
661 # are considered special in some way. This is currently used by the
662 # MIPS backend to make sure compressed code symbols have the ISA bit
663 # set. This in turn is needed for symbol values seen in GDB to match
664 # the values used at the runtime by the program itself, for function
665 # and label references.
666 f:void:make_symbol_special:struct symbol *sym, struct objfile *objfile:sym, objfile::default_make_symbol_special::0
667 # Adjust the address retrieved from a DWARF-2 record other than a line
668 # entry in a backend-specific way. Normally this hook is supposed to
669 # return the address passed unchanged, however if that is incorrect for
670 # any reason, then this hook can be used to fix the address up in the
671 # required manner. This is currently used by the MIPS backend to make
672 # sure addresses in FDE, range records, etc. referring to compressed
673 # code have the ISA bit set, matching line information and the symbol
674 # table.
675 f:CORE_ADDR:adjust_dwarf2_addr:CORE_ADDR pc:pc::default_adjust_dwarf2_addr::0
676 # Adjust the address updated by a line entry in a backend-specific way.
677 # Normally this hook is supposed to return the address passed unchanged,
678 # however in the case of inconsistencies in these records, this hook can
679 # be used to fix them up in the required manner. This is currently used
680 # by the MIPS backend to make sure all line addresses in compressed code
681 # are presented with the ISA bit set, which is not always the case. This
682 # in turn ensures breakpoint addresses are correctly matched against the
683 # stop PC.
684 f:CORE_ADDR:adjust_dwarf2_line:CORE_ADDR addr, int rel:addr, rel::default_adjust_dwarf2_line::0
685 v:int:cannot_step_breakpoint:::0:0::0
686 v:int:have_nonsteppable_watchpoint:::0:0::0
687 F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
688 M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
689
690 # Return the appropriate type_flags for the supplied address class.
691 # This function should return 1 if the address class was recognized and
692 # type_flags was set, zero otherwise.
693 M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
694 # Is a register in a group
695 m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
696 # Fetch the pointer to the ith function argument.
697 F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
698
699 # Iterate over all supported register notes in a core file. For each
700 # supported register note section, the iterator must call CB and pass
701 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
702 # the supported register note sections based on the current register
703 # values. Otherwise it should enumerate all supported register note
704 # sections.
705 M:void:iterate_over_regset_sections:iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache:cb, cb_data, regcache
706
707 # Create core file notes
708 M:char *:make_corefile_notes:bfd *obfd, int *note_size:obfd, note_size
709
710 # The elfcore writer hook to use to write Linux prpsinfo notes to core
711 # files. Most Linux architectures use the same prpsinfo32 or
712 # prpsinfo64 layouts, and so won't need to provide this hook, as we
713 # call the Linux generic routines in bfd to write prpsinfo notes by
714 # default.
715 F:char *:elfcore_write_linux_prpsinfo:bfd *obfd, char *note_data, int *note_size, const struct elf_internal_linux_prpsinfo *info:obfd, note_data, note_size, info
716
717 # Find core file memory regions
718 M:int:find_memory_regions:find_memory_region_ftype func, void *data:func, data
719
720 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
721 # core file into buffer READBUF with length LEN. Return the number of bytes read
722 # (zero indicates failure).
723 # failed, otherwise, return the red length of READBUF.
724 M:ULONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
725
726 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
727 # libraries list from core file into buffer READBUF with length LEN.
728 # Return the number of bytes read (zero indicates failure).
729 M:ULONGEST:core_xfer_shared_libraries_aix:gdb_byte *readbuf, ULONGEST offset, ULONGEST len:readbuf, offset, len
730
731 # How the core target converts a PTID from a core file to a string.
732 M:char *:core_pid_to_str:ptid_t ptid:ptid
733
734 # How the core target extracts the name of a thread from a core file.
735 M:const char *:core_thread_name:struct thread_info *thr:thr
736
737 # BFD target to use when generating a core file.
738 V:const char *:gcore_bfd_target:::0:0:::pstring (gdbarch->gcore_bfd_target)
739
740 # If the elements of C++ vtables are in-place function descriptors rather
741 # than normal function pointers (which may point to code or a descriptor),
742 # set this to one.
743 v:int:vtable_function_descriptors:::0:0::0
744
745 # Set if the least significant bit of the delta is used instead of the least
746 # significant bit of the pfn for pointers to virtual member functions.
747 v:int:vbit_in_delta:::0:0::0
748
749 # Advance PC to next instruction in order to skip a permanent breakpoint.
750 f:void:skip_permanent_breakpoint:struct regcache *regcache:regcache:default_skip_permanent_breakpoint:default_skip_permanent_breakpoint::0
751
752 # The maximum length of an instruction on this architecture in bytes.
753 V:ULONGEST:max_insn_length:::0:0
754
755 # Copy the instruction at FROM to TO, and make any adjustments
756 # necessary to single-step it at that address.
757 #
758 # REGS holds the state the thread's registers will have before
759 # executing the copied instruction; the PC in REGS will refer to FROM,
760 # not the copy at TO. The caller should update it to point at TO later.
761 #
762 # Return a pointer to data of the architecture's choice to be passed
763 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
764 # the instruction's effects have been completely simulated, with the
765 # resulting state written back to REGS.
766 #
767 # For a general explanation of displaced stepping and how GDB uses it,
768 # see the comments in infrun.c.
769 #
770 # The TO area is only guaranteed to have space for
771 # gdbarch_max_insn_length (arch) bytes, so this function must not
772 # write more bytes than that to that area.
773 #
774 # If you do not provide this function, GDB assumes that the
775 # architecture does not support displaced stepping.
776 #
777 # If your architecture doesn't need to adjust instructions before
778 # single-stepping them, consider using simple_displaced_step_copy_insn
779 # here.
780 #
781 # If the instruction cannot execute out of line, return NULL. The
782 # core falls back to stepping past the instruction in-line instead in
783 # that case.
784 M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
785
786 # Return true if GDB should use hardware single-stepping to execute
787 # the displaced instruction identified by CLOSURE. If false,
788 # GDB will simply restart execution at the displaced instruction
789 # location, and it is up to the target to ensure GDB will receive
790 # control again (e.g. by placing a software breakpoint instruction
791 # into the displaced instruction buffer).
792 #
793 # The default implementation returns false on all targets that
794 # provide a gdbarch_software_single_step routine, and true otherwise.
795 m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
796
797 # Fix up the state resulting from successfully single-stepping a
798 # displaced instruction, to give the result we would have gotten from
799 # stepping the instruction in its original location.
800 #
801 # REGS is the register state resulting from single-stepping the
802 # displaced instruction.
803 #
804 # CLOSURE is the result from the matching call to
805 # gdbarch_displaced_step_copy_insn.
806 #
807 # If you provide gdbarch_displaced_step_copy_insn.but not this
808 # function, then GDB assumes that no fixup is needed after
809 # single-stepping the instruction.
810 #
811 # For a general explanation of displaced stepping and how GDB uses it,
812 # see the comments in infrun.c.
813 M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
814
815 # Free a closure returned by gdbarch_displaced_step_copy_insn.
816 #
817 # If you provide gdbarch_displaced_step_copy_insn, you must provide
818 # this function as well.
819 #
820 # If your architecture uses closures that don't need to be freed, then
821 # you can use simple_displaced_step_free_closure here.
822 #
823 # For a general explanation of displaced stepping and how GDB uses it,
824 # see the comments in infrun.c.
825 m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
826
827 # Return the address of an appropriate place to put displaced
828 # instructions while we step over them. There need only be one such
829 # place, since we're only stepping one thread over a breakpoint at a
830 # time.
831 #
832 # For a general explanation of displaced stepping and how GDB uses it,
833 # see the comments in infrun.c.
