]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Fix PR remote/19840: gdb crashes on reverse-stepi
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #ifndef ELFMAG0
51 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
52 then ELFMAG0 will have been defined. If it didn't get included by
53 gdb_proc_service.h then including it will likely introduce a duplicate
54 definition of elf_fpregset_t. */
55 #include <elf.h>
56 #endif
57 #include "nat/linux-namespaces.h"
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 /* Some targets did not define these ptrace constants from the start,
75 so gdbserver defines them locally here. In the future, these may
76 be removed after they are added to asm/ptrace.h. */
77 #if !(defined(PT_TEXT_ADDR) \
78 || defined(PT_DATA_ADDR) \
79 || defined(PT_TEXT_END_ADDR))
80 #if defined(__mcoldfire__)
81 /* These are still undefined in 3.10 kernels. */
82 #define PT_TEXT_ADDR 49*4
83 #define PT_DATA_ADDR 50*4
84 #define PT_TEXT_END_ADDR 51*4
85 /* BFIN already defines these since at least 2.6.32 kernels. */
86 #elif defined(BFIN)
87 #define PT_TEXT_ADDR 220
88 #define PT_TEXT_END_ADDR 224
89 #define PT_DATA_ADDR 228
90 /* These are still undefined in 3.10 kernels. */
91 #elif defined(__TMS320C6X__)
92 #define PT_TEXT_ADDR (0x10000*4)
93 #define PT_DATA_ADDR (0x10004*4)
94 #define PT_TEXT_END_ADDR (0x10008*4)
95 #endif
96 #endif
97
98 #ifdef HAVE_LINUX_BTRACE
99 # include "nat/linux-btrace.h"
100 # include "btrace-common.h"
101 #endif
102
103 #ifndef HAVE_ELF32_AUXV_T
104 /* Copied from glibc's elf.h. */
105 typedef struct
106 {
107 uint32_t a_type; /* Entry type */
108 union
109 {
110 uint32_t a_val; /* Integer value */
111 /* We use to have pointer elements added here. We cannot do that,
112 though, since it does not work when using 32-bit definitions
113 on 64-bit platforms and vice versa. */
114 } a_un;
115 } Elf32_auxv_t;
116 #endif
117
118 #ifndef HAVE_ELF64_AUXV_T
119 /* Copied from glibc's elf.h. */
120 typedef struct
121 {
122 uint64_t a_type; /* Entry type */
123 union
124 {
125 uint64_t a_val; /* Integer value */
126 /* We use to have pointer elements added here. We cannot do that,
127 though, since it does not work when using 32-bit definitions
128 on 64-bit platforms and vice versa. */
129 } a_un;
130 } Elf64_auxv_t;
131 #endif
132
133 /* Does the current host support PTRACE_GETREGSET? */
134 int have_ptrace_getregset = -1;
135
136 /* LWP accessors. */
137
138 /* See nat/linux-nat.h. */
139
140 ptid_t
141 ptid_of_lwp (struct lwp_info *lwp)
142 {
143 return ptid_of (get_lwp_thread (lwp));
144 }
145
146 /* See nat/linux-nat.h. */
147
148 void
149 lwp_set_arch_private_info (struct lwp_info *lwp,
150 struct arch_lwp_info *info)
151 {
152 lwp->arch_private = info;
153 }
154
155 /* See nat/linux-nat.h. */
156
157 struct arch_lwp_info *
158 lwp_arch_private_info (struct lwp_info *lwp)
159 {
160 return lwp->arch_private;
161 }
162
163 /* See nat/linux-nat.h. */
164
165 int
166 lwp_is_stopped (struct lwp_info *lwp)
167 {
168 return lwp->stopped;
169 }
170
171 /* See nat/linux-nat.h. */
172
173 enum target_stop_reason
174 lwp_stop_reason (struct lwp_info *lwp)
175 {
176 return lwp->stop_reason;
177 }
178
179 /* A list of all unknown processes which receive stop signals. Some
180 other process will presumably claim each of these as forked
181 children momentarily. */
182
183 struct simple_pid_list
184 {
185 /* The process ID. */
186 int pid;
187
188 /* The status as reported by waitpid. */
189 int status;
190
191 /* Next in chain. */
192 struct simple_pid_list *next;
193 };
194 struct simple_pid_list *stopped_pids;
195
196 /* Trivial list manipulation functions to keep track of a list of new
197 stopped processes. */
198
199 static void
200 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
201 {
202 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
203
204 new_pid->pid = pid;
205 new_pid->status = status;
206 new_pid->next = *listp;
207 *listp = new_pid;
208 }
209
210 static int
211 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
212 {
213 struct simple_pid_list **p;
214
215 for (p = listp; *p != NULL; p = &(*p)->next)
216 if ((*p)->pid == pid)
217 {
218 struct simple_pid_list *next = (*p)->next;
219
220 *statusp = (*p)->status;
221 xfree (*p);
222 *p = next;
223 return 1;
224 }
225 return 0;
226 }
227
228 enum stopping_threads_kind
229 {
230 /* Not stopping threads presently. */
231 NOT_STOPPING_THREADS,
232
233 /* Stopping threads. */
234 STOPPING_THREADS,
235
236 /* Stopping and suspending threads. */
237 STOPPING_AND_SUSPENDING_THREADS
238 };
239
240 /* This is set while stop_all_lwps is in effect. */
241 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
242
243 /* FIXME make into a target method? */
244 int using_threads = 1;
245
246 /* True if we're presently stabilizing threads (moving them out of
247 jump pads). */
248 static int stabilizing_threads;
249
250 static void linux_resume_one_lwp (struct lwp_info *lwp,
251 int step, int signal, siginfo_t *info);
252 static void linux_resume (struct thread_resume *resume_info, size_t n);
253 static void stop_all_lwps (int suspend, struct lwp_info *except);
254 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
255 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
256 int *wstat, int options);
257 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
258 static struct lwp_info *add_lwp (ptid_t ptid);
259 static void linux_mourn (struct process_info *process);
260 static int linux_stopped_by_watchpoint (void);
261 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
262 static int lwp_is_marked_dead (struct lwp_info *lwp);
263 static void proceed_all_lwps (void);
264 static int finish_step_over (struct lwp_info *lwp);
265 static int kill_lwp (unsigned long lwpid, int signo);
266 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
267 static void complete_ongoing_step_over (void);
268 static int linux_low_ptrace_options (int attached);
269
270 /* When the event-loop is doing a step-over, this points at the thread
271 being stepped. */
272 ptid_t step_over_bkpt;
273
274 /* True if the low target can hardware single-step. */
275
276 static int
277 can_hardware_single_step (void)
278 {
279 if (the_low_target.supports_hardware_single_step != NULL)
280 return the_low_target.supports_hardware_single_step ();
281 else
282 return 0;
283 }
284
285 /* True if the low target can software single-step. Such targets
286 implement the GET_NEXT_PCS callback. */
287
288 static int
289 can_software_single_step (void)
290 {
291 return (the_low_target.get_next_pcs != NULL);
292 }
293
294 /* True if the low target supports memory breakpoints. If so, we'll
295 have a GET_PC implementation. */
296
297 static int
298 supports_breakpoints (void)
299 {
300 return (the_low_target.get_pc != NULL);
301 }
302
303 /* Returns true if this target can support fast tracepoints. This
304 does not mean that the in-process agent has been loaded in the
305 inferior. */
306
307 static int
308 supports_fast_tracepoints (void)
309 {
310 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338 static void wait_for_sigstop (void);
339
340 /* Return non-zero if HEADER is a 64-bit ELF file. */
341
342 static int
343 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
344 {
345 if (header->e_ident[EI_MAG0] == ELFMAG0
346 && header->e_ident[EI_MAG1] == ELFMAG1
347 && header->e_ident[EI_MAG2] == ELFMAG2
348 && header->e_ident[EI_MAG3] == ELFMAG3)
349 {
350 *machine = header->e_machine;
351 return header->e_ident[EI_CLASS] == ELFCLASS64;
352
353 }
354 *machine = EM_NONE;
355 return -1;
356 }
357
358 /* Return non-zero if FILE is a 64-bit ELF file,
359 zero if the file is not a 64-bit ELF file,
360 and -1 if the file is not accessible or doesn't exist. */
361
362 static int
363 elf_64_file_p (const char *file, unsigned int *machine)
364 {
365 Elf64_Ehdr header;
366 int fd;
367
368 fd = open (file, O_RDONLY);
369 if (fd < 0)
370 return -1;
371
372 if (read (fd, &header, sizeof (header)) != sizeof (header))
373 {
374 close (fd);
375 return 0;
376 }
377 close (fd);
378
379 return elf_64_header_p (&header, machine);
380 }
381
382 /* Accepts an integer PID; Returns true if the executable PID is
383 running is a 64-bit ELF file.. */
384
385 int
386 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
387 {
388 char file[PATH_MAX];
389
390 sprintf (file, "/proc/%d/exe", pid);
391 return elf_64_file_p (file, machine);
392 }
393
394 static void
395 delete_lwp (struct lwp_info *lwp)
396 {
397 struct thread_info *thr = get_lwp_thread (lwp);
398
399 if (debug_threads)
400 debug_printf ("deleting %ld\n", lwpid_of (thr));
401
402 remove_thread (thr);
403 free (lwp->arch_private);
404 free (lwp);
405 }
406
407 /* Add a process to the common process list, and set its private
408 data. */
409
410 static struct process_info *
411 linux_add_process (int pid, int attached)
412 {
413 struct process_info *proc;
414
415 proc = add_process (pid, attached);
416 proc->priv = XCNEW (struct process_info_private);
417
418 if (the_low_target.new_process != NULL)
419 proc->priv->arch_private = the_low_target.new_process ();
420
421 return proc;
422 }
423
424 static CORE_ADDR get_pc (struct lwp_info *lwp);
425
426 /* Call the target arch_setup function on the current thread. */
427
428 static void
429 linux_arch_setup (void)
430 {
431 the_low_target.arch_setup ();
432 }
433
434 /* Call the target arch_setup function on THREAD. */
435
436 static void
437 linux_arch_setup_thread (struct thread_info *thread)
438 {
439 struct thread_info *saved_thread;
440
441 saved_thread = current_thread;
442 current_thread = thread;
443
444 linux_arch_setup ();
445
446 current_thread = saved_thread;
447 }
448
449 /* Handle a GNU/Linux extended wait response. If we see a clone,
450 fork, or vfork event, we need to add the new LWP to our list
451 (and return 0 so as not to report the trap to higher layers).
452 If we see an exec event, we will modify ORIG_EVENT_LWP to point
453 to a new LWP representing the new program. */
454
455 static int
456 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
457 {
458 struct lwp_info *event_lwp = *orig_event_lwp;
459 int event = linux_ptrace_get_extended_event (wstat);
460 struct thread_info *event_thr = get_lwp_thread (event_lwp);
461 struct lwp_info *new_lwp;
462
463 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
464
465 /* All extended events we currently use are mid-syscall. Only
466 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
467 you have to be using PTRACE_SEIZE to get that. */
468 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
469
470 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
471 || (event == PTRACE_EVENT_CLONE))
472 {
473 ptid_t ptid;
474 unsigned long new_pid;
475 int ret, status;
476
477 /* Get the pid of the new lwp. */
478 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
479 &new_pid);
480
481 /* If we haven't already seen the new PID stop, wait for it now. */
482 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
483 {
484 /* The new child has a pending SIGSTOP. We can't affect it until it
485 hits the SIGSTOP, but we're already attached. */
486
487 ret = my_waitpid (new_pid, &status, __WALL);
488
489 if (ret == -1)
490 perror_with_name ("waiting for new child");
491 else if (ret != new_pid)
492 warning ("wait returned unexpected PID %d", ret);
493 else if (!WIFSTOPPED (status))
494 warning ("wait returned unexpected status 0x%x", status);
495 }
496
497 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
498 {
499 struct process_info *parent_proc;
500 struct process_info *child_proc;
501 struct lwp_info *child_lwp;
502 struct thread_info *child_thr;
503 struct target_desc *tdesc;
504
505 ptid = ptid_build (new_pid, new_pid, 0);
506
507 if (debug_threads)
508 {
509 debug_printf ("HEW: Got fork event from LWP %ld, "
510 "new child is %d\n",
511 ptid_get_lwp (ptid_of (event_thr)),
512 ptid_get_pid (ptid));
513 }
514
515 /* Add the new process to the tables and clone the breakpoint
516 lists of the parent. We need to do this even if the new process
517 will be detached, since we will need the process object and the
518 breakpoints to remove any breakpoints from memory when we
519 detach, and the client side will access registers. */
520 child_proc = linux_add_process (new_pid, 0);
521 gdb_assert (child_proc != NULL);
522 child_lwp = add_lwp (ptid);
523 gdb_assert (child_lwp != NULL);
524 child_lwp->stopped = 1;
525 child_lwp->must_set_ptrace_flags = 1;
526 child_lwp->status_pending_p = 0;
527 child_thr = get_lwp_thread (child_lwp);
528 child_thr->last_resume_kind = resume_stop;
529 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
530
531 /* If we're suspending all threads, leave this one suspended
532 too. If the fork/clone parent is stepping over a breakpoint,
533 all other threads have been suspended already. Leave the
534 child suspended too. */
535 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
536 || event_lwp->bp_reinsert != 0)
537 {
538 if (debug_threads)
539 debug_printf ("HEW: leaving child suspended\n");
540 child_lwp->suspended = 1;
541 }
542
543 parent_proc = get_thread_process (event_thr);
544 child_proc->attached = parent_proc->attached;
545 clone_all_breakpoints (&child_proc->breakpoints,
546 &child_proc->raw_breakpoints,
547 parent_proc->breakpoints);
548
549 tdesc = XNEW (struct target_desc);
550 copy_target_description (tdesc, parent_proc->tdesc);
551 child_proc->tdesc = tdesc;
552
553 /* Clone arch-specific process data. */
554 if (the_low_target.new_fork != NULL)
555 the_low_target.new_fork (parent_proc, child_proc);
556
557 /* Save fork info in the parent thread. */
558 if (event == PTRACE_EVENT_FORK)
559 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
560 else if (event == PTRACE_EVENT_VFORK)
561 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
562
563 event_lwp->waitstatus.value.related_pid = ptid;
564
565 /* The status_pending field contains bits denoting the
566 extended event, so when the pending event is handled,
567 the handler will look at lwp->waitstatus. */
568 event_lwp->status_pending_p = 1;
569 event_lwp->status_pending = wstat;
570
571 /* Report the event. */
572 return 0;
573 }
574
575 if (debug_threads)
576 debug_printf ("HEW: Got clone event "
577 "from LWP %ld, new child is LWP %ld\n",
578 lwpid_of (event_thr), new_pid);
579
580 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
581 new_lwp = add_lwp (ptid);
582
583 /* Either we're going to immediately resume the new thread
584 or leave it stopped. linux_resume_one_lwp is a nop if it
585 thinks the thread is currently running, so set this first
586 before calling linux_resume_one_lwp. */
587 new_lwp->stopped = 1;
588
589 /* If we're suspending all threads, leave this one suspended
590 too. If the fork/clone parent is stepping over a breakpoint,
591 all other threads have been suspended already. Leave the
592 child suspended too. */
593 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
594 || event_lwp->bp_reinsert != 0)
595 new_lwp->suspended = 1;
596
597 /* Normally we will get the pending SIGSTOP. But in some cases
598 we might get another signal delivered to the group first.
