]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Remove redundant WIFSTOPPED check
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #ifndef ELFMAG0
51 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
52 then ELFMAG0 will have been defined. If it didn't get included by
53 gdb_proc_service.h then including it will likely introduce a duplicate
54 definition of elf_fpregset_t. */
55 #include <elf.h>
56 #endif
57 #include "nat/linux-namespaces.h"
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 /* Some targets did not define these ptrace constants from the start,
75 so gdbserver defines them locally here. In the future, these may
76 be removed after they are added to asm/ptrace.h. */
77 #if !(defined(PT_TEXT_ADDR) \
78 || defined(PT_DATA_ADDR) \
79 || defined(PT_TEXT_END_ADDR))
80 #if defined(__mcoldfire__)
81 /* These are still undefined in 3.10 kernels. */
82 #define PT_TEXT_ADDR 49*4
83 #define PT_DATA_ADDR 50*4
84 #define PT_TEXT_END_ADDR 51*4
85 /* BFIN already defines these since at least 2.6.32 kernels. */
86 #elif defined(BFIN)
87 #define PT_TEXT_ADDR 220
88 #define PT_TEXT_END_ADDR 224
89 #define PT_DATA_ADDR 228
90 /* These are still undefined in 3.10 kernels. */
91 #elif defined(__TMS320C6X__)
92 #define PT_TEXT_ADDR (0x10000*4)
93 #define PT_DATA_ADDR (0x10004*4)
94 #define PT_TEXT_END_ADDR (0x10008*4)
95 #endif
96 #endif
97
98 #ifdef HAVE_LINUX_BTRACE
99 # include "nat/linux-btrace.h"
100 # include "btrace-common.h"
101 #endif
102
103 #ifndef HAVE_ELF32_AUXV_T
104 /* Copied from glibc's elf.h. */
105 typedef struct
106 {
107 uint32_t a_type; /* Entry type */
108 union
109 {
110 uint32_t a_val; /* Integer value */
111 /* We use to have pointer elements added here. We cannot do that,
112 though, since it does not work when using 32-bit definitions
113 on 64-bit platforms and vice versa. */
114 } a_un;
115 } Elf32_auxv_t;
116 #endif
117
118 #ifndef HAVE_ELF64_AUXV_T
119 /* Copied from glibc's elf.h. */
120 typedef struct
121 {
122 uint64_t a_type; /* Entry type */
123 union
124 {
125 uint64_t a_val; /* Integer value */
126 /* We use to have pointer elements added here. We cannot do that,
127 though, since it does not work when using 32-bit definitions
128 on 64-bit platforms and vice versa. */
129 } a_un;
130 } Elf64_auxv_t;
131 #endif
132
133 /* Does the current host support PTRACE_GETREGSET? */
134 int have_ptrace_getregset = -1;
135
136 /* LWP accessors. */
137
138 /* See nat/linux-nat.h. */
139
140 ptid_t
141 ptid_of_lwp (struct lwp_info *lwp)
142 {
143 return ptid_of (get_lwp_thread (lwp));
144 }
145
146 /* See nat/linux-nat.h. */
147
148 void
149 lwp_set_arch_private_info (struct lwp_info *lwp,
150 struct arch_lwp_info *info)
151 {
152 lwp->arch_private = info;
153 }
154
155 /* See nat/linux-nat.h. */
156
157 struct arch_lwp_info *
158 lwp_arch_private_info (struct lwp_info *lwp)
159 {
160 return lwp->arch_private;
161 }
162
163 /* See nat/linux-nat.h. */
164
165 int
166 lwp_is_stopped (struct lwp_info *lwp)
167 {
168 return lwp->stopped;
169 }
170
171 /* See nat/linux-nat.h. */
172
173 enum target_stop_reason
174 lwp_stop_reason (struct lwp_info *lwp)
175 {
176 return lwp->stop_reason;
177 }
178
179 /* A list of all unknown processes which receive stop signals. Some
180 other process will presumably claim each of these as forked
181 children momentarily. */
182
183 struct simple_pid_list
184 {
185 /* The process ID. */
186 int pid;
187
188 /* The status as reported by waitpid. */
189 int status;
190
191 /* Next in chain. */
192 struct simple_pid_list *next;
193 };
194 struct simple_pid_list *stopped_pids;
195
196 /* Trivial list manipulation functions to keep track of a list of new
197 stopped processes. */
198
199 static void
200 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
201 {
202 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
203
204 new_pid->pid = pid;
205 new_pid->status = status;
206 new_pid->next = *listp;
207 *listp = new_pid;
208 }
209
210 static int
211 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
212 {
213 struct simple_pid_list **p;
214
215 for (p = listp; *p != NULL; p = &(*p)->next)
216 if ((*p)->pid == pid)
217 {
218 struct simple_pid_list *next = (*p)->next;
219
220 *statusp = (*p)->status;
221 xfree (*p);
222 *p = next;
223 return 1;
224 }
225 return 0;
226 }
227
228 enum stopping_threads_kind
229 {
230 /* Not stopping threads presently. */
231 NOT_STOPPING_THREADS,
232
233 /* Stopping threads. */
234 STOPPING_THREADS,
235
236 /* Stopping and suspending threads. */
237 STOPPING_AND_SUSPENDING_THREADS
238 };
239
240 /* This is set while stop_all_lwps is in effect. */
241 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
242
243 /* FIXME make into a target method? */
244 int using_threads = 1;
245
246 /* True if we're presently stabilizing threads (moving them out of
247 jump pads). */
248 static int stabilizing_threads;
249
250 static void linux_resume_one_lwp (struct lwp_info *lwp,
251 int step, int signal, siginfo_t *info);
252 static void linux_resume (struct thread_resume *resume_info, size_t n);
253 static void stop_all_lwps (int suspend, struct lwp_info *except);
254 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
255 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
256 int *wstat, int options);
257 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
258 static struct lwp_info *add_lwp (ptid_t ptid);
259 static void linux_mourn (struct process_info *process);
260 static int linux_stopped_by_watchpoint (void);
261 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
262 static int lwp_is_marked_dead (struct lwp_info *lwp);
263 static void proceed_all_lwps (void);
264 static int finish_step_over (struct lwp_info *lwp);
265 static int kill_lwp (unsigned long lwpid, int signo);
266 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
267 static void complete_ongoing_step_over (void);
268 static int linux_low_ptrace_options (int attached);
269
270 /* When the event-loop is doing a step-over, this points at the thread
271 being stepped. */
272 ptid_t step_over_bkpt;
273
274 /* True if the low target can hardware single-step. */
275
276 static int
277 can_hardware_single_step (void)
278 {
279 if (the_low_target.supports_hardware_single_step != NULL)
280 return the_low_target.supports_hardware_single_step ();
281 else
282 return 0;
283 }
284
285 /* True if the low target can software single-step. Such targets
286 implement the GET_NEXT_PCS callback. */
287
288 static int
289 can_software_single_step (void)
290 {
291 return (the_low_target.get_next_pcs != NULL);
292 }
293
294 /* True if the low target supports memory breakpoints. If so, we'll
295 have a GET_PC implementation. */
296
297 static int
298 supports_breakpoints (void)
299 {
300 return (the_low_target.get_pc != NULL);
301 }
302
303 /* Returns true if this target can support fast tracepoints. This
304 does not mean that the in-process agent has been loaded in the
305 inferior. */
306
307 static int
308 supports_fast_tracepoints (void)
309 {
310 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338 static void wait_for_sigstop (void);
339
340 /* Return non-zero if HEADER is a 64-bit ELF file. */
341
342 static int
343 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
344 {
345 if (header->e_ident[EI_MAG0] == ELFMAG0
346 && header->e_ident[EI_MAG1] == ELFMAG1
347 && header->e_ident[EI_MAG2] == ELFMAG2
348 && header->e_ident[EI_MAG3] == ELFMAG3)
349 {
350 *machine = header->e_machine;
351 return header->e_ident[EI_CLASS] == ELFCLASS64;
352
353 }
354 *machine = EM_NONE;
355 return -1;
356 }
357
358 /* Return non-zero if FILE is a 64-bit ELF file,
359 zero if the file is not a 64-bit ELF file,
360 and -1 if the file is not accessible or doesn't exist. */
361
362 static int
363 elf_64_file_p (const char *file, unsigned int *machine)
364 {
365 Elf64_Ehdr header;
366 int fd;
367
368 fd = open (file, O_RDONLY);
369 if (fd < 0)
370 return -1;
371
372 if (read (fd, &header, sizeof (header)) != sizeof (header))
373 {
374 close (fd);
375 return 0;
376 }
377 close (fd);
378
379 return elf_64_header_p (&header, machine);
380 }
381
382 /* Accepts an integer PID; Returns true if the executable PID is
383 running is a 64-bit ELF file.. */
384
385 int
386 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
387 {
388 char file[PATH_MAX];
389
390 sprintf (file, "/proc/%d/exe", pid);
391 return elf_64_file_p (file, machine);
392 }
393
394 static void
395 delete_lwp (struct lwp_info *lwp)
396 {
397 struct thread_info *thr = get_lwp_thread (lwp);
398
399 if (debug_threads)
400 debug_printf ("deleting %ld\n", lwpid_of (thr));
401
402 remove_thread (thr);
403 free (lwp->arch_private);
404 free (lwp);
405 }
406
407 /* Add a process to the common process list, and set its private
408 data. */
409
410 static struct process_info *
411 linux_add_process (int pid, int attached)
412 {
413 struct process_info *proc;
414
415 proc = add_process (pid, attached);
416 proc->priv = XCNEW (struct process_info_private);
417
418 if (the_low_target.new_process != NULL)
419 proc->priv->arch_private = the_low_target.new_process ();
420
421 return proc;
422 }
423
424 static CORE_ADDR get_pc (struct lwp_info *lwp);
425
426 /* Call the target arch_setup function on the current thread. */
427
428 static void
429 linux_arch_setup (void)
430 {
431 the_low_target.arch_setup ();
432 }
433
434 /* Call the target arch_setup function on THREAD. */
435
436 static void
437 linux_arch_setup_thread (struct thread_info *thread)
438 {
439 struct thread_info *saved_thread;
440
441 saved_thread = current_thread;
442 current_thread = thread;
443
444 linux_arch_setup ();
445
446 current_thread = saved_thread;
447 }
448
449 /* Handle a GNU/Linux extended wait response. If we see a clone,
450 fork, or vfork event, we need to add the new LWP to our list
451 (and return 0 so as not to report the trap to higher layers).
452 If we see an exec event, we will modify ORIG_EVENT_LWP to point
453 to a new LWP representing the new program. */
454
455 static int
456 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
457 {
458 struct lwp_info *event_lwp = *orig_event_lwp;
459 int event = linux_ptrace_get_extended_event (wstat);
460 struct thread_info *event_thr = get_lwp_thread (event_lwp);
461 struct lwp_info *new_lwp;
462
463 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
464
465 /* All extended events we currently use are mid-syscall. Only
466 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
467 you have to be using PTRACE_SEIZE to get that. */
468 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
469
470 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
471 || (event == PTRACE_EVENT_CLONE))
472 {
473 ptid_t ptid;
474 unsigned long new_pid;
475 int ret, status;
476
477 /* Get the pid of the new lwp. */
478 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
479 &new_pid);
480
481 /* If we haven't already seen the new PID stop, wait for it now. */
482 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
483 {
484 /* The new child has a pending SIGSTOP. We can't affect it until it
485 hits the SIGSTOP, but we're already attached. */
486
487 ret = my_waitpid (new_pid, &status, __WALL);
488
489 if (ret == -1)
490 perror_with_name ("waiting for new child");
491 else if (ret != new_pid)
492 warning ("wait returned unexpected PID %d", ret);
493 else if (!WIFSTOPPED (status))
494 warning ("wait returned unexpected status 0x%x", status);
495 }
496
497 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
498 {
499 struct process_info *parent_proc;
500 struct process_info *child_proc;
501 struct lwp_info *child_lwp;
502 struct thread_info *child_thr;
503 struct target_desc *tdesc;
504
505 ptid = ptid_build (new_pid, new_pid, 0);
506
507 if (debug_threads)
508 {
509 debug_printf ("HEW: Got fork event from LWP %ld, "
510 "new child is %d\n",
511 ptid_get_lwp (ptid_of (event_thr)),
512 ptid_get_pid (ptid));
513 }
514
515 /* Add the new process to the tables and clone the breakpoint
516 lists of the parent. We need to do this even if the new process
517 will be detached, since we will need the process object and the
518 breakpoints to remove any breakpoints from memory when we
519 detach, and the client side will access registers. */
520 child_proc = linux_add_process (new_pid, 0);
521 gdb_assert (child_proc != NULL);
522 child_lwp = add_lwp (ptid);
523 gdb_assert (child_lwp != NULL);
524 child_lwp->stopped = 1;
525 child_lwp->must_set_ptrace_flags = 1;
526 child_lwp->status_pending_p = 0;
527 child_thr = get_lwp_thread (child_lwp);
528 child_thr->last_resume_kind = resume_stop;
529 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
530
531 /* If we're suspending all threads, leave this one suspended
532 too. If the fork/clone parent is stepping over a breakpoint,
533 all other threads have been suspended already. Leave the
534 child suspended too. */
535 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
536 || event_lwp->bp_reinsert != 0)
537 {
538 if (debug_threads)
539 debug_printf ("HEW: leaving child suspended\n");
540 child_lwp->suspended = 1;
541 }
542
543 parent_proc = get_thread_process (event_thr);
544 child_proc->attached = parent_proc->attached;
545 clone_all_breakpoints (&child_proc->breakpoints,
546 &child_proc->raw_breakpoints,
547 parent_proc->breakpoints);
548
549 tdesc = XNEW (struct target_desc);
550 copy_target_description (tdesc, parent_proc->tdesc);
551 child_proc->tdesc = tdesc;
552
553 /* Clone arch-specific process data. */
554 if (the_low_target.new_fork != NULL)
555 the_low_target.new_fork (parent_proc, child_proc);
556
557 /* Save fork info in the parent thread. */
558 if (event == PTRACE_EVENT_FORK)
559 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
560 else if (event == PTRACE_EVENT_VFORK)
561 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
562
563 event_lwp->waitstatus.value.related_pid = ptid;
564
565 /* The status_pending field contains bits denoting the
566 extended event, so when the pending event is handled,
567 the handler will look at lwp->waitstatus. */
568 event_lwp->status_pending_p = 1;
569 event_lwp->status_pending = wstat;
570
571 /* Report the event. */
572 return 0;
573 }
574
575 if (debug_threads)
576 debug_printf ("HEW: Got clone event "
577 "from LWP %ld, new child is LWP %ld\n",
578 lwpid_of (event_thr), new_pid);
579
580 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
581 new_lwp = add_lwp (ptid);
582
583 /* Either we're going to immediately resume the new thread
584 or leave it stopped. linux_resume_one_lwp is a nop if it
585 thinks the thread is currently running, so set this first
586 before calling linux_resume_one_lwp. */
587 new_lwp->stopped = 1;
588
589 /* If we're suspending all threads, leave this one suspended
590 too. If the fork/clone parent is stepping over a breakpoint,
591 all other threads have been suspended already. Leave the
592 child suspended too. */
593 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
594 || event_lwp->bp_reinsert != 0)
595 new_lwp->suspended = 1;
596
597 /* Normally we will get the pending SIGSTOP. But in some cases
598 we might get another signal delivered to the group first.
599 If we do get another signal, be sure not to lose it. */
600 if (WSTOPSIG (status) != SIGSTOP)
601 {
602 new_lwp->stop_expected = 1;
603 new_lwp->status_pending_p = 1;
604 new_lwp->status_pending = status;
605 }
606 else if (report_thread_events)
607 {
608 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
609 new_lwp->status_pending_p = 1;
610 new_lwp->status_pending = status;
611 }
612
613 /* Don't report the event. */
614 return 1;
615 }
616 else if (event == PTRACE_EVENT_VFORK_DONE)
617 {
618 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
619
620 /* Report the event. */
621 return 0;
622 }
623 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
624 {
625 struct process_info *proc;
626 VEC (int) *syscalls_to_catch;
627 ptid_t event_ptid;
628 pid_t event_pid;
629
630 if (debug_threads)
631 {
632 debug_printf ("HEW: Got exec event from LWP %ld\n",
633 lwpid_of (event_thr));
634 }
635
636 /* Get the event ptid. */
637 event_ptid = ptid_of (event_thr);
638 event_pid = ptid_get_pid (event_ptid);
639
640 /* Save the syscall list from the execing process. */
641 proc = get_thread_process (event_thr);
642 syscalls_to_catch = proc->syscalls_to_catch;
643 proc->syscalls_to_catch = NULL;
644
645 /* Delete the execing process and all its threads. */
646 linux_mourn (proc);
647 current_thread = NULL;
648
649 /* Create a new process/lwp/thread. */
650 proc = linux_add_process (event_pid, 0);
651 event_lwp = add_lwp (event_ptid);
652 event_thr = get_lwp_thread (event_lwp);
653 gdb_assert (current_thread == event_thr);
654 linux_arch_setup_thread (event_thr);
655
656 /* Set the event status. */
657 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
658 event_lwp->waitstatus.value.execd_pathname
659 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
660
661 /* Mark the exec status as pending. */
662 event_lwp->stopped = 1;
663 event_lwp->status_pending_p = 1;
664 event_lwp->status_pending = wstat;
665 event_thr->last_resume_kind = resume_continue;
666 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
667
668 /* Update syscall state in the new lwp, effectively mid-syscall too. */
669 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
670
671 /* Restore the list to catch. Don't rely on the client, which is free
672 to avoid sending a new list when the architecture doesn't change.
673 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
674 proc->syscalls_to_catch = syscalls_to_catch;
675
676 /* Report the event. */
677 *orig_event_lwp = event_lwp;
678 return 0;
679 }
680
681 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
682 }
683
684 /* Return the PC as read from the regcache of LWP, without any
685 adjustment. */
686
687 static CORE_ADDR
688 get_pc (struct lwp_info *lwp)
689 {
690 struct thread_info *saved_thread;
691 struct regcache *regcache;
692 CORE_ADDR pc;
693
694 if (the_low_target.get_pc == NULL)
695 return 0;
696
697 saved_thread = current_thread;
698 current_thread = get_lwp_thread (lwp);
699
700 regcache = get_thread_regcache (current_thread, 1);
701 pc = (*the_low_target.get_pc) (regcache);
702
703 if (debug_threads)
704 debug_printf ("pc is 0x%lx\n", (long) pc);
705
706 current_thread = saved_thread;
707 return pc;
708 }
709
710 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
711 Fill *SYSNO with the syscall nr trapped. Fill *SYSRET with the
712 return code. */
713
714 static void
715 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno, int *sysret)
716 {
717 struct thread_info *saved_thread;
718 struct regcache *regcache;
719
720 if (the_low_target.get_syscall_trapinfo == NULL)
721 {
722 /* If we cannot get the syscall trapinfo, report an unknown
723 system call number and -ENOSYS return value. */
724 *sysno = UNKNOWN_SYSCALL;
725 *sysret = -ENOSYS;
726 return;
727 }
728
729 saved_thread = current_thread;
730 current_thread = get_lwp_thread (lwp);
731
732 regcache = get_thread_regcache (current_thread, 1);
733 (*the_low_target.get_syscall_trapinfo) (regcache, sysno, sysret);
734
735 if (debug_threads)
736 {
737 debug_printf ("get_syscall_trapinfo sysno %d sysret %d\n",
738 *sysno, *sysret);
739 }
740
741 current_thread = saved_thread;
742 }
743
744 static int check_stopped_by_watchpoint (struct lwp_info *child);
745
746 /* Called when the LWP stopped for a signal/trap. If it stopped for a
747 trap check what caused it (breakpoint, watchpoint, trace, etc.),
748 and save the result in the LWP's stop_reason field. If it stopped
749 for a breakpoint, decrement the PC if necessary on the lwp's
750 architecture. Returns true if we now have the LWP's stop PC. */
751
752 static int
753 save_stop_reason (struct lwp_info *lwp)
754 {
755 CORE_ADDR pc;
756 CORE_ADDR sw_breakpoint_pc;
757 struct thread_info *saved_thread;
758 #if USE_SIGTRAP_SIGINFO
759 siginfo_t siginfo;
760 #endif
761
762 if (the_low_target.get_pc == NULL)
763 return 0;
764
765 pc = get_pc (lwp);
766 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
767
768 /* breakpoint_at reads from the current thread. */
769 saved_thread = current_thread;
770 current_thread = get_lwp_thread (lwp);
771
772 #if USE_SIGTRAP_SIGINFO
773 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
774 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
775 {
776 if (siginfo.si_signo == SIGTRAP)
777 {
778 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
779 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
780 {
781 /* The si_code is ambiguous on this arch -- check debug
782 registers. */
783 if (!check_stopped_by_watchpoint (lwp))
784 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
785 }
786 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
787 {
788 /* If we determine the LWP stopped for a SW breakpoint,
789 trust it. Particularly don't check watchpoint
790 registers, because at least on s390, we'd find
791 stopped-by-watchpoint as long as there's a watchpoint
792 set. */
793 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
794 }
795 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
796 {
797 /* This can indicate either a hardware breakpoint or
798 hardware watchpoint. Check debug registers. */
799 if (!check_stopped_by_watchpoint (lwp))
800 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
801 }
802 else if (siginfo.si_code == TRAP_TRACE)
803 {
804 /* We may have single stepped an instruction that
805 triggered a watchpoint. In that case, on some
806 architectures (such as x86), instead of TRAP_HWBKPT,
807 si_code indicates TRAP_TRACE, and we need to check
808 the debug registers separately. */
809 if (!check_stopped_by_watchpoint (lwp))
810 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
811 }
812 }
813 }
814 #else
815 /* We may have just stepped a breakpoint instruction. E.g., in
816 non-stop mode, GDB first tells the thread A to step a range, and
817 then the user inserts a breakpoint inside the range. In that
818 case we need to report the breakpoint PC. */
819 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
820 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
821 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
822
823 if (hardware_breakpoint_inserted_here (pc))
824 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
825
826 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
827 check_stopped_by_watchpoint (lwp);
828 #endif
829
830 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
831 {
832 if (debug_threads)
833 {
834 struct thread_info *thr = get_lwp_thread (lwp);
835
836 debug_printf ("CSBB: %s stopped by software breakpoint\n",
837 target_pid_to_str (ptid_of (thr)));
838 }
839
840 /* Back up the PC if necessary. */
841 if (pc != sw_breakpoint_pc)
842 {
843 struct regcache *regcache
844 = get_thread_regcache (current_thread, 1);
845 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
846 }
847
848 /* Update this so we record the correct stop PC below. */
849 pc = sw_breakpoint_pc;
850 }
851 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
852 {
853 if (debug_threads)
854 {
855 struct thread_info *thr = get_lwp_thread (lwp);
856
857 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
858 target_pid_to_str (ptid_of (thr)));
859 }
860 }
861 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
862 {
863 if (debug_threads)
864 {
865 struct thread_info *thr = get_lwp_thread (lwp);
866
867 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
868 target_pid_to_str (ptid_of (thr)));
869 }
870 }
871 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
872 {
873 if (debug_threads)
874 {
875 struct thread_info *thr = get_lwp_thread (lwp);
876
877 debug_printf ("CSBB: %s stopped by trace\n",
878 target_pid_to_str (ptid_of (thr)));
879 }
880 }
881
882 lwp->stop_pc = pc;
883 current_thread = saved_thread;
884 return 1;
885 }
886
887 static struct lwp_info *
888 add_lwp (ptid_t ptid)
889 {
890 struct lwp_info *lwp;
891
892 lwp = XCNEW (struct lwp_info);
893
894 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
895
896 if (the_low_target.new_thread != NULL)
897 the_low_target.new_thread (lwp);
898
899 lwp->thread = add_thread (ptid, lwp);
900
901 return lwp;
902 }
903
904 /* Start an inferior process and returns its pid.
905 ALLARGS is a vector of program-name and args. */
906
907 static int
908 linux_create_inferior (char *program, char **allargs)
909 {
910 struct lwp_info *new_lwp;
911 int pid;
912 ptid_t ptid;
913 struct cleanup *restore_personality
914 = maybe_disable_address_space_randomization (disable_randomization);
915
916 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
917 pid = vfork ();
918 #else
919 pid = fork ();
920 #endif
921 if (pid < 0)
922 perror_with_name ("fork");
923
924 if (pid == 0)
925 {
926 close_most_fds ();
927 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
928
929 setpgid (0, 0);
930
931 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
932 stdout to stderr so that inferior i/o doesn't corrupt the connection.
933 Also, redirect stdin to /dev/null. */
934 if (remote_connection_is_stdio ())
935 {
936 close (0);
937 open ("/dev/null", O_RDONLY);
938 dup2 (2, 1);
939 if (write (2, "stdin/stdout redirected\n",
940 sizeof ("stdin/stdout redirected\n") - 1) < 0)
941 {
942 /* Errors ignored. */;
943 }
944 }
945
946 execv (program, allargs);
947 if (errno == ENOENT)
948 execvp (program, allargs);
949
950 fprintf (stderr, "Cannot exec %s: %s.\n", program,
951 strerror (errno));
952 fflush (stderr);
953 _exit (0177);
954 }
955
956 do_cleanups (restore_personality);
957
958 linux_add_process (pid, 0);
959
960 ptid = ptid_build (pid, pid, 0);
961 new_lwp = add_lwp (ptid);
962 new_lwp->must_set_ptrace_flags = 1;
963
964 return pid;
965 }
966
967 /* Implement the post_create_inferior target_ops method. */
968
969 static void
970 linux_post_create_inferior (void)
971 {
972 struct lwp_info *lwp = get_thread_lwp (current_thread);
973
974 linux_arch_setup ();
975
976 if (lwp->must_set_ptrace_flags)
977 {
978 struct process_info *proc = current_process ();
979 int options = linux_low_ptrace_options (proc->attached);
980
981 linux_enable_event_reporting (lwpid_of (current_thread), options);
982 lwp->must_set_ptrace_flags = 0;
983 }
984 }
985
986 /* Attach to an inferior process. Returns 0 on success, ERRNO on
987 error. */
988
989 int
990 linux_attach_lwp (ptid_t ptid)
991 {
992 struct lwp_info *new_lwp;
993 int lwpid = ptid_get_lwp (ptid);
994
995 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
996 != 0)
997 return errno;
998
999 new_lwp = add_lwp (ptid);
1000
1001 /* We need to wait for SIGSTOP before being able to make the next
1002 ptrace call on this LWP. */
1003 new_lwp->must_set_ptrace_flags = 1;
1004
1005 if (linux_proc_pid_is_stopped (lwpid))
1006 {
1007 if (debug_threads)
1008 debug_printf ("Attached to a stopped process\n");
1009
1010 /* The process is definitely stopped. It is in a job control
1011 stop, unless the kernel predates the TASK_STOPPED /
1012 TASK_TRACED distinction, in which case it might be in a
1013 ptrace stop. Make sure it is in a ptrace stop; from there we
1014 can kill it, signal it, et cetera.