834 m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
835
836 # Relocate an instruction to execute at a different address. OLDLOC
837 # is the address in the inferior memory where the instruction to
838 # relocate is currently at. On input, TO points to the destination
839 # where we want the instruction to be copied (and possibly adjusted)
840 # to. On output, it points to one past the end of the resulting
841 # instruction(s). The effect of executing the instruction at TO shall
842 # be the same as if executing it at FROM. For example, call
843 # instructions that implicitly push the return address on the stack
844 # should be adjusted to return to the instruction after OLDLOC;
845 # relative branches, and other PC-relative instructions need the
846 # offset adjusted; etc.
847 M:void:relocate_instruction:CORE_ADDR *to, CORE_ADDR from:to, from::NULL
848
849 # Refresh overlay mapped state for section OSECT.
850 F:void:overlay_update:struct obj_section *osect:osect
851
852 M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
853
854 # Handle special encoding of static variables in stabs debug info.
855 F:const char *:static_transform_name:const char *name:name
856 # Set if the address in N_SO or N_FUN stabs may be zero.
857 v:int:sofun_address_maybe_missing:::0:0::0
858
859 # Parse the instruction at ADDR storing in the record execution log
860 # the registers REGCACHE and memory ranges that will be affected when
861 # the instruction executes, along with their current values.
862 # Return -1 if something goes wrong, 0 otherwise.
863 M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
864
865 # Save process state after a signal.
866 # Return -1 if something goes wrong, 0 otherwise.
867 M:int:process_record_signal:struct regcache *regcache, enum gdb_signal signal:regcache, signal
868
869 # Signal translation: translate inferior's signal (target's) number
870 # into GDB's representation. The implementation of this method must
871 # be host independent. IOW, don't rely on symbols of the NAT_FILE
872 # header (the nm-*.h files), the host <signal.h> header, or similar
873 # headers. This is mainly used when cross-debugging core files ---
874 # "Live" targets hide the translation behind the target interface
875 # (target_wait, target_resume, etc.).
876 M:enum gdb_signal:gdb_signal_from_target:int signo:signo
877
878 # Signal translation: translate the GDB's internal signal number into
879 # the inferior's signal (target's) representation. The implementation
880 # of this method must be host independent. IOW, don't rely on symbols
881 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
882 # header, or similar headers.
883 # Return the target signal number if found, or -1 if the GDB internal
884 # signal number is invalid.
885 M:int:gdb_signal_to_target:enum gdb_signal signal:signal
886
887 # Extra signal info inspection.
888 #
889 # Return a type suitable to inspect extra signal information.
890 M:struct type *:get_siginfo_type:void:
891
892 # Record architecture-specific information from the symbol table.
893 M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
894
895 # Function for the 'catch syscall' feature.
896
897 # Get architecture-specific system calls information from registers.
898 M:LONGEST:get_syscall_number:ptid_t ptid:ptid
899
900 # The filename of the XML syscall for this architecture.
901 v:const char *:xml_syscall_file:::0:0::0:pstring (gdbarch->xml_syscall_file)
902
903 # Information about system calls from this architecture
904 v:struct syscalls_info *:syscalls_info:::0:0::0:host_address_to_string (gdbarch->syscalls_info)
905
906 # SystemTap related fields and functions.
907
908 # A NULL-terminated array of prefixes used to mark an integer constant
909 # on the architecture's assembly.
910 # For example, on x86 integer constants are written as:
911 #
912 # \$10 ;; integer constant 10
913 #
914 # in this case, this prefix would be the character \`\$\'.
915 v:const char *const *:stap_integer_prefixes:::0:0::0:pstring_list (gdbarch->stap_integer_prefixes)
916
917 # A NULL-terminated array of suffixes used to mark an integer constant
918 # on the architecture's assembly.
919 v:const char *const *:stap_integer_suffixes:::0:0::0:pstring_list (gdbarch->stap_integer_suffixes)
920
921 # A NULL-terminated array of prefixes used to mark a register name on
922 # the architecture's assembly.
923 # For example, on x86 the register name is written as:
924 #
925 # \%eax ;; register eax
926 #
927 # in this case, this prefix would be the character \`\%\'.
928 v:const char *const *:stap_register_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_prefixes)
929
930 # A NULL-terminated array of suffixes used to mark a register name on
931 # the architecture's assembly.
932 v:const char *const *:stap_register_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_suffixes)
933
934 # A NULL-terminated array of prefixes used to mark a register
935 # indirection on the architecture's assembly.
936 # For example, on x86 the register indirection is written as:
937 #
938 # \(\%eax\) ;; indirecting eax
939 #
940 # in this case, this prefix would be the charater \`\(\'.
941 #
942 # Please note that we use the indirection prefix also for register
943 # displacement, e.g., \`4\(\%eax\)\' on x86.
944 v:const char *const *:stap_register_indirection_prefixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_prefixes)
945
946 # A NULL-terminated array of suffixes used to mark a register
947 # indirection on the architecture's assembly.
948 # For example, on x86 the register indirection is written as:
949 #
950 # \(\%eax\) ;; indirecting eax
951 #
952 # in this case, this prefix would be the charater \`\)\'.
953 #
954 # Please note that we use the indirection suffix also for register
955 # displacement, e.g., \`4\(\%eax\)\' on x86.
956 v:const char *const *:stap_register_indirection_suffixes:::0:0::0:pstring_list (gdbarch->stap_register_indirection_suffixes)
957
958 # Prefix(es) used to name a register using GDB's nomenclature.
959 #
960 # For example, on PPC a register is represented by a number in the assembly
961 # language (e.g., \`10\' is the 10th general-purpose register). However,
962 # inside GDB this same register has an \`r\' appended to its name, so the 10th
963 # register would be represented as \`r10\' internally.
964 v:const char *:stap_gdb_register_prefix:::0:0::0:pstring (gdbarch->stap_gdb_register_prefix)
965
966 # Suffix used to name a register using GDB's nomenclature.
967 v:const char *:stap_gdb_register_suffix:::0:0::0:pstring (gdbarch->stap_gdb_register_suffix)
968
969 # Check if S is a single operand.
970 #
971 # Single operands can be:
972 # \- Literal integers, e.g. \`\$10\' on x86
973 # \- Register access, e.g. \`\%eax\' on x86
974 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
975 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
976 #
977 # This function should check for these patterns on the string
978 # and return 1 if some were found, or zero otherwise. Please try to match
979 # as much info as you can from the string, i.e., if you have to match
980 # something like \`\(\%\', do not match just the \`\(\'.
981 M:int:stap_is_single_operand:const char *s:s
982
983 # Function used to handle a "special case" in the parser.
984 #
985 # A "special case" is considered to be an unknown token, i.e., a token
986 # that the parser does not know how to parse. A good example of special
987 # case would be ARM's register displacement syntax:
988 #
989 # [R0, #4] ;; displacing R0 by 4
990 #
991 # Since the parser assumes that a register displacement is of the form:
992 #
993 # <number> <indirection_prefix> <register_name> <indirection_suffix>
994 #
995 # it means that it will not be able to recognize and parse this odd syntax.
996 # Therefore, we should add a special case function that will handle this token.
997 #
998 # This function should generate the proper expression form of the expression
999 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1000 # and so on). It should also return 1 if the parsing was successful, or zero
1001 # if the token was not recognized as a special token (in this case, returning
1002 # zero means that the special parser is deferring the parsing to the generic
1003 # parser), and should advance the buffer pointer (p->arg).
1004 M:int:stap_parse_special_token:struct stap_parse_info *p:p
1005
1006 # DTrace related functions.
1007
1008 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1009 # NARG must be >= 0.
1010 M:void:dtrace_parse_probe_argument:struct parser_state *pstate, int narg:pstate, narg
1011
1012 # True if the given ADDR does not contain the instruction sequence
1013 # corresponding to a disabled DTrace is-enabled probe.
1014 M:int:dtrace_probe_is_enabled:CORE_ADDR addr:addr
1015
1016 # Enable a DTrace is-enabled probe at ADDR.