599 If we do get another signal, be sure not to lose it. */
600 if (WSTOPSIG (status) != SIGSTOP)
601 {
602 new_lwp->stop_expected = 1;
603 new_lwp->status_pending_p = 1;
604 new_lwp->status_pending = status;
605 }
606 else if (report_thread_events)
607 {
608 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
609 new_lwp->status_pending_p = 1;
610 new_lwp->status_pending = status;
611 }
612
613 /* Don't report the event. */
614 return 1;
615 }
616 else if (event == PTRACE_EVENT_VFORK_DONE)
617 {
618 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
619
620 /* Report the event. */
621 return 0;
622 }
623 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
624 {
625 struct process_info *proc;
626 VEC (int) *syscalls_to_catch;
627 ptid_t event_ptid;
628 pid_t event_pid;
629
630 if (debug_threads)
631 {
632 debug_printf ("HEW: Got exec event from LWP %ld\n",
633 lwpid_of (event_thr));
634 }
635
636 /* Get the event ptid. */
637 event_ptid = ptid_of (event_thr);
638 event_pid = ptid_get_pid (event_ptid);
639
640 /* Save the syscall list from the execing process. */
641 proc = get_thread_process (event_thr);
642 syscalls_to_catch = proc->syscalls_to_catch;
643 proc->syscalls_to_catch = NULL;
644
645 /* Delete the execing process and all its threads. */
646 linux_mourn (proc);
647 current_thread = NULL;
648
649 /* Create a new process/lwp/thread. */
650 proc = linux_add_process (event_pid, 0);
651 event_lwp = add_lwp (event_ptid);
652 event_thr = get_lwp_thread (event_lwp);
653 gdb_assert (current_thread == event_thr);
654 linux_arch_setup_thread (event_thr);
655
656 /* Set the event status. */
657 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
658 event_lwp->waitstatus.value.execd_pathname
659 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
660
661 /* Mark the exec status as pending. */
662 event_lwp->stopped = 1;
663 event_lwp->status_pending_p = 1;
664 event_lwp->status_pending = wstat;
665 event_thr->last_resume_kind = resume_continue;
666 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
667
668 /* Update syscall state in the new lwp, effectively mid-syscall too. */
669 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
670
671 /* Restore the list to catch. Don't rely on the client, which is free
672 to avoid sending a new list when the architecture doesn't change.
673 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
674 proc->syscalls_to_catch = syscalls_to_catch;
675
676 /* Report the event. */
677 *orig_event_lwp = event_lwp;
678 return 0;
679 }
680
681 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
682 }
683
684 /* Return the PC as read from the regcache of LWP, without any
685 adjustment. */
686
687 static CORE_ADDR
688 get_pc (struct lwp_info *lwp)
689 {
690 struct thread_info *saved_thread;
691 struct regcache *regcache;
692 CORE_ADDR pc;
693
694 if (the_low_target.get_pc == NULL)
695 return 0;
696
697 saved_thread = current_thread;
698 current_thread = get_lwp_thread (lwp);
699
700 regcache = get_thread_regcache (current_thread, 1);
701 pc = (*the_low_target.get_pc) (regcache);
702
703 if (debug_threads)
704 debug_printf ("pc is 0x%lx\n", (long) pc);
705
706 current_thread = saved_thread;
707 return pc;
708 }
709
710 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
711 Fill *SYSNO with the syscall nr trapped. Fill *SYSRET with the
712 return code. */
713
714 static void
715 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno, int *sysret)
716 {
717 struct thread_info *saved_thread;
718 struct regcache *regcache;
719
720 if (the_low_target.get_syscall_trapinfo == NULL)
721 {
722 /* If we cannot get the syscall trapinfo, report an unknown
723 system call number and -ENOSYS return value. */
724 *sysno = UNKNOWN_SYSCALL;
725 *sysret = -ENOSYS;
726 return;
727 }
728
729 saved_thread = current_thread;
730 current_thread = get_lwp_thread (lwp);
731
732 regcache = get_thread_regcache (current_thread, 1);
733 (*the_low_target.get_syscall_trapinfo) (regcache, sysno, sysret);
734
735 if (debug_threads)
736 {
737 debug_printf ("get_syscall_trapinfo sysno %d sysret %d\n",
738 *sysno, *sysret);
739 }
740
741 current_thread = saved_thread;
742 }
743
744 static int check_stopped_by_watchpoint (struct lwp_info *child);
745
746 /* Called when the LWP stopped for a signal/trap. If it stopped for a
747 trap check what caused it (breakpoint, watchpoint, trace, etc.),
748 and save the result in the LWP's stop_reason field. If it stopped
749 for a breakpoint, decrement the PC if necessary on the lwp's
750 architecture. Returns true if we now have the LWP's stop PC. */
751
752 static int
753 save_stop_reason (struct lwp_info *lwp)
754 {
755 CORE_ADDR pc;
756 CORE_ADDR sw_breakpoint_pc;
757 struct thread_info *saved_thread;
758 #if USE_SIGTRAP_SIGINFO
759 siginfo_t siginfo;
760 #endif
761
762 if (the_low_target.get_pc == NULL)
763 return 0;
764
765 pc = get_pc (lwp);
766 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
767
768 /* breakpoint_at reads from the current thread. */
769 saved_thread = current_thread;
770 current_thread = get_lwp_thread (lwp);
771
772 #if USE_SIGTRAP_SIGINFO
773 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
774 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
775 {
776 if (siginfo.si_signo == SIGTRAP)
777 {
778 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
779 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
780 {
781 /* The si_code is ambiguous on this arch -- check debug
782 registers. */
783 if (!check_stopped_by_watchpoint (lwp))
784 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
785 }
786 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
787 {
788 /* If we determine the LWP stopped for a SW breakpoint,
789 trust it. Particularly don't check watchpoint
790 registers, because at least on s390, we'd find
791 stopped-by-watchpoint as long as there's a watchpoint
792 set. */
793 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
794 }
795 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
796 {
797 /* This can indicate either a hardware breakpoint or
798 hardware watchpoint. Check debug registers. */
799 if (!check_stopped_by_watchpoint (lwp))
800 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
801 }
802 else if (siginfo.si_code == TRAP_TRACE)
803 {
804 /* We may have single stepped an instruction that
805 triggered a watchpoint. In that case, on some
806 architectures (such as x86), instead of TRAP_HWBKPT,
807 si_code indicates TRAP_TRACE, and we need to check
808 the debug registers separately. */
809 if (!check_stopped_by_watchpoint (lwp))
810 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
811 }
812 }
813 }
814 #else
815 /* We may have just stepped a breakpoint instruction. E.g., in
816 non-stop mode, GDB first tells the thread A to step a range, and
817 then the user inserts a breakpoint inside the range. In that
818 case we need to report the breakpoint PC. */
819 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
820 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
821 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
822
823 if (hardware_breakpoint_inserted_here (pc))
824 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
825
826 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
827 check_stopped_by_watchpoint (lwp);
828 #endif
829
830 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
831 {
832 if (debug_threads)
833 {
834 struct thread_info *thr = get_lwp_thread (lwp);
835
836 debug_printf ("CSBB: %s stopped by software breakpoint\n",
837 target_pid_to_str (ptid_of (thr)));
838 }
839
840 /* Back up the PC if necessary. */
841 if (pc != sw_breakpoint_pc)
842 {
843 struct regcache *regcache
844 = get_thread_regcache (current_thread, 1);
845 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
846 }
847
848 /* Update this so we record the correct stop PC below. */
849 pc = sw_breakpoint_pc;
850 }
851 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
852 {
853 if (debug_threads)
854 {
855 struct thread_info *thr = get_lwp_thread (lwp);
856
857 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
858 target_pid_to_str (ptid_of (thr)));
859 }
860 }
861 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
862 {
863 if (debug_threads)
864 {
865 struct thread_info *thr = get_lwp_thread (lwp);
866
867 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
868 target_pid_to_str (ptid_of (thr)));
869 }
870 }
871 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
872 {
873 if (debug_threads)
874 {
875 struct thread_info *thr = get_lwp_thread (lwp);
876
877 debug_printf ("CSBB: %s stopped by trace\n",
878 target_pid_to_str (ptid_of (thr)));
879 }
880 }
881
882 lwp->stop_pc = pc;
883 current_thread = saved_thread;
884 return 1;
885 }
886
887 static struct lwp_info *
888 add_lwp (ptid_t ptid)
889 {
890 struct lwp_info *lwp;
891
892 lwp = XCNEW (struct lwp_info);
893
894 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
895
896 if (the_low_target.new_thread != NULL)
897 the_low_target.new_thread (lwp);
898
899 lwp->thread = add_thread (ptid, lwp);
900
901 return lwp;
902 }
903
904 /* Start an inferior process and returns its pid.
905 ALLARGS is a vector of program-name and args. */
906
907 static int
908 linux_create_inferior (char *program, char **allargs)
909 {
910 struct lwp_info *new_lwp;
911 int pid;
912 ptid_t ptid;
913 struct cleanup *restore_personality
914 = maybe_disable_address_space_randomization (disable_randomization);
915
916 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
917 pid = vfork ();
918 #else
919 pid = fork ();
920 #endif
921 if (pid < 0)
922 perror_with_name ("fork");
923
924 if (pid == 0)
925 {
926 close_most_fds ();
927 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
928
929 setpgid (0, 0);
930
931 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
932 stdout to stderr so that inferior i/o doesn't corrupt the connection.
933 Also, redirect stdin to /dev/null. */
934 if (remote_connection_is_stdio ())
935 {
936 close (0);
937 open ("/dev/null", O_RDONLY);
938 dup2 (2, 1);
939 if (write (2, "stdin/stdout redirected\n",
940 sizeof ("stdin/stdout redirected\n") - 1) < 0)
941 {
942 /* Errors ignored. */;
943 }
944 }
945
946 execv (program, allargs);
947 if (errno == ENOENT)
948 execvp (program, allargs);
949
950 fprintf (stderr, "Cannot exec %s: %s.\n", program,
951 strerror (errno));
952 fflush (stderr);
953 _exit (0177);
954 }
955
956 do_cleanups (restore_personality);
957
958 linux_add_process (pid, 0);
959
960 ptid = ptid_build (pid, pid, 0);
961 new_lwp = add_lwp (ptid);
962 new_lwp->must_set_ptrace_flags = 1;
963
964 return pid;
965 }
966
967 /* Implement the post_create_inferior target_ops method. */
968
969 static void
970 linux_post_create_inferior (void)
971 {
972 struct lwp_info *lwp = get_thread_lwp (current_thread);
973
974 linux_arch_setup ();
975
976 if (lwp->must_set_ptrace_flags)
977 {
978 struct process_info *proc = current_process ();
979 int options = linux_low_ptrace_options (proc->attached);
980
981 linux_enable_event_reporting (lwpid_of (current_thread), options);
982 lwp->must_set_ptrace_flags = 0;
983 }
984 }
985
986 /* Attach to an inferior process. Returns 0 on success, ERRNO on
987 error. */
988
989 int
990 linux_attach_lwp (ptid_t ptid)
991 {
992 struct lwp_info *new_lwp;
993 int lwpid = ptid_get_lwp (ptid);
994
995 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
996 != 0)
997 return errno;
998
999 new_lwp = add_lwp (ptid);
1000
1001 /* We need to wait for SIGSTOP before being able to make the next
1002 ptrace call on this LWP. */
1003 new_lwp->must_set_ptrace_flags = 1;
1004
1005 if (linux_proc_pid_is_stopped (lwpid))
1006 {
1007 if (debug_threads)
1008 debug_printf ("Attached to a stopped process\n");
1009
1010 /* The process is definitely stopped. It is in a job control
1011 stop, unless the kernel predates the TASK_STOPPED /
1012 TASK_TRACED distinction, in which case it might be in a
1013 ptrace stop. Make sure it is in a ptrace stop; from there we
1014 can kill it, signal it, et cetera.
1015
1016 First make sure there is a pending SIGSTOP. Since we are
1017 already attached, the process can not transition from stopped
1018 to running without a PTRACE_CONT; so we know this signal will
1019 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1020 probably already in the queue (unless this kernel is old
1021 enough to use TASK_STOPPED for ptrace stops); but since
1022 SIGSTOP is not an RT signal, it can only be queued once. */
1023 kill_lwp (lwpid, SIGSTOP);
1024
1025 /* Finally, resume the stopped process. This will deliver the
1026 SIGSTOP (or a higher priority signal, just like normal
1027 PTRACE_ATTACH), which we'll catch later on. */
1028 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1029 }
1030
1031 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1032 brings it to a halt.
1033
1034 There are several cases to consider here:
1035
1036 1) gdbserver has already attached to the process and is being notified
1037 of a new thread that is being created.