1015
1016 First make sure there is a pending SIGSTOP. Since we are
1017 already attached, the process can not transition from stopped
1018 to running without a PTRACE_CONT; so we know this signal will
1019 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1020 probably already in the queue (unless this kernel is old
1021 enough to use TASK_STOPPED for ptrace stops); but since
1022 SIGSTOP is not an RT signal, it can only be queued once. */
1023 kill_lwp (lwpid, SIGSTOP);
1024
1025 /* Finally, resume the stopped process. This will deliver the
1026 SIGSTOP (or a higher priority signal, just like normal
1027 PTRACE_ATTACH), which we'll catch later on. */
1028 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1029 }
1030
1031 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1032 brings it to a halt.
1033
1034 There are several cases to consider here:
1035
1036 1) gdbserver has already attached to the process and is being notified
1037 of a new thread that is being created.
1038 In this case we should ignore that SIGSTOP and resume the
1039 process. This is handled below by setting stop_expected = 1,
1040 and the fact that add_thread sets last_resume_kind ==
1041 resume_continue.
1042
1043 2) This is the first thread (the process thread), and we're attaching
1044 to it via attach_inferior.
1045 In this case we want the process thread to stop.
1046 This is handled by having linux_attach set last_resume_kind ==
1047 resume_stop after we return.
1048
1049 If the pid we are attaching to is also the tgid, we attach to and
1050 stop all the existing threads. Otherwise, we attach to pid and
1051 ignore any other threads in the same group as this pid.
1052
1053 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1054 existing threads.
1055 In this case we want the thread to stop.
1056 FIXME: This case is currently not properly handled.
1057 We should wait for the SIGSTOP but don't. Things work apparently
1058 because enough time passes between when we ptrace (ATTACH) and when
1059 gdb makes the next ptrace call on the thread.
1060
1061 On the other hand, if we are currently trying to stop all threads, we
1062 should treat the new thread as if we had sent it a SIGSTOP. This works
1063 because we are guaranteed that the add_lwp call above added us to the
1064 end of the list, and so the new thread has not yet reached
1065 wait_for_sigstop (but will). */
1066 new_lwp->stop_expected = 1;
1067
1068 return 0;
1069 }
1070
1071 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1072 already attached. Returns true if a new LWP is found, false
1073 otherwise. */
1074
1075 static int
1076 attach_proc_task_lwp_callback (ptid_t ptid)
1077 {
1078 /* Is this a new thread? */
1079 if (find_thread_ptid (ptid) == NULL)
1080 {
1081 int lwpid = ptid_get_lwp (ptid);
1082 int err;
1083
1084 if (debug_threads)
1085 debug_printf ("Found new lwp %d\n", lwpid);
1086
1087 err = linux_attach_lwp (ptid);
1088
1089 /* Be quiet if we simply raced with the thread exiting. EPERM
1090 is returned if the thread's task still exists, and is marked
1091 as exited or zombie, as well as other conditions, so in that
1092 case, confirm the status in /proc/PID/status. */
1093 if (err == ESRCH
1094 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1095 {
1096 if (debug_threads)
1097 {
1098 debug_printf ("Cannot attach to lwp %d: "
1099 "thread is gone (%d: %s)\n",
1100 lwpid, err, strerror (err));
1101 }
1102 }
1103 else if (err != 0)
1104 {
1105 warning (_("Cannot attach to lwp %d: %s"),
1106 lwpid,
1107 linux_ptrace_attach_fail_reason_string (ptid, err));
1108 }
1109
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 static void async_file_mark (void);
1116
1117 /* Attach to PID. If PID is the tgid, attach to it and all
1118 of its threads. */
1119
1120 static int
1121 linux_attach (unsigned long pid)
1122 {
1123 struct process_info *proc;
1124 struct thread_info *initial_thread;
1125 ptid_t ptid = ptid_build (pid, pid, 0);
1126 int err;
1127
1128 /* Attach to PID. We will check for other threads
1129 soon. */
1130 err = linux_attach_lwp (ptid);
1131 if (err != 0)
1132 error ("Cannot attach to process %ld: %s",
1133 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1134
1135 proc = linux_add_process (pid, 1);
1136
1137 /* Don't ignore the initial SIGSTOP if we just attached to this
1138 process. It will be collected by wait shortly. */
1139 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1140 initial_thread->last_resume_kind = resume_stop;
1141
1142 /* We must attach to every LWP. If /proc is mounted, use that to
1143 find them now. On the one hand, the inferior may be using raw
1144 clone instead of using pthreads. On the other hand, even if it
1145 is using pthreads, GDB may not be connected yet (thread_db needs
1146 to do symbol lookups, through qSymbol). Also, thread_db walks
1147 structures in the inferior's address space to find the list of
1148 threads/LWPs, and those structures may well be corrupted. Note
1149 that once thread_db is loaded, we'll still use it to list threads
1150 and associate pthread info with each LWP. */
1151 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1152
1153 /* GDB will shortly read the xml target description for this
1154 process, to figure out the process' architecture. But the target
1155 description is only filled in when the first process/thread in
1156 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1157 that now, otherwise, if GDB is fast enough, it could read the
1158 target description _before_ that initial stop. */
1159 if (non_stop)
1160 {
1161 struct lwp_info *lwp;
1162 int wstat, lwpid;
1163 ptid_t pid_ptid = pid_to_ptid (pid);
1164
1165 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1166 &wstat, __WALL);
1167 gdb_assert (lwpid > 0);
1168
1169 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1170
1171 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1172 {
1173 lwp->status_pending_p = 1;
1174 lwp->status_pending = wstat;
1175 }
1176
1177 initial_thread->last_resume_kind = resume_continue;
1178
1179 async_file_mark ();
1180
1181 gdb_assert (proc->tdesc != NULL);
1182 }
1183
1184 return 0;
1185 }
1186
1187 struct counter
1188 {
1189 int pid;
1190 int count;
1191 };
1192
1193 static int
1194 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1195 {
1196 struct counter *counter = (struct counter *) args;
1197
1198 if (ptid_get_pid (entry->id) == counter->pid)
1199 {
1200 if (++counter->count > 1)
1201 return 1;
1202 }
1203
1204 return 0;
1205 }
1206
1207 static int
1208 last_thread_of_process_p (int pid)
1209 {
1210 struct counter counter = { pid , 0 };
1211
1212 return (find_inferior (&all_threads,
1213 second_thread_of_pid_p, &counter) == NULL);
1214 }
1215
1216 /* Kill LWP. */
1217
1218 static void
1219 linux_kill_one_lwp (struct lwp_info *lwp)
1220 {
1221 struct thread_info *thr = get_lwp_thread (lwp);
1222 int pid = lwpid_of (thr);
1223
1224 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1225 there is no signal context, and ptrace(PTRACE_KILL) (or
1226 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1227 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1228 alternative is to kill with SIGKILL. We only need one SIGKILL
1229 per process, not one for each thread. But since we still support
1230 support debugging programs using raw clone without CLONE_THREAD,
1231 we send one for each thread. For years, we used PTRACE_KILL
1232 only, so we're being a bit paranoid about some old kernels where
1233 PTRACE_KILL might work better (dubious if there are any such, but
1234 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1235 second, and so we're fine everywhere. */
1236
1237 errno = 0;
1238 kill_lwp (pid, SIGKILL);
1239 if (debug_threads)
1240 {
1241 int save_errno = errno;
1242
1243 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1244 target_pid_to_str (ptid_of (thr)),
1245 save_errno ? strerror (save_errno) : "OK");
1246 }
1247
1248 errno = 0;
1249 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1250 if (debug_threads)
1251 {
1252 int save_errno = errno;
1253
1254 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1255 target_pid_to_str (ptid_of (thr)),
1256 save_errno ? strerror (save_errno) : "OK");
1257 }
1258 }
1259
1260 /* Kill LWP and wait for it to die. */
1261
1262 static void
1263 kill_wait_lwp (struct lwp_info *lwp)
1264 {
1265 struct thread_info *thr = get_lwp_thread (lwp);
1266 int pid = ptid_get_pid (ptid_of (thr));
1267 int lwpid = ptid_get_lwp (ptid_of (thr));
1268 int wstat;
1269 int res;
1270
1271 if (debug_threads)
1272 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1273
1274 do
1275 {
1276 linux_kill_one_lwp (lwp);
1277
1278 /* Make sure it died. Notes:
1279
1280 - The loop is most likely unnecessary.
1281
1282 - We don't use linux_wait_for_event as that could delete lwps
1283 while we're iterating over them. We're not interested in
1284 any pending status at this point, only in making sure all
1285 wait status on the kernel side are collected until the
1286 process is reaped.
1287
1288 - We don't use __WALL here as the __WALL emulation relies on
1289 SIGCHLD, and killing a stopped process doesn't generate
1290 one, nor an exit status.
1291 */
1292 res = my_waitpid (lwpid, &wstat, 0);
1293 if (res == -1 && errno == ECHILD)
1294 res = my_waitpid (lwpid, &wstat, __WCLONE);
1295 } while (res > 0 && WIFSTOPPED (wstat));
1296
1297 /* Even if it was stopped, the child may have already disappeared.
1298 E.g., if it was killed by SIGKILL. */
1299 if (res < 0 && errno != ECHILD)
1300 perror_with_name ("kill_wait_lwp");
1301 }
1302
1303 /* Callback for `find_inferior'. Kills an lwp of a given process,
1304 except the leader. */
1305
1306 static int
1307 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1308 {
1309 struct thread_info *thread = (struct thread_info *) entry;
1310 struct lwp_info *lwp = get_thread_lwp (thread);
1311 int pid = * (int *) args;
1312
1313 if (ptid_get_pid (entry->id) != pid)
1314 return 0;
1315
1316 /* We avoid killing the first thread here, because of a Linux kernel (at
1317 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1318 the children get a chance to be reaped, it will remain a zombie
1319 forever. */
1320
1321 if (lwpid_of (thread) == pid)
1322 {
1323 if (debug_threads)
1324 debug_printf ("lkop: is last of process %s\n",
1325 target_pid_to_str (entry->id));
1326 return 0;
1327 }
1328
1329 kill_wait_lwp (lwp);
1330 return 0;
1331 }
1332
1333 static int
1334 linux_kill (int pid)
1335 {
1336 struct process_info *process;
1337 struct lwp_info *lwp;
1338
1339 process = find_process_pid (pid);
1340 if (process == NULL)
1341 return -1;
1342
1343 /* If we're killing a running inferior, make sure it is stopped
1344 first, as PTRACE_KILL will not work otherwise. */
1345 stop_all_lwps (0, NULL);
1346
1347 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1348
1349 /* See the comment in linux_kill_one_lwp. We did not kill the first
1350 thread in the list, so do so now. */
1351 lwp = find_lwp_pid (pid_to_ptid (pid));
1352
1353 if (lwp == NULL)
1354 {
1355 if (debug_threads)
1356 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1357 pid);
1358 }
1359 else
1360 kill_wait_lwp (lwp);
1361
1362 the_target->mourn (process);
1363
1364 /* Since we presently can only stop all lwps of all processes, we
1365 need to unstop lwps of other processes. */
1366 unstop_all_lwps (0, NULL);
1367 return 0;
1368 }
1369
1370 /* Get pending signal of THREAD, for detaching purposes. This is the
1371 signal the thread last stopped for, which we need to deliver to the
1372 thread when detaching, otherwise, it'd be suppressed/lost. */
1373
1374 static int
1375 get_detach_signal (struct thread_info *thread)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378 int status;
1379 struct lwp_info *lp = get_thread_lwp (thread);
1380
1381 if (lp->status_pending_p)
1382 status = lp->status_pending;
1383 else
1384 {
1385 /* If the thread had been suspended by gdbserver, and it stopped
1386 cleanly, then it'll have stopped with SIGSTOP. But we don't
1387 want to deliver that SIGSTOP. */
1388 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1389 || thread->last_status.value.sig == GDB_SIGNAL_0)
1390 return 0;
1391
1392 /* Otherwise, we may need to deliver the signal we
1393 intercepted. */
1394 status = lp->last_status;
1395 }
1396
1397 if (!WIFSTOPPED (status))
1398 {
1399 if (debug_threads)
1400 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1401 target_pid_to_str (ptid_of (thread)));
1402 return 0;
1403 }
1404
1405 /* Extended wait statuses aren't real SIGTRAPs. */
1406 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1407 {
1408 if (debug_threads)
1409 debug_printf ("GPS: lwp %s had stopped with extended "
1410 "status: no pending signal\n",
1411 target_pid_to_str (ptid_of (thread)));
1412 return 0;
1413 }
1414
1415 signo = gdb_signal_from_host (WSTOPSIG (status));
1416
1417 if (program_signals_p && !program_signals[signo])
1418 {
1419 if (debug_threads)
1420 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1421 target_pid_to_str (ptid_of (thread)),
1422 gdb_signal_to_string (signo));
1423 return 0;
1424 }
1425 else if (!program_signals_p
1426 /* If we have no way to know which signals GDB does not
1427 want to have passed to the program, assume
1428 SIGTRAP/SIGINT, which is GDB's default. */
1429 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1430 {
1431 if (debug_threads)
1432 debug_printf ("GPS: lwp %s had signal %s, "
1433 "but we don't know if we should pass it. "
1434 "Default to not.\n",
1435 target_pid_to_str (ptid_of (thread)),
1436 gdb_signal_to_string (signo));
1437 return 0;
1438 }
1439 else
1440 {
1441 if (debug_threads)
1442 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1443 target_pid_to_str (ptid_of (thread)),
1444 gdb_signal_to_string (signo));
1445
1446 return WSTOPSIG (status);
1447 }
1448 }
1449
1450 static int
1451 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1452 {
1453 struct thread_info *thread = (struct thread_info *) entry;
1454 struct lwp_info *lwp = get_thread_lwp (thread);
1455 int pid = * (int *) args;
1456 int sig;
1457
1458 if (ptid_get_pid (entry->id) != pid)
1459 return 0;
1460
1461 /* If there is a pending SIGSTOP, get rid of it. */
1462 if (lwp->stop_expected)
1463 {
1464 if (debug_threads)
1465 debug_printf ("Sending SIGCONT to %s\n",
1466 target_pid_to_str (ptid_of (thread)));
1467
1468 kill_lwp (lwpid_of (thread), SIGCONT);
1469 lwp->stop_expected = 0;
1470 }
1471
1472 /* Flush any pending changes to the process's registers. */
1473 regcache_invalidate_thread (thread);
1474
1475 /* Pass on any pending signal for this thread. */
1476 sig = get_detach_signal (thread);
1477
1478 /* Finally, let it resume. */
1479 if (the_low_target.prepare_to_resume != NULL)
1480 the_low_target.prepare_to_resume (lwp);
1481 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1482 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1483 error (_("Can't detach %s: %s"),
1484 target_pid_to_str (ptid_of (thread)),
1485 strerror (errno));
1486
1487 delete_lwp (lwp);
1488 return 0;
1489 }
1490
1491 static int
1492 linux_detach (int pid)
1493 {
1494 struct process_info *process;
1495
1496 process = find_process_pid (pid);
1497 if (process == NULL)
1498 return -1;
1499
1500 /* As there's a step over already in progress, let it finish first,
1501 otherwise nesting a stabilize_threads operation on top gets real
1502 messy. */
1503 complete_ongoing_step_over ();
1504
1505 /* Stop all threads before detaching. First, ptrace requires that
1506 the thread is stopped to sucessfully detach. Second, thread_db
1507 may need to uninstall thread event breakpoints from memory, which
1508 only works with a stopped process anyway. */
1509 stop_all_lwps (0, NULL);
1510
1511 #ifdef USE_THREAD_DB
1512 thread_db_detach (process);
1513 #endif
1514
1515 /* Stabilize threads (move out of jump pads). */
1516 stabilize_threads ();
1517
1518 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1519
1520 the_target->mourn (process);
1521
1522 /* Since we presently can only stop all lwps of all processes, we
1523 need to unstop lwps of other processes. */
1524 unstop_all_lwps (0, NULL);
1525 return 0;
1526 }
1527
1528 /* Remove all LWPs that belong to process PROC from the lwp list. */
1529
1530 static int
1531 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1532 {
1533 struct thread_info *thread = (struct thread_info *) entry;
1534 struct lwp_info *lwp = get_thread_lwp (thread);
1535 struct process_info *process = (struct process_info *) proc;
1536
1537 if (pid_of (thread) == pid_of (process))
1538 delete_lwp (lwp);
1539
1540 return 0;
1541 }
1542
1543 static void
1544 linux_mourn (struct process_info *process)
1545 {
1546 struct process_info_private *priv;
1547
1548 #ifdef USE_THREAD_DB
1549 thread_db_mourn (process);
1550 #endif
1551
1552 find_inferior (&all_threads, delete_lwp_callback, process);
1553
1554 /* Freeing all private data. */
1555 priv = process->priv;
1556 free (priv->arch_private);
1557 free (priv);
1558 process->priv = NULL;
1559
1560 remove_process (process);
1561 }
1562
1563 static void
1564 linux_join (int pid)
1565 {
1566 int status, ret;
1567
1568 do {
1569 ret = my_waitpid (pid, &status, 0);
1570 if (WIFEXITED (status) || WIFSIGNALED (status))
1571 break;
1572 } while (ret != -1 || errno != ECHILD);
1573 }
1574
1575 /* Return nonzero if the given thread is still alive. */
1576 static int
1577 linux_thread_alive (ptid_t ptid)
1578 {
1579 struct lwp_info *lwp = find_lwp_pid (ptid);
1580
1581 /* We assume we always know if a thread exits. If a whole process
1582 exited but we still haven't been able to report it to GDB, we'll
1583 hold on to the last lwp of the dead process. */
1584 if (lwp != NULL)
1585 return !lwp_is_marked_dead (lwp);
1586 else
1587 return 0;
1588 }
1589
1590 /* Return 1 if this lwp still has an interesting status pending. If
1591 not (e.g., it had stopped for a breakpoint that is gone), return
1592 false. */
1593
1594 static int
1595 thread_still_has_status_pending_p (struct thread_info *thread)
1596 {
1597 struct lwp_info *lp = get_thread_lwp (thread);
1598
1599 if (!lp->status_pending_p)
1600 return 0;
1601
1602 if (thread->last_resume_kind != resume_stop
1603 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1604 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1605 {
1606 struct thread_info *saved_thread;
1607 CORE_ADDR pc;
1608 int discard = 0;
1609
1610 gdb_assert (lp->last_status != 0);
1611
1612 pc = get_pc (lp);
1613
1614 saved_thread = current_thread;
1615 current_thread = thread;
1616
1617 if (pc != lp->stop_pc)
1618 {
1619 if (debug_threads)
1620 debug_printf ("PC of %ld changed\n",
1621 lwpid_of (thread));
1622 discard = 1;
1623 }
1624
1625 #if !USE_SIGTRAP_SIGINFO
1626 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1627 && !(*the_low_target.breakpoint_at) (pc))
1628 {
1629 if (debug_threads)
1630 debug_printf ("previous SW breakpoint of %ld gone\n",
1631 lwpid_of (thread));
1632 discard = 1;
1633 }
1634 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1635 && !hardware_breakpoint_inserted_here (pc))
1636 {
1637 if (debug_threads)
1638 debug_printf ("previous HW breakpoint of %ld gone\n",
1639 lwpid_of (thread));
1640 discard = 1;
1641 }
1642 #endif
1643
1644 current_thread = saved_thread;
1645
1646 if (discard)
1647 {
1648 if (debug_threads)
1649 debug_printf ("discarding pending breakpoint status\n");
1650 lp->status_pending_p = 0;
1651 return 0;
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Returns true if LWP is resumed from the client's perspective. */
1659
1660 static int
1661 lwp_resumed (struct lwp_info *lwp)
1662 {
1663 struct thread_info *thread = get_lwp_thread (lwp);
1664
1665 if (thread->last_resume_kind != resume_stop)
1666 return 1;
1667
1668 /* Did gdb send us a `vCont;t', but we haven't reported the
1669 corresponding stop to gdb yet? If so, the thread is still
1670 resumed/running from gdb's perspective. */
1671 if (thread->last_resume_kind == resume_stop
1672 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1673 return 1;
1674
1675 return 0;
1676 }
1677
1678 /* Return 1 if this lwp has an interesting status pending. */
1679 static int
1680 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1681 {
1682 struct thread_info *thread = (struct thread_info *) entry;
1683 struct lwp_info *lp = get_thread_lwp (thread);
1684 ptid_t ptid = * (ptid_t *) arg;
1685
1686 /* Check if we're only interested in events from a specific process
1687 or a specific LWP. */
1688 if (!ptid_match (ptid_of (thread), ptid))
1689 return 0;
1690
1691 if (!lwp_resumed (lp))
1692 return 0;
1693
1694 if (lp->status_pending_p
1695 && !thread_still_has_status_pending_p (thread))
1696 {
1697 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1698 return 0;
1699 }
1700
1701 return lp->status_pending_p;
1702 }
1703
1704 static int
1705 same_lwp (struct inferior_list_entry *entry, void *data)
1706 {
1707 ptid_t ptid = *(ptid_t *) data;
1708 int lwp;
1709
1710 if (ptid_get_lwp (ptid) != 0)
1711 lwp = ptid_get_lwp (ptid);
1712 else
1713 lwp = ptid_get_pid (ptid);
1714
1715 if (ptid_get_lwp (entry->id) == lwp)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 struct lwp_info *
1722 find_lwp_pid (ptid_t ptid)
1723 {
1724 struct inferior_list_entry *thread
1725 = find_inferior (&all_threads, same_lwp, &ptid);
1726
1727 if (thread == NULL)
1728 return NULL;
1729
1730 return get_thread_lwp ((struct thread_info *) thread);
1731 }
1732
1733 /* Return the number of known LWPs in the tgid given by PID. */
1734
1735 static int
1736 num_lwps (int pid)
1737 {
1738 struct inferior_list_entry *inf, *tmp;
1739 int count = 0;
1740
1741 ALL_INFERIORS (&all_threads, inf, tmp)
1742 {
1743 if (ptid_get_pid (inf->id) == pid)
1744 count++;
1745 }
1746
1747 return count;
1748 }
1749
1750 /* The arguments passed to iterate_over_lwps. */
1751
1752 struct iterate_over_lwps_args
1753 {
1754 /* The FILTER argument passed to iterate_over_lwps. */
1755 ptid_t filter;
1756
1757 /* The CALLBACK argument passed to iterate_over_lwps. */
1758 iterate_over_lwps_ftype *callback;
1759
1760 /* The DATA argument passed to iterate_over_lwps. */
1761 void *data;
1762 };
1763
1764 /* Callback for find_inferior used by iterate_over_lwps to filter
1765 calls to the callback supplied to that function. Returning a
1766 nonzero value causes find_inferiors to stop iterating and return
1767 the current inferior_list_entry. Returning zero indicates that
1768 find_inferiors should continue iterating. */
1769
1770 static int
1771 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1772 {
1773 struct iterate_over_lwps_args *args
1774 = (struct iterate_over_lwps_args *) args_p;
1775
1776 if (ptid_match (entry->id, args->filter))
1777 {
1778 struct thread_info *thr = (struct thread_info *) entry;
1779 struct lwp_info *lwp = get_thread_lwp (thr);
1780
1781 return (*args->callback) (lwp, args->data);
1782 }
1783
1784 return 0;
1785 }
1786
1787 /* See nat/linux-nat.h. */
1788
1789 struct lwp_info *
1790 iterate_over_lwps (ptid_t filter,
1791 iterate_over_lwps_ftype callback,
1792 void *data)
1793 {
1794 struct iterate_over_lwps_args args = {filter, callback, data};
1795 struct inferior_list_entry *entry;
1796
1797 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1798 if (entry == NULL)
1799 return NULL;
1800
1801 return get_thread_lwp ((struct thread_info *) entry);
1802 }
1803
1804 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1805 their exits until all other threads in the group have exited. */
1806
1807 static void
1808 check_zombie_leaders (void)
1809 {
1810 struct process_info *proc, *tmp;
1811
1812 ALL_PROCESSES (proc, tmp)
1813 {
1814 pid_t leader_pid = pid_of (proc);
1815 struct lwp_info *leader_lp;
1816
1817 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1818
1819 if (debug_threads)
1820 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1821 "num_lwps=%d, zombie=%d\n",
1822 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1823 linux_proc_pid_is_zombie (leader_pid));
1824
1825 if (leader_lp != NULL && !leader_lp->stopped
1826 /* Check if there are other threads in the group, as we may
1827 have raced with the inferior simply exiting. */
1828 && !last_thread_of_process_p (leader_pid)
1829 && linux_proc_pid_is_zombie (leader_pid))
1830 {
1831 /* A leader zombie can mean one of two things:
1832
1833 - It exited, and there's an exit status pending
1834 available, or only the leader exited (not the whole
1835 program). In the latter case, we can't waitpid the
1836 leader's exit status until all other threads are gone.
1837
1838 - There are 3 or more threads in the group, and a thread
1839 other than the leader exec'd. On an exec, the Linux
1840 kernel destroys all other threads (except the execing
1841 one) in the thread group, and resets the execing thread's
1842 tid to the tgid. No exit notification is sent for the
1843 execing thread -- from the ptracer's perspective, it
1844 appears as though the execing thread just vanishes.
1845 Until we reap all other threads except the leader and the
1846 execing thread, the leader will be zombie, and the
1847 execing thread will be in `D (disc sleep)'. As soon as
1848 all other threads are reaped, the execing thread changes
1849 it's tid to the tgid, and the previous (zombie) leader
1850 vanishes, giving place to the "new" leader. We could try
1851 distinguishing the exit and exec cases, by waiting once
1852 more, and seeing if something comes out, but it doesn't
1853 sound useful. The previous leader _does_ go away, and
1854 we'll re-add the new one once we see the exec event
1855 (which is just the same as what would happen if the
1856 previous leader did exit voluntarily before some other
1857 thread execs). */
1858
1859 if (debug_threads)
1860 fprintf (stderr,
1861 "CZL: Thread group leader %d zombie "
1862 "(it exited, or another thread execd).\n",
1863 leader_pid);
1864
1865 delete_lwp (leader_lp);
1866 }
1867 }
1868 }
1869
1870 /* Callback for `find_inferior'. Returns the first LWP that is not
1871 stopped. ARG is a PTID filter. */
1872
1873 static int
1874 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1875 {
1876 struct thread_info *thr = (struct thread_info *) entry;
1877 struct lwp_info *lwp;
1878 ptid_t filter = *(ptid_t *) arg;
1879
1880 if (!ptid_match (ptid_of (thr), filter))
1881 return 0;
1882
1883 lwp = get_thread_lwp (thr);
1884 if (!lwp->stopped)
1885 return 1;
1886
1887 return 0;
1888 }
1889
1890 /* Increment LWP's suspend count. */
1891
1892 static void
1893 lwp_suspended_inc (struct lwp_info *lwp)
1894 {
1895 lwp->suspended++;
1896
1897 if (debug_threads && lwp->suspended > 4)
1898 {
1899 struct thread_info *thread = get_lwp_thread (lwp);
1900
1901 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1902 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1903 }
1904 }
1905
1906 /* Decrement LWP's suspend count. */
1907
1908 static void
1909 lwp_suspended_decr (struct lwp_info *lwp)
1910 {
1911 lwp->suspended--;
1912
1913 if (lwp->suspended < 0)
1914 {
1915 struct thread_info *thread = get_lwp_thread (lwp);
1916
1917 internal_error (__FILE__, __LINE__,
1918 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1919 lwp->suspended);
1920 }
1921 }
1922
1923 /* This function should only be called if the LWP got a SIGTRAP.