1017 M:void:dtrace_enable_probe:CORE_ADDR addr:addr
1018
1019 # Disable a DTrace is-enabled probe at ADDR.
1020 M:void:dtrace_disable_probe:CORE_ADDR addr:addr
1021
1022 # True if the list of shared libraries is one and only for all
1023 # processes, as opposed to a list of shared libraries per inferior.
1024 # This usually means that all processes, although may or may not share
1025 # an address space, will see the same set of symbols at the same
1026 # addresses.
1027 v:int:has_global_solist:::0:0::0
1028
1029 # On some targets, even though each inferior has its own private
1030 # address space, the debug interface takes care of making breakpoints
1031 # visible to all address spaces automatically. For such cases,
1032 # this property should be set to true.
1033 v:int:has_global_breakpoints:::0:0::0
1034
1035 # True if inferiors share an address space (e.g., uClinux).
1036 m:int:has_shared_address_space:void:::default_has_shared_address_space::0
1037
1038 # True if a fast tracepoint can be set at an address.
1039 m:int:fast_tracepoint_valid_at:CORE_ADDR addr, char **msg:addr, msg::default_fast_tracepoint_valid_at::0
1040
1041 # Guess register state based on tracepoint location. Used for tracepoints
1042 # where no registers have been collected, but there's only one location,
1043 # allowing us to guess the PC value, and perhaps some other registers.
1044 # On entry, regcache has all registers marked as unavailable.
1045 m:void:guess_tracepoint_registers:struct regcache *regcache, CORE_ADDR addr:regcache, addr::default_guess_tracepoint_registers::0
1046
1047 # Return the "auto" target charset.
1048 f:const char *:auto_charset:void::default_auto_charset:default_auto_charset::0
1049 # Return the "auto" target wide charset.
1050 f:const char *:auto_wide_charset:void::default_auto_wide_charset:default_auto_wide_charset::0
1051
1052 # If non-empty, this is a file extension that will be opened in place
1053 # of the file extension reported by the shared library list.
1054 #
1055 # This is most useful for toolchains that use a post-linker tool,
1056 # where the names of the files run on the target differ in extension
1057 # compared to the names of the files GDB should load for debug info.
1058 v:const char *:solib_symbols_extension:::::::pstring (gdbarch->solib_symbols_extension)
1059
1060 # If true, the target OS has DOS-based file system semantics. That
1061 # is, absolute paths include a drive name, and the backslash is
1062 # considered a directory separator.
1063 v:int:has_dos_based_file_system:::0:0::0
1064
1065 # Generate bytecodes to collect the return address in a frame.
1066 # Since the bytecodes run on the target, possibly with GDB not even
1067 # connected, the full unwinding machinery is not available, and
1068 # typically this function will issue bytecodes for one or more likely
1069 # places that the return address may be found.
1070 m:void:gen_return_address:struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope:ax, value, scope::default_gen_return_address::0
1071
1072 # Implement the "info proc" command.
1073 M:void:info_proc:const char *args, enum info_proc_what what:args, what
1074
1075 # Implement the "info proc" command for core files. Noe that there
1076 # are two "info_proc"-like methods on gdbarch -- one for core files,
1077 # one for live targets.
1078 M:void:core_info_proc:const char *args, enum info_proc_what what:args, what
1079
1080 # Iterate over all objfiles in the order that makes the most sense
1081 # for the architecture to make global symbol searches.
1082 #
1083 # CB is a callback function where OBJFILE is the objfile to be searched,
1084 # and CB_DATA a pointer to user-defined data (the same data that is passed
1085 # when calling this gdbarch method). The iteration stops if this function
1086 # returns nonzero.
1087 #
1088 # CB_DATA is a pointer to some user-defined data to be passed to
1089 # the callback.
1090 #
1091 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1092 # inspected when the symbol search was requested.
1093 m:void:iterate_over_objfiles_in_search_order:iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile:cb, cb_data, current_objfile:0:default_iterate_over_objfiles_in_search_order::0
1094
1095 # Ravenscar arch-dependent ops.
1096 v:struct ravenscar_arch_ops *:ravenscar_ops:::NULL:NULL::0:host_address_to_string (gdbarch->ravenscar_ops)
1097
1098 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1099 m:int:insn_is_call:CORE_ADDR addr:addr::default_insn_is_call::0
1100
1101 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1102 m:int:insn_is_ret:CORE_ADDR addr:addr::default_insn_is_ret::0
1103
1104 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1105 m:int:insn_is_jump:CORE_ADDR addr:addr::default_insn_is_jump::0
1106
1107 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1108 # Return 0 if *READPTR is already at the end of the buffer.
1109 # Return -1 if there is insufficient buffer for a whole entry.
1110 # Return 1 if an entry was read into *TYPEP and *VALP.
1111 M:int:auxv_parse:gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp:readptr, endptr, typep, valp
1112
1113 # Print the description of a single auxv entry described by TYPE and VAL
1114 # to FILE.
1115 m:void:print_auxv_entry:struct ui_file *file, CORE_ADDR type, CORE_ADDR val:file, type, val::default_print_auxv_entry::0
1116
1117 # Find the address range of the current inferior's vsyscall/vDSO, and
1118 # write it to *RANGE. If the vsyscall's length can't be determined, a
1119 # range with zero length is returned. Returns true if the vsyscall is
1120 # found, false otherwise.
1121 m:int:vsyscall_range:struct mem_range *range:range::default_vsyscall_range::0
1122
1123 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1124 # PROT has GDB_MMAP_PROT_* bitmask format.
1125 # Throw an error if it is not possible. Returned address is always valid.
1126 f:CORE_ADDR:infcall_mmap:CORE_ADDR size, unsigned prot:size, prot::default_infcall_mmap::0
1127
1128 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1129 # Print a warning if it is not possible.
1130 f:void:infcall_munmap:CORE_ADDR addr, CORE_ADDR size:addr, size::default_infcall_munmap::0
1131
1132 # Return string (caller has to use xfree for it) with options for GCC
1133 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1134 # These options are put before CU's DW_AT_producer compilation options so that
1135 # they can override it. Method may also return NULL.
1136 m:char *:gcc_target_options:void:::default_gcc_target_options::0
1137
1138 # Return a regular expression that matches names used by this
1139 # architecture in GNU configury triplets. The result is statically
1140 # allocated and must not be freed. The default implementation simply
1141 # returns the BFD architecture name, which is correct in nearly every
1142 # case.
1143 m:const char *:gnu_triplet_regexp:void:::default_gnu_triplet_regexp::0
1144
1145 # Return the size in 8-bit bytes of an addressable memory unit on this
1146 # architecture. This corresponds to the number of 8-bit bytes associated to
1147 # each address in memory.
1148 m:int:addressable_memory_unit_size:void:::default_addressable_memory_unit_size::0
1149
1150 EOF
1151 }
1152
1153 #
1154 # The .log file
1155 #
1156 exec > new-gdbarch.log
1157 function_list | while do_read
1158 do
1159 cat <<EOF
1160 ${class} ${returntype} ${function} ($formal)
1161 EOF
1162 for r in ${read}
1163 do
1164 eval echo \"\ \ \ \ ${r}=\${${r}}\"
1165 done
1166 if class_is_predicate_p && fallback_default_p
1167 then
1168 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1169 kill $$
1170 exit 1
1171 fi
1172 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
1173 then
1174 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1175 kill $$
1176 exit 1
1177 fi
1178 if class_is_multiarch_p
1179 then
1180 if class_is_predicate_p ; then :
1181 elif test "x${predefault}" = "x"
1182 then
1183 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1184 kill $$
1185 exit 1
1186 fi
1187 fi
1188 echo ""
1189 done
1190
1191 exec 1>&2
1192 compare_new gdbarch.log
1193
1194
1195 copyright ()
1196 {
1197 cat <<EOF
1198 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1199 /* vi:set ro: */
1200
1201 /* Dynamic architecture support for GDB, the GNU debugger.