1038 In this case we should ignore that SIGSTOP and resume the
1039 process. This is handled below by setting stop_expected = 1,
1040 and the fact that add_thread sets last_resume_kind ==
1041 resume_continue.
1042
1043 2) This is the first thread (the process thread), and we're attaching
1044 to it via attach_inferior.
1045 In this case we want the process thread to stop.
1046 This is handled by having linux_attach set last_resume_kind ==
1047 resume_stop after we return.
1048
1049 If the pid we are attaching to is also the tgid, we attach to and
1050 stop all the existing threads. Otherwise, we attach to pid and
1051 ignore any other threads in the same group as this pid.
1052
1053 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1054 existing threads.
1055 In this case we want the thread to stop.
1056 FIXME: This case is currently not properly handled.
1057 We should wait for the SIGSTOP but don't. Things work apparently
1058 because enough time passes between when we ptrace (ATTACH) and when
1059 gdb makes the next ptrace call on the thread.
1060
1061 On the other hand, if we are currently trying to stop all threads, we
1062 should treat the new thread as if we had sent it a SIGSTOP. This works
1063 because we are guaranteed that the add_lwp call above added us to the
1064 end of the list, and so the new thread has not yet reached
1065 wait_for_sigstop (but will). */
1066 new_lwp->stop_expected = 1;
1067
1068 return 0;
1069 }
1070
1071 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1072 already attached. Returns true if a new LWP is found, false
1073 otherwise. */
1074
1075 static int
1076 attach_proc_task_lwp_callback (ptid_t ptid)
1077 {
1078 /* Is this a new thread? */
1079 if (find_thread_ptid (ptid) == NULL)
1080 {
1081 int lwpid = ptid_get_lwp (ptid);
1082 int err;
1083
1084 if (debug_threads)
1085 debug_printf ("Found new lwp %d\n", lwpid);
1086
1087 err = linux_attach_lwp (ptid);
1088
1089 /* Be quiet if we simply raced with the thread exiting. EPERM
1090 is returned if the thread's task still exists, and is marked
1091 as exited or zombie, as well as other conditions, so in that
1092 case, confirm the status in /proc/PID/status. */
1093 if (err == ESRCH
1094 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1095 {
1096 if (debug_threads)
1097 {
1098 debug_printf ("Cannot attach to lwp %d: "
1099 "thread is gone (%d: %s)\n",
1100 lwpid, err, strerror (err));
1101 }
1102 }
1103 else if (err != 0)
1104 {
1105 warning (_("Cannot attach to lwp %d: %s"),
1106 lwpid,
1107 linux_ptrace_attach_fail_reason_string (ptid, err));
1108 }
1109
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 static void async_file_mark (void);
1116
1117 /* Attach to PID. If PID is the tgid, attach to it and all
1118 of its threads. */
1119
1120 static int
1121 linux_attach (unsigned long pid)
1122 {
1123 struct process_info *proc;
1124 struct thread_info *initial_thread;
1125 ptid_t ptid = ptid_build (pid, pid, 0);
1126 int err;
1127
1128 /* Attach to PID. We will check for other threads
1129 soon. */
1130 err = linux_attach_lwp (ptid);
1131 if (err != 0)
1132 error ("Cannot attach to process %ld: %s",
1133 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1134
1135 proc = linux_add_process (pid, 1);
1136
1137 /* Don't ignore the initial SIGSTOP if we just attached to this
1138 process. It will be collected by wait shortly. */
1139 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1140 initial_thread->last_resume_kind = resume_stop;
1141
1142 /* We must attach to every LWP. If /proc is mounted, use that to
1143 find them now. On the one hand, the inferior may be using raw
1144 clone instead of using pthreads. On the other hand, even if it
1145 is using pthreads, GDB may not be connected yet (thread_db needs
1146 to do symbol lookups, through qSymbol). Also, thread_db walks
1147 structures in the inferior's address space to find the list of
1148 threads/LWPs, and those structures may well be corrupted. Note
1149 that once thread_db is loaded, we'll still use it to list threads
1150 and associate pthread info with each LWP. */
1151 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1152
1153 /* GDB will shortly read the xml target description for this
1154 process, to figure out the process' architecture. But the target
1155 description is only filled in when the first process/thread in
1156 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1157 that now, otherwise, if GDB is fast enough, it could read the
1158 target description _before_ that initial stop. */
1159 if (non_stop)
1160 {
1161 struct lwp_info *lwp;
1162 int wstat, lwpid;
1163 ptid_t pid_ptid = pid_to_ptid (pid);
1164
1165 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1166 &wstat, __WALL);
1167 gdb_assert (lwpid > 0);
1168
1169 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1170
1171 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1172 {
1173 lwp->status_pending_p = 1;
1174 lwp->status_pending = wstat;
1175 }
1176
1177 initial_thread->last_resume_kind = resume_continue;
1178
1179 async_file_mark ();
1180
1181 gdb_assert (proc->tdesc != NULL);
1182 }
1183
1184 return 0;
1185 }
1186
1187 struct counter
1188 {
1189 int pid;
1190 int count;
1191 };
1192
1193 static int
1194 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1195 {
1196 struct counter *counter = (struct counter *) args;
1197
1198 if (ptid_get_pid (entry->id) == counter->pid)
1199 {
1200 if (++counter->count > 1)
1201 return 1;
1202 }
1203
1204 return 0;
1205 }
1206
1207 static int
1208 last_thread_of_process_p (int pid)
1209 {
1210 struct counter counter = { pid , 0 };
1211
1212 return (find_inferior (&all_threads,
1213 second_thread_of_pid_p, &counter) == NULL);
1214 }
1215
1216 /* Kill LWP. */
1217
1218 static void
1219 linux_kill_one_lwp (struct lwp_info *lwp)
1220 {
1221 struct thread_info *thr = get_lwp_thread (lwp);
1222 int pid = lwpid_of (thr);
1223
1224 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1225 there is no signal context, and ptrace(PTRACE_KILL) (or
1226 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1227 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1228 alternative is to kill with SIGKILL. We only need one SIGKILL
1229 per process, not one for each thread. But since we still support
1230 support debugging programs using raw clone without CLONE_THREAD,
1231 we send one for each thread. For years, we used PTRACE_KILL
1232 only, so we're being a bit paranoid about some old kernels where
1233 PTRACE_KILL might work better (dubious if there are any such, but
1234 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1235 second, and so we're fine everywhere. */
1236
1237 errno = 0;
1238 kill_lwp (pid, SIGKILL);
1239 if (debug_threads)
1240 {
1241 int save_errno = errno;
1242
1243 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1244 target_pid_to_str (ptid_of (thr)),
1245 save_errno ? strerror (save_errno) : "OK");
1246 }
1247
1248 errno = 0;
1249 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1250 if (debug_threads)
1251 {
1252 int save_errno = errno;
1253
1254 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1255 target_pid_to_str (ptid_of (thr)),
1256 save_errno ? strerror (save_errno) : "OK");
1257 }
1258 }
1259
1260 /* Kill LWP and wait for it to die. */
1261
1262 static void
1263 kill_wait_lwp (struct lwp_info *lwp)
1264 {
1265 struct thread_info *thr = get_lwp_thread (lwp);
1266 int pid = ptid_get_pid (ptid_of (thr));
1267 int lwpid = ptid_get_lwp (ptid_of (thr));
1268 int wstat;
1269 int res;
1270
1271 if (debug_threads)
1272 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1273
1274 do
1275 {
1276 linux_kill_one_lwp (lwp);
1277
1278 /* Make sure it died. Notes:
1279
1280 - The loop is most likely unnecessary.
1281
1282 - We don't use linux_wait_for_event as that could delete lwps
1283 while we're iterating over them. We're not interested in
1284 any pending status at this point, only in making sure all
1285 wait status on the kernel side are collected until the
1286 process is reaped.
1287
1288 - We don't use __WALL here as the __WALL emulation relies on
1289 SIGCHLD, and killing a stopped process doesn't generate
1290 one, nor an exit status.
1291 */
1292 res = my_waitpid (lwpid, &wstat, 0);
1293 if (res == -1 && errno == ECHILD)
1294 res = my_waitpid (lwpid, &wstat, __WCLONE);
1295 } while (res > 0 && WIFSTOPPED (wstat));
1296
1297 /* Even if it was stopped, the child may have already disappeared.
1298 E.g., if it was killed by SIGKILL. */
1299 if (res < 0 && errno != ECHILD)
1300 perror_with_name ("kill_wait_lwp");
1301 }
1302
1303 /* Callback for `find_inferior'. Kills an lwp of a given process,
1304 except the leader. */
1305
1306 static int
1307 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1308 {
1309 struct thread_info *thread = (struct thread_info *) entry;
1310 struct lwp_info *lwp = get_thread_lwp (thread);
1311 int pid = * (int *) args;
1312
1313 if (ptid_get_pid (entry->id) != pid)
1314 return 0;
1315
1316 /* We avoid killing the first thread here, because of a Linux kernel (at
1317 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1318 the children get a chance to be reaped, it will remain a zombie
1319 forever. */
1320
1321 if (lwpid_of (thread) == pid)
1322 {
1323 if (debug_threads)
1324 debug_printf ("lkop: is last of process %s\n",
1325 target_pid_to_str (entry->id));
1326 return 0;
1327 }
1328
1329 kill_wait_lwp (lwp);
1330 return 0;
1331 }
1332
1333 static int
1334 linux_kill (int pid)
1335 {
1336 struct process_info *process;
1337 struct lwp_info *lwp;
1338
1339 process = find_process_pid (pid);
1340 if (process == NULL)
1341 return -1;
1342
1343 /* If we're killing a running inferior, make sure it is stopped
1344 first, as PTRACE_KILL will not work otherwise. */
1345 stop_all_lwps (0, NULL);
1346
1347 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1348
1349 /* See the comment in linux_kill_one_lwp. We did not kill the first
1350 thread in the list, so do so now. */
1351 lwp = find_lwp_pid (pid_to_ptid (pid));
1352
1353 if (lwp == NULL)
1354 {
1355 if (debug_threads)
1356 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1357 pid);
1358 }
1359 else
1360 kill_wait_lwp (lwp);
1361
1362 the_target->mourn (process);
1363
1364 /* Since we presently can only stop all lwps of all processes, we
1365 need to unstop lwps of other processes. */
1366 unstop_all_lwps (0, NULL);
1367 return 0;
1368 }
1369
1370 /* Get pending signal of THREAD, for detaching purposes. This is the
1371 signal the thread last stopped for, which we need to deliver to the
1372 thread when detaching, otherwise, it'd be suppressed/lost. */
1373
1374 static int
1375 get_detach_signal (struct thread_info *thread)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378 int status;
1379 struct lwp_info *lp = get_thread_lwp (thread);
1380
1381 if (lp->status_pending_p)
1382 status = lp->status_pending;
1383 else
1384 {
1385 /* If the thread had been suspended by gdbserver, and it stopped
1386 cleanly, then it'll have stopped with SIGSTOP. But we don't
1387 want to deliver that SIGSTOP. */
1388 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1389 || thread->last_status.value.sig == GDB_SIGNAL_0)
1390 return 0;
1391
1392 /* Otherwise, we may need to deliver the signal we
1393 intercepted. */
1394 status = lp->last_status;
1395 }
1396
1397 if (!WIFSTOPPED (status))
1398 {
1399 if (debug_threads)
1400 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1401 target_pid_to_str (ptid_of (thread)));
1402 return 0;
1403 }
1404
1405 /* Extended wait statuses aren't real SIGTRAPs. */
1406 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1407 {
1408 if (debug_threads)
1409 debug_printf ("GPS: lwp %s had stopped with extended "
1410 "status: no pending signal\n",
1411 target_pid_to_str (ptid_of (thread)));
1412 return 0;
1413 }
1414
1415 signo = gdb_signal_from_host (WSTOPSIG (status));
1416
1417 if (program_signals_p && !program_signals[signo])
1418 {
1419 if (debug_threads)
1420 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1421 target_pid_to_str (ptid_of (thread)),
1422 gdb_signal_to_string (signo));
1423 return 0;
1424 }
1425 else if (!program_signals_p
1426 /* If we have no way to know which signals GDB does not
1427 want to have passed to the program, assume
1428 SIGTRAP/SIGINT, which is GDB's default. */
1429 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1430 {
1431 if (debug_threads)
1432 debug_printf ("GPS: lwp %s had signal %s, "
1433 "but we don't know if we should pass it. "
1434 "Default to not.\n",
1435 target_pid_to_str (ptid_of (thread)),
1436 gdb_signal_to_string (signo));
1437 return 0;
1438 }
1439 else
1440 {
1441 if (debug_threads)
1442 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1443 target_pid_to_str (ptid_of (thread)),
1444 gdb_signal_to_string (signo));
1445
1446 return WSTOPSIG (status);
1447 }
1448 }
1449
1450 static int
1451 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1452 {
1453 struct thread_info *thread = (struct thread_info *) entry;
1454 struct lwp_info *lwp = get_thread_lwp (thread);
1455 int pid = * (int *) args;
1456 int sig;
1457
1458 if (ptid_get_pid (entry->id) != pid)
1459 return 0;
1460
1461 /* If there is a pending SIGSTOP, get rid of it. */
1462 if (lwp->stop_expected)
1463 {
1464 if (debug_threads)
1465 debug_printf ("Sending SIGCONT to %s\n",
1466 target_pid_to_str (ptid_of (thread)));
1467
1468 kill_lwp (lwpid_of (thread), SIGCONT);
1469 lwp->stop_expected = 0;
1470 }
1471
1472 /* Flush any pending changes to the process's registers. */
1473 regcache_invalidate_thread (thread);
1474
1475 /* Pass on any pending signal for this thread. */
1476 sig = get_detach_signal (thread);
1477
1478 /* Finally, let it resume. */
1479 if (the_low_target.prepare_to_resume != NULL)
1480 the_low_target.prepare_to_resume (lwp);
1481 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1482 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1483 error (_("Can't detach %s: %s"),
1484 target_pid_to_str (ptid_of (thread)),
1485 strerror (errno));
1486
1487 delete_lwp (lwp);
1488 return 0;
1489 }
1490
1491 static int
1492 linux_detach (int pid)
1493 {