1924
1925 Handle any tracepoint steps or hits. Return true if a tracepoint
1926 event was handled, 0 otherwise. */
1927
1928 static int
1929 handle_tracepoints (struct lwp_info *lwp)
1930 {
1931 struct thread_info *tinfo = get_lwp_thread (lwp);
1932 int tpoint_related_event = 0;
1933
1934 gdb_assert (lwp->suspended == 0);
1935
1936 /* If this tracepoint hit causes a tracing stop, we'll immediately
1937 uninsert tracepoints. To do this, we temporarily pause all
1938 threads, unpatch away, and then unpause threads. We need to make
1939 sure the unpausing doesn't resume LWP too. */
1940 lwp_suspended_inc (lwp);
1941
1942 /* And we need to be sure that any all-threads-stopping doesn't try
1943 to move threads out of the jump pads, as it could deadlock the
1944 inferior (LWP could be in the jump pad, maybe even holding the
1945 lock.) */
1946
1947 /* Do any necessary step collect actions. */
1948 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1949
1950 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1951
1952 /* See if we just hit a tracepoint and do its main collect
1953 actions. */
1954 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1955
1956 lwp_suspended_decr (lwp);
1957
1958 gdb_assert (lwp->suspended == 0);
1959 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1960
1961 if (tpoint_related_event)
1962 {
1963 if (debug_threads)
1964 debug_printf ("got a tracepoint event\n");
1965 return 1;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* Convenience wrapper. Returns true if LWP is presently collecting a
1972 fast tracepoint. */
1973
1974 static int
1975 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1976 struct fast_tpoint_collect_status *status)
1977 {
1978 CORE_ADDR thread_area;
1979 struct thread_info *thread = get_lwp_thread (lwp);
1980
1981 if (the_low_target.get_thread_area == NULL)
1982 return 0;
1983
1984 /* Get the thread area address. This is used to recognize which
1985 thread is which when tracing with the in-process agent library.
1986 We don't read anything from the address, and treat it as opaque;
1987 it's the address itself that we assume is unique per-thread. */
1988 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1989 return 0;
1990
1991 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1992 }
1993
1994 /* The reason we resume in the caller, is because we want to be able
1995 to pass lwp->status_pending as WSTAT, and we need to clear
1996 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1997 refuses to resume. */
1998
1999 static int
2000 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2001 {
2002 struct thread_info *saved_thread;
2003
2004 saved_thread = current_thread;
2005 current_thread = get_lwp_thread (lwp);
2006
2007 if ((wstat == NULL
2008 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2009 && supports_fast_tracepoints ()
2010 && agent_loaded_p ())
2011 {
2012 struct fast_tpoint_collect_status status;
2013 int r;
2014
2015 if (debug_threads)
2016 debug_printf ("Checking whether LWP %ld needs to move out of the "
2017 "jump pad.\n",
2018 lwpid_of (current_thread));
2019
2020 r = linux_fast_tracepoint_collecting (lwp, &status);
2021
2022 if (wstat == NULL
2023 || (WSTOPSIG (*wstat) != SIGILL
2024 && WSTOPSIG (*wstat) != SIGFPE
2025 && WSTOPSIG (*wstat) != SIGSEGV
2026 && WSTOPSIG (*wstat) != SIGBUS))
2027 {
2028 lwp->collecting_fast_tracepoint = r;
2029
2030 if (r != 0)
2031 {
2032 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2033 {
2034 /* Haven't executed the original instruction yet.
2035 Set breakpoint there, and wait till it's hit,
2036 then single-step until exiting the jump pad. */
2037 lwp->exit_jump_pad_bkpt
2038 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2039 }
2040
2041 if (debug_threads)
2042 debug_printf ("Checking whether LWP %ld needs to move out of "
2043 "the jump pad...it does\n",
2044 lwpid_of (current_thread));
2045 current_thread = saved_thread;
2046
2047 return 1;
2048 }
2049 }
2050 else
2051 {
2052 /* If we get a synchronous signal while collecting, *and*
2053 while executing the (relocated) original instruction,
2054 reset the PC to point at the tpoint address, before
2055 reporting to GDB. Otherwise, it's an IPA lib bug: just
2056 report the signal to GDB, and pray for the best. */
2057
2058 lwp->collecting_fast_tracepoint = 0;
2059
2060 if (r != 0
2061 && (status.adjusted_insn_addr <= lwp->stop_pc
2062 && lwp->stop_pc < status.adjusted_insn_addr_end))
2063 {
2064 siginfo_t info;
2065 struct regcache *regcache;
2066
2067 /* The si_addr on a few signals references the address
2068 of the faulting instruction. Adjust that as
2069 well. */
2070 if ((WSTOPSIG (*wstat) == SIGILL
2071 || WSTOPSIG (*wstat) == SIGFPE
2072 || WSTOPSIG (*wstat) == SIGBUS
2073 || WSTOPSIG (*wstat) == SIGSEGV)
2074 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2075 (PTRACE_TYPE_ARG3) 0, &info) == 0
2076 /* Final check just to make sure we don't clobber
2077 the siginfo of non-kernel-sent signals. */
2078 && (uintptr_t) info.si_addr == lwp->stop_pc)
2079 {
2080 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2081 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2082 (PTRACE_TYPE_ARG3) 0, &info);
2083 }
2084
2085 regcache = get_thread_regcache (current_thread, 1);
2086 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2087 lwp->stop_pc = status.tpoint_addr;
2088
2089 /* Cancel any fast tracepoint lock this thread was
2090 holding. */
2091 force_unlock_trace_buffer ();
2092 }
2093
2094 if (lwp->exit_jump_pad_bkpt != NULL)
2095 {
2096 if (debug_threads)
2097 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2098 "stopping all threads momentarily.\n");
2099
2100 stop_all_lwps (1, lwp);
2101
2102 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2103 lwp->exit_jump_pad_bkpt = NULL;
2104
2105 unstop_all_lwps (1, lwp);
2106
2107 gdb_assert (lwp->suspended >= 0);
2108 }
2109 }
2110 }
2111
2112 if (debug_threads)
2113 debug_printf ("Checking whether LWP %ld needs to move out of the "
2114 "jump pad...no\n",
2115 lwpid_of (current_thread));
2116
2117 current_thread = saved_thread;
2118 return 0;
2119 }
2120
2121 /* Enqueue one signal in the "signals to report later when out of the
2122 jump pad" list. */
2123
2124 static void
2125 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2126 {
2127 struct pending_signals *p_sig;
2128 struct thread_info *thread = get_lwp_thread (lwp);
2129
2130 if (debug_threads)
2131 debug_printf ("Deferring signal %d for LWP %ld.\n",
2132 WSTOPSIG (*wstat), lwpid_of (thread));
2133
2134 if (debug_threads)
2135 {
2136 struct pending_signals *sig;
2137
2138 for (sig = lwp->pending_signals_to_report;
2139 sig != NULL;
2140 sig = sig->prev)
2141 debug_printf (" Already queued %d\n",
2142 sig->signal);
2143
2144 debug_printf (" (no more currently queued signals)\n");
2145 }
2146
2147 /* Don't enqueue non-RT signals if they are already in the deferred
2148 queue. (SIGSTOP being the easiest signal to see ending up here
2149 twice) */
2150 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2151 {
2152 struct pending_signals *sig;
2153
2154 for (sig = lwp->pending_signals_to_report;
2155 sig != NULL;
2156 sig = sig->prev)
2157 {
2158 if (sig->signal == WSTOPSIG (*wstat))
2159 {
2160 if (debug_threads)
2161 debug_printf ("Not requeuing already queued non-RT signal %d"
2162 " for LWP %ld\n",
2163 sig->signal,
2164 lwpid_of (thread));
2165 return;
2166 }
2167 }
2168 }
2169
2170 p_sig = XCNEW (struct pending_signals);
2171 p_sig->prev = lwp->pending_signals_to_report;
2172 p_sig->signal = WSTOPSIG (*wstat);
2173
2174 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2175 &p_sig->info);
2176
2177 lwp->pending_signals_to_report = p_sig;
2178 }
2179
2180 /* Dequeue one signal from the "signals to report later when out of
2181 the jump pad" list. */
2182
2183 static int
2184 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2185 {
2186 struct thread_info *thread = get_lwp_thread (lwp);
2187
2188 if (lwp->pending_signals_to_report != NULL)
2189 {
2190 struct pending_signals **p_sig;
2191
2192 p_sig = &lwp->pending_signals_to_report;
2193 while ((*p_sig)->prev != NULL)
2194 p_sig = &(*p_sig)->prev;
2195
2196 *wstat = W_STOPCODE ((*p_sig)->signal);
2197 if ((*p_sig)->info.si_signo != 0)
2198 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2199 &(*p_sig)->info);
2200 free (*p_sig);
2201 *p_sig = NULL;
2202
2203 if (debug_threads)
2204 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2205 WSTOPSIG (*wstat), lwpid_of (thread));
2206
2207 if (debug_threads)
2208 {
2209 struct pending_signals *sig;
2210
2211 for (sig = lwp->pending_signals_to_report;
2212 sig != NULL;
2213 sig = sig->prev)
2214 debug_printf (" Still queued %d\n",
2215 sig->signal);
2216
2217 debug_printf (" (no more queued signals)\n");
2218 }
2219
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 /* Fetch the possibly triggered data watchpoint info and store it in
2227 CHILD.
2228
2229 On some archs, like x86, that use debug registers to set
2230 watchpoints, it's possible that the way to know which watched
2231 address trapped, is to check the register that is used to select
2232 which address to watch. Problem is, between setting the watchpoint
2233 and reading back which data address trapped, the user may change
2234 the set of watchpoints, and, as a consequence, GDB changes the
2235 debug registers in the inferior. To avoid reading back a stale
2236 stopped-data-address when that happens, we cache in LP the fact
2237 that a watchpoint trapped, and the corresponding data address, as
2238 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2239 registers meanwhile, we have the cached data we can rely on. */
2240
2241 static int
2242 check_stopped_by_watchpoint (struct lwp_info *child)
2243 {
2244 if (the_low_target.stopped_by_watchpoint != NULL)
2245 {
2246 struct thread_info *saved_thread;
2247
2248 saved_thread = current_thread;
2249 current_thread = get_lwp_thread (child);
2250
2251 if (the_low_target.stopped_by_watchpoint ())
2252 {
2253 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2254
2255 if (the_low_target.stopped_data_address != NULL)
2256 child->stopped_data_address
2257 = the_low_target.stopped_data_address ();
2258 else
2259 child->stopped_data_address = 0;
2260 }
2261
2262 current_thread = saved_thread;
2263 }
2264
2265 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2266 }
2267
2268 /* Return the ptrace options that we want to try to enable. */
2269
2270 static int
2271 linux_low_ptrace_options (int attached)
2272 {
2273 int options = 0;
2274
2275 if (!attached)
2276 options |= PTRACE_O_EXITKILL;
2277
2278 if (report_fork_events)
2279 options |= PTRACE_O_TRACEFORK;
2280
2281 if (report_vfork_events)
2282 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2283
2284 if (report_exec_events)
2285 options |= PTRACE_O_TRACEEXEC;
2286
2287 options |= PTRACE_O_TRACESYSGOOD;
2288
2289 return options;
2290 }
2291
2292 /* Do low-level handling of the event, and check if we should go on
2293 and pass it to caller code. Return the affected lwp if we are, or
2294 NULL otherwise. */
2295
2296 static struct lwp_info *
2297 linux_low_filter_event (int lwpid, int wstat)
2298 {
2299 struct lwp_info *child;
2300 struct thread_info *thread;
2301 int have_stop_pc = 0;
2302
2303 child = find_lwp_pid (pid_to_ptid (lwpid));
2304
2305 /* Check for stop events reported by a process we didn't already
2306 know about - anything not already in our LWP list.
2307
2308 If we're expecting to receive stopped processes after
2309 fork, vfork, and clone events, then we'll just add the
2310 new one to our list and go back to waiting for the event
2311 to be reported - the stopped process might be returned
2312 from waitpid before or after the event is.
2313
2314 But note the case of a non-leader thread exec'ing after the
2315 leader having exited, and gone from our lists (because
2316 check_zombie_leaders deleted it). The non-leader thread
2317 changes its tid to the tgid. */
2318
2319 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2320 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2321 {
2322 ptid_t child_ptid;
2323
2324 /* A multi-thread exec after we had seen the leader exiting. */
2325 if (debug_threads)
2326 {
2327 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2328 "after exec.\n", lwpid);
2329 }
2330
2331 child_ptid = ptid_build (lwpid, lwpid, 0);
2332 child = add_lwp (child_ptid);
2333 child->stopped = 1;
2334 current_thread = child->thread;
2335 }
2336
2337 /* If we didn't find a process, one of two things presumably happened:
2338 - A process we started and then detached from has exited. Ignore it.
2339 - A process we are controlling has forked and the new child's stop
2340 was reported to us by the kernel. Save its PID. */
2341 if (child == NULL && WIFSTOPPED (wstat))
2342 {
2343 add_to_pid_list (&stopped_pids, lwpid, wstat);
2344 return NULL;
2345 }
2346 else if (child == NULL)
2347 return NULL;
2348
2349 thread = get_lwp_thread (child);
2350
2351 child->stopped = 1;
2352
2353 child->last_status = wstat;
2354
2355 /* Check if the thread has exited. */
2356 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2357 {
2358 if (debug_threads)
2359 debug_printf ("LLFE: %d exited.\n", lwpid);
2360 /* If there is at least one more LWP, then the exit signal was
2361 not the end of the debugged application and should be
2362 ignored, unless GDB wants to hear about thread exits. */
2363 if (report_thread_events
2364 || last_thread_of_process_p (pid_of (thread)))
2365 {
2366 /* Since events are serialized to GDB core, and we can't
2367 report this one right now. Leave the status pending for
2368 the next time we're able to report it. */
2369 mark_lwp_dead (child, wstat);
2370 return child;
2371 }
2372 else
2373 {
2374 delete_lwp (child);
2375 return NULL;
2376 }
2377 }
2378
2379 gdb_assert (WIFSTOPPED (wstat));
2380
2381 if (WIFSTOPPED (wstat))
2382 {
2383 struct process_info *proc;
2384
2385 /* Architecture-specific setup after inferior is running. */
2386 proc = find_process_pid (pid_of (thread));
2387 if (proc->tdesc == NULL)
2388 {
2389 if (proc->attached)
2390 {
2391 /* This needs to happen after we have attached to the
2392 inferior and it is stopped for the first time, but
2393 before we access any inferior registers. */
2394 linux_arch_setup_thread (thread);
2395 }
2396 else
2397 {
2398 /* The process is started, but GDBserver will do
2399 architecture-specific setup after the program stops at
2400 the first instruction. */
2401 child->status_pending_p = 1;
2402 child->status_pending = wstat;
2403 return child;
2404 }
2405 }
2406 }
2407
2408 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2409 {
2410 struct process_info *proc = find_process_pid (pid_of (thread));
2411 int options = linux_low_ptrace_options (proc->attached);
2412
2413 linux_enable_event_reporting (lwpid, options);
2414 child->must_set_ptrace_flags = 0;
2415 }
2416
2417 /* Always update syscall_state, even if it will be filtered later. */
2418 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2419 {
2420 child->syscall_state
2421 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2422 ? TARGET_WAITKIND_SYSCALL_RETURN
2423 : TARGET_WAITKIND_SYSCALL_ENTRY);
2424 }
2425 else
2426 {
2427 /* Almost all other ptrace-stops are known to be outside of system
2428 calls, with further exceptions in handle_extended_wait. */
2429 child->syscall_state = TARGET_WAITKIND_IGNORE;
2430 }
2431
2432 /* Be careful to not overwrite stop_pc until save_stop_reason is
2433 called. */
2434 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2435 && linux_is_extended_waitstatus (wstat))
2436 {
2437 child->stop_pc = get_pc (child);
2438 if (handle_extended_wait (&child, wstat))
2439 {
2440 /* The event has been handled, so just return without
2441 reporting it. */
2442 return NULL;
2443 }
2444 }
2445
2446 if (linux_wstatus_maybe_breakpoint (wstat))
2447 {
2448 if (save_stop_reason (child))
2449 have_stop_pc = 1;
2450 }
2451
2452 if (!have_stop_pc)
2453 child->stop_pc = get_pc (child);
2454
2455 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2456 && child->stop_expected)
2457 {
2458 if (debug_threads)
2459 debug_printf ("Expected stop.\n");
2460 child->stop_expected = 0;
2461
2462 if (thread->last_resume_kind == resume_stop)
2463 {
2464 /* We want to report the stop to the core. Treat the
2465 SIGSTOP as a normal event. */
2466 if (debug_threads)
2467 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2468 target_pid_to_str (ptid_of (thread)));
2469 }
2470 else if (stopping_threads != NOT_STOPPING_THREADS)
2471 {
2472 /* Stopping threads. We don't want this SIGSTOP to end up
2473 pending. */
2474 if (debug_threads)
2475 debug_printf ("LLW: SIGSTOP caught for %s "
2476 "while stopping threads.\n",
2477 target_pid_to_str (ptid_of (thread)));
2478 return NULL;
2479 }
2480 else
2481 {
2482 /* This is a delayed SIGSTOP. Filter out the event. */
2483 if (debug_threads)
2484 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2485 child->stepping ? "step" : "continue",
2486 target_pid_to_str (ptid_of (thread)));
2487
2488 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2489 return NULL;
2490 }
2491 }
2492
2493 child->status_pending_p = 1;
2494 child->status_pending = wstat;
2495 return child;
2496 }
2497
2498 /* Resume LWPs that are currently stopped without any pending status
2499 to report, but are resumed from the core's perspective. */
2500
2501 static void
2502 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2503 {
2504 struct thread_info *thread = (struct thread_info *) entry;
2505 struct lwp_info *lp = get_thread_lwp (thread);
2506
2507 if (lp->stopped
2508 && !lp->suspended
2509 && !lp->status_pending_p
2510 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2511 {
2512 int step = thread->last_resume_kind == resume_step;
2513
2514 if (debug_threads)
2515 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2516 target_pid_to_str (ptid_of (thread)),
2517 paddress (lp->stop_pc),
2518 step);
2519
2520 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2521 }
2522 }
2523
2524 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2525 match FILTER_PTID (leaving others pending). The PTIDs can be:
2526 minus_one_ptid, to specify any child; a pid PTID, specifying all
2527 lwps of a thread group; or a PTID representing a single lwp. Store
2528 the stop status through the status pointer WSTAT. OPTIONS is
2529 passed to the waitpid call. Return 0 if no event was found and
2530 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2531 was found. Return the PID of the stopped child otherwise. */
2532
2533 static int
2534 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2535 int *wstatp, int options)
2536 {
2537 struct thread_info *event_thread;
2538 struct lwp_info *event_child, *requested_child;
2539 sigset_t block_mask, prev_mask;
2540
2541 retry:
2542 /* N.B. event_thread points to the thread_info struct that contains
2543 event_child. Keep them in sync. */
2544 event_thread = NULL;
2545 event_child = NULL;
2546 requested_child = NULL;
2547
2548 /* Check for a lwp with a pending status. */
2549
2550 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2551 {
2552 event_thread = (struct thread_info *)
2553 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2554 if (event_thread != NULL)
2555 event_child = get_thread_lwp (event_thread);
2556 if (debug_threads && event_thread)
2557 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2558 }
2559 else if (!ptid_equal (filter_ptid, null_ptid))
2560 {
2561 requested_child = find_lwp_pid (filter_ptid);
2562
2563 if (stopping_threads == NOT_STOPPING_THREADS
2564 && requested_child->status_pending_p
2565 && requested_child->collecting_fast_tracepoint)
2566 {
2567 enqueue_one_deferred_signal (requested_child,
2568 &requested_child->status_pending);
2569 requested_child->status_pending_p = 0;
2570 requested_child->status_pending = 0;
2571 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2572 }
2573
2574 if (requested_child->suspended
2575 && requested_child->status_pending_p)
2576 {
2577 internal_error (__FILE__, __LINE__,
2578 "requesting an event out of a"
2579 " suspended child?");
2580 }
2581
2582 if (requested_child->status_pending_p)
2583 {
2584 event_child = requested_child;
2585 event_thread = get_lwp_thread (event_child);
2586 }
2587 }
2588
2589 if (event_child != NULL)
2590 {
2591 if (debug_threads)
2592 debug_printf ("Got an event from pending child %ld (%04x)\n",
2593 lwpid_of (event_thread), event_child->status_pending);
2594 *wstatp = event_child->status_pending;
2595 event_child->status_pending_p = 0;
2596 event_child->status_pending = 0;
2597 current_thread = event_thread;
2598 return lwpid_of (event_thread);
2599 }
2600
2601 /* But if we don't find a pending event, we'll have to wait.
2602
2603 We only enter this loop if no process has a pending wait status.
2604 Thus any action taken in response to a wait status inside this
2605 loop is responding as soon as we detect the status, not after any
2606 pending events. */
2607
2608 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2609 all signals while here. */
2610 sigfillset (&block_mask);
2611 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2612
2613 /* Always pull all events out of the kernel. We'll randomly select
2614 an event LWP out of all that have events, to prevent
2615 starvation. */
2616 while (event_child == NULL)
2617 {
2618 pid_t ret = 0;
2619
2620 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2621 quirks:
2622
2623 - If the thread group leader exits while other threads in the
2624 thread group still exist, waitpid(TGID, ...) hangs. That
2625 waitpid won't return an exit status until the other threads
2626 in the group are reaped.
2627
2628 - When a non-leader thread execs, that thread just vanishes
2629 without reporting an exit (so we'd hang if we waited for it
2630 explicitly in that case). The exec event is reported to
2631 the TGID pid. */
2632 errno = 0;
2633 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2634
2635 if (debug_threads)
2636 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2637 ret, errno ? strerror (errno) : "ERRNO-OK");
2638
2639 if (ret > 0)
2640 {
2641 if (debug_threads)
2642 {
2643 debug_printf ("LLW: waitpid %ld received %s\n",
2644 (long) ret, status_to_str (*wstatp));
2645 }
2646
2647 /* Filter all events. IOW, leave all events pending. We'll
2648 randomly select an event LWP out of all that have events
2649 below. */
2650 linux_low_filter_event (ret, *wstatp);
2651 /* Retry until nothing comes out of waitpid. A single
2652 SIGCHLD can indicate more than one child stopped. */
2653 continue;
2654 }
2655
2656 /* Now that we've pulled all events out of the kernel, resume
2657 LWPs that don't have an interesting event to report. */
2658 if (stopping_threads == NOT_STOPPING_THREADS)
2659 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2660
2661 /* ... and find an LWP with a status to report to the core, if
2662 any. */
2663 event_thread = (struct thread_info *)
2664 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2665 if (event_thread != NULL)
2666 {
2667 event_child = get_thread_lwp (event_thread);
2668 *wstatp = event_child->status_pending;
2669 event_child->status_pending_p = 0;
2670 event_child->status_pending = 0;
2671 break;
2672 }
2673
2674 /* Check for zombie thread group leaders. Those can't be reaped
2675 until all other threads in the thread group are. */
2676 check_zombie_leaders ();
2677
2678 /* If there are no resumed children left in the set of LWPs we
2679 want to wait for, bail. We can't just block in
2680 waitpid/sigsuspend, because lwps might have been left stopped
2681 in trace-stop state, and we'd be stuck forever waiting for
2682 their status to change (which would only happen if we resumed
2683 them). Even if WNOHANG is set, this return code is preferred
2684 over 0 (below), as it is more detailed. */
2685 if ((find_inferior (&all_threads,
2686 not_stopped_callback,
2687 &wait_ptid) == NULL))
2688 {
2689 if (debug_threads)
2690 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2691 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2692 return -1;
2693 }
2694
2695 /* No interesting event to report to the caller. */
2696 if ((options & WNOHANG))
2697 {
2698 if (debug_threads)
2699 debug_printf ("WNOHANG set, no event found\n");
2700
2701 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2702 return 0;
2703 }
2704
2705 /* Block until we get an event reported with SIGCHLD. */
2706 if (debug_threads)
2707 debug_printf ("sigsuspend'ing\n");
2708
2709 sigsuspend (&prev_mask);
2710 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2711 goto retry;
2712 }
2713
2714 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2715
2716 current_thread = event_thread;
2717
2718 return lwpid_of (event_thread);
2719 }
2720
2721 /* Wait for an event from child(ren) PTID. PTIDs can be:
2722 minus_one_ptid, to specify any child; a pid PTID, specifying all
2723 lwps of a thread group; or a PTID representing a single lwp. Store
2724 the stop status through the status pointer WSTAT. OPTIONS is
2725 passed to the waitpid call. Return 0 if no event was found and
2726 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2727 was found. Return the PID of the stopped child otherwise. */
2728
2729 static int
2730 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2731 {
2732 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2733 }
2734
2735 /* Count the LWP's that have had events. */
2736
2737 static int
2738 count_events_callback (struct inferior_list_entry *entry, void *data)
2739 {
2740 struct thread_info *thread = (struct thread_info *) entry;
2741 struct lwp_info *lp = get_thread_lwp (thread);
2742 int *count = (int *) data;
2743
2744 gdb_assert (count != NULL);
2745
2746 /* Count only resumed LWPs that have an event pending. */
2747 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2748 && lp->status_pending_p)
2749 (*count)++;
2750
2751 return 0;
2752 }
2753
2754 /* Select the LWP (if any) that is currently being single-stepped. */
2755
2756 static int
2757 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2758 {
2759 struct thread_info *thread = (struct thread_info *) entry;
2760 struct lwp_info *lp = get_thread_lwp (thread);
2761
2762 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2763 && thread->last_resume_kind == resume_step
2764 && lp->status_pending_p)
2765 return 1;
2766 else
2767 return 0;
2768 }
2769
2770 /* Select the Nth LWP that has had an event. */
2771
2772 static int
2773 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2774 {
2775 struct thread_info *thread = (struct thread_info *) entry;
2776 struct lwp_info *lp = get_thread_lwp (thread);
2777 int *selector = (int *) data;
2778
2779 gdb_assert (selector != NULL);
2780
2781 /* Select only resumed LWPs that have an event pending. */
2782 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2783 && lp->status_pending_p)
2784 if ((*selector)-- == 0)
2785 return 1;
2786
2787 return 0;
2788 }
2789
2790 /* Select one LWP out of those that have events pending. */
2791
2792 static void
2793 select_event_lwp (struct lwp_info **orig_lp)
2794 {
2795 int num_events = 0;
2796 int random_selector;
2797 struct thread_info *event_thread = NULL;
2798
2799 /* In all-stop, give preference to the LWP that is being
2800 single-stepped. There will be at most one, and it's the LWP that
2801 the core is most interested in. If we didn't do this, then we'd
2802 have to handle pending step SIGTRAPs somehow in case the core
2803 later continues the previously-stepped thread, otherwise we'd
2804 report the pending SIGTRAP, and the core, not having stepped the
2805 thread, wouldn't understand what the trap was for, and therefore
2806 would report it to the user as a random signal. */
2807 if (!non_stop)
2808 {
2809 event_thread
2810 = (struct thread_info *) find_inferior (&all_threads,
2811 select_singlestep_lwp_callback,
2812 NULL);
2813 if (event_thread != NULL)
2814 {
2815 if (debug_threads)
2816 debug_printf ("SEL: Select single-step %s\n",
2817 target_pid_to_str (ptid_of (event_thread)));
2818 }
2819 }
2820 if (event_thread == NULL)
2821 {
2822 /* No single-stepping LWP. Select one at random, out of those
2823 which have had events. */
2824
2825 /* First see how many events we have. */
2826 find_inferior (&all_threads, count_events_callback, &num_events);
2827 gdb_assert (num_events > 0);
2828
2829 /* Now randomly pick a LWP out of those that have had
2830 events. */
2831 random_selector = (int)
2832 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2833
2834 if (debug_threads && num_events > 1)
2835 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2836 num_events, random_selector);
2837
2838 event_thread
2839 = (struct thread_info *) find_inferior (&all_threads,
2840 select_event_lwp_callback,
2841 &random_selector);
2842 }
2843
2844 if (event_thread != NULL)
2845 {
2846 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2847
2848 /* Switch the event LWP. */
2849 *orig_lp = event_lp;
2850 }
2851 }
2852
2853 /* Decrement the suspend count of an LWP. */
2854
2855 static int
2856 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2857 {
2858 struct thread_info *thread = (struct thread_info *) entry;
2859 struct lwp_info *lwp = get_thread_lwp (thread);
2860
2861 /* Ignore EXCEPT. */
2862 if (lwp == except)
2863 return 0;
2864
2865 lwp_suspended_decr (lwp);
2866 return 0;
2867 }
2868
2869 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2870 NULL. */
2871
2872 static void
2873 unsuspend_all_lwps (struct lwp_info *except)
2874 {
2875 find_inferior (&all_threads, unsuspend_one_lwp, except);
2876 }
2877
2878 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2879 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2880 void *data);
2881 static int lwp_running (struct inferior_list_entry *entry, void *data);
2882 static ptid_t linux_wait_1 (ptid_t ptid,
2883 struct target_waitstatus *ourstatus,
2884 int target_options);
2885
2886 /* Stabilize threads (move out of jump pads).