1202
1203 Copyright (C) 1998-2016 Free Software Foundation, Inc.
1204
1205 This file is part of GDB.
1206
1207 This program is free software; you can redistribute it and/or modify
1208 it under the terms of the GNU General Public License as published by
1209 the Free Software Foundation; either version 3 of the License, or
1210 (at your option) any later version.
1211
1212 This program is distributed in the hope that it will be useful,
1213 but WITHOUT ANY WARRANTY; without even the implied warranty of
1214 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1215 GNU General Public License for more details.
1216
1217 You should have received a copy of the GNU General Public License
1218 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1219
1220 /* This file was created with the aid of \`\`gdbarch.sh''.
1221
1222 The Bourne shell script \`\`gdbarch.sh'' creates the files
1223 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1224 against the existing \`\`gdbarch.[hc]''. Any differences found
1225 being reported.
1226
1227 If editing this file, please also run gdbarch.sh and merge any
1228 changes into that script. Conversely, when making sweeping changes
1229 to this file, modifying gdbarch.sh and using its output may prove
1230 easier. */
1231
1232 EOF
1233 }
1234
1235 #
1236 # The .h file
1237 #
1238
1239 exec > new-gdbarch.h
1240 copyright
1241 cat <<EOF
1242 #ifndef GDBARCH_H
1243 #define GDBARCH_H
1244
1245 #include "frame.h"
1246
1247 struct floatformat;
1248 struct ui_file;
1249 struct value;
1250 struct objfile;
1251 struct obj_section;
1252 struct minimal_symbol;
1253 struct regcache;
1254 struct reggroup;
1255 struct regset;
1256 struct disassemble_info;
1257 struct target_ops;
1258 struct obstack;
1259 struct bp_target_info;
1260 struct target_desc;
1261 struct objfile;
1262 struct symbol;
1263 struct displaced_step_closure;
1264 struct syscall;
1265 struct agent_expr;
1266 struct axs_value;
1267 struct stap_parse_info;
1268 struct parser_state;
1269 struct ravenscar_arch_ops;
1270 struct elf_internal_linux_prpsinfo;
1271 struct mem_range;
1272 struct syscalls_info;
1273 struct thread_info;
1274 struct ui_out;
1275
1276 #include "regcache.h"
1277
1278 /* The architecture associated with the inferior through the
1279 connection to the target.
1280
1281 The architecture vector provides some information that is really a
1282 property of the inferior, accessed through a particular target:
1283 ptrace operations; the layout of certain RSP packets; the solib_ops
1284 vector; etc. To differentiate architecture accesses to
1285 per-inferior/target properties from
1286 per-thread/per-frame/per-objfile properties, accesses to
1287 per-inferior/target properties should be made through this
1288 gdbarch. */
1289
1290 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1291 extern struct gdbarch *target_gdbarch (void);
1292
1293 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1294 gdbarch method. */
1295
1296 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1297 (struct objfile *objfile, void *cb_data);
1298
1299 /* Callback type for regset section iterators. The callback usually
1300 invokes the REGSET's supply or collect method, to which it must
1301 pass a buffer with at least the given SIZE. SECT_NAME is a BFD
1302 section name, and HUMAN_NAME is used for diagnostic messages.
1303 CB_DATA should have been passed unchanged through the iterator. */
1304
1305 typedef void (iterate_over_regset_sections_cb)
1306 (const char *sect_name, int size, const struct regset *regset,
1307 const char *human_name, void *cb_data);
1308 EOF
1309
1310 # function typedef's
1311 printf "\n"
1312 printf "\n"
1313 printf "/* The following are pre-initialized by GDBARCH. */\n"
1314 function_list | while do_read
1315 do
1316 if class_is_info_p
1317 then
1318 printf "\n"
1319 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1320 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
1321 fi
1322 done
1323
1324 # function typedef's
1325 printf "\n"
1326 printf "\n"
1327 printf "/* The following are initialized by the target dependent code. */\n"
1328 function_list | while do_read
1329 do
1330 if [ -n "${comment}" ]
1331 then
1332 echo "${comment}" | sed \
1333 -e '2 s,#,/*,' \
1334 -e '3,$ s,#, ,' \
1335 -e '$ s,$, */,'
1336 fi
1337
1338 if class_is_predicate_p
1339 then
1340 printf "\n"
1341 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
1342 fi
1343 if class_is_variable_p
1344 then
1345 printf "\n"
1346 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1347 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
1348 fi
1349 if class_is_function_p
1350 then
1351 printf "\n"
1352 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1353 then
1354 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
1355 elif class_is_multiarch_p
1356 then
1357 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
1358 else
1359 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
1360 fi
1361 if [ "x${formal}" = "xvoid" ]
1362 then
1363 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
1364 else
1365 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
1366 fi
1367 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
1368 fi
1369 done
1370
1371 # close it off
1372 cat <<EOF
1373
1374 /* Definition for an unknown syscall, used basically in error-cases. */
1375 #define UNKNOWN_SYSCALL (-1)
1376
1377 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1378
1379
1380 /* Mechanism for co-ordinating the selection of a specific
1381 architecture.
1382
1383 GDB targets (*-tdep.c) can register an interest in a specific
1384 architecture. Other GDB components can register a need to maintain
1385 per-architecture data.
1386
1387 The mechanisms below ensures that there is only a loose connection
1388 between the set-architecture command and the various GDB
1389 components. Each component can independently register their need
1390 to maintain architecture specific data with gdbarch.
1391
1392 Pragmatics:
1393
1394 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1395 didn't scale.
1396
1397 The more traditional mega-struct containing architecture specific
1398 data for all the various GDB components was also considered. Since
1399 GDB is built from a variable number of (fairly independent)
1400 components it was determined that the global aproach was not
1401 applicable. */
1402
1403
1404 /* Register a new architectural family with GDB.
1405
1406 Register support for the specified ARCHITECTURE with GDB. When
1407 gdbarch determines that the specified architecture has been
1408 selected, the corresponding INIT function is called.
1409
1410 --
1411
1412 The INIT function takes two parameters: INFO which contains the
1413 information available to gdbarch about the (possibly new)
1414 architecture; ARCHES which is a list of the previously created
1415 \`\`struct gdbarch'' for this architecture.
1416
1417 The INFO parameter is, as far as possible, be pre-initialized with
1418 information obtained from INFO.ABFD or the global defaults.
1419
1420 The ARCHES parameter is a linked list (sorted most recently used)
1421 of all the previously created architures for this architecture
1422 family. The (possibly NULL) ARCHES->gdbarch can used to access
1423 values from the previously selected architecture for this
1424 architecture family.
1425
1426 The INIT function shall return any of: NULL - indicating that it
1427 doesn't recognize the selected architecture; an existing \`\`struct
1428 gdbarch'' from the ARCHES list - indicating that the new
1429 architecture is just a synonym for an earlier architecture (see
1430 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1431 - that describes the selected architecture (see gdbarch_alloc()).