1494 struct process_info *process;
1495
1496 process = find_process_pid (pid);
1497 if (process == NULL)
1498 return -1;
1499
1500 /* As there's a step over already in progress, let it finish first,
1501 otherwise nesting a stabilize_threads operation on top gets real
1502 messy. */
1503 complete_ongoing_step_over ();
1504
1505 /* Stop all threads before detaching. First, ptrace requires that
1506 the thread is stopped to sucessfully detach. Second, thread_db
1507 may need to uninstall thread event breakpoints from memory, which
1508 only works with a stopped process anyway. */
1509 stop_all_lwps (0, NULL);
1510
1511 #ifdef USE_THREAD_DB
1512 thread_db_detach (process);
1513 #endif
1514
1515 /* Stabilize threads (move out of jump pads). */
1516 stabilize_threads ();
1517
1518 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1519
1520 the_target->mourn (process);
1521
1522 /* Since we presently can only stop all lwps of all processes, we
1523 need to unstop lwps of other processes. */
1524 unstop_all_lwps (0, NULL);
1525 return 0;
1526 }
1527
1528 /* Remove all LWPs that belong to process PROC from the lwp list. */
1529
1530 static int
1531 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1532 {
1533 struct thread_info *thread = (struct thread_info *) entry;
1534 struct lwp_info *lwp = get_thread_lwp (thread);
1535 struct process_info *process = (struct process_info *) proc;
1536
1537 if (pid_of (thread) == pid_of (process))
1538 delete_lwp (lwp);
1539
1540 return 0;
1541 }
1542
1543 static void
1544 linux_mourn (struct process_info *process)
1545 {
1546 struct process_info_private *priv;
1547
1548 #ifdef USE_THREAD_DB
1549 thread_db_mourn (process);
1550 #endif
1551
1552 find_inferior (&all_threads, delete_lwp_callback, process);
1553
1554 /* Freeing all private data. */
1555 priv = process->priv;
1556 free (priv->arch_private);
1557 free (priv);
1558 process->priv = NULL;
1559
1560 remove_process (process);
1561 }
1562
1563 static void
1564 linux_join (int pid)
1565 {
1566 int status, ret;
1567
1568 do {
1569 ret = my_waitpid (pid, &status, 0);
1570 if (WIFEXITED (status) || WIFSIGNALED (status))
1571 break;
1572 } while (ret != -1 || errno != ECHILD);
1573 }
1574
1575 /* Return nonzero if the given thread is still alive. */
1576 static int
1577 linux_thread_alive (ptid_t ptid)
1578 {
1579 struct lwp_info *lwp = find_lwp_pid (ptid);
1580
1581 /* We assume we always know if a thread exits. If a whole process
1582 exited but we still haven't been able to report it to GDB, we'll
1583 hold on to the last lwp of the dead process. */
1584 if (lwp != NULL)
1585 return !lwp_is_marked_dead (lwp);
1586 else
1587 return 0;
1588 }
1589
1590 /* Return 1 if this lwp still has an interesting status pending. If
1591 not (e.g., it had stopped for a breakpoint that is gone), return
1592 false. */
1593
1594 static int
1595 thread_still_has_status_pending_p (struct thread_info *thread)
1596 {
1597 struct lwp_info *lp = get_thread_lwp (thread);
1598
1599 if (!lp->status_pending_p)
1600 return 0;
1601
1602 if (thread->last_resume_kind != resume_stop
1603 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1604 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1605 {
1606 struct thread_info *saved_thread;
1607 CORE_ADDR pc;
1608 int discard = 0;
1609
1610 gdb_assert (lp->last_status != 0);
1611
1612 pc = get_pc (lp);
1613
1614 saved_thread = current_thread;
1615 current_thread = thread;
1616
1617 if (pc != lp->stop_pc)
1618 {
1619 if (debug_threads)
1620 debug_printf ("PC of %ld changed\n",
1621 lwpid_of (thread));
1622 discard = 1;
1623 }
1624
1625 #if !USE_SIGTRAP_SIGINFO
1626 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1627 && !(*the_low_target.breakpoint_at) (pc))
1628 {
1629 if (debug_threads)
1630 debug_printf ("previous SW breakpoint of %ld gone\n",
1631 lwpid_of (thread));
1632 discard = 1;
1633 }
1634 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1635 && !hardware_breakpoint_inserted_here (pc))
1636 {
1637 if (debug_threads)
1638 debug_printf ("previous HW breakpoint of %ld gone\n",
1639 lwpid_of (thread));
1640 discard = 1;
1641 }
1642 #endif
1643
1644 current_thread = saved_thread;
1645
1646 if (discard)
1647 {
1648 if (debug_threads)
1649 debug_printf ("discarding pending breakpoint status\n");
1650 lp->status_pending_p = 0;
1651 return 0;
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Returns true if LWP is resumed from the client's perspective. */
1659
1660 static int
1661 lwp_resumed (struct lwp_info *lwp)
1662 {
1663 struct thread_info *thread = get_lwp_thread (lwp);
1664
1665 if (thread->last_resume_kind != resume_stop)
1666 return 1;
1667
1668 /* Did gdb send us a `vCont;t', but we haven't reported the
1669 corresponding stop to gdb yet? If so, the thread is still
1670 resumed/running from gdb's perspective. */
1671 if (thread->last_resume_kind == resume_stop
1672 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1673 return 1;
1674
1675 return 0;
1676 }
1677
1678 /* Return 1 if this lwp has an interesting status pending. */
1679 static int
1680 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1681 {
1682 struct thread_info *thread = (struct thread_info *) entry;
1683 struct lwp_info *lp = get_thread_lwp (thread);
1684 ptid_t ptid = * (ptid_t *) arg;
1685
1686 /* Check if we're only interested in events from a specific process
1687 or a specific LWP. */
1688 if (!ptid_match (ptid_of (thread), ptid))
1689 return 0;
1690
1691 if (!lwp_resumed (lp))
1692 return 0;
1693
1694 if (lp->status_pending_p
1695 && !thread_still_has_status_pending_p (thread))
1696 {
1697 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1698 return 0;
1699 }
1700
1701 return lp->status_pending_p;
1702 }
1703
1704 static int
1705 same_lwp (struct inferior_list_entry *entry, void *data)
1706 {
1707 ptid_t ptid = *(ptid_t *) data;
1708 int lwp;
1709
1710 if (ptid_get_lwp (ptid) != 0)
1711 lwp = ptid_get_lwp (ptid);
1712 else
1713 lwp = ptid_get_pid (ptid);
1714
1715 if (ptid_get_lwp (entry->id) == lwp)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 struct lwp_info *
1722 find_lwp_pid (ptid_t ptid)
1723 {
1724 struct inferior_list_entry *thread
1725 = find_inferior (&all_threads, same_lwp, &ptid);
1726
1727 if (thread == NULL)
1728 return NULL;
1729
1730 return get_thread_lwp ((struct thread_info *) thread);
1731 }
1732
1733 /* Return the number of known LWPs in the tgid given by PID. */
1734
1735 static int
1736 num_lwps (int pid)
1737 {
1738 struct inferior_list_entry *inf, *tmp;
1739 int count = 0;
1740
1741 ALL_INFERIORS (&all_threads, inf, tmp)
1742 {
1743 if (ptid_get_pid (inf->id) == pid)
1744 count++;
1745 }
1746
1747 return count;
1748 }
1749
1750 /* The arguments passed to iterate_over_lwps. */
1751
1752 struct iterate_over_lwps_args
1753 {
1754 /* The FILTER argument passed to iterate_over_lwps. */
1755 ptid_t filter;
1756
1757 /* The CALLBACK argument passed to iterate_over_lwps. */
1758 iterate_over_lwps_ftype *callback;
1759
1760 /* The DATA argument passed to iterate_over_lwps. */
1761 void *data;
1762 };
1763
1764 /* Callback for find_inferior used by iterate_over_lwps to filter
1765 calls to the callback supplied to that function. Returning a
1766 nonzero value causes find_inferiors to stop iterating and return
1767 the current inferior_list_entry. Returning zero indicates that
1768 find_inferiors should continue iterating. */
1769
1770 static int
1771 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1772 {
1773 struct iterate_over_lwps_args *args
1774 = (struct iterate_over_lwps_args *) args_p;
1775
1776 if (ptid_match (entry->id, args->filter))
1777 {
1778 struct thread_info *thr = (struct thread_info *) entry;
1779 struct lwp_info *lwp = get_thread_lwp (thr);
1780
1781 return (*args->callback) (lwp, args->data);
1782 }
1783
1784 return 0;
1785 }
1786
1787 /* See nat/linux-nat.h. */
1788
1789 struct lwp_info *
1790 iterate_over_lwps (ptid_t filter,
1791 iterate_over_lwps_ftype callback,
1792 void *data)
1793 {
1794 struct iterate_over_lwps_args args = {filter, callback, data};
1795 struct inferior_list_entry *entry;
1796
1797 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1798 if (entry == NULL)
1799 return NULL;
1800
1801 return get_thread_lwp ((struct thread_info *) entry);
1802 }
1803
1804 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1805 their exits until all other threads in the group have exited. */
1806
1807 static void
1808 check_zombie_leaders (void)
1809 {
1810 struct process_info *proc, *tmp;
1811
1812 ALL_PROCESSES (proc, tmp)
1813 {
1814 pid_t leader_pid = pid_of (proc);
1815 struct lwp_info *leader_lp;
1816
1817 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1818
1819 if (debug_threads)
1820 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1821 "num_lwps=%d, zombie=%d\n",
1822 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1823 linux_proc_pid_is_zombie (leader_pid));
1824
1825 if (leader_lp != NULL && !leader_lp->stopped
1826 /* Check if there are other threads in the group, as we may
1827 have raced with the inferior simply exiting. */
1828 && !last_thread_of_process_p (leader_pid)
1829 && linux_proc_pid_is_zombie (leader_pid))
1830 {
1831 /* A leader zombie can mean one of two things:
1832
1833 - It exited, and there's an exit status pending
1834 available, or only the leader exited (not the whole
1835 program). In the latter case, we can't waitpid the
1836 leader's exit status until all other threads are gone.
1837
1838 - There are 3 or more threads in the group, and a thread
1839 other than the leader exec'd. On an exec, the Linux
1840 kernel destroys all other threads (except the execing
1841 one) in the thread group, and resets the execing thread's
1842 tid to the tgid. No exit notification is sent for the
1843 execing thread -- from the ptracer's perspective, it
1844 appears as though the execing thread just vanishes.
1845 Until we reap all other threads except the leader and the
1846 execing thread, the leader will be zombie, and the
1847 execing thread will be in `D (disc sleep)'. As soon as
1848 all other threads are reaped, the execing thread changes
1849 it's tid to the tgid, and the previous (zombie) leader
1850 vanishes, giving place to the "new" leader. We could try
1851 distinguishing the exit and exec cases, by waiting once
1852 more, and seeing if something comes out, but it doesn't
1853 sound useful. The previous leader _does_ go away, and
1854 we'll re-add the new one once we see the exec event
1855 (which is just the same as what would happen if the
1856 previous leader did exit voluntarily before some other
1857 thread execs). */
1858
1859 if (debug_threads)
1860 fprintf (stderr,
1861 "CZL: Thread group leader %d zombie "
1862 "(it exited, or another thread execd).\n",
1863 leader_pid);
1864
1865 delete_lwp (leader_lp);
1866 }
1867 }
1868 }
1869
1870 /* Callback for `find_inferior'. Returns the first LWP that is not
1871 stopped. ARG is a PTID filter. */
1872
1873 static int
1874 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1875 {
1876 struct thread_info *thr = (struct thread_info *) entry;
1877 struct lwp_info *lwp;
1878 ptid_t filter = *(ptid_t *) arg;
1879
1880 if (!ptid_match (ptid_of (thr), filter))
1881 return 0;
1882
1883 lwp = get_thread_lwp (thr);
1884 if (!lwp->stopped)
1885 return 1;
1886
1887 return 0;
1888 }
1889
1890 /* Increment LWP's suspend count. */
1891
1892 static void
1893 lwp_suspended_inc (struct lwp_info *lwp)
1894 {
1895 lwp->suspended++;
1896
1897 if (debug_threads && lwp->suspended > 4)
1898 {
1899 struct thread_info *thread = get_lwp_thread (lwp);
1900
1901 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1902 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1903 }
1904 }
1905
1906 /* Decrement LWP's suspend count. */
1907
1908 static void
1909 lwp_suspended_decr (struct lwp_info *lwp)
1910 {
1911 lwp->suspended--;
1912
1913 if (lwp->suspended < 0)
1914 {
1915 struct thread_info *thread = get_lwp_thread (lwp);
1916
1917 internal_error (__FILE__, __LINE__,
1918 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1919 lwp->suspended);
1920 }
1921 }
1922
1923 /* This function should only be called if the LWP got a SIGTRAP.
1924
1925 Handle any tracepoint steps or hits. Return true if a tracepoint
1926 event was handled, 0 otherwise. */
1927
1928 static int
1929 handle_tracepoints (struct lwp_info *lwp)
1930 {
1931 struct thread_info *tinfo = get_lwp_thread (lwp);
1932 int tpoint_related_event = 0;
1933
1934 gdb_assert (lwp->suspended == 0);
1935
1936 /* If this tracepoint hit causes a tracing stop, we'll immediately
1937 uninsert tracepoints. To do this, we temporarily pause all
1938 threads, unpatch away, and then unpause threads. We need to make
1939 sure the unpausing doesn't resume LWP too. */
1940 lwp_suspended_inc (lwp);
1941
1942 /* And we need to be sure that any all-threads-stopping doesn't try
1943 to move threads out of the jump pads, as it could deadlock the
1944 inferior (LWP could be in the jump pad, maybe even holding the
1945 lock.) */
1946
1947 /* Do any necessary step collect actions. */
1948 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1949
1950 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1951
1952 /* See if we just hit a tracepoint and do its main collect
1953 actions. */
1954 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1955
1956 lwp_suspended_decr (lwp);
1957
1958 gdb_assert (lwp->suspended == 0);
1959 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1960
1961 if (tpoint_related_event)
1962 {
1963 if (debug_threads)
1964 debug_printf ("got a tracepoint event\n");
1965 return 1;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* Convenience wrapper. Returns true if LWP is presently collecting a
1972 fast tracepoint. */
1973
1974 static int
1975 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1976 struct fast_tpoint_collect_status *status)
1977 {
1978 CORE_ADDR thread_area;
1979 struct thread_info *thread = get_lwp_thread (lwp);
1980
1981 if (the_low_target.get_thread_area == NULL)
1982 return 0;
1983
1984 /* Get the thread area address. This is used to recognize which
1985 thread is which when tracing with the in-process agent library.