2887
2888 If a thread is midway collecting a fast tracepoint, we need to
2889 finish the collection and move it out of the jump pad before
2890 reporting the signal.
2891
2892 This avoids recursion while collecting (when a signal arrives
2893 midway, and the signal handler itself collects), which would trash
2894 the trace buffer. In case the user set a breakpoint in a signal
2895 handler, this avoids the backtrace showing the jump pad, etc..
2896 Most importantly, there are certain things we can't do safely if
2897 threads are stopped in a jump pad (or in its callee's). For
2898 example:
2899
2900 - starting a new trace run. A thread still collecting the
2901 previous run, could trash the trace buffer when resumed. The trace
2902 buffer control structures would have been reset but the thread had
2903 no way to tell. The thread could even midway memcpy'ing to the
2904 buffer, which would mean that when resumed, it would clobber the
2905 trace buffer that had been set for a new run.
2906
2907 - we can't rewrite/reuse the jump pads for new tracepoints
2908 safely. Say you do tstart while a thread is stopped midway while
2909 collecting. When the thread is later resumed, it finishes the
2910 collection, and returns to the jump pad, to execute the original
2911 instruction that was under the tracepoint jump at the time the
2912 older run had been started. If the jump pad had been rewritten
2913 since for something else in the new run, the thread would now
2914 execute the wrong / random instructions. */
2915
2916 static void
2917 linux_stabilize_threads (void)
2918 {
2919 struct thread_info *saved_thread;
2920 struct thread_info *thread_stuck;
2921
2922 thread_stuck
2923 = (struct thread_info *) find_inferior (&all_threads,
2924 stuck_in_jump_pad_callback,
2925 NULL);
2926 if (thread_stuck != NULL)
2927 {
2928 if (debug_threads)
2929 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2930 lwpid_of (thread_stuck));
2931 return;
2932 }
2933
2934 saved_thread = current_thread;
2935
2936 stabilizing_threads = 1;
2937
2938 /* Kick 'em all. */
2939 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2940
2941 /* Loop until all are stopped out of the jump pads. */
2942 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2943 {
2944 struct target_waitstatus ourstatus;
2945 struct lwp_info *lwp;
2946 int wstat;
2947
2948 /* Note that we go through the full wait even loop. While
2949 moving threads out of jump pad, we need to be able to step
2950 over internal breakpoints and such. */
2951 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2952
2953 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2954 {
2955 lwp = get_thread_lwp (current_thread);
2956
2957 /* Lock it. */
2958 lwp_suspended_inc (lwp);
2959
2960 if (ourstatus.value.sig != GDB_SIGNAL_0
2961 || current_thread->last_resume_kind == resume_stop)
2962 {
2963 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2964 enqueue_one_deferred_signal (lwp, &wstat);
2965 }
2966 }
2967 }
2968
2969 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2970
2971 stabilizing_threads = 0;
2972
2973 current_thread = saved_thread;
2974
2975 if (debug_threads)
2976 {
2977 thread_stuck
2978 = (struct thread_info *) find_inferior (&all_threads,
2979 stuck_in_jump_pad_callback,
2980 NULL);
2981 if (thread_stuck != NULL)
2982 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2983 lwpid_of (thread_stuck));
2984 }
2985 }
2986
2987 /* Convenience function that is called when the kernel reports an
2988 event that is not passed out to GDB. */
2989
2990 static ptid_t
2991 ignore_event (struct target_waitstatus *ourstatus)
2992 {
2993 /* If we got an event, there may still be others, as a single
2994 SIGCHLD can indicate more than one child stopped. This forces
2995 another target_wait call. */
2996 async_file_mark ();
2997
2998 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2999 return null_ptid;
3000 }
3001
3002 /* Convenience function that is called when the kernel reports an exit
3003 event. This decides whether to report the event to GDB as a
3004 process exit event, a thread exit event, or to suppress the
3005 event. */
3006
3007 static ptid_t
3008 filter_exit_event (struct lwp_info *event_child,
3009 struct target_waitstatus *ourstatus)
3010 {
3011 struct thread_info *thread = get_lwp_thread (event_child);
3012 ptid_t ptid = ptid_of (thread);
3013
3014 if (!last_thread_of_process_p (pid_of (thread)))
3015 {
3016 if (report_thread_events)
3017 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3018 else
3019 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3020
3021 delete_lwp (event_child);
3022 }
3023 return ptid;
3024 }
3025
3026 /* Returns 1 if GDB is interested in any event_child syscalls. */
3027
3028 static int
3029 gdb_catching_syscalls_p (struct lwp_info *event_child)
3030 {
3031 struct thread_info *thread = get_lwp_thread (event_child);
3032 struct process_info *proc = get_thread_process (thread);
3033
3034 return !VEC_empty (int, proc->syscalls_to_catch);
3035 }
3036
3037 /* Returns 1 if GDB is interested in the event_child syscall.
3038 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3039
3040 static int
3041 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3042 {
3043 int i, iter;
3044 int sysno, sysret;
3045 struct thread_info *thread = get_lwp_thread (event_child);
3046 struct process_info *proc = get_thread_process (thread);
3047
3048 if (VEC_empty (int, proc->syscalls_to_catch))
3049 return 0;
3050
3051 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3052 return 1;
3053
3054 get_syscall_trapinfo (event_child, &sysno, &sysret);
3055 for (i = 0;
3056 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3057 i++)
3058 if (iter == sysno)
3059 return 1;
3060
3061 return 0;
3062 }
3063
3064 /* Wait for process, returns status. */
3065
3066 static ptid_t
3067 linux_wait_1 (ptid_t ptid,
3068 struct target_waitstatus *ourstatus, int target_options)
3069 {
3070 int w;
3071 struct lwp_info *event_child;
3072 int options;
3073 int pid;
3074 int step_over_finished;
3075 int bp_explains_trap;
3076 int maybe_internal_trap;
3077 int report_to_gdb;
3078 int trace_event;
3079 int in_step_range;
3080 int any_resumed;
3081
3082 if (debug_threads)
3083 {
3084 debug_enter ();
3085 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3086 }
3087
3088 /* Translate generic target options into linux options. */
3089 options = __WALL;
3090 if (target_options & TARGET_WNOHANG)
3091 options |= WNOHANG;
3092
3093 bp_explains_trap = 0;
3094 trace_event = 0;
3095 in_step_range = 0;
3096 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3097
3098 /* Find a resumed LWP, if any. */
3099 if (find_inferior (&all_threads,
3100 status_pending_p_callback,
3101 &minus_one_ptid) != NULL)
3102 any_resumed = 1;
3103 else if ((find_inferior (&all_threads,
3104 not_stopped_callback,
3105 &minus_one_ptid) != NULL))
3106 any_resumed = 1;
3107 else
3108 any_resumed = 0;
3109
3110 if (ptid_equal (step_over_bkpt, null_ptid))
3111 pid = linux_wait_for_event (ptid, &w, options);
3112 else
3113 {
3114 if (debug_threads)
3115 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3116 target_pid_to_str (step_over_bkpt));
3117 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3118 }
3119
3120 if (pid == 0 || (pid == -1 && !any_resumed))
3121 {
3122 gdb_assert (target_options & TARGET_WNOHANG);
3123
3124 if (debug_threads)
3125 {
3126 debug_printf ("linux_wait_1 ret = null_ptid, "
3127 "TARGET_WAITKIND_IGNORE\n");
3128 debug_exit ();
3129 }
3130
3131 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3132 return null_ptid;
3133 }
3134 else if (pid == -1)
3135 {
3136 if (debug_threads)
3137 {
3138 debug_printf ("linux_wait_1 ret = null_ptid, "
3139 "TARGET_WAITKIND_NO_RESUMED\n");
3140 debug_exit ();
3141 }
3142
3143 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3144 return null_ptid;
3145 }
3146
3147 event_child = get_thread_lwp (current_thread);
3148
3149 /* linux_wait_for_event only returns an exit status for the last
3150 child of a process. Report it. */
3151 if (WIFEXITED (w) || WIFSIGNALED (w))
3152 {
3153 if (WIFEXITED (w))
3154 {
3155 ourstatus->kind = TARGET_WAITKIND_EXITED;
3156 ourstatus->value.integer = WEXITSTATUS (w);
3157
3158 if (debug_threads)
3159 {
3160 debug_printf ("linux_wait_1 ret = %s, exited with "
3161 "retcode %d\n",
3162 target_pid_to_str (ptid_of (current_thread)),
3163 WEXITSTATUS (w));
3164 debug_exit ();
3165 }
3166 }
3167 else
3168 {
3169 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3170 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3171
3172 if (debug_threads)
3173 {
3174 debug_printf ("linux_wait_1 ret = %s, terminated with "
3175 "signal %d\n",
3176 target_pid_to_str (ptid_of (current_thread)),
3177 WTERMSIG (w));
3178 debug_exit ();
3179 }
3180 }
3181
3182 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3183 return filter_exit_event (event_child, ourstatus);
3184
3185 return ptid_of (current_thread);
3186 }
3187
3188 /* If step-over executes a breakpoint instruction, in the case of a
3189 hardware single step it means a gdb/gdbserver breakpoint had been
3190 planted on top of a permanent breakpoint, in the case of a software
3191 single step it may just mean that gdbserver hit the reinsert breakpoint.
3192 The PC has been adjusted by save_stop_reason to point at
3193 the breakpoint address.
3194 So in the case of the hardware single step advance the PC manually
3195 past the breakpoint and in the case of software single step advance only
3196 if it's not the reinsert_breakpoint we are hitting.
3197 This avoids that a program would keep trapping a permanent breakpoint
3198 forever. */
3199 if (!ptid_equal (step_over_bkpt, null_ptid)
3200 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3201 && (event_child->stepping
3202 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3203 {
3204 int increment_pc = 0;
3205 int breakpoint_kind = 0;
3206 CORE_ADDR stop_pc = event_child->stop_pc;
3207
3208 breakpoint_kind =
3209 the_target->breakpoint_kind_from_current_state (&stop_pc);
3210 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3211
3212 if (debug_threads)
3213 {
3214 debug_printf ("step-over for %s executed software breakpoint\n",
3215 target_pid_to_str (ptid_of (current_thread)));
3216 }
3217
3218 if (increment_pc != 0)
3219 {
3220 struct regcache *regcache
3221 = get_thread_regcache (current_thread, 1);
3222
3223 event_child->stop_pc += increment_pc;
3224 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3225
3226 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3227 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3228 }
3229 }
3230
3231 /* If this event was not handled before, and is not a SIGTRAP, we
3232 report it. SIGILL and SIGSEGV are also treated as traps in case
3233 a breakpoint is inserted at the current PC. If this target does
3234 not support internal breakpoints at all, we also report the
3235 SIGTRAP without further processing; it's of no concern to us. */
3236 maybe_internal_trap
3237 = (supports_breakpoints ()
3238 && (WSTOPSIG (w) == SIGTRAP
3239 || ((WSTOPSIG (w) == SIGILL
3240 || WSTOPSIG (w) == SIGSEGV)
3241 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3242
3243 if (maybe_internal_trap)
3244 {
3245 /* Handle anything that requires bookkeeping before deciding to
3246 report the event or continue waiting. */
3247
3248 /* First check if we can explain the SIGTRAP with an internal
3249 breakpoint, or if we should possibly report the event to GDB.
3250 Do this before anything that may remove or insert a
3251 breakpoint. */
3252 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3253
3254 /* We have a SIGTRAP, possibly a step-over dance has just
3255 finished. If so, tweak the state machine accordingly,
3256 reinsert breakpoints and delete any reinsert (software
3257 single-step) breakpoints. */
3258 step_over_finished = finish_step_over (event_child);
3259
3260 /* Now invoke the callbacks of any internal breakpoints there. */
3261 check_breakpoints (event_child->stop_pc);
3262
3263 /* Handle tracepoint data collecting. This may overflow the
3264 trace buffer, and cause a tracing stop, removing
3265 breakpoints. */
3266 trace_event = handle_tracepoints (event_child);
3267
3268 if (bp_explains_trap)
3269 {
3270 /* If we stepped or ran into an internal breakpoint, we've
3271 already handled it. So next time we resume (from this
3272 PC), we should step over it. */
3273 if (debug_threads)
3274 debug_printf ("Hit a gdbserver breakpoint.\n");
3275
3276 if (breakpoint_here (event_child->stop_pc))
3277 event_child->need_step_over = 1;
3278 }
3279 }
3280 else
3281 {
3282 /* We have some other signal, possibly a step-over dance was in
3283 progress, and it should be cancelled too. */
3284 step_over_finished = finish_step_over (event_child);
3285 }
3286
3287 /* We have all the data we need. Either report the event to GDB, or
3288 resume threads and keep waiting for more. */
3289
3290 /* If we're collecting a fast tracepoint, finish the collection and
3291 move out of the jump pad before delivering a signal. See
3292 linux_stabilize_threads. */
3293
3294 if (WIFSTOPPED (w)
3295 && WSTOPSIG (w) != SIGTRAP
3296 && supports_fast_tracepoints ()
3297 && agent_loaded_p ())
3298 {
3299 if (debug_threads)
3300 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3301 "to defer or adjust it.\n",
3302 WSTOPSIG (w), lwpid_of (current_thread));
3303
3304 /* Allow debugging the jump pad itself. */
3305 if (current_thread->last_resume_kind != resume_step
3306 && maybe_move_out_of_jump_pad (event_child, &w))
3307 {
3308 enqueue_one_deferred_signal (event_child, &w);
3309
3310 if (debug_threads)
3311 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3312 WSTOPSIG (w), lwpid_of (current_thread));
3313
3314 linux_resume_one_lwp (event_child, 0, 0, NULL);
3315
3316 return ignore_event (ourstatus);
3317 }
3318 }
3319
3320 if (event_child->collecting_fast_tracepoint)
3321 {
3322 if (debug_threads)
3323 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3324 "Check if we're already there.\n",
3325 lwpid_of (current_thread),
3326 event_child->collecting_fast_tracepoint);
3327
3328 trace_event = 1;
3329
3330 event_child->collecting_fast_tracepoint
3331 = linux_fast_tracepoint_collecting (event_child, NULL);
3332
3333 if (event_child->collecting_fast_tracepoint != 1)
3334 {
3335 /* No longer need this breakpoint. */
3336 if (event_child->exit_jump_pad_bkpt != NULL)
3337 {
3338 if (debug_threads)
3339 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3340 "stopping all threads momentarily.\n");
3341
3342 /* Other running threads could hit this breakpoint.
3343 We don't handle moribund locations like GDB does,
3344 instead we always pause all threads when removing
3345 breakpoints, so that any step-over or
3346 decr_pc_after_break adjustment is always taken
3347 care of while the breakpoint is still
3348 inserted. */
3349 stop_all_lwps (1, event_child);
3350
3351 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3352 event_child->exit_jump_pad_bkpt = NULL;
3353
3354 unstop_all_lwps (1, event_child);
3355
3356 gdb_assert (event_child->suspended >= 0);
3357 }
3358 }
3359
3360 if (event_child->collecting_fast_tracepoint == 0)
3361 {
3362 if (debug_threads)
3363 debug_printf ("fast tracepoint finished "
3364 "collecting successfully.\n");
3365
3366 /* We may have a deferred signal to report. */
3367 if (dequeue_one_deferred_signal (event_child, &w))
3368 {
3369 if (debug_threads)
3370 debug_printf ("dequeued one signal.\n");
3371 }
3372 else
3373 {
3374 if (debug_threads)
3375 debug_printf ("no deferred signals.\n");
3376
3377 if (stabilizing_threads)
3378 {
3379 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3380 ourstatus->value.sig = GDB_SIGNAL_0;
3381
3382 if (debug_threads)
3383 {
3384 debug_printf ("linux_wait_1 ret = %s, stopped "
3385 "while stabilizing threads\n",
3386 target_pid_to_str (ptid_of (current_thread)));
3387 debug_exit ();
3388 }
3389
3390 return ptid_of (current_thread);
3391 }
3392 }
3393 }
3394 }
3395
3396 /* Check whether GDB would be interested in this event. */
3397
3398 /* Check if GDB is interested in this syscall. */
3399 if (WIFSTOPPED (w)
3400 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3401 && !gdb_catch_this_syscall_p (event_child))
3402 {
3403 if (debug_threads)
3404 {
3405 debug_printf ("Ignored syscall for LWP %ld.\n",
3406 lwpid_of (current_thread));
3407 }
3408
3409 linux_resume_one_lwp (event_child, event_child->stepping,
3410 0, NULL);
3411 return ignore_event (ourstatus);
3412 }
3413
3414 /* If GDB is not interested in this signal, don't stop other
3415 threads, and don't report it to GDB. Just resume the inferior
3416 right away. We do this for threading-related signals as well as
3417 any that GDB specifically requested we ignore. But never ignore
3418 SIGSTOP if we sent it ourselves, and do not ignore signals when
3419 stepping - they may require special handling to skip the signal
3420 handler. Also never ignore signals that could be caused by a
3421 breakpoint. */
3422 if (WIFSTOPPED (w)
3423 && current_thread->last_resume_kind != resume_step
3424 && (
3425 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3426 (current_process ()->priv->thread_db != NULL
3427 && (WSTOPSIG (w) == __SIGRTMIN
3428 || WSTOPSIG (w) == __SIGRTMIN + 1))
3429 ||
3430 #endif
3431 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3432 && !(WSTOPSIG (w) == SIGSTOP
3433 && current_thread->last_resume_kind == resume_stop)
3434 && !linux_wstatus_maybe_breakpoint (w))))
3435 {
3436 siginfo_t info, *info_p;
3437
3438 if (debug_threads)
3439 debug_printf ("Ignored signal %d for LWP %ld.\n",
3440 WSTOPSIG (w), lwpid_of (current_thread));
3441
3442 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3443 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3444 info_p = &info;
3445 else
3446 info_p = NULL;
3447
3448 if (step_over_finished)
3449 {
3450 /* We cancelled this thread's step-over above. We still
3451 need to unsuspend all other LWPs, and set them back
3452 running again while the signal handler runs. */
3453 unsuspend_all_lwps (event_child);
3454
3455 /* Enqueue the pending signal info so that proceed_all_lwps
3456 doesn't lose it. */
3457 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3458
3459 proceed_all_lwps ();
3460 }
3461 else
3462 {
3463 linux_resume_one_lwp (event_child, event_child->stepping,
3464 WSTOPSIG (w), info_p);
3465 }
3466 return ignore_event (ourstatus);
3467 }
3468
3469 /* Note that all addresses are always "out of the step range" when
3470 there's no range to begin with. */
3471 in_step_range = lwp_in_step_range (event_child);
3472
3473 /* If GDB wanted this thread to single step, and the thread is out
3474 of the step range, we always want to report the SIGTRAP, and let
3475 GDB handle it. Watchpoints should always be reported. So should
3476 signals we can't explain. A SIGTRAP we can't explain could be a
3477 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3478 do, we're be able to handle GDB breakpoints on top of internal
3479 breakpoints, by handling the internal breakpoint and still
3480 reporting the event to GDB. If we don't, we're out of luck, GDB
3481 won't see the breakpoint hit. If we see a single-step event but
3482 the thread should be continuing, don't pass the trap to gdb.