1432
1433 The DUMP_TDEP function shall print out all target specific values.
1434 Care should be taken to ensure that the function works in both the
1435 multi-arch and non- multi-arch cases. */
1436
1437 struct gdbarch_list
1438 {
1439 struct gdbarch *gdbarch;
1440 struct gdbarch_list *next;
1441 };
1442
1443 struct gdbarch_info
1444 {
1445 /* Use default: NULL (ZERO). */
1446 const struct bfd_arch_info *bfd_arch_info;
1447
1448 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1449 enum bfd_endian byte_order;
1450
1451 enum bfd_endian byte_order_for_code;
1452
1453 /* Use default: NULL (ZERO). */
1454 bfd *abfd;
1455
1456 /* Use default: NULL (ZERO). */
1457 void *tdep_info;
1458
1459 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1460 enum gdb_osabi osabi;
1461
1462 /* Use default: NULL (ZERO). */
1463 const struct target_desc *target_desc;
1464 };
1465
1466 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1467 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1468
1469 /* DEPRECATED - use gdbarch_register() */
1470 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1471
1472 extern void gdbarch_register (enum bfd_architecture architecture,
1473 gdbarch_init_ftype *,
1474 gdbarch_dump_tdep_ftype *);
1475
1476
1477 /* Return a freshly allocated, NULL terminated, array of the valid
1478 architecture names. Since architectures are registered during the
1479 _initialize phase this function only returns useful information
1480 once initialization has been completed. */
1481
1482 extern const char **gdbarch_printable_names (void);
1483
1484
1485 /* Helper function. Search the list of ARCHES for a GDBARCH that
1486 matches the information provided by INFO. */
1487
1488 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1489
1490
1491 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1492 basic initialization using values obtained from the INFO and TDEP
1493 parameters. set_gdbarch_*() functions are called to complete the
1494 initialization of the object. */
1495
1496 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1497
1498
1499 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1500 It is assumed that the caller freeds the \`\`struct
1501 gdbarch_tdep''. */
1502
1503 extern void gdbarch_free (struct gdbarch *);
1504
1505
1506 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1507 obstack. The memory is freed when the corresponding architecture
1508 is also freed. */
1509
1510 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1511 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1512 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1513
1514 /* Duplicate STRING, returning an equivalent string that's allocated on the
1515 obstack associated with GDBARCH. The string is freed when the corresponding
1516 architecture is also freed. */
1517
1518 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1519
1520 /* Helper function. Force an update of the current architecture.
1521
1522 The actual architecture selected is determined by INFO, \`\`(gdb) set
1523 architecture'' et.al., the existing architecture and BFD's default
1524 architecture. INFO should be initialized to zero and then selected
1525 fields should be updated.
1526
1527 Returns non-zero if the update succeeds. */
1528
1529 extern int gdbarch_update_p (struct gdbarch_info info);
1530
1531
1532 /* Helper function. Find an architecture matching info.
1533
1534 INFO should be initialized using gdbarch_info_init, relevant fields
1535 set, and then finished using gdbarch_info_fill.
1536
1537 Returns the corresponding architecture, or NULL if no matching
1538 architecture was found. */
1539
1540 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1541
1542
1543 /* Helper function. Set the target gdbarch to "gdbarch". */
1544
1545 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1546
1547
1548 /* Register per-architecture data-pointer.
1549
1550 Reserve space for a per-architecture data-pointer. An identifier
1551 for the reserved data-pointer is returned. That identifer should
1552 be saved in a local static variable.
1553
1554 Memory for the per-architecture data shall be allocated using
1555 gdbarch_obstack_zalloc. That memory will be deleted when the
1556 corresponding architecture object is deleted.
1557
1558 When a previously created architecture is re-selected, the
1559 per-architecture data-pointer for that previous architecture is
1560 restored. INIT() is not re-called.
1561
1562 Multiple registrarants for any architecture are allowed (and
1563 strongly encouraged). */
1564
1565 struct gdbarch_data;
1566
1567 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1568 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1569 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1570 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1571 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1572 struct gdbarch_data *data,
1573 void *pointer);
1574
1575 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1576
1577
1578 /* Set the dynamic target-system-dependent parameters (architecture,
1579 byte-order, ...) using information found in the BFD. */
1580
1581 extern void set_gdbarch_from_file (bfd *);
1582
1583
1584 /* Initialize the current architecture to the "first" one we find on
1585 our list. */
1586
1587 extern void initialize_current_architecture (void);
1588
1589 /* gdbarch trace variable */
1590 extern unsigned int gdbarch_debug;
1591
1592 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1593
1594 #endif
1595 EOF
1596 exec 1>&2
1597 #../move-if-change new-gdbarch.h gdbarch.h
1598 compare_new gdbarch.h
1599
1600
1601 #
1602 # C file
1603 #
1604
1605 exec > new-gdbarch.c
1606 copyright
1607 cat <<EOF
1608
1609 #include "defs.h"
1610 #include "arch-utils.h"
1611
1612 #include "gdbcmd.h"
1613 #include "inferior.h"
1614 #include "symcat.h"
1615
1616 #include "floatformat.h"
1617 #include "reggroups.h"
1618 #include "osabi.h"
1619 #include "gdb_obstack.h"
1620 #include "observer.h"
1621 #include "regcache.h"
1622 #include "objfiles.h"
1623 #include "auxv.h"
1624
1625 /* Static function declarations */
1626
1627 static void alloc_gdbarch_data (struct gdbarch *);
1628
1629 /* Non-zero if we want to trace architecture code. */
1630
1631 #ifndef GDBARCH_DEBUG
1632 #define GDBARCH_DEBUG 0
1633 #endif
1634 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1635 static void
1636 show_gdbarch_debug (struct ui_file *file, int from_tty,
1637 struct cmd_list_element *c, const char *value)
1638 {
1639 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1640 }
1641
1642 static const char *
1643 pformat (const struct floatformat **format)
1644 {
1645 if (format == NULL)
1646 return "(null)";
1647 else
1648 /* Just print out one of them - this is only for diagnostics. */
1649 return format[0]->name;
1650 }
1651
1652 static const char *
1653 pstring (const char *string)
1654 {
1655 if (string == NULL)
1656 return "(null)";
1657 return string;
1658 }
1659
1660 /* Helper function to print a list of strings, represented as "const
1661 char *const *". The list is printed comma-separated. */
1662
1663 static char *
1664 pstring_list (const char *const *list)
1665 {
1666 static char ret[100];
1667 const char *const *p;
1668 size_t offset = 0;
1669
1670 if (list == NULL)
1671 return "(null)";
1672
1673 ret[0] = '\0';
1674 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1675 {
1676 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1677 offset += 2 + s;
1678 }
1679
1680 if (offset > 0)
1681 {
1682 gdb_assert (offset - 2 < sizeof (ret));
1683 ret[offset - 2] = '\0';
1684 }
1685
1686 return ret;
1687 }
1688
1689 EOF
1690
1691 # gdbarch open the gdbarch object
1692 printf "\n"
1693 printf "/* Maintain the struct gdbarch object. */\n"
1694 printf "\n"
1695 printf "struct gdbarch\n"
1696 printf "{\n"
1697 printf " /* Has this architecture been fully initialized? */\n"
1698 printf " int initialized_p;\n"
1699 printf "\n"
1700 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1701 printf " struct obstack *obstack;\n"
1702 printf "\n"
1703 printf " /* basic architectural information. */\n"
1704 function_list | while do_read
1705 do
1706 if class_is_info_p
1707 then
1708 printf " ${returntype} ${function};\n"
1709 fi
1710 done
1711 printf "\n"
1712 printf " /* target specific vector. */\n"
1713 printf " struct gdbarch_tdep *tdep;\n"
1714 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1715 printf "\n"
1716 printf " /* per-architecture data-pointers. */\n"
1717 printf " unsigned nr_data;\n"
1718 printf " void **data;\n"
1719 printf "\n"
1720 cat <<EOF
1721 /* Multi-arch values.
1722
1723 When extending this structure you must:
1724
1725 Add the field below.
1726
1727 Declare set/get functions and define the corresponding
1728 macro in gdbarch.h.
1729
1730 gdbarch_alloc(): If zero/NULL is not a suitable default,
1731 initialize the new field.
1732
1733 verify_gdbarch(): Confirm that the target updated the field
1734 correctly.
1735
1736 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1737 field is dumped out
1738
1739 get_gdbarch(): Implement the set/get functions (probably using
1740 the macro's as shortcuts).