1986 We don't read anything from the address, and treat it as opaque;
1987 it's the address itself that we assume is unique per-thread. */
1988 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1989 return 0;
1990
1991 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1992 }
1993
1994 /* The reason we resume in the caller, is because we want to be able
1995 to pass lwp->status_pending as WSTAT, and we need to clear
1996 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1997 refuses to resume. */
1998
1999 static int
2000 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2001 {
2002 struct thread_info *saved_thread;
2003
2004 saved_thread = current_thread;
2005 current_thread = get_lwp_thread (lwp);
2006
2007 if ((wstat == NULL
2008 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2009 && supports_fast_tracepoints ()
2010 && agent_loaded_p ())
2011 {
2012 struct fast_tpoint_collect_status status;
2013 int r;
2014
2015 if (debug_threads)
2016 debug_printf ("Checking whether LWP %ld needs to move out of the "
2017 "jump pad.\n",
2018 lwpid_of (current_thread));
2019
2020 r = linux_fast_tracepoint_collecting (lwp, &status);
2021
2022 if (wstat == NULL
2023 || (WSTOPSIG (*wstat) != SIGILL
2024 && WSTOPSIG (*wstat) != SIGFPE
2025 && WSTOPSIG (*wstat) != SIGSEGV
2026 && WSTOPSIG (*wstat) != SIGBUS))
2027 {
2028 lwp->collecting_fast_tracepoint = r;
2029
2030 if (r != 0)
2031 {
2032 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2033 {
2034 /* Haven't executed the original instruction yet.
2035 Set breakpoint there, and wait till it's hit,
2036 then single-step until exiting the jump pad. */
2037 lwp->exit_jump_pad_bkpt
2038 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2039 }
2040
2041 if (debug_threads)
2042 debug_printf ("Checking whether LWP %ld needs to move out of "
2043 "the jump pad...it does\n",
2044 lwpid_of (current_thread));
2045 current_thread = saved_thread;
2046
2047 return 1;
2048 }
2049 }
2050 else
2051 {
2052 /* If we get a synchronous signal while collecting, *and*
2053 while executing the (relocated) original instruction,
2054 reset the PC to point at the tpoint address, before
2055 reporting to GDB. Otherwise, it's an IPA lib bug: just
2056 report the signal to GDB, and pray for the best. */
2057
2058 lwp->collecting_fast_tracepoint = 0;
2059
2060 if (r != 0
2061 && (status.adjusted_insn_addr <= lwp->stop_pc
2062 && lwp->stop_pc < status.adjusted_insn_addr_end))
2063 {
2064 siginfo_t info;
2065 struct regcache *regcache;
2066
2067 /* The si_addr on a few signals references the address
2068 of the faulting instruction. Adjust that as
2069 well. */
2070 if ((WSTOPSIG (*wstat) == SIGILL
2071 || WSTOPSIG (*wstat) == SIGFPE
2072 || WSTOPSIG (*wstat) == SIGBUS
2073 || WSTOPSIG (*wstat) == SIGSEGV)
2074 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2075 (PTRACE_TYPE_ARG3) 0, &info) == 0
2076 /* Final check just to make sure we don't clobber
2077 the siginfo of non-kernel-sent signals. */
2078 && (uintptr_t) info.si_addr == lwp->stop_pc)
2079 {
2080 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2081 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2082 (PTRACE_TYPE_ARG3) 0, &info);
2083 }
2084
2085 regcache = get_thread_regcache (current_thread, 1);
2086 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2087 lwp->stop_pc = status.tpoint_addr;
2088
2089 /* Cancel any fast tracepoint lock this thread was
2090 holding. */
2091 force_unlock_trace_buffer ();
2092 }
2093
2094 if (lwp->exit_jump_pad_bkpt != NULL)
2095 {
2096 if (debug_threads)
2097 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2098 "stopping all threads momentarily.\n");
2099
2100 stop_all_lwps (1, lwp);
2101
2102 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2103 lwp->exit_jump_pad_bkpt = NULL;
2104
2105 unstop_all_lwps (1, lwp);
2106
2107 gdb_assert (lwp->suspended >= 0);
2108 }
2109 }
2110 }
2111
2112 if (debug_threads)
2113 debug_printf ("Checking whether LWP %ld needs to move out of the "
2114 "jump pad...no\n",
2115 lwpid_of (current_thread));
2116
2117 current_thread = saved_thread;
2118 return 0;
2119 }
2120
2121 /* Enqueue one signal in the "signals to report later when out of the
2122 jump pad" list. */
2123
2124 static void
2125 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2126 {
2127 struct pending_signals *p_sig;
2128 struct thread_info *thread = get_lwp_thread (lwp);
2129
2130 if (debug_threads)
2131 debug_printf ("Deferring signal %d for LWP %ld.\n",
2132 WSTOPSIG (*wstat), lwpid_of (thread));
2133
2134 if (debug_threads)
2135 {
2136 struct pending_signals *sig;
2137
2138 for (sig = lwp->pending_signals_to_report;
2139 sig != NULL;
2140 sig = sig->prev)
2141 debug_printf (" Already queued %d\n",
2142 sig->signal);
2143
2144 debug_printf (" (no more currently queued signals)\n");
2145 }
2146
2147 /* Don't enqueue non-RT signals if they are already in the deferred
2148 queue. (SIGSTOP being the easiest signal to see ending up here
2149 twice) */
2150 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2151 {
2152 struct pending_signals *sig;
2153
2154 for (sig = lwp->pending_signals_to_report;
2155 sig != NULL;
2156 sig = sig->prev)
2157 {
2158 if (sig->signal == WSTOPSIG (*wstat))
2159 {
2160 if (debug_threads)
2161 debug_printf ("Not requeuing already queued non-RT signal %d"
2162 " for LWP %ld\n",
2163 sig->signal,
2164 lwpid_of (thread));
2165 return;
2166 }
2167 }
2168 }
2169
2170 p_sig = XCNEW (struct pending_signals);
2171 p_sig->prev = lwp->pending_signals_to_report;
2172 p_sig->signal = WSTOPSIG (*wstat);
2173
2174 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2175 &p_sig->info);
2176
2177 lwp->pending_signals_to_report = p_sig;
2178 }
2179
2180 /* Dequeue one signal from the "signals to report later when out of
2181 the jump pad" list. */
2182
2183 static int
2184 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2185 {
2186 struct thread_info *thread = get_lwp_thread (lwp);
2187
2188 if (lwp->pending_signals_to_report != NULL)
2189 {
2190 struct pending_signals **p_sig;
2191
2192 p_sig = &lwp->pending_signals_to_report;
2193 while ((*p_sig)->prev != NULL)
2194 p_sig = &(*p_sig)->prev;
2195
2196 *wstat = W_STOPCODE ((*p_sig)->signal);
2197 if ((*p_sig)->info.si_signo != 0)
2198 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2199 &(*p_sig)->info);
2200 free (*p_sig);
2201 *p_sig = NULL;
2202
2203 if (debug_threads)
2204 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2205 WSTOPSIG (*wstat), lwpid_of (thread));
2206
2207 if (debug_threads)
2208 {
2209 struct pending_signals *sig;
2210
2211 for (sig = lwp->pending_signals_to_report;
2212 sig != NULL;
2213 sig = sig->prev)
2214 debug_printf (" Still queued %d\n",
2215 sig->signal);
2216
2217 debug_printf (" (no more queued signals)\n");
2218 }
2219
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 /* Fetch the possibly triggered data watchpoint info and store it in
2227 CHILD.
2228
2229 On some archs, like x86, that use debug registers to set
2230 watchpoints, it's possible that the way to know which watched
2231 address trapped, is to check the register that is used to select
2232 which address to watch. Problem is, between setting the watchpoint
2233 and reading back which data address trapped, the user may change
2234 the set of watchpoints, and, as a consequence, GDB changes the
2235 debug registers in the inferior. To avoid reading back a stale
2236 stopped-data-address when that happens, we cache in LP the fact
2237 that a watchpoint trapped, and the corresponding data address, as
2238 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2239 registers meanwhile, we have the cached data we can rely on. */
2240
2241 static int
2242 check_stopped_by_watchpoint (struct lwp_info *child)
2243 {
2244 if (the_low_target.stopped_by_watchpoint != NULL)
2245 {
2246 struct thread_info *saved_thread;
2247
2248 saved_thread = current_thread;
2249 current_thread = get_lwp_thread (child);
2250
2251 if (the_low_target.stopped_by_watchpoint ())
2252 {
2253 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2254
2255 if (the_low_target.stopped_data_address != NULL)
2256 child->stopped_data_address
2257 = the_low_target.stopped_data_address ();
2258 else
2259 child->stopped_data_address = 0;
2260 }
2261
2262 current_thread = saved_thread;
2263 }
2264
2265 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2266 }
2267
2268 /* Return the ptrace options that we want to try to enable. */
2269
2270 static int
2271 linux_low_ptrace_options (int attached)
2272 {
2273 int options = 0;
2274
2275 if (!attached)
2276 options |= PTRACE_O_EXITKILL;
2277
2278 if (report_fork_events)
2279 options |= PTRACE_O_TRACEFORK;
2280
2281 if (report_vfork_events)
2282 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2283
2284 if (report_exec_events)
2285 options |= PTRACE_O_TRACEEXEC;
2286
2287 options |= PTRACE_O_TRACESYSGOOD;
2288
2289 return options;
2290 }
2291
2292 /* Do low-level handling of the event, and check if we should go on
2293 and pass it to caller code. Return the affected lwp if we are, or
2294 NULL otherwise. */
2295
2296 static struct lwp_info *
2297 linux_low_filter_event (int lwpid, int wstat)
2298 {
2299 struct lwp_info *child;
2300 struct thread_info *thread;
2301 int have_stop_pc = 0;
2302
2303 child = find_lwp_pid (pid_to_ptid (lwpid));
2304
2305 /* Check for stop events reported by a process we didn't already
2306 know about - anything not already in our LWP list.
2307
2308 If we're expecting to receive stopped processes after
2309 fork, vfork, and clone events, then we'll just add the
2310 new one to our list and go back to waiting for the event
2311 to be reported - the stopped process might be returned
2312 from waitpid before or after the event is.
2313
2314 But note the case of a non-leader thread exec'ing after the
2315 leader having exited, and gone from our lists (because
2316 check_zombie_leaders deleted it). The non-leader thread
2317 changes its tid to the tgid. */
2318
2319 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2320 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2321 {
2322 ptid_t child_ptid;
2323
2324 /* A multi-thread exec after we had seen the leader exiting. */
2325 if (debug_threads)
2326 {
2327 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2328 "after exec.\n", lwpid);
2329 }
2330
2331 child_ptid = ptid_build (lwpid, lwpid, 0);
2332 child = add_lwp (child_ptid);
2333 child->stopped = 1;
2334 current_thread = child->thread;
2335 }
2336
2337 /* If we didn't find a process, one of two things presumably happened:
2338 - A process we started and then detached from has exited. Ignore it.