3483 That indicates that we had previously finished a single-step but
3484 left the single-step pending -- see
3485 complete_ongoing_step_over. */
3486 report_to_gdb = (!maybe_internal_trap
3487 || (current_thread->last_resume_kind == resume_step
3488 && !in_step_range)
3489 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3490 || (!in_step_range
3491 && !bp_explains_trap
3492 && !trace_event
3493 && !step_over_finished
3494 && !(current_thread->last_resume_kind == resume_continue
3495 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3496 || (gdb_breakpoint_here (event_child->stop_pc)
3497 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3498 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3499 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3500
3501 run_breakpoint_commands (event_child->stop_pc);
3502
3503 /* We found no reason GDB would want us to stop. We either hit one
3504 of our own breakpoints, or finished an internal step GDB
3505 shouldn't know about. */
3506 if (!report_to_gdb)
3507 {
3508 if (debug_threads)
3509 {
3510 if (bp_explains_trap)
3511 debug_printf ("Hit a gdbserver breakpoint.\n");
3512 if (step_over_finished)
3513 debug_printf ("Step-over finished.\n");
3514 if (trace_event)
3515 debug_printf ("Tracepoint event.\n");
3516 if (lwp_in_step_range (event_child))
3517 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3518 paddress (event_child->stop_pc),
3519 paddress (event_child->step_range_start),
3520 paddress (event_child->step_range_end));
3521 }
3522
3523 /* We're not reporting this breakpoint to GDB, so apply the
3524 decr_pc_after_break adjustment to the inferior's regcache
3525 ourselves. */
3526
3527 if (the_low_target.set_pc != NULL)
3528 {
3529 struct regcache *regcache
3530 = get_thread_regcache (current_thread, 1);
3531 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3532 }
3533
3534 /* We may have finished stepping over a breakpoint. If so,
3535 we've stopped and suspended all LWPs momentarily except the
3536 stepping one. This is where we resume them all again. We're
3537 going to keep waiting, so use proceed, which handles stepping
3538 over the next breakpoint. */
3539 if (debug_threads)
3540 debug_printf ("proceeding all threads.\n");
3541
3542 if (step_over_finished)
3543 unsuspend_all_lwps (event_child);
3544
3545 proceed_all_lwps ();
3546 return ignore_event (ourstatus);
3547 }
3548
3549 if (debug_threads)
3550 {
3551 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3552 {
3553 char *str;
3554
3555 str = target_waitstatus_to_string (&event_child->waitstatus);
3556 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3557 lwpid_of (get_lwp_thread (event_child)), str);
3558 xfree (str);
3559 }
3560 if (current_thread->last_resume_kind == resume_step)
3561 {
3562 if (event_child->step_range_start == event_child->step_range_end)
3563 debug_printf ("GDB wanted to single-step, reporting event.\n");
3564 else if (!lwp_in_step_range (event_child))
3565 debug_printf ("Out of step range, reporting event.\n");
3566 }
3567 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3568 debug_printf ("Stopped by watchpoint.\n");
3569 else if (gdb_breakpoint_here (event_child->stop_pc))
3570 debug_printf ("Stopped by GDB breakpoint.\n");
3571 if (debug_threads)
3572 debug_printf ("Hit a non-gdbserver trap event.\n");
3573 }
3574
3575 /* Alright, we're going to report a stop. */
3576
3577 if (!stabilizing_threads)
3578 {
3579 /* In all-stop, stop all threads. */
3580 if (!non_stop)
3581 stop_all_lwps (0, NULL);
3582
3583 /* If we're not waiting for a specific LWP, choose an event LWP
3584 from among those that have had events. Giving equal priority
3585 to all LWPs that have had events helps prevent
3586 starvation. */
3587 if (ptid_equal (ptid, minus_one_ptid))
3588 {
3589 event_child->status_pending_p = 1;
3590 event_child->status_pending = w;
3591
3592 select_event_lwp (&event_child);
3593
3594 /* current_thread and event_child must stay in sync. */
3595 current_thread = get_lwp_thread (event_child);
3596
3597 event_child->status_pending_p = 0;
3598 w = event_child->status_pending;
3599 }
3600
3601 if (step_over_finished)
3602 {
3603 if (!non_stop)
3604 {
3605 /* If we were doing a step-over, all other threads but
3606 the stepping one had been paused in start_step_over,
3607 with their suspend counts incremented. We don't want
3608 to do a full unstop/unpause, because we're in
3609 all-stop mode (so we want threads stopped), but we
3610 still need to unsuspend the other threads, to
3611 decrement their `suspended' count back. */
3612 unsuspend_all_lwps (event_child);
3613 }
3614 else
3615 {
3616 /* If we just finished a step-over, then all threads had
3617 been momentarily paused. In all-stop, that's fine,
3618 we want threads stopped by now anyway. In non-stop,
3619 we need to re-resume threads that GDB wanted to be
3620 running. */
3621 unstop_all_lwps (1, event_child);
3622 }
3623 }
3624
3625 /* Stabilize threads (move out of jump pads). */
3626 if (!non_stop)
3627 stabilize_threads ();
3628 }
3629 else
3630 {
3631 /* If we just finished a step-over, then all threads had been
3632 momentarily paused. In all-stop, that's fine, we want
3633 threads stopped by now anyway. In non-stop, we need to
3634 re-resume threads that GDB wanted to be running. */
3635 if (step_over_finished)
3636 unstop_all_lwps (1, event_child);
3637 }
3638
3639 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3640 {
3641 /* If the reported event is an exit, fork, vfork or exec, let
3642 GDB know. */
3643 *ourstatus = event_child->waitstatus;
3644 /* Clear the event lwp's waitstatus since we handled it already. */
3645 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3646 }
3647 else
3648 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3649
3650 /* Now that we've selected our final event LWP, un-adjust its PC if
3651 it was a software breakpoint, and the client doesn't know we can
3652 adjust the breakpoint ourselves. */
3653 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3654 && !swbreak_feature)
3655 {
3656 int decr_pc = the_low_target.decr_pc_after_break;
3657
3658 if (decr_pc != 0)
3659 {
3660 struct regcache *regcache
3661 = get_thread_regcache (current_thread, 1);
3662 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3663 }
3664 }
3665
3666 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3667 {
3668 int sysret;
3669
3670 get_syscall_trapinfo (event_child,
3671 &ourstatus->value.syscall_number, &sysret);
3672 ourstatus->kind = event_child->syscall_state;
3673 }
3674 else if (current_thread->last_resume_kind == resume_stop
3675 && WSTOPSIG (w) == SIGSTOP)
3676 {
3677 /* A thread that has been requested to stop by GDB with vCont;t,
3678 and it stopped cleanly, so report as SIG0. The use of
3679 SIGSTOP is an implementation detail. */
3680 ourstatus->value.sig = GDB_SIGNAL_0;
3681 }
3682 else if (current_thread->last_resume_kind == resume_stop
3683 && WSTOPSIG (w) != SIGSTOP)
3684 {
3685 /* A thread that has been requested to stop by GDB with vCont;t,
3686 but, it stopped for other reasons. */
3687 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3688 }
3689 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3690 {
3691 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3692 }
3693
3694 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3695
3696 if (debug_threads)
3697 {
3698 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3699 target_pid_to_str (ptid_of (current_thread)),
3700 ourstatus->kind, ourstatus->value.sig);
3701 debug_exit ();
3702 }
3703
3704 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3705 return filter_exit_event (event_child, ourstatus);
3706
3707 return ptid_of (current_thread);
3708 }
3709
3710 /* Get rid of any pending event in the pipe. */
3711 static void
3712 async_file_flush (void)
3713 {
3714 int ret;
3715 char buf;
3716
3717 do
3718 ret = read (linux_event_pipe[0], &buf, 1);
3719 while (ret >= 0 || (ret == -1 && errno == EINTR));
3720 }
3721
3722 /* Put something in the pipe, so the event loop wakes up. */
3723 static void
3724 async_file_mark (void)
3725 {
3726 int ret;
3727
3728 async_file_flush ();
3729
3730 do
3731 ret = write (linux_event_pipe[1], "+", 1);
3732 while (ret == 0 || (ret == -1 && errno == EINTR));
3733
3734 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3735 be awakened anyway. */
3736 }
3737
3738 static ptid_t
3739 linux_wait (ptid_t ptid,
3740 struct target_waitstatus *ourstatus, int target_options)
3741 {
3742 ptid_t event_ptid;
3743
3744 /* Flush the async file first. */
3745 if (target_is_async_p ())
3746 async_file_flush ();
3747
3748 do
3749 {
3750 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3751 }
3752 while ((target_options & TARGET_WNOHANG) == 0
3753 && ptid_equal (event_ptid, null_ptid)
3754 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3755
3756 /* If at least one stop was reported, there may be more. A single
3757 SIGCHLD can signal more than one child stop. */
3758 if (target_is_async_p ()
3759 && (target_options & TARGET_WNOHANG) != 0
3760 && !ptid_equal (event_ptid, null_ptid))
3761 async_file_mark ();
3762
3763 return event_ptid;
3764 }
3765
3766 /* Send a signal to an LWP. */
3767
3768 static int
3769 kill_lwp (unsigned long lwpid, int signo)
3770 {
3771 int ret;
3772
3773 errno = 0;
3774 ret = syscall (__NR_tkill, lwpid, signo);
3775 if (errno == ENOSYS)
3776 {
3777 /* If tkill fails, then we are not using nptl threads, a
3778 configuration we no longer support. */
3779 perror_with_name (("tkill"));
3780 }
3781 return ret;
3782 }
3783
3784 void
3785 linux_stop_lwp (struct lwp_info *lwp)
3786 {
3787 send_sigstop (lwp);
3788 }
3789
3790 static void
3791 send_sigstop (struct lwp_info *lwp)
3792 {
3793 int pid;
3794
3795 pid = lwpid_of (get_lwp_thread (lwp));
3796
3797 /* If we already have a pending stop signal for this process, don't
3798 send another. */
3799 if (lwp->stop_expected)
3800 {
3801 if (debug_threads)
3802 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3803
3804 return;
3805 }
3806
3807 if (debug_threads)
3808 debug_printf ("Sending sigstop to lwp %d\n", pid);
3809
3810 lwp->stop_expected = 1;
3811 kill_lwp (pid, SIGSTOP);
3812 }
3813
3814 static int
3815 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3816 {
3817 struct thread_info *thread = (struct thread_info *) entry;
3818 struct lwp_info *lwp = get_thread_lwp (thread);
3819
3820 /* Ignore EXCEPT. */
3821 if (lwp == except)
3822 return 0;
3823
3824 if (lwp->stopped)
3825 return 0;
3826
3827 send_sigstop (lwp);
3828 return 0;
3829 }
3830
3831 /* Increment the suspend count of an LWP, and stop it, if not stopped
3832 yet. */
3833 static int
3834 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3835 void *except)
3836 {
3837 struct thread_info *thread = (struct thread_info *) entry;
3838 struct lwp_info *lwp = get_thread_lwp (thread);
3839
3840 /* Ignore EXCEPT. */
3841 if (lwp == except)
3842 return 0;
3843
3844 lwp_suspended_inc (lwp);
3845
3846 return send_sigstop_callback (entry, except);
3847 }
3848
3849 static void
3850 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3851 {
3852 /* Store the exit status for later. */
3853 lwp->status_pending_p = 1;
3854 lwp->status_pending = wstat;
3855
3856 /* Store in waitstatus as well, as there's nothing else to process
3857 for this event. */
3858 if (WIFEXITED (wstat))
3859 {
3860 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3861 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3862 }
3863 else if (WIFSIGNALED (wstat))
3864 {
3865 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3866 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3867 }
3868
3869 /* Prevent trying to stop it. */
3870 lwp->stopped = 1;
3871
3872 /* No further stops are expected from a dead lwp. */
3873 lwp->stop_expected = 0;
3874 }
3875
3876 /* Return true if LWP has exited already, and has a pending exit event
3877 to report to GDB. */
3878
3879 static int
3880 lwp_is_marked_dead (struct lwp_info *lwp)
3881 {
3882 return (lwp->status_pending_p
3883 && (WIFEXITED (lwp->status_pending)
3884 || WIFSIGNALED (lwp->status_pending)));
3885 }
3886
3887 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3888
3889 static void
3890 wait_for_sigstop (void)
3891 {
3892 struct thread_info *saved_thread;
3893 ptid_t saved_tid;
3894 int wstat;
3895 int ret;
3896
3897 saved_thread = current_thread;
3898 if (saved_thread != NULL)
3899 saved_tid = saved_thread->entry.id;
3900 else
3901 saved_tid = null_ptid; /* avoid bogus unused warning */
3902
3903 if (debug_threads)
3904 debug_printf ("wait_for_sigstop: pulling events\n");
3905
3906 /* Passing NULL_PTID as filter indicates we want all events to be
3907 left pending. Eventually this returns when there are no
3908 unwaited-for children left. */
3909 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3910 &wstat, __WALL);
3911 gdb_assert (ret == -1);
3912
3913 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3914 current_thread = saved_thread;
3915 else
3916 {
3917 if (debug_threads)
3918 debug_printf ("Previously current thread died.\n");
3919
3920 /* We can't change the current inferior behind GDB's back,
3921 otherwise, a subsequent command may apply to the wrong
3922 process. */
3923 current_thread = NULL;
3924 }
3925 }
3926
3927 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3928 move it out, because we need to report the stop event to GDB. For
3929 example, if the user puts a breakpoint in the jump pad, it's
3930 because she wants to debug it. */
3931
3932 static int
3933 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3934 {
3935 struct thread_info *thread = (struct thread_info *) entry;
3936 struct lwp_info *lwp = get_thread_lwp (thread);
3937
3938 if (lwp->suspended != 0)
3939 {
3940 internal_error (__FILE__, __LINE__,
3941 "LWP %ld is suspended, suspended=%d\n",
3942 lwpid_of (thread), lwp->suspended);
3943 }
3944 gdb_assert (lwp->stopped);
3945
3946 /* Allow debugging the jump pad, gdb_collect, etc.. */
3947 return (supports_fast_tracepoints ()
3948 && agent_loaded_p ()
3949 && (gdb_breakpoint_here (lwp->stop_pc)
3950 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3951 || thread->last_resume_kind == resume_step)
3952 && linux_fast_tracepoint_collecting (lwp, NULL));
3953 }
3954
3955 static void
3956 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3957 {
3958 struct thread_info *thread = (struct thread_info *) entry;
3959 struct thread_info *saved_thread;
3960 struct lwp_info *lwp = get_thread_lwp (thread);
3961 int *wstat;
3962
3963 if (lwp->suspended != 0)
3964 {
3965 internal_error (__FILE__, __LINE__,
3966 "LWP %ld is suspended, suspended=%d\n",
3967 lwpid_of (thread), lwp->suspended);
3968 }
3969 gdb_assert (lwp->stopped);
3970
3971 /* For gdb_breakpoint_here. */
3972 saved_thread = current_thread;
3973 current_thread = thread;
3974
3975 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3976
3977 /* Allow debugging the jump pad, gdb_collect, etc. */
3978 if (!gdb_breakpoint_here (lwp->stop_pc)
3979 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3980 && thread->last_resume_kind != resume_step
3981 && maybe_move_out_of_jump_pad (lwp, wstat))
3982 {
3983 if (debug_threads)
3984 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3985 lwpid_of (thread));
3986
3987 if (wstat)
3988 {
3989 lwp->status_pending_p = 0;
3990 enqueue_one_deferred_signal (lwp, wstat);
3991
3992 if (debug_threads)
3993 debug_printf ("Signal %d for LWP %ld deferred "
3994 "(in jump pad)\n",
3995 WSTOPSIG (*wstat), lwpid_of (thread));
3996 }
3997
3998 linux_resume_one_lwp (lwp, 0, 0, NULL);
3999 }
4000 else
4001 lwp_suspended_inc (lwp);
4002
4003 current_thread = saved_thread;
4004 }
4005
4006 static int
4007 lwp_running (struct inferior_list_entry *entry, void *data)
4008 {
4009 struct thread_info *thread = (struct thread_info *) entry;
4010 struct lwp_info *lwp = get_thread_lwp (thread);
4011
4012 if (lwp_is_marked_dead (lwp))
4013 return 0;
4014 if (lwp->stopped)
4015 return 0;
4016 return 1;
4017 }
4018
4019 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4020 If SUSPEND, then also increase the suspend count of every LWP,
4021 except EXCEPT. */
4022
4023 static void
4024 stop_all_lwps (int suspend, struct lwp_info *except)
4025 {
4026 /* Should not be called recursively. */
4027 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4028
4029 if (debug_threads)
4030 {
4031 debug_enter ();
4032 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4033 suspend ? "stop-and-suspend" : "stop",
4034 except != NULL
4035 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4036 : "none");
4037 }
4038
4039 stopping_threads = (suspend
4040 ? STOPPING_AND_SUSPENDING_THREADS
4041 : STOPPING_THREADS);
4042
4043 if (suspend)
4044 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4045 else
4046 find_inferior (&all_threads, send_sigstop_callback, except);
4047 wait_for_sigstop ();
4048 stopping_threads = NOT_STOPPING_THREADS;
4049
4050 if (debug_threads)
4051 {
4052 debug_printf ("stop_all_lwps done, setting stopping_threads "
4053 "back to !stopping\n");
4054 debug_exit ();
4055 }
4056 }
4057
4058 /* Enqueue one signal in the chain of signals which need to be
4059 delivered to this process on next resume. */
4060
4061 static void
4062 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4063 {
4064 struct pending_signals *p_sig = XNEW (struct pending_signals);
4065
4066 p_sig->prev = lwp->pending_signals;
4067 p_sig->signal = signal;
4068 if (info == NULL)
4069 memset (&p_sig->info, 0, sizeof (siginfo_t));
4070 else
4071 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4072 lwp->pending_signals = p_sig;
4073 }
4074
4075 /* Install breakpoints for software single stepping. */
4076
4077 static void
4078 install_software_single_step_breakpoints (struct lwp_info *lwp)
4079 {
4080 int i;
4081 CORE_ADDR pc;
4082 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4083 VEC (CORE_ADDR) *next_pcs = NULL;
4084 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
4085
4086 next_pcs = (*the_low_target.get_next_pcs) (regcache);
4087
4088 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); ++i)
4089 set_reinsert_breakpoint (pc);
4090
4091 do_cleanups (old_chain);
4092 }
4093
4094 /* Single step via hardware or software single step.
4095 Return 1 if hardware single stepping, 0 if software single stepping
4096 or can't single step. */
4097
4098 static int
4099 single_step (struct lwp_info* lwp)
4100 {
4101 int step = 0;
4102
4103 if (can_hardware_single_step ())
4104 {
4105 step = 1;
4106 }
4107 else if (can_software_single_step ())
4108 {
4109 install_software_single_step_breakpoints (lwp);
4110 step = 0;
4111 }
4112 else
4113 {
4114 if (debug_threads)
4115 debug_printf ("stepping is not implemented on this target");
4116 }
4117
4118 return step;
4119 }
4120
4121 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4122 SIGNAL is nonzero, give it that signal. */
4123
4124 static void
4125 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4126 int step, int signal, siginfo_t *info)
4127 {
4128 struct thread_info *thread = get_lwp_thread (lwp);
4129 struct thread_info *saved_thread;
4130 int fast_tp_collecting;
4131 int ptrace_request;
4132 struct process_info *proc = get_thread_process (thread);
4133
4134 /* Note that target description may not be initialised
4135 (proc->tdesc == NULL) at this point because the program hasn't
4136 stopped at the first instruction yet. It means GDBserver skips
4137 the extra traps from the wrapper program (see option --wrapper).
4138 Code in this function that requires register access should be
4139 guarded by proc->tdesc == NULL or something else. */
4140
4141 if (lwp->stopped == 0)
4142 return;
4143
4144 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4145
4146 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4147
4148 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4149
4150 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4151 user used the "jump" command, or "set $pc = foo"). */
4152 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4153 {
4154 /* Collecting 'while-stepping' actions doesn't make sense
4155 anymore. */
4156 release_while_stepping_state_list (thread);
4157 }
4158
4159 /* If we have pending signals or status, and a new signal, enqueue the
4160 signal. Also enqueue the signal if we are waiting to reinsert a
4161 breakpoint; it will be picked up again below. */
4162 if (signal != 0
4163 && (lwp->status_pending_p
4164 || lwp->pending_signals != NULL
4165 || lwp->bp_reinsert != 0
4166 || fast_tp_collecting))
4167 enqueue_pending_signal (lwp, signal, info);
4168
4169 if (lwp->status_pending_p)
4170 {
4171 if (debug_threads)
4172 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
4173 " has pending status\n",
4174 lwpid_of (thread), step ? "step" : "continue", signal,
4175 lwp->stop_expected ? "expected" : "not expected");
4176 return;
4177 }
4178
4179 saved_thread = current_thread;
4180 current_thread = thread;
4181
4182 if (debug_threads)
4183 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4184 lwpid_of (thread), step ? "step" : "continue", signal,
4185 lwp->stop_expected ? "expected" : "not expected");
4186
4187 /* This bit needs some thinking about. If we get a signal that
4188 we must report while a single-step reinsert is still pending,
4189 we often end up resuming the thread. It might be better to
4190 (ew) allow a stack of pending events; then we could be sure that
4191 the reinsert happened right away and not lose any signals.
4192
4193 Making this stack would also shrink the window in which breakpoints are
4194 uninserted (see comment in linux_wait_for_lwp) but not enough for
4195 complete correctness, so it won't solve that problem. It may be
4196 worthwhile just to solve this one, however. */
4197 if (lwp->bp_reinsert != 0)
4198 {
4199 if (debug_threads)
4200 debug_printf (" pending reinsert at 0x%s\n",
4201 paddress (lwp->bp_reinsert));
4202
4203 if (can_hardware_single_step ())
4204 {
4205 if (fast_tp_collecting == 0)
4206 {
4207 if (step == 0)
4208 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4209 if (lwp->suspended)
4210 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4211 lwp->suspended);
4212 }
4213
4214 step = 1;
4215 }
4216
4217 /* Postpone any pending signal. It was enqueued above. */
4218 signal = 0;
4219 }
4220
4221 if (fast_tp_collecting == 1)
4222 {
4223 if (debug_threads)
4224 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4225 " (exit-jump-pad-bkpt)\n",
4226 lwpid_of (thread));
4227
4228 /* Postpone any pending signal. It was enqueued above. */
4229 signal = 0;
4230 }
4231 else if (fast_tp_collecting == 2)
4232 {
4233 if (debug_threads)
4234 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4235 " single-stepping\n",
4236 lwpid_of (thread));
4237
4238 if (can_hardware_single_step ())
4239 step = 1;
4240 else
4241 {
4242 internal_error (__FILE__, __LINE__,
4243 "moving out of jump pad single-stepping"
4244 " not implemented on this target");
4245 }
4246
4247 /* Postpone any pending signal. It was enqueued above. */
4248 signal = 0;
4249 }
4250
4251 /* If we have while-stepping actions in this thread set it stepping.
4252 If we have a signal to deliver, it may or may not be set to
4253 SIG_IGN, we don't know. Assume so, and allow collecting
4254 while-stepping into a signal handler. A possible smart thing to
4255 do would be to set an internal breakpoint at the signal return
4256 address, continue, and carry on catching this while-stepping
4257 action only when that breakpoint is hit. A future
4258 enhancement. */
4259 if (thread->while_stepping != NULL)
4260 {
4261 if (debug_threads)
4262 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4263 lwpid_of (thread));
4264
4265 step = single_step (lwp);
4266 }
4267
4268 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4269 {
4270 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4271
4272 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4273
4274 if (debug_threads)
4275 {
4276 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4277 (long) lwp->stop_pc);
4278 }
4279 }
4280
4281 /* If we have pending signals, consume one unless we are trying to
4282 reinsert a breakpoint or we're trying to finish a fast tracepoint
4283 collect. */
4284 if (lwp->pending_signals != NULL
4285 && lwp->bp_reinsert == 0
4286 && fast_tp_collecting == 0)
4287 {
4288 struct pending_signals **p_sig;
4289
4290 p_sig = &lwp->pending_signals;
4291 while ((*p_sig)->prev != NULL)
4292 p_sig = &(*p_sig)->prev;
4293
4294 signal = (*p_sig)->signal;
4295 if ((*p_sig)->info.si_signo != 0)
4296 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4297 &(*p_sig)->info);
4298
4299 free (*p_sig);
4300 *p_sig = NULL;
4301 }
4302
4303 if (the_low_target.prepare_to_resume != NULL)
4304 the_low_target.prepare_to_resume (lwp);
4305
4306 regcache_invalidate_thread (thread);
4307 errno = 0;
4308 lwp->stepping = step;
4309 if (step)
4310 ptrace_request = PTRACE_SINGLESTEP;
4311 else if (gdb_catching_syscalls_p (lwp))
4312 ptrace_request = PTRACE_SYSCALL;
4313 else
4314 ptrace_request = PTRACE_CONT;
4315 ptrace (ptrace_request,
4316 lwpid_of (thread),
4317 (PTRACE_TYPE_ARG3) 0,
4318 /* Coerce to a uintptr_t first to avoid potential gcc warning
4319 of coercing an 8 byte integer to a 4 byte pointer. */
4320 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4321
4322 current_thread = saved_thread;
4323 if (errno)
4324 perror_with_name ("resuming thread");
4325
4326 /* Successfully resumed. Clear state that no longer makes sense,
4327 and mark the LWP as running. Must not do this before resuming
4328 otherwise if that fails other code will be confused. E.g., we'd
4329 later try to stop the LWP and hang forever waiting for a stop
4330 status. Note that we must not throw after this is cleared,
4331 otherwise handle_zombie_lwp_error would get confused. */
4332 lwp->stopped = 0;
4333 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4334 }
4335
4336 /* Called when we try to resume a stopped LWP and that errors out. If
4337 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4338 or about to become), discard the error, clear any pending status
4339 the LWP may have, and return true (we'll collect the exit status
4340 soon enough). Otherwise, return false. */
4341
4342 static int
4343 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4344 {
4345 struct thread_info *thread = get_lwp_thread (lp);
4346
4347 /* If we get an error after resuming the LWP successfully, we'd
4348 confuse !T state for the LWP being gone. */
4349 gdb_assert (lp->stopped);
4350
4351 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4352 because even if ptrace failed with ESRCH, the tracee may be "not
4353 yet fully dead", but already refusing ptrace requests. In that
4354 case the tracee has 'R (Running)' state for a little bit
4355 (observed in Linux 3.18). See also the note on ESRCH in the
4356 ptrace(2) man page. Instead, check whether the LWP has any state
4357 other than ptrace-stopped. */
4358
4359 /* Don't assume anything if /proc/PID/status can't be read. */
4360 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4361 {
4362 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4363 lp->status_pending_p = 0;
4364 return 1;
4365 }
4366 return 0;
4367 }
4368
4369 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4370 disappears while we try to resume it. */
4371
4372 static void
4373 linux_resume_one_lwp (struct lwp_info *lwp,
4374 int step, int signal, siginfo_t *info)
4375 {
4376 TRY
4377 {
4378 linux_resume_one_lwp_throw (lwp, step, signal, info);
4379 }
4380 CATCH (ex, RETURN_MASK_ERROR)
4381 {
4382 if (!check_ptrace_stopped_lwp_gone (lwp))
4383 throw_exception (ex);
4384 }
4385 END_CATCH
4386 }
4387
4388 struct thread_resume_array
4389 {
4390 struct thread_resume *resume;
4391 size_t n;
4392 };
4393
4394 /* This function is called once per thread via find_inferior.
4395 ARG is a pointer to a thread_resume_array struct.
4396 We look up the thread specified by ENTRY in ARG, and mark the thread
4397 with a pointer to the appropriate resume request.
4398
4399 This algorithm is O(threads * resume elements), but resume elements
4400 is small (and will remain small at least until GDB supports thread
4401 suspension). */
4402
4403 static int
4404 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4405 {
4406 struct thread_info *thread = (struct thread_info *) entry;
4407 struct lwp_info *lwp = get_thread_lwp (thread);
4408 int ndx;
4409 struct thread_resume_array *r;
4410
4411 r = (struct thread_resume_array *) arg;
4412
4413 for (ndx = 0; ndx < r->n; ndx++)
4414 {
4415 ptid_t ptid = r->resume[ndx].thread;
4416 if (ptid_equal (ptid, minus_one_ptid)
4417 || ptid_equal (ptid, entry->id)
4418 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4419 of PID'. */
4420 || (ptid_get_pid (ptid) == pid_of (thread)
4421 && (ptid_is_pid (ptid)
4422 || ptid_get_lwp (ptid) == -1)))
4423 {
4424 if (r->resume[ndx].kind == resume_stop
4425 && thread->last_resume_kind == resume_stop)
4426 {
4427 if (debug_threads)
4428 debug_printf ("already %s LWP %ld at GDB's request\n",
4429 (thread->last_status.kind
4430 == TARGET_WAITKIND_STOPPED)
4431 ? "stopped"
4432 : "stopping",
4433 lwpid_of (thread));
4434
4435 continue;
4436 }
4437
4438 lwp->resume = &r->resume[ndx];
4439 thread->last_resume_kind = lwp->resume->kind;
4440
4441 lwp->step_range_start = lwp->resume->step_range_start;
4442 lwp->step_range_end = lwp->resume->step_range_end;
4443
4444 /* If we had a deferred signal to report, dequeue one now.
4445 This can happen if LWP gets more than one signal while
4446 trying to get out of a jump pad. */
4447 if (lwp->stopped
4448 && !lwp->status_pending_p
4449 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4450 {
4451 lwp->status_pending_p = 1;
4452
4453 if (debug_threads)
4454 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4455 "leaving status pending.\n",
4456 WSTOPSIG (lwp->status_pending),
4457 lwpid_of (thread));
4458 }
4459
4460 return 0;
4461 }
4462 }
4463
4464 /* No resume action for this thread. */
4465 lwp->resume = NULL;
4466
4467 return 0;
4468 }
4469
4470 /* find_inferior callback for linux_resume.