1741
1742 */
1743
1744 EOF
1745 function_list | while do_read
1746 do
1747 if class_is_variable_p
1748 then
1749 printf " ${returntype} ${function};\n"
1750 elif class_is_function_p
1751 then
1752 printf " gdbarch_${function}_ftype *${function};\n"
1753 fi
1754 done
1755 printf "};\n"
1756
1757 # Create a new gdbarch struct
1758 cat <<EOF
1759
1760 /* Create a new \`\`struct gdbarch'' based on information provided by
1761 \`\`struct gdbarch_info''. */
1762 EOF
1763 printf "\n"
1764 cat <<EOF
1765 struct gdbarch *
1766 gdbarch_alloc (const struct gdbarch_info *info,
1767 struct gdbarch_tdep *tdep)
1768 {
1769 struct gdbarch *gdbarch;
1770
1771 /* Create an obstack for allocating all the per-architecture memory,
1772 then use that to allocate the architecture vector. */
1773 struct obstack *obstack = XNEW (struct obstack);
1774 obstack_init (obstack);
1775 gdbarch = XOBNEW (obstack, struct gdbarch);
1776 memset (gdbarch, 0, sizeof (*gdbarch));
1777 gdbarch->obstack = obstack;
1778
1779 alloc_gdbarch_data (gdbarch);
1780
1781 gdbarch->tdep = tdep;
1782 EOF
1783 printf "\n"
1784 function_list | while do_read
1785 do
1786 if class_is_info_p
1787 then
1788 printf " gdbarch->${function} = info->${function};\n"
1789 fi
1790 done
1791 printf "\n"
1792 printf " /* Force the explicit initialization of these. */\n"
1793 function_list | while do_read
1794 do
1795 if class_is_function_p || class_is_variable_p
1796 then
1797 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1798 then
1799 printf " gdbarch->${function} = ${predefault};\n"
1800 fi
1801 fi
1802 done
1803 cat <<EOF
1804 /* gdbarch_alloc() */
1805
1806 return gdbarch;
1807 }
1808 EOF
1809
1810 # Free a gdbarch struct.
1811 printf "\n"
1812 printf "\n"
1813 cat <<EOF
1814 /* Allocate extra space using the per-architecture obstack. */
1815
1816 void *
1817 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1818 {
1819 void *data = obstack_alloc (arch->obstack, size);
1820
1821 memset (data, 0, size);
1822 return data;
1823 }
1824
1825 /* See gdbarch.h. */
1826
1827 char *
1828 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1829 {
1830 return obstack_strdup (arch->obstack, string);
1831 }
1832
1833
1834 /* Free a gdbarch struct. This should never happen in normal
1835 operation --- once you've created a gdbarch, you keep it around.
1836 However, if an architecture's init function encounters an error
1837 building the structure, it may need to clean up a partially
1838 constructed gdbarch. */
1839
1840 void
1841 gdbarch_free (struct gdbarch *arch)
1842 {
1843 struct obstack *obstack;
1844
1845 gdb_assert (arch != NULL);
1846 gdb_assert (!arch->initialized_p);
1847 obstack = arch->obstack;
1848 obstack_free (obstack, 0); /* Includes the ARCH. */
1849 xfree (obstack);
1850 }
1851 EOF
1852
1853 # verify a new architecture
1854 cat <<EOF
1855
1856
1857 /* Ensure that all values in a GDBARCH are reasonable. */
1858
1859 static void
1860 verify_gdbarch (struct gdbarch *gdbarch)
1861 {
1862 struct ui_file *log;
1863 struct cleanup *cleanups;
1864 long length;
1865 char *buf;
1866
1867 log = mem_fileopen ();
1868 cleanups = make_cleanup_ui_file_delete (log);
1869 /* fundamental */
1870 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1871 fprintf_unfiltered (log, "\n\tbyte-order");
1872 if (gdbarch->bfd_arch_info == NULL)
1873 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1874 /* Check those that need to be defined for the given multi-arch level. */
1875 EOF
1876 function_list | while do_read
1877 do
1878 if class_is_function_p || class_is_variable_p
1879 then
1880 if [ "x${invalid_p}" = "x0" ]
1881 then
1882 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1883 elif class_is_predicate_p
1884 then
1885 printf " /* Skip verify of ${function}, has predicate. */\n"
1886 # FIXME: See do_read for potential simplification
1887 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1888 then
1889 printf " if (${invalid_p})\n"
1890 printf " gdbarch->${function} = ${postdefault};\n"
1891 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1892 then
1893 printf " if (gdbarch->${function} == ${predefault})\n"
1894 printf " gdbarch->${function} = ${postdefault};\n"
1895 elif [ -n "${postdefault}" ]
1896 then
1897 printf " if (gdbarch->${function} == 0)\n"
1898 printf " gdbarch->${function} = ${postdefault};\n"
1899 elif [ -n "${invalid_p}" ]
1900 then
1901 printf " if (${invalid_p})\n"
1902 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1903 elif [ -n "${predefault}" ]
1904 then
1905 printf " if (gdbarch->${function} == ${predefault})\n"
1906 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1907 fi
1908 fi
1909 done
1910 cat <<EOF
1911 buf = ui_file_xstrdup (log, &length);
1912 make_cleanup (xfree, buf);
1913 if (length > 0)
1914 internal_error (__FILE__, __LINE__,
1915 _("verify_gdbarch: the following are invalid ...%s"),
1916 buf);
1917 do_cleanups (cleanups);
1918 }
1919 EOF
1920
1921 # dump the structure
1922 printf "\n"
1923 printf "\n"
1924 cat <<EOF
1925 /* Print out the details of the current architecture. */
1926
1927 void
1928 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
1929 {
1930 const char *gdb_nm_file = "<not-defined>";
1931
1932 #if defined (GDB_NM_FILE)
1933 gdb_nm_file = GDB_NM_FILE;
1934 #endif
1935 fprintf_unfiltered (file,
1936 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1937 gdb_nm_file);
1938 EOF
1939 function_list | sort -t: -k 3 | while do_read
1940 do
1941 # First the predicate
1942 if class_is_predicate_p
1943 then
1944 printf " fprintf_unfiltered (file,\n"
1945 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1946 printf " gdbarch_${function}_p (gdbarch));\n"
1947 fi
1948 # Print the corresponding value.
1949 if class_is_function_p
1950 then
1951 printf " fprintf_unfiltered (file,\n"
1952 printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
1953 printf " host_address_to_string (gdbarch->${function}));\n"
1954 else
1955 # It is a variable
1956 case "${print}:${returntype}" in
1957 :CORE_ADDR )
1958 fmt="%s"
1959 print="core_addr_to_string_nz (gdbarch->${function})"
1960 ;;
1961 :* )
1962 fmt="%s"
1963 print="plongest (gdbarch->${function})"
1964 ;;
1965 * )
1966 fmt="%s"
1967 ;;
1968 esac
1969 printf " fprintf_unfiltered (file,\n"
1970 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1971 printf " ${print});\n"
1972 fi
1973 done
1974 cat <<EOF
1975 if (gdbarch->dump_tdep != NULL)
1976 gdbarch->dump_tdep (gdbarch, file);
1977 }
1978 EOF
1979
1980
1981 # GET/SET
1982 printf "\n"
1983 cat <<EOF
1984 struct gdbarch_tdep *
1985 gdbarch_tdep (struct gdbarch *gdbarch)
1986 {
1987 if (gdbarch_debug >= 2)
1988 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1989 return gdbarch->tdep;
1990 }
1991 EOF
1992 printf "\n"
1993 function_list | while do_read
1994 do
1995 if class_is_predicate_p
1996 then
1997 printf "\n"
1998 printf "int\n"
1999 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
2000 printf "{\n"
2001 printf " gdb_assert (gdbarch != NULL);\n"
2002 printf " return ${predicate};\n"
2003 printf "}\n"
2004 fi
2005 if class_is_function_p
2006 then
2007 printf "\n"
2008 printf "${returntype}\n"
2009 if [ "x${formal}" = "xvoid" ]
2010 then
2011 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2012 else
2013 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
2014 fi
2015 printf "{\n"
2016 printf " gdb_assert (gdbarch != NULL);\n"
2017 printf " gdb_assert (gdbarch->${function} != NULL);\n"
2018 if class_is_predicate_p && test -n "${predefault}"
2019 then
2020 # Allow a call to a function with a predicate.