2339 - A process we are controlling has forked and the new child's stop
2340 was reported to us by the kernel. Save its PID. */
2341 if (child == NULL && WIFSTOPPED (wstat))
2342 {
2343 add_to_pid_list (&stopped_pids, lwpid, wstat);
2344 return NULL;
2345 }
2346 else if (child == NULL)
2347 return NULL;
2348
2349 thread = get_lwp_thread (child);
2350
2351 child->stopped = 1;
2352
2353 child->last_status = wstat;
2354
2355 /* Check if the thread has exited. */
2356 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2357 {
2358 if (debug_threads)
2359 debug_printf ("LLFE: %d exited.\n", lwpid);
2360 /* If there is at least one more LWP, then the exit signal was
2361 not the end of the debugged application and should be
2362 ignored, unless GDB wants to hear about thread exits. */
2363 if (report_thread_events
2364 || last_thread_of_process_p (pid_of (thread)))
2365 {
2366 /* Since events are serialized to GDB core, and we can't
2367 report this one right now. Leave the status pending for
2368 the next time we're able to report it. */
2369 mark_lwp_dead (child, wstat);
2370 return child;
2371 }
2372 else
2373 {
2374 delete_lwp (child);
2375 return NULL;
2376 }
2377 }
2378
2379 gdb_assert (WIFSTOPPED (wstat));
2380
2381 if (WIFSTOPPED (wstat))
2382 {
2383 struct process_info *proc;
2384
2385 /* Architecture-specific setup after inferior is running. */
2386 proc = find_process_pid (pid_of (thread));
2387 if (proc->tdesc == NULL)
2388 {
2389 if (proc->attached)
2390 {
2391 /* This needs to happen after we have attached to the
2392 inferior and it is stopped for the first time, but
2393 before we access any inferior registers. */
2394 linux_arch_setup_thread (thread);
2395 }
2396 else
2397 {
2398 /* The process is started, but GDBserver will do
2399 architecture-specific setup after the program stops at
2400 the first instruction. */
2401 child->status_pending_p = 1;
2402 child->status_pending = wstat;
2403 return child;
2404 }
2405 }
2406 }
2407
2408 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2409 {
2410 struct process_info *proc = find_process_pid (pid_of (thread));
2411 int options = linux_low_ptrace_options (proc->attached);
2412
2413 linux_enable_event_reporting (lwpid, options);
2414 child->must_set_ptrace_flags = 0;
2415 }
2416
2417 /* Always update syscall_state, even if it will be filtered later. */
2418 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2419 {
2420 child->syscall_state
2421 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2422 ? TARGET_WAITKIND_SYSCALL_RETURN
2423 : TARGET_WAITKIND_SYSCALL_ENTRY);
2424 }
2425 else
2426 {
2427 /* Almost all other ptrace-stops are known to be outside of system
2428 calls, with further exceptions in handle_extended_wait. */
2429 child->syscall_state = TARGET_WAITKIND_IGNORE;
2430 }
2431
2432 /* Be careful to not overwrite stop_pc until save_stop_reason is
2433 called. */
2434 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2435 && linux_is_extended_waitstatus (wstat))
2436 {
2437 child->stop_pc = get_pc (child);
2438 if (handle_extended_wait (&child, wstat))
2439 {
2440 /* The event has been handled, so just return without
2441 reporting it. */
2442 return NULL;
2443 }
2444 }
2445
2446 if (linux_wstatus_maybe_breakpoint (wstat))
2447 {
2448 if (save_stop_reason (child))
2449 have_stop_pc = 1;
2450 }
2451
2452 if (!have_stop_pc)
2453 child->stop_pc = get_pc (child);
2454
2455 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2456 && child->stop_expected)
2457 {
2458 if (debug_threads)
2459 debug_printf ("Expected stop.\n");
2460 child->stop_expected = 0;
2461
2462 if (thread->last_resume_kind == resume_stop)
2463 {
2464 /* We want to report the stop to the core. Treat the
2465 SIGSTOP as a normal event. */
2466 if (debug_threads)
2467 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2468 target_pid_to_str (ptid_of (thread)));
2469 }
2470 else if (stopping_threads != NOT_STOPPING_THREADS)
2471 {
2472 /* Stopping threads. We don't want this SIGSTOP to end up
2473 pending. */
2474 if (debug_threads)
2475 debug_printf ("LLW: SIGSTOP caught for %s "
2476 "while stopping threads.\n",
2477 target_pid_to_str (ptid_of (thread)));
2478 return NULL;
2479 }
2480 else
2481 {
2482 /* This is a delayed SIGSTOP. Filter out the event. */
2483 if (debug_threads)
2484 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2485 child->stepping ? "step" : "continue",
2486 target_pid_to_str (ptid_of (thread)));
2487
2488 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2489 return NULL;
2490 }
2491 }
2492
2493 child->status_pending_p = 1;
2494 child->status_pending = wstat;
2495 return child;
2496 }
2497
2498 /* Resume LWPs that are currently stopped without any pending status
2499 to report, but are resumed from the core's perspective. */
2500
2501 static void
2502 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2503 {
2504 struct thread_info *thread = (struct thread_info *) entry;
2505 struct lwp_info *lp = get_thread_lwp (thread);
2506
2507 if (lp->stopped
2508 && !lp->suspended
2509 && !lp->status_pending_p
2510 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2511 {
2512 int step = thread->last_resume_kind == resume_step;
2513
2514 if (debug_threads)
2515 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2516 target_pid_to_str (ptid_of (thread)),
2517 paddress (lp->stop_pc),
2518 step);
2519
2520 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2521 }
2522 }
2523
2524 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2525 match FILTER_PTID (leaving others pending). The PTIDs can be:
2526 minus_one_ptid, to specify any child; a pid PTID, specifying all
2527 lwps of a thread group; or a PTID representing a single lwp. Store
2528 the stop status through the status pointer WSTAT. OPTIONS is
2529 passed to the waitpid call. Return 0 if no event was found and
2530 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2531 was found. Return the PID of the stopped child otherwise. */
2532
2533 static int
2534 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2535 int *wstatp, int options)
2536 {
2537 struct thread_info *event_thread;
2538 struct lwp_info *event_child, *requested_child;
2539 sigset_t block_mask, prev_mask;
2540
2541 retry:
2542 /* N.B. event_thread points to the thread_info struct that contains
2543 event_child. Keep them in sync. */
2544 event_thread = NULL;
2545 event_child = NULL;
2546 requested_child = NULL;
2547
2548 /* Check for a lwp with a pending status. */
2549
2550 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2551 {
2552 event_thread = (struct thread_info *)
2553 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2554 if (event_thread != NULL)
2555 event_child = get_thread_lwp (event_thread);
2556 if (debug_threads && event_thread)
2557 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2558 }
2559 else if (!ptid_equal (filter_ptid, null_ptid))
2560 {
2561 requested_child = find_lwp_pid (filter_ptid);
2562
2563 if (stopping_threads == NOT_STOPPING_THREADS
2564 && requested_child->status_pending_p
2565 && requested_child->collecting_fast_tracepoint)
2566 {
2567 enqueue_one_deferred_signal (requested_child,
2568 &requested_child->status_pending);
2569 requested_child->status_pending_p = 0;
2570 requested_child->status_pending = 0;
2571 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2572 }
2573
2574 if (requested_child->suspended
2575 && requested_child->status_pending_p)
2576 {
2577 internal_error (__FILE__, __LINE__,
2578 "requesting an event out of a"
2579 " suspended child?");
2580 }
2581
2582 if (requested_child->status_pending_p)
2583 {
2584 event_child = requested_child;
2585 event_thread = get_lwp_thread (event_child);
2586 }
2587 }
2588
2589 if (event_child != NULL)
2590 {
2591 if (debug_threads)
2592 debug_printf ("Got an event from pending child %ld (%04x)\n",
2593 lwpid_of (event_thread), event_child->status_pending);
2594 *wstatp = event_child->status_pending;
2595 event_child->status_pending_p = 0;
2596 event_child->status_pending = 0;
2597 current_thread = event_thread;
2598 return lwpid_of (event_thread);
2599 }
2600
2601 /* But if we don't find a pending event, we'll have to wait.
2602
2603 We only enter this loop if no process has a pending wait status.
2604 Thus any action taken in response to a wait status inside this
2605 loop is responding as soon as we detect the status, not after any
2606 pending events. */
2607
2608 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2609 all signals while here. */
2610 sigfillset (&block_mask);
2611 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2612
2613 /* Always pull all events out of the kernel. We'll randomly select
2614 an event LWP out of all that have events, to prevent
2615 starvation. */
2616 while (event_child == NULL)
2617 {
2618 pid_t ret = 0;
2619
2620 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2621 quirks:
2622
2623 - If the thread group leader exits while other threads in the
2624 thread group still exist, waitpid(TGID, ...) hangs. That
2625 waitpid won't return an exit status until the other threads
2626 in the group are reaped.
2627
2628 - When a non-leader thread execs, that thread just vanishes
2629 without reporting an exit (so we'd hang if we waited for it
2630 explicitly in that case). The exec event is reported to
2631 the TGID pid. */
2632 errno = 0;
2633 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2634
2635 if (debug_threads)
2636 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2637 ret, errno ? strerror (errno) : "ERRNO-OK");
2638
2639 if (ret > 0)
2640 {
2641 if (debug_threads)
2642 {
2643 debug_printf ("LLW: waitpid %ld received %s\n",
2644 (long) ret, status_to_str (*wstatp));
2645 }
2646
2647 /* Filter all events. IOW, leave all events pending. We'll
2648 randomly select an event LWP out of all that have events
2649 below. */
2650 linux_low_filter_event (ret, *wstatp);
2651 /* Retry until nothing comes out of waitpid. A single
2652 SIGCHLD can indicate more than one child stopped. */
2653 continue;
2654 }
2655
2656 /* Now that we've pulled all events out of the kernel, resume
2657 LWPs that don't have an interesting event to report. */
2658 if (stopping_threads == NOT_STOPPING_THREADS)
2659 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2660
2661 /* ... and find an LWP with a status to report to the core, if
2662 any. */
2663 event_thread = (struct thread_info *)
2664 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2665 if (event_thread != NULL)
2666 {
2667 event_child = get_thread_lwp (event_thread);
2668 *wstatp = event_child->status_pending;
2669 event_child->status_pending_p = 0;
2670 event_child->status_pending = 0;
2671 break;
2672 }
2673
2674 /* Check for zombie thread group leaders. Those can't be reaped
2675 until all other threads in the thread group are. */
2676 check_zombie_leaders ();
2677
2678 /* If there are no resumed children left in the set of LWPs we
2679 want to wait for, bail. We can't just block in
2680 waitpid/sigsuspend, because lwps might have been left stopped
2681 in trace-stop state, and we'd be stuck forever waiting for
2682 their status to change (which would only happen if we resumed
2683 them). Even if WNOHANG is set, this return code is preferred
2684 over 0 (below), as it is more detailed. */
2685 if ((find_inferior (&all_threads,
2686 not_stopped_callback,
2687 &wait_ptid) == NULL))
2688 {
2689 if (debug_threads)
2690 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2691 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2692 return -1;
2693 }
2694
2695 /* No interesting event to report to the caller. */
2696 if ((options & WNOHANG))
2697 {
2698 if (debug_threads)
2699 debug_printf ("WNOHANG set, no event found\n");
2700
2701 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2702 return 0;
2703 }
2704
2705 /* Block until we get an event reported with SIGCHLD. */
2706 if (debug_threads)
2707 debug_printf ("sigsuspend'ing\n");
2708
2709 sigsuspend (&prev_mask);
2710 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2711 goto retry;
2712 }
2713
2714 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2715
2716 current_thread = event_thread;
2717
2718 return lwpid_of (event_thread);
2719 }
2720
2721 /* Wait for an event from child(ren) PTID. PTIDs can be:
2722 minus_one_ptid, to specify any child; a pid PTID, specifying all
2723 lwps of a thread group; or a PTID representing a single lwp. Store
2724 the stop status through the status pointer WSTAT. OPTIONS is
2725 passed to the waitpid call. Return 0 if no event was found and
2726 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2727 was found. Return the PID of the stopped child otherwise. */
2728
2729 static int
2730 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2731 {
2732 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2733 }
2734
2735 /* Count the LWP's that have had events. */
2736
2737 static int
2738 count_events_callback (struct inferior_list_entry *entry, void *data)
2739 {
2740 struct thread_info *thread = (struct thread_info *) entry;
2741 struct lwp_info *lp = get_thread_lwp (thread);
2742 int *count = (int *) data;
2743
2744 gdb_assert (count != NULL);
2745
2746 /* Count only resumed LWPs that have an event pending. */
2747 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2748 && lp->status_pending_p)
2749 (*count)++;
2750
2751 return 0;
2752 }
2753
2754 /* Select the LWP (if any) that is currently being single-stepped. */
2755
2756 static int
2757 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2758 {
2759 struct thread_info *thread = (struct thread_info *) entry;
2760 struct lwp_info *lp = get_thread_lwp (thread);
2761
2762 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2763 && thread->last_resume_kind == resume_step
2764 && lp->status_pending_p)
2765 return 1;
2766 else
2767 return 0;
2768 }
2769
2770 /* Select the Nth LWP that has had an event. */
2771
2772 static int
2773 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2774 {
2775 struct thread_info *thread = (struct thread_info *) entry;
2776 struct lwp_info *lp = get_thread_lwp (thread);
2777 int *selector = (int *) data;
2778
2779 gdb_assert (selector != NULL);
2780
2781 /* Select only resumed LWPs that have an event pending. */
2782 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2783 && lp->status_pending_p)
2784 if ((*selector)-- == 0)
2785 return 1;
2786
2787 return 0;
2788 }
2789
2790 /* Select one LWP out of those that have events pending. */
2791
2792 static void
2793 select_event_lwp (struct lwp_info **orig_lp)
2794 {
2795 int num_events = 0;
2796 int random_selector;
2797 struct thread_info *event_thread = NULL;
2798
2799 /* In all-stop, give preference to the LWP that is being
2800 single-stepped. There will be at most one, and it's the LWP that
2801 the core is most interested in. If we didn't do this, then we'd
2802 have to handle pending step SIGTRAPs somehow in case the core
2803 later continues the previously-stepped thread, otherwise we'd
2804 report the pending SIGTRAP, and the core, not having stepped the
2805 thread, wouldn't understand what the trap was for, and therefore
2806 would report it to the user as a random signal. */
2807 if (!non_stop)
2808 {
2809 event_thread
2810 = (struct thread_info *) find_inferior (&all_threads,
2811 select_singlestep_lwp_callback,
2812 NULL);
2813 if (event_thread != NULL)
2814 {
2815 if (debug_threads)
2816 debug_printf ("SEL: Select single-step %s\n",
2817 target_pid_to_str (ptid_of (event_thread)));
2818 }
2819 }
2820 if (event_thread == NULL)
2821 {
2822 /* No single-stepping LWP. Select one at random, out of those
2823 which have had events. */
2824
2825 /* First see how many events we have. */
2826 find_inferior (&all_threads, count_events_callback, &num_events);
2827 gdb_assert (num_events > 0);
2828
2829 /* Now randomly pick a LWP out of those that have had
2830 events. */
2831 random_selector = (int)
2832 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2833
2834 if (debug_threads && num_events > 1)
2835 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2836 num_events, random_selector);
2837
2838 event_thread
2839 = (struct thread_info *) find_inferior (&all_threads,
2840 select_event_lwp_callback,
2841 &random_selector);
2842 }
2843
2844 if (event_thread != NULL)
2845 {
2846 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2847
2848 /* Switch the event LWP. */
2849 *orig_lp = event_lp;
2850 }
2851 }
2852
2853 /* Decrement the suspend count of an LWP. */
2854
2855 static int
2856 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2857 {
2858 struct thread_info *thread = (struct thread_info *) entry;
2859 struct lwp_info *lwp = get_thread_lwp (thread);
2860
2861 /* Ignore EXCEPT. */
2862 if (lwp == except)
2863 return 0;
2864
2865 lwp_suspended_decr (lwp);
2866 return 0;
2867 }
2868
2869 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2870 NULL. */
2871
2872 static void
2873 unsuspend_all_lwps (struct lwp_info *except)
2874 {
2875 find_inferior (&all_threads, unsuspend_one_lwp, except);
2876 }
2877
2878 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2879 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2880 void *data);
2881 static int lwp_running (struct inferior_list_entry *entry, void *data);
2882 static ptid_t linux_wait_1 (ptid_t ptid,
2883 struct target_waitstatus *ourstatus,
2884 int target_options);
2885
2886 /* Stabilize threads (move out of jump pads).