4471 Set *FLAG_P if this lwp has an interesting status pending. */
4472
4473 static int
4474 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4475 {
4476 struct thread_info *thread = (struct thread_info *) entry;
4477 struct lwp_info *lwp = get_thread_lwp (thread);
4478
4479 /* LWPs which will not be resumed are not interesting, because
4480 we might not wait for them next time through linux_wait. */
4481 if (lwp->resume == NULL)
4482 return 0;
4483
4484 if (thread_still_has_status_pending_p (thread))
4485 * (int *) flag_p = 1;
4486
4487 return 0;
4488 }
4489
4490 /* Return 1 if this lwp that GDB wants running is stopped at an
4491 internal breakpoint that we need to step over. It assumes that any
4492 required STOP_PC adjustment has already been propagated to the
4493 inferior's regcache. */
4494
4495 static int
4496 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4497 {
4498 struct thread_info *thread = (struct thread_info *) entry;
4499 struct lwp_info *lwp = get_thread_lwp (thread);
4500 struct thread_info *saved_thread;
4501 CORE_ADDR pc;
4502 struct process_info *proc = get_thread_process (thread);
4503
4504 /* GDBserver is skipping the extra traps from the wrapper program,
4505 don't have to do step over. */
4506 if (proc->tdesc == NULL)
4507 return 0;
4508
4509 /* LWPs which will not be resumed are not interesting, because we
4510 might not wait for them next time through linux_wait. */
4511
4512 if (!lwp->stopped)
4513 {
4514 if (debug_threads)
4515 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4516 lwpid_of (thread));
4517 return 0;
4518 }
4519
4520 if (thread->last_resume_kind == resume_stop)
4521 {
4522 if (debug_threads)
4523 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4524 " stopped\n",
4525 lwpid_of (thread));
4526 return 0;
4527 }
4528
4529 gdb_assert (lwp->suspended >= 0);
4530
4531 if (lwp->suspended)
4532 {
4533 if (debug_threads)
4534 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4535 lwpid_of (thread));
4536 return 0;
4537 }
4538
4539 if (!lwp->need_step_over)
4540 {
4541 if (debug_threads)
4542 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4543 }
4544
4545 if (lwp->status_pending_p)
4546 {
4547 if (debug_threads)
4548 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4549 " status.\n",
4550 lwpid_of (thread));
4551 return 0;
4552 }
4553
4554 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4555 or we have. */
4556 pc = get_pc (lwp);
4557
4558 /* If the PC has changed since we stopped, then don't do anything,
4559 and let the breakpoint/tracepoint be hit. This happens if, for
4560 instance, GDB handled the decr_pc_after_break subtraction itself,
4561 GDB is OOL stepping this thread, or the user has issued a "jump"
4562 command, or poked thread's registers herself. */
4563 if (pc != lwp->stop_pc)
4564 {
4565 if (debug_threads)
4566 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4567 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4568 lwpid_of (thread),
4569 paddress (lwp->stop_pc), paddress (pc));
4570
4571 lwp->need_step_over = 0;
4572 return 0;
4573 }
4574
4575 saved_thread = current_thread;
4576 current_thread = thread;
4577
4578 /* We can only step over breakpoints we know about. */
4579 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4580 {
4581 /* Don't step over a breakpoint that GDB expects to hit
4582 though. If the condition is being evaluated on the target's side
4583 and it evaluate to false, step over this breakpoint as well. */
4584 if (gdb_breakpoint_here (pc)
4585 && gdb_condition_true_at_breakpoint (pc)
4586 && gdb_no_commands_at_breakpoint (pc))
4587 {
4588 if (debug_threads)
4589 debug_printf ("Need step over [LWP %ld]? yes, but found"
4590 " GDB breakpoint at 0x%s; skipping step over\n",
4591 lwpid_of (thread), paddress (pc));
4592
4593 current_thread = saved_thread;
4594 return 0;
4595 }
4596 else
4597 {
4598 if (debug_threads)
4599 debug_printf ("Need step over [LWP %ld]? yes, "
4600 "found breakpoint at 0x%s\n",
4601 lwpid_of (thread), paddress (pc));
4602
4603 /* We've found an lwp that needs stepping over --- return 1 so
4604 that find_inferior stops looking. */
4605 current_thread = saved_thread;
4606
4607 /* If the step over is cancelled, this is set again. */
4608 lwp->need_step_over = 0;
4609 return 1;
4610 }
4611 }
4612
4613 current_thread = saved_thread;
4614
4615 if (debug_threads)
4616 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4617 " at 0x%s\n",
4618 lwpid_of (thread), paddress (pc));
4619
4620 return 0;
4621 }
4622
4623 /* Start a step-over operation on LWP. When LWP stopped at a
4624 breakpoint, to make progress, we need to remove the breakpoint out
4625 of the way. If we let other threads run while we do that, they may
4626 pass by the breakpoint location and miss hitting it. To avoid
4627 that, a step-over momentarily stops all threads while LWP is
4628 single-stepped by either hardware or software while the breakpoint
4629 is temporarily uninserted from the inferior. When the single-step
4630 finishes, we reinsert the breakpoint, and let all threads that are
4631 supposed to be running, run again. */
4632
4633 static int
4634 start_step_over (struct lwp_info *lwp)
4635 {
4636 struct thread_info *thread = get_lwp_thread (lwp);
4637 struct thread_info *saved_thread;
4638 CORE_ADDR pc;
4639 int step;
4640
4641 if (debug_threads)
4642 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4643 lwpid_of (thread));
4644
4645 stop_all_lwps (1, lwp);
4646
4647 if (lwp->suspended != 0)
4648 {
4649 internal_error (__FILE__, __LINE__,
4650 "LWP %ld suspended=%d\n", lwpid_of (thread),
4651 lwp->suspended);
4652 }
4653
4654 if (debug_threads)
4655 debug_printf ("Done stopping all threads for step-over.\n");
4656
4657 /* Note, we should always reach here with an already adjusted PC,
4658 either by GDB (if we're resuming due to GDB's request), or by our
4659 caller, if we just finished handling an internal breakpoint GDB
4660 shouldn't care about. */
4661 pc = get_pc (lwp);
4662
4663 saved_thread = current_thread;
4664 current_thread = thread;
4665
4666 lwp->bp_reinsert = pc;
4667 uninsert_breakpoints_at (pc);
4668 uninsert_fast_tracepoint_jumps_at (pc);
4669
4670 step = single_step (lwp);
4671
4672 current_thread = saved_thread;
4673
4674 linux_resume_one_lwp (lwp, step, 0, NULL);
4675
4676 /* Require next event from this LWP. */
4677 step_over_bkpt = thread->entry.id;
4678 return 1;
4679 }
4680
4681 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4682 start_step_over, if still there, and delete any reinsert
4683 breakpoints we've set, on non hardware single-step targets. */
4684
4685 static int
4686 finish_step_over (struct lwp_info *lwp)
4687 {
4688 if (lwp->bp_reinsert != 0)
4689 {
4690 if (debug_threads)
4691 debug_printf ("Finished step over.\n");
4692
4693 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4694 may be no breakpoint to reinsert there by now. */
4695 reinsert_breakpoints_at (lwp->bp_reinsert);
4696 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4697
4698 lwp->bp_reinsert = 0;
4699
4700 /* Delete any software-single-step reinsert breakpoints. No
4701 longer needed. We don't have to worry about other threads
4702 hitting this trap, and later not being able to explain it,
4703 because we were stepping over a breakpoint, and we hold all
4704 threads but LWP stopped while doing that. */
4705 if (!can_hardware_single_step ())
4706 delete_reinsert_breakpoints ();
4707
4708 step_over_bkpt = null_ptid;
4709 return 1;
4710 }
4711 else
4712 return 0;
4713 }
4714
4715 /* If there's a step over in progress, wait until all threads stop
4716 (that is, until the stepping thread finishes its step), and
4717 unsuspend all lwps. The stepping thread ends with its status
4718 pending, which is processed later when we get back to processing
4719 events. */
4720
4721 static void
4722 complete_ongoing_step_over (void)
4723 {
4724 if (!ptid_equal (step_over_bkpt, null_ptid))
4725 {
4726 struct lwp_info *lwp;
4727 int wstat;
4728 int ret;
4729
4730 if (debug_threads)
4731 debug_printf ("detach: step over in progress, finish it first\n");
4732
4733 /* Passing NULL_PTID as filter indicates we want all events to
4734 be left pending. Eventually this returns when there are no
4735 unwaited-for children left. */
4736 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4737 &wstat, __WALL);
4738 gdb_assert (ret == -1);
4739
4740 lwp = find_lwp_pid (step_over_bkpt);
4741 if (lwp != NULL)
4742 finish_step_over (lwp);
4743 step_over_bkpt = null_ptid;
4744 unsuspend_all_lwps (lwp);
4745 }
4746 }
4747
4748 /* This function is called once per thread. We check the thread's resume
4749 request, which will tell us whether to resume, step, or leave the thread
4750 stopped; and what signal, if any, it should be sent.
4751
4752 For threads which we aren't explicitly told otherwise, we preserve
4753 the stepping flag; this is used for stepping over gdbserver-placed
4754 breakpoints.
4755
4756 If pending_flags was set in any thread, we queue any needed
4757 signals, since we won't actually resume. We already have a pending
4758 event to report, so we don't need to preserve any step requests;
4759 they should be re-issued if necessary. */
4760
4761 static int
4762 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4763 {
4764 struct thread_info *thread = (struct thread_info *) entry;
4765 struct lwp_info *lwp = get_thread_lwp (thread);
4766 int step;
4767 int leave_all_stopped = * (int *) arg;
4768 int leave_pending;
4769
4770 if (lwp->resume == NULL)
4771 return 0;
4772
4773 if (lwp->resume->kind == resume_stop)
4774 {
4775 if (debug_threads)
4776 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4777
4778 if (!lwp->stopped)
4779 {
4780 if (debug_threads)
4781 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4782
4783 /* Stop the thread, and wait for the event asynchronously,
4784 through the event loop. */
4785 send_sigstop (lwp);
4786 }
4787 else
4788 {
4789 if (debug_threads)
4790 debug_printf ("already stopped LWP %ld\n",
4791 lwpid_of (thread));
4792
4793 /* The LWP may have been stopped in an internal event that
4794 was not meant to be notified back to GDB (e.g., gdbserver
4795 breakpoint), so we should be reporting a stop event in
4796 this case too. */
4797
4798 /* If the thread already has a pending SIGSTOP, this is a
4799 no-op. Otherwise, something later will presumably resume
4800 the thread and this will cause it to cancel any pending
4801 operation, due to last_resume_kind == resume_stop. If
4802 the thread already has a pending status to report, we
4803 will still report it the next time we wait - see
4804 status_pending_p_callback. */
4805
4806 /* If we already have a pending signal to report, then
4807 there's no need to queue a SIGSTOP, as this means we're
4808 midway through moving the LWP out of the jumppad, and we
4809 will report the pending signal as soon as that is
4810 finished. */
4811 if (lwp->pending_signals_to_report == NULL)
4812 send_sigstop (lwp);
4813 }
4814
4815 /* For stop requests, we're done. */
4816 lwp->resume = NULL;
4817 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4818 return 0;
4819 }
4820
4821 /* If this thread which is about to be resumed has a pending status,
4822 then don't resume it - we can just report the pending status.
4823 Likewise if it is suspended, because e.g., another thread is
4824 stepping past a breakpoint. Make sure to queue any signals that
4825 would otherwise be sent. In all-stop mode, we do this decision
4826 based on if *any* thread has a pending status. If there's a
4827 thread that needs the step-over-breakpoint dance, then don't
4828 resume any other thread but that particular one. */
4829 leave_pending = (lwp->suspended
4830 || lwp->status_pending_p
4831 || leave_all_stopped);
4832
4833 if (!leave_pending)
4834 {
4835 if (debug_threads)
4836 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4837
4838 step = (lwp->resume->kind == resume_step);
4839 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4840 }
4841 else
4842 {
4843 if (debug_threads)
4844 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4845
4846 /* If we have a new signal, enqueue the signal. */
4847 if (lwp->resume->sig != 0)
4848 {
4849 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4850
4851 p_sig->prev = lwp->pending_signals;
4852 p_sig->signal = lwp->resume->sig;
4853
4854 /* If this is the same signal we were previously stopped by,
4855 make sure to queue its siginfo. We can ignore the return
4856 value of ptrace; if it fails, we'll skip
4857 PTRACE_SETSIGINFO. */
4858 if (WIFSTOPPED (lwp->last_status)
4859 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4860 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4861 &p_sig->info);
4862
4863 lwp->pending_signals = p_sig;
4864 }
4865 }
4866
4867 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4868 lwp->resume = NULL;
4869 return 0;
4870 }
4871
4872 static void
4873 linux_resume (struct thread_resume *resume_info, size_t n)
4874 {
4875 struct thread_resume_array array = { resume_info, n };
4876 struct thread_info *need_step_over = NULL;
4877 int any_pending;
4878 int leave_all_stopped;
4879
4880 if (debug_threads)
4881 {
4882 debug_enter ();
4883 debug_printf ("linux_resume:\n");
4884 }
4885
4886 find_inferior (&all_threads, linux_set_resume_request, &array);
4887
4888 /* If there is a thread which would otherwise be resumed, which has
4889 a pending status, then don't resume any threads - we can just
4890 report the pending status. Make sure to queue any signals that
4891 would otherwise be sent. In non-stop mode, we'll apply this
4892 logic to each thread individually. We consume all pending events
4893 before considering to start a step-over (in all-stop). */
4894 any_pending = 0;
4895 if (!non_stop)
4896 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4897
4898 /* If there is a thread which would otherwise be resumed, which is
4899 stopped at a breakpoint that needs stepping over, then don't
4900 resume any threads - have it step over the breakpoint with all
4901 other threads stopped, then resume all threads again. Make sure
4902 to queue any signals that would otherwise be delivered or
4903 queued. */
4904 if (!any_pending && supports_breakpoints ())
4905 need_step_over
4906 = (struct thread_info *) find_inferior (&all_threads,
4907 need_step_over_p, NULL);
4908
4909 leave_all_stopped = (need_step_over != NULL || any_pending);
4910
4911 if (debug_threads)
4912 {
4913 if (need_step_over != NULL)
4914 debug_printf ("Not resuming all, need step over\n");
4915 else if (any_pending)
4916 debug_printf ("Not resuming, all-stop and found "
4917 "an LWP with pending status\n");
4918 else
4919 debug_printf ("Resuming, no pending status or step over needed\n");
4920 }
4921
4922 /* Even if we're leaving threads stopped, queue all signals we'd
4923 otherwise deliver. */
4924 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4925
4926 if (need_step_over)
4927 start_step_over (get_thread_lwp (need_step_over));
4928
4929 if (debug_threads)
4930 {
4931 debug_printf ("linux_resume done\n");
4932 debug_exit ();
4933 }
4934
4935 /* We may have events that were pending that can/should be sent to
4936 the client now. Trigger a linux_wait call. */
4937 if (target_is_async_p ())
4938 async_file_mark ();
4939 }
4940
4941 /* This function is called once per thread. We check the thread's
4942 last resume request, which will tell us whether to resume, step, or
4943 leave the thread stopped. Any signal the client requested to be
4944 delivered has already been enqueued at this point.
4945
4946 If any thread that GDB wants running is stopped at an internal
4947 breakpoint that needs stepping over, we start a step-over operation
4948 on that particular thread, and leave all others stopped. */
4949
4950 static int
4951 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4952 {
4953 struct thread_info *thread = (struct thread_info *) entry;
4954 struct lwp_info *lwp = get_thread_lwp (thread);
4955 int step;
4956
4957 if (lwp == except)
4958 return 0;
4959
4960 if (debug_threads)
4961 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4962
4963 if (!lwp->stopped)
4964 {
4965 if (debug_threads)
4966 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4967 return 0;
4968 }
4969
4970 if (thread->last_resume_kind == resume_stop
4971 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4972 {
4973 if (debug_threads)
4974 debug_printf (" client wants LWP to remain %ld stopped\n",
4975 lwpid_of (thread));
4976 return 0;
4977 }
4978
4979 if (lwp->status_pending_p)
4980 {
4981 if (debug_threads)
4982 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4983 lwpid_of (thread));
4984 return 0;
4985 }
4986
4987 gdb_assert (lwp->suspended >= 0);
4988
4989 if (lwp->suspended)
4990 {
4991 if (debug_threads)
4992 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4993 return 0;
4994 }
4995
4996 if (thread->last_resume_kind == resume_stop
4997 && lwp->pending_signals_to_report == NULL
4998 && lwp->collecting_fast_tracepoint == 0)
4999 {
5000 /* We haven't reported this LWP as stopped yet (otherwise, the
5001 last_status.kind check above would catch it, and we wouldn't
5002 reach here. This LWP may have been momentarily paused by a
5003 stop_all_lwps call while handling for example, another LWP's
5004 step-over. In that case, the pending expected SIGSTOP signal
5005 that was queued at vCont;t handling time will have already
5006 been consumed by wait_for_sigstop, and so we need to requeue
5007 another one here. Note that if the LWP already has a SIGSTOP
5008 pending, this is a no-op. */
5009
5010 if (debug_threads)
5011 debug_printf ("Client wants LWP %ld to stop. "
5012 "Making sure it has a SIGSTOP pending\n",
5013 lwpid_of (thread));
5014
5015 send_sigstop (lwp);
5016 }
5017
5018 if (thread->last_resume_kind == resume_step)
5019 {
5020 if (debug_threads)
5021 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5022 lwpid_of (thread));
5023 step = 1;
5024 }
5025 else if (lwp->bp_reinsert != 0)
5026 {
5027 if (debug_threads)
5028 debug_printf (" stepping LWP %ld, reinsert set\n",
5029 lwpid_of (thread));
5030 step = 1;
5031 }
5032 else
5033 step = 0;
5034
5035 linux_resume_one_lwp (lwp, step, 0, NULL);
5036 return 0;
5037 }
5038
5039 static int
5040 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5041 {
5042 struct thread_info *thread = (struct thread_info *) entry;
5043 struct lwp_info *lwp = get_thread_lwp (thread);
5044
5045 if (lwp == except)
5046 return 0;
5047
5048 lwp_suspended_decr (lwp);
5049
5050 return proceed_one_lwp (entry, except);
5051 }
5052
5053 /* When we finish a step-over, set threads running again. If there's
5054 another thread that may need a step-over, now's the time to start
5055 it. Eventually, we'll move all threads past their breakpoints. */
5056
5057 static void
5058 proceed_all_lwps (void)
5059 {
5060 struct thread_info *need_step_over;
5061
5062 /* If there is a thread which would otherwise be resumed, which is
5063 stopped at a breakpoint that needs stepping over, then don't
5064 resume any threads - have it step over the breakpoint with all
5065 other threads stopped, then resume all threads again. */
5066
5067 if (supports_breakpoints ())
5068 {
5069 need_step_over
5070 = (struct thread_info *) find_inferior (&all_threads,
5071 need_step_over_p, NULL);
5072
5073 if (need_step_over != NULL)
5074 {
5075 if (debug_threads)
5076 debug_printf ("proceed_all_lwps: found "
5077 "thread %ld needing a step-over\n",
5078 lwpid_of (need_step_over));
5079
5080 start_step_over (get_thread_lwp (need_step_over));
5081 return;
5082 }
5083 }
5084
5085 if (debug_threads)
5086 debug_printf ("Proceeding, no step-over needed\n");
5087
5088 find_inferior (&all_threads, proceed_one_lwp, NULL);
5089 }
5090
5091 /* Stopped LWPs that the client wanted to be running, that don't have
5092 pending statuses, are set to run again, except for EXCEPT, if not
5093 NULL. This undoes a stop_all_lwps call. */
5094
5095 static void
5096 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5097 {
5098 if (debug_threads)
5099 {
5100 debug_enter ();
5101 if (except)
5102 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5103 lwpid_of (get_lwp_thread (except)));
5104 else
5105 debug_printf ("unstopping all lwps\n");
5106 }
5107
5108 if (unsuspend)
5109 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5110 else
5111 find_inferior (&all_threads, proceed_one_lwp, except);
5112
5113 if (debug_threads)
5114 {
5115 debug_printf ("unstop_all_lwps done\n");
5116 debug_exit ();
5117 }
5118 }
5119
5120
5121 #ifdef HAVE_LINUX_REGSETS
5122
5123 #define use_linux_regsets 1
5124
5125 /* Returns true if REGSET has been disabled. */
5126
5127 static int
5128 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5129 {
5130 return (info->disabled_regsets != NULL
5131 && info->disabled_regsets[regset - info->regsets]);
5132 }
5133
5134 /* Disable REGSET. */
5135
5136 static void
5137 disable_regset (struct regsets_info *info, struct regset_info *regset)
5138 {
5139 int dr_offset;
5140
5141 dr_offset = regset - info->regsets;
5142 if (info->disabled_regsets == NULL)
5143 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5144 info->disabled_regsets[dr_offset] = 1;
5145 }
5146
5147 static int
5148 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5149 struct regcache *regcache)
5150 {
5151 struct regset_info *regset;
5152 int saw_general_regs = 0;
5153 int pid;
5154 struct iovec iov;
5155
5156 pid = lwpid_of (current_thread);
5157 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5158 {
5159 void *buf, *data;
5160 int nt_type, res;
5161
5162 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5163 continue;
5164
5165 buf = xmalloc (regset->size);
5166
5167 nt_type = regset->nt_type;
5168 if (nt_type)
5169 {
5170 iov.iov_base = buf;
5171 iov.iov_len = regset->size;
5172 data = (void *) &iov;
5173 }
5174 else
5175 data = buf;
5176
5177 #ifndef __sparc__
5178 res = ptrace (regset->get_request, pid,
5179 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5180 #else
5181 res = ptrace (regset->get_request, pid, data, nt_type);
5182 #endif
5183 if (res < 0)
5184 {
5185 if (errno == EIO)
5186 {
5187 /* If we get EIO on a regset, do not try it again for
5188 this process mode. */
5189 disable_regset (regsets_info, regset);
5190 }
5191 else if (errno == ENODATA)
5192 {
5193 /* ENODATA may be returned if the regset is currently
5194 not "active". This can happen in normal operation,
5195 so suppress the warning in this case. */
5196 }
5197 else
5198 {
5199 char s[256];
5200 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5201 pid);
5202 perror (s);
5203 }
5204 }
5205 else
5206 {
5207 if (regset->type == GENERAL_REGS)
5208 saw_general_regs = 1;
5209 regset->store_function (regcache, buf);
5210 }
5211 free (buf);
5212 }
5213 if (saw_general_regs)
5214 return 0;
5215 else
5216 return 1;
5217 }
5218
5219 static int
5220 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5221 struct regcache *regcache)
5222 {
5223 struct regset_info *regset;
5224 int saw_general_regs = 0;
5225 int pid;
5226 struct iovec iov;
5227
5228 pid = lwpid_of (current_thread);
5229 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5230 {
5231 void *buf, *data;
5232 int nt_type, res;
5233
5234 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5235 || regset->fill_function == NULL)
5236 continue;
5237
5238 buf = xmalloc (regset->size);
5239
5240 /* First fill the buffer with the current register set contents,
5241 in case there are any items in the kernel's regset that are
5242 not in gdbserver's regcache. */
5243
5244 nt_type = regset->nt_type;
5245 if (nt_type)
5246 {
5247 iov.iov_base = buf;
5248 iov.iov_len = regset->size;
5249 data = (void *) &iov;
5250 }
5251 else
5252 data = buf;
5253
5254 #ifndef __sparc__
5255 res = ptrace (regset->get_request, pid,
5256 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5257 #else
5258 res = ptrace (regset->get_request, pid, data, nt_type);
5259 #endif
5260
5261 if (res == 0)
5262 {
5263 /* Then overlay our cached registers on that. */
5264 regset->fill_function (regcache, buf);
5265
5266 /* Only now do we write the register set. */
5267 #ifndef __sparc__
5268 res = ptrace (regset->set_request, pid,
5269 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5270 #else
5271 res = ptrace (regset->set_request, pid, data, nt_type);
5272 #endif
5273 }
5274
5275 if (res < 0)
5276 {
5277 if (errno == EIO)
5278 {
5279 /* If we get EIO on a regset, do not try it again for
5280 this process mode. */
5281 disable_regset (regsets_info, regset);
5282 }
5283 else if (errno == ESRCH)
5284 {
5285 /* At this point, ESRCH should mean the process is
5286 already gone, in which case we simply ignore attempts
5287 to change its registers. See also the related
5288 comment in linux_resume_one_lwp. */
5289 free (buf);
5290 return 0;
5291 }
5292 else
5293 {
5294 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5295 }
5296 }
5297 else if (regset->type == GENERAL_REGS)
5298 saw_general_regs = 1;
5299 free (buf);
5300 }
5301 if (saw_general_regs)
5302 return 0;
5303 else
5304 return 1;
5305 }
5306
5307 #else /* !HAVE_LINUX_REGSETS */
5308
5309 #define use_linux_regsets 0
5310 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5311 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5312
5313 #endif
5314
5315 /* Return 1 if register REGNO is supported by one of the regset ptrace
5316 calls or 0 if it has to be transferred individually. */
5317
5318 static int
5319 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5320 {
5321 unsigned char mask = 1 << (regno % 8);
5322 size_t index = regno / 8;
5323
5324 return (use_linux_regsets
5325 && (regs_info->regset_bitmap == NULL
5326 || (regs_info->regset_bitmap[index] & mask) != 0));
5327 }
5328
5329 #ifdef HAVE_LINUX_USRREGS
5330
5331 static int
5332 register_addr (const struct usrregs_info *usrregs, int regnum)
5333 {
5334 int addr;
5335
5336 if (regnum < 0 || regnum >= usrregs->num_regs)
5337 error ("Invalid register number %d.", regnum);
5338
5339 addr = usrregs->regmap[regnum];
5340
5341 return addr;
5342 }
5343
5344 /* Fetch one register. */
5345 static void
5346 fetch_register (const struct usrregs_info *usrregs,
5347 struct regcache *regcache, int regno)
5348 {
5349 CORE_ADDR regaddr;
5350 int i, size;
5351 char *buf;
5352 int pid;
5353
5354 if (regno >= usrregs->num_regs)
5355 return;
5356 if ((*the_low_target.cannot_fetch_register) (regno))
5357 return;
5358
5359 regaddr = register_addr (usrregs, regno);
5360 if (regaddr == -1)
5361 return;
5362
5363 size = ((register_size (regcache->tdesc, regno)
5364 + sizeof (PTRACE_XFER_TYPE) - 1)
5365 & -sizeof (PTRACE_XFER_TYPE));
5366 buf = (char *) alloca (size);
5367
5368 pid = lwpid_of (current_thread);
5369 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5370 {
5371 errno = 0;
5372 *(PTRACE_XFER_TYPE *) (buf + i) =
5373 ptrace (PTRACE_PEEKUSER, pid,
5374 /* Coerce to a uintptr_t first to avoid potential gcc warning
5375 of coercing an 8 byte integer to a 4 byte pointer. */
5376 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5377 regaddr += sizeof (PTRACE_XFER_TYPE);
5378 if (errno != 0)
5379 error ("reading register %d: %s", regno, strerror (errno));
5380 }
5381
5382 if (the_low_target.supply_ptrace_register)
5383 the_low_target.supply_ptrace_register (regcache, regno, buf);
5384 else
5385 supply_register (regcache, regno, buf);
5386 }
5387
5388 /* Store one register. */
5389 static void
5390 store_register (const struct usrregs_info *usrregs,
5391 struct regcache *regcache, int regno)
5392 {
5393 CORE_ADDR regaddr;
5394 int i, size;
5395 char *buf;
5396 int pid;
5397
5398 if (regno >= usrregs->num_regs)
5399 return;
5400 if ((*the_low_target.cannot_store_register) (regno))
5401 return;
5402
5403 regaddr = register_addr (usrregs, regno);
5404 if (regaddr == -1)
5405 return;
5406
5407 size = ((register_size (regcache->tdesc, regno)
5408 + sizeof (PTRACE_XFER_TYPE) - 1)
5409 & -sizeof (PTRACE_XFER_TYPE));
5410 buf = (char *) alloca (size);
5411 memset (buf, 0, size);
5412
5413 if (the_low_target.collect_ptrace_register)
5414 the_low_target.collect_ptrace_register (regcache, regno, buf);
5415 else
5416 collect_register (regcache, regno, buf);
5417
5418 pid = lwpid_of (current_thread);
5419 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5420 {
5421 errno = 0;
5422 ptrace (PTRACE_POKEUSER, pid,
5423 /* Coerce to a uintptr_t first to avoid potential gcc warning
5424 about coercing an 8 byte integer to a 4 byte pointer. */
5425 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5426 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5427 if (errno != 0)
5428 {
5429 /* At this point, ESRCH should mean the process is
5430 already gone, in which case we simply ignore attempts
5431 to change its registers. See also the related
5432 comment in linux_resume_one_lwp. */
5433 if (errno == ESRCH)
5434 return;
5435
5436 if ((*the_low_target.cannot_store_register) (regno) == 0)
5437 error ("writing register %d: %s", regno, strerror (errno));
5438 }
5439 regaddr += sizeof (PTRACE_XFER_TYPE);
5440 }
5441 }
5442
5443 /* Fetch all registers, or just one, from the child process.