2021 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
2022 fi
2023 printf " if (gdbarch_debug >= 2)\n"
2024 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2025 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
2026 then
2027 if class_is_multiarch_p
2028 then
2029 params="gdbarch"
2030 else
2031 params=""
2032 fi
2033 else
2034 if class_is_multiarch_p
2035 then
2036 params="gdbarch, ${actual}"
2037 else
2038 params="${actual}"
2039 fi
2040 fi
2041 if [ "x${returntype}" = "xvoid" ]
2042 then
2043 printf " gdbarch->${function} (${params});\n"
2044 else
2045 printf " return gdbarch->${function} (${params});\n"
2046 fi
2047 printf "}\n"
2048 printf "\n"
2049 printf "void\n"
2050 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2051 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
2052 printf "{\n"
2053 printf " gdbarch->${function} = ${function};\n"
2054 printf "}\n"
2055 elif class_is_variable_p
2056 then
2057 printf "\n"
2058 printf "${returntype}\n"
2059 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2060 printf "{\n"
2061 printf " gdb_assert (gdbarch != NULL);\n"
2062 if [ "x${invalid_p}" = "x0" ]
2063 then
2064 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
2065 elif [ -n "${invalid_p}" ]
2066 then
2067 printf " /* Check variable is valid. */\n"
2068 printf " gdb_assert (!(${invalid_p}));\n"
2069 elif [ -n "${predefault}" ]
2070 then
2071 printf " /* Check variable changed from pre-default. */\n"
2072 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
2073 fi
2074 printf " if (gdbarch_debug >= 2)\n"
2075 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2076 printf " return gdbarch->${function};\n"
2077 printf "}\n"
2078 printf "\n"
2079 printf "void\n"
2080 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
2081 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
2082 printf "{\n"
2083 printf " gdbarch->${function} = ${function};\n"
2084 printf "}\n"
2085 elif class_is_info_p
2086 then
2087 printf "\n"
2088 printf "${returntype}\n"
2089 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
2090 printf "{\n"
2091 printf " gdb_assert (gdbarch != NULL);\n"
2092 printf " if (gdbarch_debug >= 2)\n"
2093 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
2094 printf " return gdbarch->${function};\n"
2095 printf "}\n"
2096 fi
2097 done
2098
2099 # All the trailing guff
2100 cat <<EOF
2101
2102
2103 /* Keep a registry of per-architecture data-pointers required by GDB
2104 modules. */
2105
2106 struct gdbarch_data
2107 {
2108 unsigned index;
2109 int init_p;
2110 gdbarch_data_pre_init_ftype *pre_init;
2111 gdbarch_data_post_init_ftype *post_init;
2112 };
2113
2114 struct gdbarch_data_registration
2115 {
2116 struct gdbarch_data *data;
2117 struct gdbarch_data_registration *next;
2118 };
2119
2120 struct gdbarch_data_registry
2121 {
2122 unsigned nr;
2123 struct gdbarch_data_registration *registrations;
2124 };
2125
2126 struct gdbarch_data_registry gdbarch_data_registry =
2127 {
2128 0, NULL,
2129 };
2130
2131 static struct gdbarch_data *
2132 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2133 gdbarch_data_post_init_ftype *post_init)
2134 {
2135 struct gdbarch_data_registration **curr;
2136
2137 /* Append the new registration. */
2138 for (curr = &gdbarch_data_registry.registrations;
2139 (*curr) != NULL;
2140 curr = &(*curr)->next);
2141 (*curr) = XNEW (struct gdbarch_data_registration);
2142 (*curr)->next = NULL;
2143 (*curr)->data = XNEW (struct gdbarch_data);
2144 (*curr)->data->index = gdbarch_data_registry.nr++;
2145 (*curr)->data->pre_init = pre_init;
2146 (*curr)->data->post_init = post_init;
2147 (*curr)->data->init_p = 1;
2148 return (*curr)->data;
2149 }
2150
2151 struct gdbarch_data *
2152 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2153 {
2154 return gdbarch_data_register (pre_init, NULL);
2155 }
2156
2157 struct gdbarch_data *
2158 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2159 {
2160 return gdbarch_data_register (NULL, post_init);
2161 }
2162
2163 /* Create/delete the gdbarch data vector. */
2164
2165 static void
2166 alloc_gdbarch_data (struct gdbarch *gdbarch)
2167 {
2168 gdb_assert (gdbarch->data == NULL);
2169 gdbarch->nr_data = gdbarch_data_registry.nr;
2170 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2171 }
2172
2173 /* Initialize the current value of the specified per-architecture
2174 data-pointer. */
2175
2176 void
2177 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2178 struct gdbarch_data *data,
2179 void *pointer)
2180 {
2181 gdb_assert (data->index < gdbarch->nr_data);
2182 gdb_assert (gdbarch->data[data->index] == NULL);
2183 gdb_assert (data->pre_init == NULL);
2184 gdbarch->data[data->index] = pointer;
2185 }
2186
2187 /* Return the current value of the specified per-architecture
2188 data-pointer. */
2189
2190 void *
2191 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2192 {
2193 gdb_assert (data->index < gdbarch->nr_data);
2194 if (gdbarch->data[data->index] == NULL)
2195 {
2196 /* The data-pointer isn't initialized, call init() to get a
2197 value. */
2198 if (data->pre_init != NULL)
2199 /* Mid architecture creation: pass just the obstack, and not
2200 the entire architecture, as that way it isn't possible for
2201 pre-init code to refer to undefined architecture
2202 fields. */
2203 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2204 else if (gdbarch->initialized_p
2205 && data->post_init != NULL)
2206 /* Post architecture creation: pass the entire architecture
2207 (as all fields are valid), but be careful to also detect
2208 recursive references. */
2209 {
2210 gdb_assert (data->init_p);
2211 data->init_p = 0;
2212 gdbarch->data[data->index] = data->post_init (gdbarch);
2213 data->init_p = 1;
2214 }
2215 else
2216 /* The architecture initialization hasn't completed - punt -
2217 hope that the caller knows what they are doing. Once
2218 deprecated_set_gdbarch_data has been initialized, this can be
2219 changed to an internal error. */
2220 return NULL;
2221 gdb_assert (gdbarch->data[data->index] != NULL);
2222 }
2223 return gdbarch->data[data->index];
2224 }
2225
2226
2227 /* Keep a registry of the architectures known by GDB. */
2228
2229 struct gdbarch_registration
2230 {
2231 enum bfd_architecture bfd_architecture;
2232 gdbarch_init_ftype *init;
2233 gdbarch_dump_tdep_ftype *dump_tdep;
2234 struct gdbarch_list *arches;
2235 struct gdbarch_registration *next;
2236 };
2237
2238 static struct gdbarch_registration *gdbarch_registry = NULL;
2239
2240 static void
2241 append_name (const char ***buf, int *nr, const char *name)
2242 {
2243 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2244 (*buf)[*nr] = name;
2245 *nr += 1;
2246 }
2247
2248 const char **
2249 gdbarch_printable_names (void)
2250 {
2251 /* Accumulate a list of names based on the registed list of
2252 architectures. */
2253 int nr_arches = 0;
2254 const char **arches = NULL;
2255 struct gdbarch_registration *rego;
2256
2257 for (rego = gdbarch_registry;
2258 rego != NULL;
2259 rego = rego->next)
2260 {
2261 const struct bfd_arch_info *ap;
2262 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2263 if (ap == NULL)
2264 internal_error (__FILE__, __LINE__,
2265 _("gdbarch_architecture_names: multi-arch unknown"));
2266 do
2267 {
2268 append_name (&arches, &nr_arches, ap->printable_name);
2269 ap = ap->next;
2270 }
2271 while (ap != NULL);
2272 }
2273 append_name (&arches, &nr_arches, NULL);