2887
2888 If a thread is midway collecting a fast tracepoint, we need to
2889 finish the collection and move it out of the jump pad before
2890 reporting the signal.
2891
2892 This avoids recursion while collecting (when a signal arrives
2893 midway, and the signal handler itself collects), which would trash
2894 the trace buffer. In case the user set a breakpoint in a signal
2895 handler, this avoids the backtrace showing the jump pad, etc..
2896 Most importantly, there are certain things we can't do safely if
2897 threads are stopped in a jump pad (or in its callee's). For
2898 example:
2899
2900 - starting a new trace run. A thread still collecting the
2901 previous run, could trash the trace buffer when resumed. The trace
2902 buffer control structures would have been reset but the thread had
2903 no way to tell. The thread could even midway memcpy'ing to the
2904 buffer, which would mean that when resumed, it would clobber the
2905 trace buffer that had been set for a new run.
2906
2907 - we can't rewrite/reuse the jump pads for new tracepoints
2908 safely. Say you do tstart while a thread is stopped midway while
2909 collecting. When the thread is later resumed, it finishes the
2910 collection, and returns to the jump pad, to execute the original
2911 instruction that was under the tracepoint jump at the time the
2912 older run had been started. If the jump pad had been rewritten
2913 since for something else in the new run, the thread would now
2914 execute the wrong / random instructions. */
2915
2916 static void
2917 linux_stabilize_threads (void)
2918 {
2919 struct thread_info *saved_thread;
2920 struct thread_info *thread_stuck;
2921
2922 thread_stuck
2923 = (struct thread_info *) find_inferior (&all_threads,
2924 stuck_in_jump_pad_callback,
2925 NULL);
2926 if (thread_stuck != NULL)
2927 {
2928 if (debug_threads)
2929 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2930 lwpid_of (thread_stuck));
2931 return;
2932 }
2933
2934 saved_thread = current_thread;
2935
2936 stabilizing_threads = 1;
2937
2938 /* Kick 'em all. */
2939 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2940
2941 /* Loop until all are stopped out of the jump pads. */
2942 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2943 {
2944 struct target_waitstatus ourstatus;
2945 struct lwp_info *lwp;
2946 int wstat;
2947
2948 /* Note that we go through the full wait even loop. While
2949 moving threads out of jump pad, we need to be able to step
2950 over internal breakpoints and such. */
2951 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2952
2953 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2954 {
2955 lwp = get_thread_lwp (current_thread);
2956
2957 /* Lock it. */
2958 lwp_suspended_inc (lwp);
2959
2960 if (ourstatus.value.sig != GDB_SIGNAL_0
2961 || current_thread->last_resume_kind == resume_stop)
2962 {
2963 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2964 enqueue_one_deferred_signal (lwp, &wstat);
2965 }
2966 }
2967 }
2968
2969 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2970
2971 stabilizing_threads = 0;
2972
2973 current_thread = saved_thread;
2974
2975 if (debug_threads)
2976 {
2977 thread_stuck
2978 = (struct thread_info *) find_inferior (&all_threads,
2979 stuck_in_jump_pad_callback,
2980 NULL);
2981 if (thread_stuck != NULL)
2982 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2983 lwpid_of (thread_stuck));
2984 }
2985 }
2986
2987 /* Convenience function that is called when the kernel reports an
2988 event that is not passed out to GDB. */
2989
2990 static ptid_t
2991 ignore_event (struct target_waitstatus *ourstatus)
2992 {
2993 /* If we got an event, there may still be others, as a single
2994 SIGCHLD can indicate more than one child stopped. This forces
2995 another target_wait call. */
2996 async_file_mark ();
2997
2998 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2999 return null_ptid;
3000 }
3001
3002 /* Convenience function that is called when the kernel reports an exit
3003 event. This decides whether to report the event to GDB as a
3004 process exit event, a thread exit event, or to suppress the
3005 event. */
3006
3007 static ptid_t
3008 filter_exit_event (struct lwp_info *event_child,
3009 struct target_waitstatus *ourstatus)
3010 {
3011 struct thread_info *thread = get_lwp_thread (event_child);
3012 ptid_t ptid = ptid_of (thread);
3013
3014 if (!last_thread_of_process_p (pid_of (thread)))
3015 {
3016 if (report_thread_events)
3017 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3018 else
3019 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3020
3021 delete_lwp (event_child);
3022 }
3023 return ptid;
3024 }
3025
3026 /* Returns 1 if GDB is interested in any event_child syscalls. */
3027
3028 static int
3029 gdb_catching_syscalls_p (struct lwp_info *event_child)
3030 {
3031 struct thread_info *thread = get_lwp_thread (event_child);
3032 struct process_info *proc = get_thread_process (thread);
3033
3034 return !VEC_empty (int, proc->syscalls_to_catch);
3035 }
3036
3037 /* Returns 1 if GDB is interested in the event_child syscall.
3038 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3039
3040 static int
3041 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3042 {
3043 int i, iter;
3044 int sysno, sysret;
3045 struct thread_info *thread = get_lwp_thread (event_child);
3046 struct process_info *proc = get_thread_process (thread);
3047
3048 if (VEC_empty (int, proc->syscalls_to_catch))
3049 return 0;
3050
3051 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3052 return 1;
3053
3054 get_syscall_trapinfo (event_child, &sysno, &sysret);
3055 for (i = 0;
3056 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3057 i++)
3058 if (iter == sysno)
3059 return 1;
3060
3061 return 0;
3062 }
3063
3064 /* Wait for process, returns status. */
3065
3066 static ptid_t
3067 linux_wait_1 (ptid_t ptid,
3068 struct target_waitstatus *ourstatus, int target_options)
3069 {
3070 int w;
3071 struct lwp_info *event_child;
3072 int options;
3073 int pid;
3074 int step_over_finished;
3075 int bp_explains_trap;
3076 int maybe_internal_trap;
3077 int report_to_gdb;
3078 int trace_event;
3079 int in_step_range;
3080 int any_resumed;
3081
3082 if (debug_threads)
3083 {
3084 debug_enter ();
3085 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3086 }
3087
3088 /* Translate generic target options into linux options. */
3089 options = __WALL;
3090 if (target_options & TARGET_WNOHANG)
3091 options |= WNOHANG;
3092
3093 bp_explains_trap = 0;
3094 trace_event = 0;
3095 in_step_range = 0;
3096 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3097
3098 /* Find a resumed LWP, if any. */
3099 if (find_inferior (&all_threads,
3100 status_pending_p_callback,
3101 &minus_one_ptid) != NULL)
3102 any_resumed = 1;
3103 else if ((find_inferior (&all_threads,
3104 not_stopped_callback,
3105 &minus_one_ptid) != NULL))
3106 any_resumed = 1;
3107 else
3108 any_resumed = 0;
3109
3110 if (ptid_equal (step_over_bkpt, null_ptid))
3111 pid = linux_wait_for_event (ptid, &w, options);
3112 else
3113 {
3114 if (debug_threads)
3115 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3116 target_pid_to_str (step_over_bkpt));
3117 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3118 }
3119
3120 if (pid == 0 || (pid == -1 && !any_resumed))
3121 {
3122 gdb_assert (target_options & TARGET_WNOHANG);
3123
3124 if (debug_threads)
3125 {
3126 debug_printf ("linux_wait_1 ret = null_ptid, "
3127 "TARGET_WAITKIND_IGNORE\n");
3128 debug_exit ();
3129 }
3130
3131 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3132 return null_ptid;
3133 }
3134 else if (pid == -1)
3135 {
3136 if (debug_threads)
3137 {
3138 debug_printf ("linux_wait_1 ret = null_ptid, "
3139 "TARGET_WAITKIND_NO_RESUMED\n");
3140 debug_exit ();
3141 }
3142
3143 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3144 return null_ptid;
3145 }
3146
3147 event_child = get_thread_lwp (current_thread);
3148
3149 /* linux_wait_for_event only returns an exit status for the last
3150 child of a process. Report it. */
3151 if (WIFEXITED (w) || WIFSIGNALED (w))
3152 {
3153 if (WIFEXITED (w))
3154 {
3155 ourstatus->kind = TARGET_WAITKIND_EXITED;
3156 ourstatus->value.integer = WEXITSTATUS (w);
3157
3158 if (debug_threads)
3159 {
3160 debug_printf ("linux_wait_1 ret = %s, exited with "
3161 "retcode %d\n",
3162 target_pid_to_str (ptid_of (current_thread)),
3163 WEXITSTATUS (w));
3164 debug_exit ();
3165 }
3166 }
3167 else
3168 {
3169 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3170 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3171
3172 if (debug_threads)
3173 {
3174 debug_printf ("linux_wait_1 ret = %s, terminated with "
3175 "signal %d\n",
3176 target_pid_to_str (ptid_of (current_thread)),
3177 WTERMSIG (w));
3178 debug_exit ();
3179 }
3180 }
3181
3182 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3183 return filter_exit_event (event_child, ourstatus);
3184
3185 return ptid_of (current_thread);
3186 }
3187
3188 /* If step-over executes a breakpoint instruction, in the case of a
3189 hardware single step it means a gdb/gdbserver breakpoint had been
3190 planted on top of a permanent breakpoint, in the case of a software
3191 single step it may just mean that gdbserver hit the reinsert breakpoint.
3192 The PC has been adjusted by save_stop_reason to point at
3193 the breakpoint address.
3194 So in the case of the hardware single step advance the PC manually
3195 past the breakpoint and in the case of software single step advance only
3196 if it's not the reinsert_breakpoint we are hitting.
3197 This avoids that a program would keep trapping a permanent breakpoint
3198 forever. */
3199 if (!ptid_equal (step_over_bkpt, null_ptid)
3200 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3201 && (event_child->stepping
3202 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3203 {
3204 int increment_pc = 0;
3205 int breakpoint_kind = 0;
3206 CORE_ADDR stop_pc = event_child->stop_pc;
3207
3208 breakpoint_kind =
3209 the_target->breakpoint_kind_from_current_state (&stop_pc);
3210 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3211
3212 if (debug_threads)
3213 {
3214 debug_printf ("step-over for %s executed software breakpoint\n",
3215 target_pid_to_str (ptid_of (current_thread)));
3216 }
3217
3218 if (increment_pc != 0)
3219 {
3220 struct regcache *regcache
3221 = get_thread_regcache (current_thread, 1);
3222
3223 event_child->stop_pc += increment_pc;
3224 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3225
3226 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3227 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3228 }
3229 }
3230
3231 /* If this event was not handled before, and is not a SIGTRAP, we
3232 report it. SIGILL and SIGSEGV are also treated as traps in case
3233 a breakpoint is inserted at the current PC. If this target does
3234 not support internal breakpoints at all, we also report the
3235 SIGTRAP without further processing; it's of no concern to us. */
3236 maybe_internal_trap
3237 = (supports_breakpoints ()
3238 && (WSTOPSIG (w) == SIGTRAP
3239 || ((WSTOPSIG (w) == SIGILL
3240 || WSTOPSIG (w) == SIGSEGV)
3241 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3242
3243 if (maybe_internal_trap)
3244 {
3245 /* Handle anything that requires bookkeeping before deciding to
3246 report the event or continue waiting. */
3247
3248 /* First check if we can explain the SIGTRAP with an internal
3249 breakpoint, or if we should possibly report the event to GDB.
3250 Do this before anything that may remove or insert a
3251 breakpoint. */
3252 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3253
3254 /* We have a SIGTRAP, possibly a step-over dance has just
3255 finished. If so, tweak the state machine accordingly,
3256 reinsert breakpoints and delete any reinsert (software
3257 single-step) breakpoints. */
3258 step_over_finished = finish_step_over (event_child);
3259
3260 /* Now invoke the callbacks of any internal breakpoints there. */
3261 check_breakpoints (event_child->stop_pc);
3262
3263 /* Handle tracepoint data collecting. This may overflow the
3264 trace buffer, and cause a tracing stop, removing
3265 breakpoints. */
3266 trace_event = handle_tracepoints (event_child);
3267
3268 if (bp_explains_trap)
3269 {
3270 /* If we stepped or ran into an internal breakpoint, we've
3271 already handled it. So next time we resume (from this
3272 PC), we should step over it. */
3273 if (debug_threads)
3274 debug_printf ("Hit a gdbserver breakpoint.\n");
3275
3276 if (breakpoint_here (event_child->stop_pc))
3277 event_child->need_step_over = 1;
3278 }
3279 }
3280 else
3281 {
3282 /* We have some other signal, possibly a step-over dance was in
3283 progress, and it should be cancelled too. */
3284 step_over_finished = finish_step_over (event_child);
3285 }
3286
3287 /* We have all the data we need. Either report the event to GDB, or
3288 resume threads and keep waiting for more. */
3289
3290 /* If we're collecting a fast tracepoint, finish the collection and
3291 move out of the jump pad before delivering a signal. See
3292 linux_stabilize_threads. */
3293
3294 if (WIFSTOPPED (w)
3295 && WSTOPSIG (w) != SIGTRAP
3296 && supports_fast_tracepoints ()
3297 && agent_loaded_p ())
3298 {
3299 if (debug_threads)
3300 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3301 "to defer or adjust it.\n",
3302 WSTOPSIG (w), lwpid_of (current_thread));
3303
3304 /* Allow debugging the jump pad itself. */
3305 if (current_thread->last_resume_kind != resume_step
3306 && maybe_move_out_of_jump_pad (event_child, &w))
3307 {
3308 enqueue_one_deferred_signal (event_child, &w);
3309
3310 if (debug_threads)
3311 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3312 WSTOPSIG (w), lwpid_of (current_thread));
3313
3314 linux_resume_one_lwp (event_child, 0, 0, NULL);
3315
3316 return ignore_event (ourstatus);
3317 }
3318 }
3319
3320 if (event_child->collecting_fast_tracepoint)
3321 {
3322 if (debug_threads)
3323 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3324 "Check if we're already there.\n",
3325 lwpid_of (current_thread),
3326 event_child->collecting_fast_tracepoint);
3327
3328 trace_event = 1;
3329
3330 event_child->collecting_fast_tracepoint
3331 = linux_fast_tracepoint_collecting (event_child, NULL);
3332
3333 if (event_child->collecting_fast_tracepoint != 1)
3334 {
3335 /* No longer need this breakpoint. */
3336 if (event_child->exit_jump_pad_bkpt != NULL)
3337 {
3338 if (debug_threads)
3339 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3340 "stopping all threads momentarily.\n");
3341
3342 /* Other running threads could hit this breakpoint.