5444 If REGNO is -1, do this for all registers, skipping any that are
5445 assumed to have been retrieved by regsets_fetch_inferior_registers,
5446 unless ALL is non-zero.
5447 Otherwise, REGNO specifies which register (so we can save time). */
5448 static void
5449 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5450 struct regcache *regcache, int regno, int all)
5451 {
5452 struct usrregs_info *usr = regs_info->usrregs;
5453
5454 if (regno == -1)
5455 {
5456 for (regno = 0; regno < usr->num_regs; regno++)
5457 if (all || !linux_register_in_regsets (regs_info, regno))
5458 fetch_register (usr, regcache, regno);
5459 }
5460 else
5461 fetch_register (usr, regcache, regno);
5462 }
5463
5464 /* Store our register values back into the inferior.
5465 If REGNO is -1, do this for all registers, skipping any that are
5466 assumed to have been saved by regsets_store_inferior_registers,
5467 unless ALL is non-zero.
5468 Otherwise, REGNO specifies which register (so we can save time). */
5469 static void
5470 usr_store_inferior_registers (const struct regs_info *regs_info,
5471 struct regcache *regcache, int regno, int all)
5472 {
5473 struct usrregs_info *usr = regs_info->usrregs;
5474
5475 if (regno == -1)
5476 {
5477 for (regno = 0; regno < usr->num_regs; regno++)
5478 if (all || !linux_register_in_regsets (regs_info, regno))
5479 store_register (usr, regcache, regno);
5480 }
5481 else
5482 store_register (usr, regcache, regno);
5483 }
5484
5485 #else /* !HAVE_LINUX_USRREGS */
5486
5487 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5488 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5489
5490 #endif
5491
5492
5493 static void
5494 linux_fetch_registers (struct regcache *regcache, int regno)
5495 {
5496 int use_regsets;
5497 int all = 0;
5498 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5499
5500 if (regno == -1)
5501 {
5502 if (the_low_target.fetch_register != NULL
5503 && regs_info->usrregs != NULL)
5504 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5505 (*the_low_target.fetch_register) (regcache, regno);
5506
5507 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5508 if (regs_info->usrregs != NULL)
5509 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5510 }
5511 else
5512 {
5513 if (the_low_target.fetch_register != NULL
5514 && (*the_low_target.fetch_register) (regcache, regno))
5515 return;
5516
5517 use_regsets = linux_register_in_regsets (regs_info, regno);
5518 if (use_regsets)
5519 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5520 regcache);
5521 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5522 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5523 }
5524 }
5525
5526 static void
5527 linux_store_registers (struct regcache *regcache, int regno)
5528 {
5529 int use_regsets;
5530 int all = 0;
5531 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5532
5533 if (regno == -1)
5534 {
5535 all = regsets_store_inferior_registers (regs_info->regsets_info,
5536 regcache);
5537 if (regs_info->usrregs != NULL)
5538 usr_store_inferior_registers (regs_info, regcache, regno, all);
5539 }
5540 else
5541 {
5542 use_regsets = linux_register_in_regsets (regs_info, regno);
5543 if (use_regsets)
5544 all = regsets_store_inferior_registers (regs_info->regsets_info,
5545 regcache);
5546 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5547 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5548 }
5549 }
5550
5551
5552 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5553 to debugger memory starting at MYADDR. */
5554
5555 static int
5556 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5557 {
5558 int pid = lwpid_of (current_thread);
5559 register PTRACE_XFER_TYPE *buffer;
5560 register CORE_ADDR addr;
5561 register int count;
5562 char filename[64];
5563 register int i;
5564 int ret;
5565 int fd;
5566
5567 /* Try using /proc. Don't bother for one word. */
5568 if (len >= 3 * sizeof (long))
5569 {
5570 int bytes;
5571
5572 /* We could keep this file open and cache it - possibly one per
5573 thread. That requires some juggling, but is even faster. */
5574 sprintf (filename, "/proc/%d/mem", pid);
5575 fd = open (filename, O_RDONLY | O_LARGEFILE);
5576 if (fd == -1)
5577 goto no_proc;
5578
5579 /* If pread64 is available, use it. It's faster if the kernel
5580 supports it (only one syscall), and it's 64-bit safe even on
5581 32-bit platforms (for instance, SPARC debugging a SPARC64
5582 application). */
5583 #ifdef HAVE_PREAD64
5584 bytes = pread64 (fd, myaddr, len, memaddr);
5585 #else
5586 bytes = -1;
5587 if (lseek (fd, memaddr, SEEK_SET) != -1)
5588 bytes = read (fd, myaddr, len);
5589 #endif
5590
5591 close (fd);
5592 if (bytes == len)
5593 return 0;
5594
5595 /* Some data was read, we'll try to get the rest with ptrace. */
5596 if (bytes > 0)
5597 {
5598 memaddr += bytes;
5599 myaddr += bytes;
5600 len -= bytes;
5601 }
5602 }
5603
5604 no_proc:
5605 /* Round starting address down to longword boundary. */
5606 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5607 /* Round ending address up; get number of longwords that makes. */
5608 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5609 / sizeof (PTRACE_XFER_TYPE));
5610 /* Allocate buffer of that many longwords. */
5611 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5612
5613 /* Read all the longwords */
5614 errno = 0;
5615 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5616 {
5617 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5618 about coercing an 8 byte integer to a 4 byte pointer. */
5619 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5620 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5621 (PTRACE_TYPE_ARG4) 0);
5622 if (errno)
5623 break;
5624 }
5625 ret = errno;
5626
5627 /* Copy appropriate bytes out of the buffer. */
5628 if (i > 0)
5629 {
5630 i *= sizeof (PTRACE_XFER_TYPE);
5631 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5632 memcpy (myaddr,
5633 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5634 i < len ? i : len);
5635 }
5636
5637 return ret;
5638 }
5639
5640 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5641 memory at MEMADDR. On failure (cannot write to the inferior)
5642 returns the value of errno. Always succeeds if LEN is zero. */
5643
5644 static int
5645 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5646 {
5647 register int i;
5648 /* Round starting address down to longword boundary. */
5649 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5650 /* Round ending address up; get number of longwords that makes. */
5651 register int count
5652 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5653 / sizeof (PTRACE_XFER_TYPE);
5654
5655 /* Allocate buffer of that many longwords. */
5656 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5657
5658 int pid = lwpid_of (current_thread);
5659
5660 if (len == 0)
5661 {
5662 /* Zero length write always succeeds. */
5663 return 0;
5664 }
5665
5666 if (debug_threads)
5667 {
5668 /* Dump up to four bytes. */
5669 char str[4 * 2 + 1];
5670 char *p = str;
5671 int dump = len < 4 ? len : 4;
5672
5673 for (i = 0; i < dump; i++)
5674 {
5675 sprintf (p, "%02x", myaddr[i]);
5676 p += 2;
5677 }
5678 *p = '\0';
5679
5680 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5681 str, (long) memaddr, pid);
5682 }
5683
5684 /* Fill start and end extra bytes of buffer with existing memory data. */
5685
5686 errno = 0;
5687 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5688 about coercing an 8 byte integer to a 4 byte pointer. */
5689 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5690 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5691 (PTRACE_TYPE_ARG4) 0);
5692 if (errno)
5693 return errno;
5694
5695 if (count > 1)
5696 {
5697 errno = 0;
5698 buffer[count - 1]
5699 = ptrace (PTRACE_PEEKTEXT, pid,
5700 /* Coerce to a uintptr_t first to avoid potential gcc warning
5701 about coercing an 8 byte integer to a 4 byte pointer. */
5702 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5703 * sizeof (PTRACE_XFER_TYPE)),
5704 (PTRACE_TYPE_ARG4) 0);
5705 if (errno)
5706 return errno;
5707 }
5708
5709 /* Copy data to be written over corresponding part of buffer. */
5710
5711 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5712 myaddr, len);
5713
5714 /* Write the entire buffer. */
5715
5716 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5717 {
5718 errno = 0;
5719 ptrace (PTRACE_POKETEXT, pid,
5720 /* Coerce to a uintptr_t first to avoid potential gcc warning
5721 about coercing an 8 byte integer to a 4 byte pointer. */
5722 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5723 (PTRACE_TYPE_ARG4) buffer[i]);
5724 if (errno)
5725 return errno;
5726 }
5727
5728 return 0;
5729 }
5730
5731 static void
5732 linux_look_up_symbols (void)
5733 {
5734 #ifdef USE_THREAD_DB
5735 struct process_info *proc = current_process ();
5736
5737 if (proc->priv->thread_db != NULL)
5738 return;
5739
5740 thread_db_init ();
5741 #endif
5742 }
5743
5744 static void
5745 linux_request_interrupt (void)
5746 {
5747 extern unsigned long signal_pid;
5748
5749 /* Send a SIGINT to the process group. This acts just like the user
5750 typed a ^C on the controlling terminal. */
5751 kill (-signal_pid, SIGINT);
5752 }
5753
5754 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5755 to debugger memory starting at MYADDR. */
5756
5757 static int
5758 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5759 {
5760 char filename[PATH_MAX];
5761 int fd, n;
5762 int pid = lwpid_of (current_thread);
5763
5764 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5765
5766 fd = open (filename, O_RDONLY);
5767 if (fd < 0)
5768 return -1;
5769
5770 if (offset != (CORE_ADDR) 0
5771 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5772 n = -1;
5773 else
5774 n = read (fd, myaddr, len);
5775
5776 close (fd);
5777
5778 return n;
5779 }
5780
5781 /* These breakpoint and watchpoint related wrapper functions simply
5782 pass on the function call if the target has registered a
5783 corresponding function. */
5784
5785 static int
5786 linux_supports_z_point_type (char z_type)
5787 {
5788 return (the_low_target.supports_z_point_type != NULL
5789 && the_low_target.supports_z_point_type (z_type));
5790 }
5791
5792 static int
5793 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5794 int size, struct raw_breakpoint *bp)
5795 {
5796 if (type == raw_bkpt_type_sw)
5797 return insert_memory_breakpoint (bp);
5798 else if (the_low_target.insert_point != NULL)
5799 return the_low_target.insert_point (type, addr, size, bp);
5800 else
5801 /* Unsupported (see target.h). */
5802 return 1;
5803 }
5804
5805 static int
5806 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5807 int size, struct raw_breakpoint *bp)
5808 {
5809 if (type == raw_bkpt_type_sw)
5810 return remove_memory_breakpoint (bp);
5811 else if (the_low_target.remove_point != NULL)
5812 return the_low_target.remove_point (type, addr, size, bp);
5813 else
5814 /* Unsupported (see target.h). */
5815 return 1;
5816 }
5817
5818 /* Implement the to_stopped_by_sw_breakpoint target_ops
5819 method. */
5820
5821 static int
5822 linux_stopped_by_sw_breakpoint (void)
5823 {
5824 struct lwp_info *lwp = get_thread_lwp (current_thread);
5825
5826 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5827 }
5828
5829 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5830 method. */
5831
5832 static int
5833 linux_supports_stopped_by_sw_breakpoint (void)
5834 {
5835 return USE_SIGTRAP_SIGINFO;
5836 }
5837
5838 /* Implement the to_stopped_by_hw_breakpoint target_ops
5839 method. */
5840
5841 static int
5842 linux_stopped_by_hw_breakpoint (void)
5843 {
5844 struct lwp_info *lwp = get_thread_lwp (current_thread);
5845
5846 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5847 }
5848
5849 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5850 method. */
5851
5852 static int
5853 linux_supports_stopped_by_hw_breakpoint (void)
5854 {
5855 return USE_SIGTRAP_SIGINFO;
5856 }
5857
5858 /* Implement the supports_hardware_single_step target_ops method. */
5859
5860 static int
5861 linux_supports_hardware_single_step (void)
5862 {
5863 return can_hardware_single_step ();
5864 }
5865
5866 static int
5867 linux_supports_software_single_step (void)
5868 {
5869 return can_software_single_step ();
5870 }
5871
5872 static int
5873 linux_stopped_by_watchpoint (void)
5874 {
5875 struct lwp_info *lwp = get_thread_lwp (current_thread);
5876
5877 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5878 }
5879
5880 static CORE_ADDR
5881 linux_stopped_data_address (void)
5882 {
5883 struct lwp_info *lwp = get_thread_lwp (current_thread);
5884
5885 return lwp->stopped_data_address;
5886 }
5887
5888 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5889 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5890 && defined(PT_TEXT_END_ADDR)
5891
5892 /* This is only used for targets that define PT_TEXT_ADDR,
5893 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5894 the target has different ways of acquiring this information, like
5895 loadmaps. */
5896
5897 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5898 to tell gdb about. */
5899
5900 static int
5901 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5902 {
5903 unsigned long text, text_end, data;
5904 int pid = lwpid_of (current_thread);
5905
5906 errno = 0;
5907
5908 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5909 (PTRACE_TYPE_ARG4) 0);
5910 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5911 (PTRACE_TYPE_ARG4) 0);
5912 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5913 (PTRACE_TYPE_ARG4) 0);
5914
5915 if (errno == 0)
5916 {
5917 /* Both text and data offsets produced at compile-time (and so
5918 used by gdb) are relative to the beginning of the program,
5919 with the data segment immediately following the text segment.
5920 However, the actual runtime layout in memory may put the data
5921 somewhere else, so when we send gdb a data base-address, we
5922 use the real data base address and subtract the compile-time
5923 data base-address from it (which is just the length of the
5924 text segment). BSS immediately follows data in both
5925 cases. */
5926 *text_p = text;
5927 *data_p = data - (text_end - text);
5928
5929 return 1;
5930 }
5931 return 0;
5932 }
5933 #endif
5934
5935 static int
5936 linux_qxfer_osdata (const char *annex,
5937 unsigned char *readbuf, unsigned const char *writebuf,
5938 CORE_ADDR offset, int len)
5939 {
5940 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5941 }
5942
5943 /* Convert a native/host siginfo object, into/from the siginfo in the
5944 layout of the inferiors' architecture. */
5945
5946 static void
5947 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
5948 {
5949 int done = 0;
5950
5951 if (the_low_target.siginfo_fixup != NULL)
5952 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5953
5954 /* If there was no callback, or the callback didn't do anything,
5955 then just do a straight memcpy. */
5956 if (!done)
5957 {
5958 if (direction == 1)
5959 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5960 else
5961 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5962 }
5963 }
5964
5965 static int
5966 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5967 unsigned const char *writebuf, CORE_ADDR offset, int len)
5968 {
5969 int pid;
5970 siginfo_t siginfo;
5971 gdb_byte inf_siginfo[sizeof (siginfo_t)];
5972
5973 if (current_thread == NULL)
5974 return -1;
5975
5976 pid = lwpid_of (current_thread);
5977
5978 if (debug_threads)
5979 debug_printf ("%s siginfo for lwp %d.\n",
5980 readbuf != NULL ? "Reading" : "Writing",
5981 pid);
5982
5983 if (offset >= sizeof (siginfo))
5984 return -1;
5985
5986 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5987 return -1;
5988
5989 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5990 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5991 inferior with a 64-bit GDBSERVER should look the same as debugging it
5992 with a 32-bit GDBSERVER, we need to convert it. */
5993 siginfo_fixup (&siginfo, inf_siginfo, 0);
5994
5995 if (offset + len > sizeof (siginfo))
5996 len = sizeof (siginfo) - offset;
5997
5998 if (readbuf != NULL)
5999 memcpy (readbuf, inf_siginfo + offset, len);
6000 else
6001 {
6002 memcpy (inf_siginfo + offset, writebuf, len);
6003
6004 /* Convert back to ptrace layout before flushing it out. */
6005 siginfo_fixup (&siginfo, inf_siginfo, 1);
6006
6007 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6008 return -1;
6009 }
6010
6011 return len;
6012 }
6013
6014 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6015 so we notice when children change state; as the handler for the
6016 sigsuspend in my_waitpid. */
6017
6018 static void
6019 sigchld_handler (int signo)
6020 {
6021 int old_errno = errno;
6022
6023 if (debug_threads)
6024 {
6025 do
6026 {
6027 /* fprintf is not async-signal-safe, so call write
6028 directly. */
6029 if (write (2, "sigchld_handler\n",
6030 sizeof ("sigchld_handler\n") - 1) < 0)
6031 break; /* just ignore */
6032 } while (0);
6033 }
6034
6035 if (target_is_async_p ())
6036 async_file_mark (); /* trigger a linux_wait */
6037
6038 errno = old_errno;
6039 }
6040
6041 static int
6042 linux_supports_non_stop (void)
6043 {
6044 return 1;
6045 }
6046
6047 static int
6048 linux_async (int enable)
6049 {
6050 int previous = target_is_async_p ();
6051
6052 if (debug_threads)
6053 debug_printf ("linux_async (%d), previous=%d\n",
6054 enable, previous);
6055
6056 if (previous != enable)
6057 {
6058 sigset_t mask;
6059 sigemptyset (&mask);
6060 sigaddset (&mask, SIGCHLD);
6061
6062 sigprocmask (SIG_BLOCK, &mask, NULL);
6063
6064 if (enable)
6065 {
6066 if (pipe (linux_event_pipe) == -1)
6067 {
6068 linux_event_pipe[0] = -1;
6069 linux_event_pipe[1] = -1;
6070 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6071
6072 warning ("creating event pipe failed.");
6073 return previous;
6074 }
6075
6076 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6077 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6078
6079 /* Register the event loop handler. */
6080 add_file_handler (linux_event_pipe[0],
6081 handle_target_event, NULL);
6082
6083 /* Always trigger a linux_wait. */
6084 async_file_mark ();
6085 }
6086 else
6087 {
6088 delete_file_handler (linux_event_pipe[0]);
6089
6090 close (linux_event_pipe[0]);
6091 close (linux_event_pipe[1]);
6092 linux_event_pipe[0] = -1;
6093 linux_event_pipe[1] = -1;
6094 }
6095
6096 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6097 }
6098
6099 return previous;
6100 }
6101
6102 static int
6103 linux_start_non_stop (int nonstop)
6104 {
6105 /* Register or unregister from event-loop accordingly. */
6106 linux_async (nonstop);
6107
6108 if (target_is_async_p () != (nonstop != 0))
6109 return -1;
6110
6111 return 0;
6112 }
6113
6114 static int
6115 linux_supports_multi_process (void)
6116 {
6117 return 1;
6118 }
6119
6120 /* Check if fork events are supported. */
6121
6122 static int
6123 linux_supports_fork_events (void)
6124 {
6125 return linux_supports_tracefork ();
6126 }
6127
6128 /* Check if vfork events are supported. */
6129
6130 static int
6131 linux_supports_vfork_events (void)
6132 {
6133 return linux_supports_tracefork ();
6134 }
6135
6136 /* Check if exec events are supported. */
6137
6138 static int
6139 linux_supports_exec_events (void)
6140 {
6141 return linux_supports_traceexec ();
6142 }
6143
6144 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6145 options for the specified lwp. */
6146
6147 static int
6148 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6149 void *args)
6150 {
6151 struct thread_info *thread = (struct thread_info *) entry;
6152 struct lwp_info *lwp = get_thread_lwp (thread);
6153
6154 if (!lwp->stopped)
6155 {
6156 /* Stop the lwp so we can modify its ptrace options. */
6157 lwp->must_set_ptrace_flags = 1;
6158 linux_stop_lwp (lwp);
6159 }
6160 else
6161 {
6162 /* Already stopped; go ahead and set the ptrace options. */
6163 struct process_info *proc = find_process_pid (pid_of (thread));
6164 int options = linux_low_ptrace_options (proc->attached);
6165
6166 linux_enable_event_reporting (lwpid_of (thread), options);
6167 lwp->must_set_ptrace_flags = 0;
6168 }
6169
6170 return 0;
6171 }
6172
6173 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6174 ptrace flags for all inferiors. This is in case the new GDB connection
6175 doesn't support the same set of events that the previous one did. */
6176
6177 static void
6178 linux_handle_new_gdb_connection (void)
6179 {
6180 pid_t pid;
6181
6182 /* Request that all the lwps reset their ptrace options. */
6183 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6184 }
6185
6186 static int
6187 linux_supports_disable_randomization (void)
6188 {
6189 #ifdef HAVE_PERSONALITY
6190 return 1;
6191 #else
6192 return 0;
6193 #endif
6194 }
6195
6196 static int
6197 linux_supports_agent (void)
6198 {
6199 return 1;
6200 }
6201
6202 static int
6203 linux_supports_range_stepping (void)
6204 {
6205 if (*the_low_target.supports_range_stepping == NULL)
6206 return 0;
6207
6208 return (*the_low_target.supports_range_stepping) ();
6209 }
6210
6211 /* Enumerate spufs IDs for process PID. */
6212 static int
6213 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6214 {
6215 int pos = 0;
6216 int written = 0;
6217 char path[128];
6218 DIR *dir;
6219 struct dirent *entry;
6220
6221 sprintf (path, "/proc/%ld/fd", pid);
6222 dir = opendir (path);
6223 if (!dir)
6224 return -1;
6225
6226 rewinddir (dir);
6227 while ((entry = readdir (dir)) != NULL)
6228 {
6229 struct stat st;
6230 struct statfs stfs;
6231 int fd;
6232
6233 fd = atoi (entry->d_name);
6234 if (!fd)
6235 continue;
6236
6237 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6238 if (stat (path, &st) != 0)
6239 continue;
6240 if (!S_ISDIR (st.st_mode))
6241 continue;
6242
6243 if (statfs (path, &stfs) != 0)
6244 continue;
6245 if (stfs.f_type != SPUFS_MAGIC)
6246 continue;
6247
6248 if (pos >= offset && pos + 4 <= offset + len)
6249 {
6250 *(unsigned int *)(buf + pos - offset) = fd;
6251 written += 4;
6252 }
6253 pos += 4;
6254 }
6255
6256 closedir (dir);
6257 return written;
6258 }
6259
6260 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6261 object type, using the /proc file system. */
6262 static int
6263 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6264 unsigned const char *writebuf,
6265 CORE_ADDR offset, int len)
6266 {
6267 long pid = lwpid_of (current_thread);
6268 char buf[128];
6269 int fd = 0;
6270 int ret = 0;
6271
6272 if (!writebuf && !readbuf)
6273 return -1;
6274
6275 if (!*annex)
6276 {
6277 if (!readbuf)
6278 return -1;
6279 else
6280 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6281 }
6282
6283 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6284 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6285 if (fd <= 0)
6286 return -1;
6287
6288 if (offset != 0
6289 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6290 {
6291 close (fd);
6292 return 0;
6293 }
6294
6295 if (writebuf)
6296 ret = write (fd, writebuf, (size_t) len);
6297 else
6298 ret = read (fd, readbuf, (size_t) len);
6299
6300 close (fd);
6301 return ret;
6302 }
6303
6304 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6305 struct target_loadseg
6306 {
6307 /* Core address to which the segment is mapped. */
6308 Elf32_Addr addr;
6309 /* VMA recorded in the program header. */
6310 Elf32_Addr p_vaddr;
6311 /* Size of this segment in memory. */
6312 Elf32_Word p_memsz;
6313 };
6314
6315 # if defined PT_GETDSBT
6316 struct target_loadmap
6317 {
6318 /* Protocol version number, must be zero. */
6319 Elf32_Word version;
6320 /* Pointer to the DSBT table, its size, and the DSBT index. */
6321 unsigned *dsbt_table;
6322 unsigned dsbt_size, dsbt_index;
6323 /* Number of segments in this map. */
6324 Elf32_Word nsegs;
6325 /* The actual memory map. */
6326 struct target_loadseg segs[/*nsegs*/];
6327 };
6328 # define LINUX_LOADMAP PT_GETDSBT
6329 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6330 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6331 # else
6332 struct target_loadmap
6333 {
6334 /* Protocol version number, must be zero. */
6335 Elf32_Half version;
6336 /* Number of segments in this map. */
6337 Elf32_Half nsegs;
6338 /* The actual memory map. */
6339 struct target_loadseg segs[/*nsegs*/];
6340 };
6341 # define LINUX_LOADMAP PTRACE_GETFDPIC
6342 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6343 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6344 # endif
6345
6346 static int
6347 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6348 unsigned char *myaddr, unsigned int len)
6349 {
6350 int pid = lwpid_of (current_thread);
6351 int addr = -1;
6352 struct target_loadmap *data = NULL;
6353 unsigned int actual_length, copy_length;
6354
6355 if (strcmp (annex, "exec") == 0)
6356 addr = (int) LINUX_LOADMAP_EXEC;
6357 else if (strcmp (annex, "interp") == 0)
6358 addr = (int) LINUX_LOADMAP_INTERP;
6359 else
6360 return -1;
6361
6362 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6363 return -1;
6364
6365 if (data == NULL)
6366 return -1;
6367
6368 actual_length = sizeof (struct target_loadmap)
6369 + sizeof (struct target_loadseg) * data->nsegs;
6370
6371 if (offset < 0 || offset > actual_length)
6372 return -1;
6373
6374 copy_length = actual_length - offset < len ? actual_length - offset : len;
6375 memcpy (myaddr, (char *) data + offset, copy_length);
6376 return copy_length;
6377 }
6378 #else
6379 # define linux_read_loadmap NULL
6380 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6381
6382 static void
6383 linux_process_qsupported (char **features, int count)
6384 {
6385 if (the_low_target.process_qsupported != NULL)
6386 the_low_target.process_qsupported (features, count);
6387 }
6388
6389 static int
6390 linux_supports_catch_syscall (void)
6391 {
6392 return (the_low_target.get_syscall_trapinfo != NULL
6393 && linux_supports_tracesysgood ());
6394 }
6395
6396 static int
6397 linux_get_ipa_tdesc_idx (void)
6398 {
6399 if (the_low_target.get_ipa_tdesc_idx == NULL)
6400 return 0;
6401
6402 return (*the_low_target.get_ipa_tdesc_idx) ();
6403 }
6404
6405 static int
6406 linux_supports_tracepoints (void)
6407 {
6408 if (*the_low_target.supports_tracepoints == NULL)
6409 return 0;
6410
6411 return (*the_low_target.supports_tracepoints) ();
6412 }
6413
6414 static CORE_ADDR
6415 linux_read_pc (struct regcache *regcache)
6416 {
6417 if (the_low_target.get_pc == NULL)
6418 return 0;
6419
6420 return (*the_low_target.get_pc) (regcache);
6421 }
6422
6423 static void
6424 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6425 {
6426 gdb_assert (the_low_target.set_pc != NULL);
6427
6428 (*the_low_target.set_pc) (regcache, pc);
6429 }
6430
6431 static int
6432 linux_thread_stopped (struct thread_info *thread)
6433 {
6434 return get_thread_lwp (thread)->stopped;
6435 }
6436
6437 /* This exposes stop-all-threads functionality to other modules. */
6438
6439 static void
6440 linux_pause_all (int freeze)
6441 {
6442 stop_all_lwps (freeze, NULL);
6443 }
6444
6445 /* This exposes unstop-all-threads functionality to other gdbserver
6446 modules. */
6447
6448 static void
6449 linux_unpause_all (int unfreeze)
6450 {
6451 unstop_all_lwps (unfreeze, NULL);
6452 }
6453
6454 static int
6455 linux_prepare_to_access_memory (void)
6456 {
6457 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6458 running LWP. */
6459 if (non_stop)
6460 linux_pause_all (1);
6461 return 0;
6462 }
6463
6464 static void
6465 linux_done_accessing_memory (void)
6466 {
6467 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6468 running LWP. */
6469 if (non_stop)
6470 linux_unpause_all (1);
6471 }
6472
6473 static int
6474 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6475 CORE_ADDR collector,
6476 CORE_ADDR lockaddr,
6477 ULONGEST orig_size,
6478 CORE_ADDR *jump_entry,
6479 CORE_ADDR *trampoline,
6480 ULONGEST *trampoline_size,
6481 unsigned char *jjump_pad_insn,
6482 ULONGEST *jjump_pad_insn_size,
6483 CORE_ADDR *adjusted_insn_addr,
6484 CORE_ADDR *adjusted_insn_addr_end,
6485 char *err)
6486 {
6487 return (*the_low_target.install_fast_tracepoint_jump_pad)
6488 (tpoint, tpaddr, collector, lockaddr, orig_size,
6489 jump_entry, trampoline, trampoline_size,
6490 jjump_pad_insn, jjump_pad_insn_size,
6491 adjusted_insn_addr, adjusted_insn_addr_end,
6492 err);
6493 }
6494
6495 static struct emit_ops *
6496 linux_emit_ops (void)
6497 {
6498 if (the_low_target.emit_ops != NULL)
6499 return (*the_low_target.emit_ops) ();
6500 else
6501 return NULL;
6502 }
6503
6504 static int
6505 linux_get_min_fast_tracepoint_insn_len (void)
6506 {
6507 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6508 }
6509
6510 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6511
6512 static int
6513 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6514 CORE_ADDR *phdr_memaddr, int *num_phdr)
6515 {
6516 char filename[PATH_MAX];
6517 int fd;
6518 const int auxv_size = is_elf64
6519 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6520 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6521
6522 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6523
6524 fd = open (filename, O_RDONLY);
6525 if (fd < 0)
6526 return 1;
6527
6528 *phdr_memaddr = 0;
6529 *num_phdr = 0;
6530 while (read (fd, buf, auxv_size) == auxv_size
6531 && (*phdr_memaddr == 0 || *num_phdr == 0))
6532 {
6533 if (is_elf64)
6534 {
6535 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6536
6537 switch (aux->a_type)
6538 {
6539 case AT_PHDR:
6540 *phdr_memaddr = aux->a_un.a_val;
6541 break;
6542 case AT_PHNUM:
6543 *num_phdr = aux->a_un.a_val;
6544 break;
6545 }
6546 }
6547 else
6548 {
6549 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6550
6551 switch (aux->a_type)
6552 {
6553 case AT_PHDR:
6554 *phdr_memaddr = aux->a_un.a_val;
6555 break;
6556 case AT_PHNUM:
6557 *num_phdr = aux->a_un.a_val;
6558 break;
6559 }
6560 }
6561 }
6562
6563 close (fd);
6564
6565 if (*phdr_memaddr == 0 || *num_phdr == 0)
6566 {
6567 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6568 "phdr_memaddr = %ld, phdr_num = %d",
6569 (long) *phdr_memaddr, *num_phdr);
6570 return 2;
6571 }
6572
6573 return 0;
6574 }
6575
6576 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6577
6578 static CORE_ADDR
6579 get_dynamic (const int pid, const int is_elf64)
6580 {
6581 CORE_ADDR phdr_memaddr, relocation;
6582 int num_phdr, i;
6583 unsigned char *phdr_buf;
6584 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6585
6586 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6587 return 0;
6588
6589 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6590 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6591
6592 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6593 return 0;
6594
6595 /* Compute relocation: it is expected to be 0 for "regular" executables,
6596 non-zero for PIE ones. */
6597 relocation = -1;
6598 for (i = 0; relocation == -1 && i < num_phdr; i++)
6599 if (is_elf64)
6600 {
6601 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6602
6603 if (p->p_type == PT_PHDR)
6604 relocation = phdr_memaddr - p->p_vaddr;
6605 }
6606 else
6607 {
6608 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6609
6610 if (p->p_type == PT_PHDR)
6611 relocation = phdr_memaddr - p->p_vaddr;
6612 }
6613
6614 if (relocation == -1)
6615 {
6616 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6617 any real world executables, including PIE executables, have always
6618 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6619 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6620 or present DT_DEBUG anyway (fpc binaries are statically linked).