2274 return arches;
2275 }
2276
2277
2278 void
2279 gdbarch_register (enum bfd_architecture bfd_architecture,
2280 gdbarch_init_ftype *init,
2281 gdbarch_dump_tdep_ftype *dump_tdep)
2282 {
2283 struct gdbarch_registration **curr;
2284 const struct bfd_arch_info *bfd_arch_info;
2285
2286 /* Check that BFD recognizes this architecture */
2287 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2288 if (bfd_arch_info == NULL)
2289 {
2290 internal_error (__FILE__, __LINE__,
2291 _("gdbarch: Attempt to register "
2292 "unknown architecture (%d)"),
2293 bfd_architecture);
2294 }
2295 /* Check that we haven't seen this architecture before. */
2296 for (curr = &gdbarch_registry;
2297 (*curr) != NULL;
2298 curr = &(*curr)->next)
2299 {
2300 if (bfd_architecture == (*curr)->bfd_architecture)
2301 internal_error (__FILE__, __LINE__,
2302 _("gdbarch: Duplicate registration "
2303 "of architecture (%s)"),
2304 bfd_arch_info->printable_name);
2305 }
2306 /* log it */
2307 if (gdbarch_debug)
2308 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2309 bfd_arch_info->printable_name,
2310 host_address_to_string (init));
2311 /* Append it */
2312 (*curr) = XNEW (struct gdbarch_registration);
2313 (*curr)->bfd_architecture = bfd_architecture;
2314 (*curr)->init = init;
2315 (*curr)->dump_tdep = dump_tdep;
2316 (*curr)->arches = NULL;
2317 (*curr)->next = NULL;
2318 }
2319
2320 void
2321 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2322 gdbarch_init_ftype *init)
2323 {
2324 gdbarch_register (bfd_architecture, init, NULL);
2325 }
2326
2327
2328 /* Look for an architecture using gdbarch_info. */
2329
2330 struct gdbarch_list *
2331 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2332 const struct gdbarch_info *info)
2333 {
2334 for (; arches != NULL; arches = arches->next)
2335 {
2336 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2337 continue;
2338 if (info->byte_order != arches->gdbarch->byte_order)
2339 continue;
2340 if (info->osabi != arches->gdbarch->osabi)
2341 continue;
2342 if (info->target_desc != arches->gdbarch->target_desc)
2343 continue;
2344 return arches;
2345 }
2346 return NULL;
2347 }
2348
2349
2350 /* Find an architecture that matches the specified INFO. Create a new
2351 architecture if needed. Return that new architecture. */
2352
2353 struct gdbarch *
2354 gdbarch_find_by_info (struct gdbarch_info info)
2355 {
2356 struct gdbarch *new_gdbarch;
2357 struct gdbarch_registration *rego;
2358
2359 /* Fill in missing parts of the INFO struct using a number of
2360 sources: "set ..."; INFOabfd supplied; and the global
2361 defaults. */
2362 gdbarch_info_fill (&info);
2363
2364 /* Must have found some sort of architecture. */
2365 gdb_assert (info.bfd_arch_info != NULL);
2366
2367 if (gdbarch_debug)
2368 {
2369 fprintf_unfiltered (gdb_stdlog,
2370 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2371 (info.bfd_arch_info != NULL
2372 ? info.bfd_arch_info->printable_name
2373 : "(null)"));
2374 fprintf_unfiltered (gdb_stdlog,
2375 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2376 info.byte_order,
2377 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2378 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2379 : "default"));
2380 fprintf_unfiltered (gdb_stdlog,
2381 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2382 info.osabi, gdbarch_osabi_name (info.osabi));
2383 fprintf_unfiltered (gdb_stdlog,
2384 "gdbarch_find_by_info: info.abfd %s\n",
2385 host_address_to_string (info.abfd));
2386 fprintf_unfiltered (gdb_stdlog,
2387 "gdbarch_find_by_info: info.tdep_info %s\n",
2388 host_address_to_string (info.tdep_info));
2389 }
2390
2391 /* Find the tdep code that knows about this architecture. */
2392 for (rego = gdbarch_registry;
2393 rego != NULL;
2394 rego = rego->next)
2395 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2396 break;
2397 if (rego == NULL)
2398 {
2399 if (gdbarch_debug)
2400 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2401 "No matching architecture\n");
2402 return 0;
2403 }
2404
2405 /* Ask the tdep code for an architecture that matches "info". */
2406 new_gdbarch = rego->init (info, rego->arches);
2407
2408 /* Did the tdep code like it? No. Reject the change and revert to
2409 the old architecture. */
2410 if (new_gdbarch == NULL)
2411 {
2412 if (gdbarch_debug)
2413 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2414 "Target rejected architecture\n");
2415 return NULL;
2416 }
2417
2418 /* Is this a pre-existing architecture (as determined by already
2419 being initialized)? Move it to the front of the architecture
2420 list (keeping the list sorted Most Recently Used). */
2421 if (new_gdbarch->initialized_p)
2422 {
2423 struct gdbarch_list **list;
2424 struct gdbarch_list *self;
2425 if (gdbarch_debug)
2426 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2427 "Previous architecture %s (%s) selected\n",
2428 host_address_to_string (new_gdbarch),
2429 new_gdbarch->bfd_arch_info->printable_name);
2430 /* Find the existing arch in the list. */
2431 for (list = &rego->arches;
2432 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2433 list = &(*list)->next);
2434 /* It had better be in the list of architectures. */
2435 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2436 /* Unlink SELF. */
2437 self = (*list);
2438 (*list) = self->next;
2439 /* Insert SELF at the front. */
2440 self->next = rego->arches;
2441 rego->arches = self;
2442 /* Return it. */
2443 return new_gdbarch;
2444 }
2445
2446 /* It's a new architecture. */
2447 if (gdbarch_debug)
2448 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2449 "New architecture %s (%s) selected\n",
2450 host_address_to_string (new_gdbarch),
2451 new_gdbarch->bfd_arch_info->printable_name);
2452
2453 /* Insert the new architecture into the front of the architecture
2454 list (keep the list sorted Most Recently Used). */
2455 {
2456 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2457 self->next = rego->arches;
2458 self->gdbarch = new_gdbarch;
2459 rego->arches = self;
2460 }
2461
2462 /* Check that the newly installed architecture is valid. Plug in
2463 any post init values. */
2464 new_gdbarch->dump_tdep = rego->dump_tdep;
2465 verify_gdbarch (new_gdbarch);
2466 new_gdbarch->initialized_p = 1;
2467
2468 if (gdbarch_debug)
2469 gdbarch_dump (new_gdbarch, gdb_stdlog);
2470
2471 return new_gdbarch;
2472 }
2473
2474 /* Make the specified architecture current. */
2475
2476 void
2477 set_target_gdbarch (struct gdbarch *new_gdbarch)
2478 {
2479 gdb_assert (new_gdbarch != NULL);
2480 gdb_assert (new_gdbarch->initialized_p);
2481 current_inferior ()->gdbarch = new_gdbarch;
2482 observer_notify_architecture_changed (new_gdbarch);
2483 registers_changed ();
2484 }
2485
2486 /* Return the current inferior's arch. */
2487
2488 struct gdbarch *
2489 target_gdbarch (void)
2490 {
2491 return current_inferior ()->gdbarch;
2492 }
2493
2494 extern void _initialize_gdbarch (void);
2495
2496 void
2497 _initialize_gdbarch (void)
2498 {
2499 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2500 Set architecture debugging."), _("\\
2501 Show architecture debugging."), _("\\
2502 When non-zero, architecture debugging is enabled."),
2503 NULL,
2504 show_gdbarch_debug,
2505 &setdebuglist, &showdebuglist);
2506 }
2507 EOF
2508
2509 # close things off
2510 exec 1>&2
2511 #../move-if-change new-gdbarch.c gdbarch.c
2512 compare_new gdbarch.c