6621
6622 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6623
6624 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6625
6626 return 0;
6627 }
6628
6629 for (i = 0; i < num_phdr; i++)
6630 {
6631 if (is_elf64)
6632 {
6633 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6634
6635 if (p->p_type == PT_DYNAMIC)
6636 return p->p_vaddr + relocation;
6637 }
6638 else
6639 {
6640 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6641
6642 if (p->p_type == PT_DYNAMIC)
6643 return p->p_vaddr + relocation;
6644 }
6645 }
6646
6647 return 0;
6648 }
6649
6650 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6651 can be 0 if the inferior does not yet have the library list initialized.
6652 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6653 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6654
6655 static CORE_ADDR
6656 get_r_debug (const int pid, const int is_elf64)
6657 {
6658 CORE_ADDR dynamic_memaddr;
6659 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6660 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6661 CORE_ADDR map = -1;
6662
6663 dynamic_memaddr = get_dynamic (pid, is_elf64);
6664 if (dynamic_memaddr == 0)
6665 return map;
6666
6667 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6668 {
6669 if (is_elf64)
6670 {
6671 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6672 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6673 union
6674 {
6675 Elf64_Xword map;
6676 unsigned char buf[sizeof (Elf64_Xword)];
6677 }
6678 rld_map;
6679 #endif
6680 #ifdef DT_MIPS_RLD_MAP
6681 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6682 {
6683 if (linux_read_memory (dyn->d_un.d_val,
6684 rld_map.buf, sizeof (rld_map.buf)) == 0)
6685 return rld_map.map;
6686 else
6687 break;
6688 }
6689 #endif /* DT_MIPS_RLD_MAP */
6690 #ifdef DT_MIPS_RLD_MAP_REL
6691 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6692 {
6693 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6694 rld_map.buf, sizeof (rld_map.buf)) == 0)
6695 return rld_map.map;
6696 else
6697 break;
6698 }
6699 #endif /* DT_MIPS_RLD_MAP_REL */
6700
6701 if (dyn->d_tag == DT_DEBUG && map == -1)
6702 map = dyn->d_un.d_val;
6703
6704 if (dyn->d_tag == DT_NULL)
6705 break;
6706 }
6707 else
6708 {
6709 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6710 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6711 union
6712 {
6713 Elf32_Word map;
6714 unsigned char buf[sizeof (Elf32_Word)];
6715 }
6716 rld_map;
6717 #endif
6718 #ifdef DT_MIPS_RLD_MAP
6719 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6720 {
6721 if (linux_read_memory (dyn->d_un.d_val,
6722 rld_map.buf, sizeof (rld_map.buf)) == 0)
6723 return rld_map.map;
6724 else
6725 break;
6726 }
6727 #endif /* DT_MIPS_RLD_MAP */
6728 #ifdef DT_MIPS_RLD_MAP_REL
6729 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6730 {
6731 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6732 rld_map.buf, sizeof (rld_map.buf)) == 0)
6733 return rld_map.map;
6734 else
6735 break;
6736 }
6737 #endif /* DT_MIPS_RLD_MAP_REL */
6738
6739 if (dyn->d_tag == DT_DEBUG && map == -1)
6740 map = dyn->d_un.d_val;
6741
6742 if (dyn->d_tag == DT_NULL)
6743 break;
6744 }
6745
6746 dynamic_memaddr += dyn_size;
6747 }
6748
6749 return map;
6750 }
6751
6752 /* Read one pointer from MEMADDR in the inferior. */
6753
6754 static int
6755 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6756 {
6757 int ret;
6758
6759 /* Go through a union so this works on either big or little endian
6760 hosts, when the inferior's pointer size is smaller than the size
6761 of CORE_ADDR. It is assumed the inferior's endianness is the
6762 same of the superior's. */
6763 union
6764 {
6765 CORE_ADDR core_addr;
6766 unsigned int ui;
6767 unsigned char uc;
6768 } addr;
6769
6770 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6771 if (ret == 0)
6772 {
6773 if (ptr_size == sizeof (CORE_ADDR))
6774 *ptr = addr.core_addr;
6775 else if (ptr_size == sizeof (unsigned int))
6776 *ptr = addr.ui;
6777 else
6778 gdb_assert_not_reached ("unhandled pointer size");
6779 }
6780 return ret;
6781 }
6782
6783 struct link_map_offsets
6784 {
6785 /* Offset and size of r_debug.r_version. */
6786 int r_version_offset;
6787
6788 /* Offset and size of r_debug.r_map. */
6789 int r_map_offset;
6790
6791 /* Offset to l_addr field in struct link_map. */
6792 int l_addr_offset;
6793
6794 /* Offset to l_name field in struct link_map. */
6795 int l_name_offset;
6796
6797 /* Offset to l_ld field in struct link_map. */
6798 int l_ld_offset;
6799
6800 /* Offset to l_next field in struct link_map. */
6801 int l_next_offset;
6802
6803 /* Offset to l_prev field in struct link_map. */
6804 int l_prev_offset;
6805 };
6806
6807 /* Construct qXfer:libraries-svr4:read reply. */
6808
6809 static int
6810 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6811 unsigned const char *writebuf,
6812 CORE_ADDR offset, int len)
6813 {
6814 char *document;
6815 unsigned document_len;
6816 struct process_info_private *const priv = current_process ()->priv;
6817 char filename[PATH_MAX];
6818 int pid, is_elf64;
6819
6820 static const struct link_map_offsets lmo_32bit_offsets =
6821 {
6822 0, /* r_version offset. */
6823 4, /* r_debug.r_map offset. */
6824 0, /* l_addr offset in link_map. */
6825 4, /* l_name offset in link_map. */
6826 8, /* l_ld offset in link_map. */
6827 12, /* l_next offset in link_map. */
6828 16 /* l_prev offset in link_map. */
6829 };
6830
6831 static const struct link_map_offsets lmo_64bit_offsets =
6832 {
6833 0, /* r_version offset. */
6834 8, /* r_debug.r_map offset. */
6835 0, /* l_addr offset in link_map. */
6836 8, /* l_name offset in link_map. */
6837 16, /* l_ld offset in link_map. */
6838 24, /* l_next offset in link_map. */
6839 32 /* l_prev offset in link_map. */
6840 };
6841 const struct link_map_offsets *lmo;
6842 unsigned int machine;
6843 int ptr_size;
6844 CORE_ADDR lm_addr = 0, lm_prev = 0;
6845 int allocated = 1024;
6846 char *p;
6847 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6848 int header_done = 0;
6849
6850 if (writebuf != NULL)
6851 return -2;
6852 if (readbuf == NULL)
6853 return -1;
6854
6855 pid = lwpid_of (current_thread);
6856 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6857 is_elf64 = elf_64_file_p (filename, &machine);
6858 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6859 ptr_size = is_elf64 ? 8 : 4;
6860
6861 while (annex[0] != '\0')
6862 {
6863 const char *sep;
6864 CORE_ADDR *addrp;
6865 int len;
6866
6867 sep = strchr (annex, '=');
6868 if (sep == NULL)
6869 break;
6870
6871 len = sep - annex;
6872 if (len == 5 && startswith (annex, "start"))
6873 addrp = &lm_addr;
6874 else if (len == 4 && startswith (annex, "prev"))
6875 addrp = &lm_prev;
6876 else
6877 {
6878 annex = strchr (sep, ';');
6879 if (annex == NULL)
6880 break;
6881 annex++;
6882 continue;
6883 }
6884
6885 annex = decode_address_to_semicolon (addrp, sep + 1);
6886 }
6887
6888 if (lm_addr == 0)
6889 {
6890 int r_version = 0;
6891
6892 if (priv->r_debug == 0)
6893 priv->r_debug = get_r_debug (pid, is_elf64);
6894
6895 /* We failed to find DT_DEBUG. Such situation will not change
6896 for this inferior - do not retry it. Report it to GDB as
6897 E01, see for the reasons at the GDB solib-svr4.c side. */
6898 if (priv->r_debug == (CORE_ADDR) -1)
6899 return -1;
6900
6901 if (priv->r_debug != 0)
6902 {
6903 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6904 (unsigned char *) &r_version,
6905 sizeof (r_version)) != 0
6906 || r_version != 1)
6907 {
6908 warning ("unexpected r_debug version %d", r_version);
6909 }
6910 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6911 &lm_addr, ptr_size) != 0)
6912 {
6913 warning ("unable to read r_map from 0x%lx",
6914 (long) priv->r_debug + lmo->r_map_offset);
6915 }
6916 }
6917 }
6918
6919 document = (char *) xmalloc (allocated);
6920 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6921 p = document + strlen (document);
6922
6923 while (lm_addr
6924 && read_one_ptr (lm_addr + lmo->l_name_offset,
6925 &l_name, ptr_size) == 0
6926 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6927 &l_addr, ptr_size) == 0
6928 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6929 &l_ld, ptr_size) == 0
6930 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6931 &l_prev, ptr_size) == 0
6932 && read_one_ptr (lm_addr + lmo->l_next_offset,
6933 &l_next, ptr_size) == 0)
6934 {
6935 unsigned char libname[PATH_MAX];
6936
6937 if (lm_prev != l_prev)
6938 {
6939 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6940 (long) lm_prev, (long) l_prev);
6941 break;
6942 }
6943
6944 /* Ignore the first entry even if it has valid name as the first entry
6945 corresponds to the main executable. The first entry should not be
6946 skipped if the dynamic loader was loaded late by a static executable
6947 (see solib-svr4.c parameter ignore_first). But in such case the main
6948 executable does not have PT_DYNAMIC present and this function already
6949 exited above due to failed get_r_debug. */
6950 if (lm_prev == 0)
6951 {
6952 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6953 p = p + strlen (p);
6954 }
6955 else
6956 {
6957 /* Not checking for error because reading may stop before
6958 we've got PATH_MAX worth of characters. */
6959 libname[0] = '\0';
6960 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6961 libname[sizeof (libname) - 1] = '\0';
6962 if (libname[0] != '\0')
6963 {
6964 /* 6x the size for xml_escape_text below. */
6965 size_t len = 6 * strlen ((char *) libname);
6966 char *name;
6967
6968 if (!header_done)
6969 {
6970 /* Terminate `<library-list-svr4'. */
6971 *p++ = '>';
6972 header_done = 1;
6973 }
6974
6975 while (allocated < p - document + len + 200)
6976 {
6977 /* Expand to guarantee sufficient storage. */
6978 uintptr_t document_len = p - document;
6979
6980 document = (char *) xrealloc (document, 2 * allocated);
6981 allocated *= 2;
6982 p = document + document_len;
6983 }
6984
6985 name = xml_escape_text ((char *) libname);
6986 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6987 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6988 name, (unsigned long) lm_addr,
6989 (unsigned long) l_addr, (unsigned long) l_ld);
6990 free (name);
6991 }
6992 }
6993
6994 lm_prev = lm_addr;
6995 lm_addr = l_next;
6996 }
6997
6998 if (!header_done)
6999 {
7000 /* Empty list; terminate `<library-list-svr4'. */
7001 strcpy (p, "/>");
7002 }
7003 else
7004 strcpy (p, "</library-list-svr4>");
7005
7006 document_len = strlen (document);
7007 if (offset < document_len)
7008 document_len -= offset;
7009 else
7010 document_len = 0;
7011 if (len > document_len)
7012 len = document_len;
7013
7014 memcpy (readbuf, document + offset, len);
7015 xfree (document);
7016
7017 return len;
7018 }
7019
7020 #ifdef HAVE_LINUX_BTRACE
7021
7022 /* See to_disable_btrace target method. */
7023
7024 static int
7025 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7026 {
7027 enum btrace_error err;
7028
7029 err = linux_disable_btrace (tinfo);
7030 return (err == BTRACE_ERR_NONE ? 0 : -1);
7031 }
7032
7033 /* Encode an Intel Processor Trace configuration. */
7034
7035 static void
7036 linux_low_encode_pt_config (struct buffer *buffer,
7037 const struct btrace_data_pt_config *config)
7038 {
7039 buffer_grow_str (buffer, "<pt-config>\n");
7040
7041 switch (config->cpu.vendor)
7042 {
7043 case CV_INTEL:
7044 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7045 "model=\"%u\" stepping=\"%u\"/>\n",
7046 config->cpu.family, config->cpu.model,
7047 config->cpu.stepping);
7048 break;
7049
7050 default:
7051 break;
7052 }
7053
7054 buffer_grow_str (buffer, "</pt-config>\n");
7055 }
7056
7057 /* Encode a raw buffer. */
7058
7059 static void
7060 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7061 unsigned int size)
7062 {
7063 if (size == 0)
7064 return;
7065
7066 /* We use hex encoding - see common/rsp-low.h. */
7067 buffer_grow_str (buffer, "<raw>\n");
7068
7069 while (size-- > 0)
7070 {
7071 char elem[2];
7072
7073 elem[0] = tohex ((*data >> 4) & 0xf);
7074 elem[1] = tohex (*data++ & 0xf);
7075
7076 buffer_grow (buffer, elem, 2);
7077 }
7078
7079 buffer_grow_str (buffer, "</raw>\n");
7080 }
7081
7082 /* See to_read_btrace target method. */
7083
7084 static int
7085 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7086 enum btrace_read_type type)
7087 {
7088 struct btrace_data btrace;
7089 struct btrace_block *block;
7090 enum btrace_error err;
7091 int i;
7092
7093 btrace_data_init (&btrace);
7094
7095 err = linux_read_btrace (&btrace, tinfo, type);
7096 if (err != BTRACE_ERR_NONE)
7097 {
7098 if (err == BTRACE_ERR_OVERFLOW)
7099 buffer_grow_str0 (buffer, "E.Overflow.");
7100 else
7101 buffer_grow_str0 (buffer, "E.Generic Error.");
7102
7103 goto err;
7104 }
7105
7106 switch (btrace.format)
7107 {
7108 case BTRACE_FORMAT_NONE:
7109 buffer_grow_str0 (buffer, "E.No Trace.");
7110 goto err;
7111
7112 case BTRACE_FORMAT_BTS:
7113 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7114 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7115
7116 for (i = 0;
7117 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7118 i++)
7119 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7120 paddress (block->begin), paddress (block->end));
7121
7122 buffer_grow_str0 (buffer, "</btrace>\n");
7123 break;
7124
7125 case BTRACE_FORMAT_PT:
7126 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7127 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7128 buffer_grow_str (buffer, "<pt>\n");
7129
7130 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7131
7132 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7133 btrace.variant.pt.size);
7134
7135 buffer_grow_str (buffer, "</pt>\n");
7136 buffer_grow_str0 (buffer, "</btrace>\n");
7137 break;
7138
7139 default:
7140 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7141 goto err;
7142 }
7143
7144 btrace_data_fini (&btrace);
7145 return 0;
7146
7147 err:
7148 btrace_data_fini (&btrace);
7149 return -1;
7150 }
7151
7152 /* See to_btrace_conf target method. */
7153
7154 static int
7155 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7156 struct buffer *buffer)
7157 {
7158 const struct btrace_config *conf;
7159
7160 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7161 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7162
7163 conf = linux_btrace_conf (tinfo);
7164 if (conf != NULL)
7165 {
7166 switch (conf->format)
7167 {
7168 case BTRACE_FORMAT_NONE:
7169 break;
7170
7171 case BTRACE_FORMAT_BTS:
7172 buffer_xml_printf (buffer, "<bts");
7173 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7174 buffer_xml_printf (buffer, " />\n");
7175 break;
7176
7177 case BTRACE_FORMAT_PT:
7178 buffer_xml_printf (buffer, "<pt");
7179 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7180 buffer_xml_printf (buffer, "/>\n");
7181 break;
7182 }
7183 }
7184
7185 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7186 return 0;
7187 }
7188 #endif /* HAVE_LINUX_BTRACE */
7189
7190 /* See nat/linux-nat.h. */
7191
7192 ptid_t
7193 current_lwp_ptid (void)
7194 {
7195 return ptid_of (current_thread);
7196 }
7197
7198 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7199
7200 static int
7201 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7202 {
7203 if (the_low_target.breakpoint_kind_from_pc != NULL)
7204 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7205 else
7206 return default_breakpoint_kind_from_pc (pcptr);
7207 }
7208
7209 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7210
7211 static const gdb_byte *
7212 linux_sw_breakpoint_from_kind (int kind, int *size)
7213 {
7214 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7215
7216 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7217 }
7218
7219 /* Implementation of the target_ops method
7220 "breakpoint_kind_from_current_state". */
7221
7222 static int
7223 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7224 {
7225 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7226 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7227 else
7228 return linux_breakpoint_kind_from_pc (pcptr);
7229 }
7230
7231 /* Default implementation of linux_target_ops method "set_pc" for
7232 32-bit pc register which is literally named "pc". */
7233
7234 void
7235 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7236 {
7237 uint32_t newpc = pc;
7238
7239 supply_register_by_name (regcache, "pc", &newpc);
7240 }
7241
7242 /* Default implementation of linux_target_ops method "get_pc" for
7243 32-bit pc register which is literally named "pc". */
7244
7245 CORE_ADDR
7246 linux_get_pc_32bit (struct regcache *regcache)
7247 {
7248 uint32_t pc;
7249
7250 collect_register_by_name (regcache, "pc", &pc);
7251 if (debug_threads)
7252 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7253 return pc;
7254 }
7255
7256 /* Default implementation of linux_target_ops method "set_pc" for
7257 64-bit pc register which is literally named "pc". */
7258
7259 void
7260 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7261 {
7262 uint64_t newpc = pc;
7263
7264 supply_register_by_name (regcache, "pc", &newpc);
7265 }
7266
7267 /* Default implementation of linux_target_ops method "get_pc" for
7268 64-bit pc register which is literally named "pc". */
7269
7270 CORE_ADDR
7271 linux_get_pc_64bit (struct regcache *regcache)
7272 {
7273 uint64_t pc;
7274
7275 collect_register_by_name (regcache, "pc", &pc);
7276 if (debug_threads)
7277 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7278 return pc;
7279 }
7280
7281
7282 static struct target_ops linux_target_ops = {
7283 linux_create_inferior,
7284 linux_post_create_inferior,
7285 linux_attach,
7286 linux_kill,
7287 linux_detach,
7288 linux_mourn,
7289 linux_join,
7290 linux_thread_alive,
7291 linux_resume,
7292 linux_wait,
7293 linux_fetch_registers,
7294 linux_store_registers,
7295 linux_prepare_to_access_memory,
7296 linux_done_accessing_memory,
7297 linux_read_memory,
7298 linux_write_memory,
7299 linux_look_up_symbols,
7300 linux_request_interrupt,
7301 linux_read_auxv,
7302 linux_supports_z_point_type,
7303 linux_insert_point,
7304 linux_remove_point,
7305 linux_stopped_by_sw_breakpoint,
7306 linux_supports_stopped_by_sw_breakpoint,
7307 linux_stopped_by_hw_breakpoint,
7308 linux_supports_stopped_by_hw_breakpoint,
7309 linux_supports_hardware_single_step,
7310 linux_stopped_by_watchpoint,
7311 linux_stopped_data_address,
7312 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7313 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7314 && defined(PT_TEXT_END_ADDR)
7315 linux_read_offsets,
7316 #else
7317 NULL,
7318 #endif
7319 #ifdef USE_THREAD_DB
7320 thread_db_get_tls_address,
7321 #else
7322 NULL,
7323 #endif
7324 linux_qxfer_spu,
7325 hostio_last_error_from_errno,
7326 linux_qxfer_osdata,
7327 linux_xfer_siginfo,
7328 linux_supports_non_stop,
7329 linux_async,
7330 linux_start_non_stop,
7331 linux_supports_multi_process,
7332 linux_supports_fork_events,
7333 linux_supports_vfork_events,
7334 linux_supports_exec_events,
7335 linux_handle_new_gdb_connection,
7336 #ifdef USE_THREAD_DB
7337 thread_db_handle_monitor_command,
7338 #else
7339 NULL,
7340 #endif
7341 linux_common_core_of_thread,
7342 linux_read_loadmap,
7343 linux_process_qsupported,
7344 linux_supports_tracepoints,
7345 linux_read_pc,
7346 linux_write_pc,
7347 linux_thread_stopped,
7348 NULL,
7349 linux_pause_all,
7350 linux_unpause_all,
7351 linux_stabilize_threads,
7352 linux_install_fast_tracepoint_jump_pad,
7353 linux_emit_ops,
7354 linux_supports_disable_randomization,
7355 linux_get_min_fast_tracepoint_insn_len,
7356 linux_qxfer_libraries_svr4,
7357 linux_supports_agent,
7358 #ifdef HAVE_LINUX_BTRACE
7359 linux_supports_btrace,
7360 linux_enable_btrace,
7361 linux_low_disable_btrace,
7362 linux_low_read_btrace,
7363 linux_low_btrace_conf,
7364 #else
7365 NULL,
7366 NULL,
7367 NULL,
7368 NULL,
7369 NULL,
7370 #endif
7371 linux_supports_range_stepping,
7372 linux_proc_pid_to_exec_file,
7373 linux_mntns_open_cloexec,
7374 linux_mntns_unlink,
7375 linux_mntns_readlink,
7376 linux_breakpoint_kind_from_pc,
7377 linux_sw_breakpoint_from_kind,
7378 linux_proc_tid_get_name,
7379 linux_breakpoint_kind_from_current_state,
7380 linux_supports_software_single_step,
7381 linux_supports_catch_syscall,
7382 linux_get_ipa_tdesc_idx,
7383 };
7384
7385 #ifdef HAVE_LINUX_REGSETS
7386 void
7387 initialize_regsets_info (struct regsets_info *info)
7388 {
7389 for (info->num_regsets = 0;
7390 info->regsets[info->num_regsets].size >= 0;
7391 info->num_regsets++)
7392 ;
7393 }
7394 #endif
7395
7396 void
7397 initialize_low (void)
7398 {
7399 struct sigaction sigchld_action;
7400
7401 memset (&sigchld_action, 0, sizeof (sigchld_action));
7402 set_target_ops (&linux_target_ops);
7403
7404 linux_ptrace_init_warnings ();
7405
7406 sigchld_action.sa_handler = sigchld_handler;
7407 sigemptyset (&sigchld_action.sa_mask);
7408 sigchld_action.sa_flags = SA_RESTART;
7409 sigaction (SIGCHLD, &sigchld_action, NULL);
7410
7411 initialize_low_arch ();
7412
7413 linux_check_ptrace_features ();
7414 }