3343 We don't handle moribund locations like GDB does,
3344 instead we always pause all threads when removing
3345 breakpoints, so that any step-over or
3346 decr_pc_after_break adjustment is always taken
3347 care of while the breakpoint is still
3348 inserted. */
3349 stop_all_lwps (1, event_child);
3350
3351 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3352 event_child->exit_jump_pad_bkpt = NULL;
3353
3354 unstop_all_lwps (1, event_child);
3355
3356 gdb_assert (event_child->suspended >= 0);
3357 }
3358 }
3359
3360 if (event_child->collecting_fast_tracepoint == 0)
3361 {
3362 if (debug_threads)
3363 debug_printf ("fast tracepoint finished "
3364 "collecting successfully.\n");
3365
3366 /* We may have a deferred signal to report. */
3367 if (dequeue_one_deferred_signal (event_child, &w))
3368 {
3369 if (debug_threads)
3370 debug_printf ("dequeued one signal.\n");
3371 }
3372 else
3373 {
3374 if (debug_threads)
3375 debug_printf ("no deferred signals.\n");
3376
3377 if (stabilizing_threads)
3378 {
3379 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3380 ourstatus->value.sig = GDB_SIGNAL_0;
3381
3382 if (debug_threads)
3383 {
3384 debug_printf ("linux_wait_1 ret = %s, stopped "
3385 "while stabilizing threads\n",
3386 target_pid_to_str (ptid_of (current_thread)));
3387 debug_exit ();
3388 }
3389
3390 return ptid_of (current_thread);
3391 }
3392 }
3393 }
3394 }
3395
3396 /* Check whether GDB would be interested in this event. */
3397
3398 /* Check if GDB is interested in this syscall. */
3399 if (WIFSTOPPED (w)
3400 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3401 && !gdb_catch_this_syscall_p (event_child))
3402 {
3403 if (debug_threads)
3404 {
3405 debug_printf ("Ignored syscall for LWP %ld.\n",
3406 lwpid_of (current_thread));
3407 }
3408
3409 linux_resume_one_lwp (event_child, event_child->stepping,
3410 0, NULL);
3411 return ignore_event (ourstatus);
3412 }
3413
3414 /* If GDB is not interested in this signal, don't stop other
3415 threads, and don't report it to GDB. Just resume the inferior
3416 right away. We do this for threading-related signals as well as
3417 any that GDB specifically requested we ignore. But never ignore
3418 SIGSTOP if we sent it ourselves, and do not ignore signals when
3419 stepping - they may require special handling to skip the signal
3420 handler. Also never ignore signals that could be caused by a
3421 breakpoint. */
3422 if (WIFSTOPPED (w)
3423 && current_thread->last_resume_kind != resume_step
3424 && (
3425 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3426 (current_process ()->priv->thread_db != NULL
3427 && (WSTOPSIG (w) == __SIGRTMIN
3428 || WSTOPSIG (w) == __SIGRTMIN + 1))
3429 ||
3430 #endif
3431 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3432 && !(WSTOPSIG (w) == SIGSTOP
3433 && current_thread->last_resume_kind == resume_stop)
3434 && !linux_wstatus_maybe_breakpoint (w))))
3435 {
3436 siginfo_t info, *info_p;
3437
3438 if (debug_threads)
3439 debug_printf ("Ignored signal %d for LWP %ld.\n",
3440 WSTOPSIG (w), lwpid_of (current_thread));
3441
3442 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3443 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3444 info_p = &info;
3445 else
3446 info_p = NULL;
3447
3448 if (step_over_finished)
3449 {
3450 /* We cancelled this thread's step-over above. We still
3451 need to unsuspend all other LWPs, and set them back
3452 running again while the signal handler runs. */
3453 unsuspend_all_lwps (event_child);
3454
3455 /* Enqueue the pending signal info so that proceed_all_lwps
3456 doesn't lose it. */
3457 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3458
3459 proceed_all_lwps ();
3460 }
3461 else
3462 {
3463 linux_resume_one_lwp (event_child, event_child->stepping,
3464 WSTOPSIG (w), info_p);
3465 }
3466 return ignore_event (ourstatus);
3467 }
3468
3469 /* Note that all addresses are always "out of the step range" when
3470 there's no range to begin with. */
3471 in_step_range = lwp_in_step_range (event_child);
3472
3473 /* If GDB wanted this thread to single step, and the thread is out
3474 of the step range, we always want to report the SIGTRAP, and let
3475 GDB handle it. Watchpoints should always be reported. So should
3476 signals we can't explain. A SIGTRAP we can't explain could be a
3477 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3478 do, we're be able to handle GDB breakpoints on top of internal
3479 breakpoints, by handling the internal breakpoint and still
3480 reporting the event to GDB. If we don't, we're out of luck, GDB
3481 won't see the breakpoint hit. If we see a single-step event but
3482 the thread should be continuing, don't pass the trap to gdb.
3483 That indicates that we had previously finished a single-step but
3484 left the single-step pending -- see
3485 complete_ongoing_step_over. */
3486 report_to_gdb = (!maybe_internal_trap
3487 || (current_thread->last_resume_kind == resume_step
3488 && !in_step_range)
3489 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3490 || (!in_step_range
3491 && !bp_explains_trap
3492 && !trace_event
3493 && !step_over_finished
3494 && !(current_thread->last_resume_kind == resume_continue
3495 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3496 || (gdb_breakpoint_here (event_child->stop_pc)
3497 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3498 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3499 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3500
3501 run_breakpoint_commands (event_child->stop_pc);
3502
3503 /* We found no reason GDB would want us to stop. We either hit one
3504 of our own breakpoints, or finished an internal step GDB
3505 shouldn't know about. */
3506 if (!report_to_gdb)
3507 {
3508 if (debug_threads)
3509 {
3510 if (bp_explains_trap)
3511 debug_printf ("Hit a gdbserver breakpoint.\n");
3512 if (step_over_finished)
3513 debug_printf ("Step-over finished.\n");
3514 if (trace_event)
3515 debug_printf ("Tracepoint event.\n");
3516 if (lwp_in_step_range (event_child))
3517 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3518 paddress (event_child->stop_pc),
3519 paddress (event_child->step_range_start),
3520 paddress (event_child->step_range_end));
3521 }
3522
3523 /* We're not reporting this breakpoint to GDB, so apply the
3524 decr_pc_after_break adjustment to the inferior's regcache
3525 ourselves. */
3526
3527 if (the_low_target.set_pc != NULL)
3528 {
3529 struct regcache *regcache
3530 = get_thread_regcache (current_thread, 1);
3531 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3532 }
3533
3534 /* We may have finished stepping over a breakpoint. If so,
3535 we've stopped and suspended all LWPs momentarily except the
3536 stepping one. This is where we resume them all again. We're
3537 going to keep waiting, so use proceed, which handles stepping
3538 over the next breakpoint. */
3539 if (debug_threads)
3540 debug_printf ("proceeding all threads.\n");
3541
3542 if (step_over_finished)
3543 unsuspend_all_lwps (event_child);
3544
3545 proceed_all_lwps ();
3546 return ignore_event (ourstatus);
3547 }
3548
3549 if (debug_threads)
3550 {
3551 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3552 {
3553 char *str;
3554
3555 str = target_waitstatus_to_string (&event_child->waitstatus);
3556 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3557 lwpid_of (get_lwp_thread (event_child)), str);
3558 xfree (str);
3559 }
3560 if (current_thread->last_resume_kind == resume_step)
3561 {
3562 if (event_child->step_range_start == event_child->step_range_end)
3563 debug_printf ("GDB wanted to single-step, reporting event.\n");
3564 else if (!lwp_in_step_range (event_child))
3565 debug_printf ("Out of step range, reporting event.\n");
3566 }
3567 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3568 debug_printf ("Stopped by watchpoint.\n");
3569 else if (gdb_breakpoint_here (event_child->stop_pc))
3570 debug_printf ("Stopped by GDB breakpoint.\n");
3571 if (debug_threads)
3572 debug_printf ("Hit a non-gdbserver trap event.\n");
3573 }
3574
3575 /* Alright, we're going to report a stop. */
3576
3577 if (!stabilizing_threads)
3578 {
3579 /* In all-stop, stop all threads. */
3580 if (!non_stop)
3581 stop_all_lwps (0, NULL);
3582
3583 /* If we're not waiting for a specific LWP, choose an event LWP
3584 from among those that have had events. Giving equal priority
3585 to all LWPs that have had events helps prevent
3586 starvation. */
3587 if (ptid_equal (ptid, minus_one_ptid))
3588 {
3589 event_child->status_pending_p = 1;
3590 event_child->status_pending = w;
3591
3592 select_event_lwp (&event_child);
3593
3594 /* current_thread and event_child must stay in sync. */
3595 current_thread = get_lwp_thread (event_child);
3596
3597 event_child->status_pending_p = 0;
3598 w = event_child->status_pending;
3599 }
3600
3601 if (step_over_finished)
3602 {
3603 if (!non_stop)
3604 {
3605 /* If we were doing a step-over, all other threads but
3606 the stepping one had been paused in start_step_over,
3607 with their suspend counts incremented. We don't want
3608 to do a full unstop/unpause, because we're in
3609 all-stop mode (so we want threads stopped), but we
3610 still need to unsuspend the other threads, to
3611 decrement their `suspended' count back. */
3612 unsuspend_all_lwps (event_child);
3613 }
3614 else
3615 {
3616 /* If we just finished a step-over, then all threads had
3617 been momentarily paused. In all-stop, that's fine,
3618 we want threads stopped by now anyway. In non-stop,
3619 we need to re-resume threads that GDB wanted to be
3620 running. */
3621 unstop_all_lwps (1, event_child);
3622 }
3623 }
3624
3625 /* Stabilize threads (move out of jump pads). */
3626 if (!non_stop)
3627 stabilize_threads ();
3628 }
3629 else
3630 {
3631 /* If we just finished a step-over, then all threads had been
3632 momentarily paused. In all-stop, that's fine, we want
3633 threads stopped by now anyway. In non-stop, we need to
3634 re-resume threads that GDB wanted to be running. */
3635 if (step_over_finished)
3636 unstop_all_lwps (1, event_child);
3637 }
3638
3639 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3640 {
3641 /* If the reported event is an exit, fork, vfork or exec, let
3642 GDB know. */
3643 *ourstatus = event_child->waitstatus;
3644 /* Clear the event lwp's waitstatus since we handled it already. */
3645 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3646 }
3647 else
3648 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3649
3650 /* Now that we've selected our final event LWP, un-adjust its PC if
3651 it was a software breakpoint, and the client doesn't know we can
3652 adjust the breakpoint ourselves. */
3653 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3654 && !swbreak_feature)
3655 {
3656 int decr_pc = the_low_target.decr_pc_after_break;
3657
3658 if (decr_pc != 0)
3659 {
3660 struct regcache *regcache
3661 = get_thread_regcache (current_thread, 1);
3662 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3663 }
3664 }
3665
3666 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3667 {
3668 int sysret;
3669
3670 get_syscall_trapinfo (event_child,
3671 &ourstatus->value.syscall_number, &sysret);
3672 ourstatus->kind = event_child->syscall_state;
3673 }
3674 else if (current_thread->last_resume_kind == resume_stop
3675 && WSTOPSIG (w) == SIGSTOP)
3676 {
3677 /* A thread that has been requested to stop by GDB with vCont;t,
3678 and it stopped cleanly, so report as SIG0. The use of
3679 SIGSTOP is an implementation detail. */
3680 ourstatus->value.sig = GDB_SIGNAL_0;
3681 }
3682 else if (current_thread->last_resume_kind == resume_stop
3683 && WSTOPSIG (w) != SIGSTOP)
3684 {
3685 /* A thread that has been requested to stop by GDB with vCont;t,
3686 but, it stopped for other reasons. */
3687 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3688 }
3689 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3690 {
3691 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3692 }
3693
3694 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3695
3696 if (debug_threads)
3697 {
3698 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3699 target_pid_to_str (ptid_of (current_thread)),
3700 ourstatus->kind, ourstatus->value.sig);
3701 debug_exit ();
3702 }
3703
3704 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3705 return filter_exit_event (event_child, ourstatus);
3706
3707 return ptid_of (current_thread);
3708 }
3709
3710 /* Get rid of any pending event in the pipe. */
3711 static void
3712 async_file_flush (void)
3713 {
3714 int ret;
3715 char buf;
3716
3717 do
3718 ret = read (linux_event_pipe[0], &buf, 1);
3719 while (ret >= 0 || (ret == -1 && errno == EINTR));
3720 }
3721
3722 /* Put something in the pipe, so the event loop wakes up. */
3723 static void
3724 async_file_mark (void)
3725 {
3726 int ret;
3727
3728 async_file_flush ();
3729
3730 do
3731 ret = write (linux_event_pipe[1], "+", 1);
3732 while (ret == 0 || (ret == -1 && errno == EINTR));
3733
3734 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3735 be awakened anyway. */
3736 }
3737
3738 static ptid_t
3739 linux_wait (ptid_t ptid,
3740 struct target_waitstatus *ourstatus, int target_options)
3741 {
3742 ptid_t event_ptid;
3743
3744 /* Flush the async file first. */
3745 if (target_is_async_p ())
3746 async_file_flush ();
3747
3748 do
3749 {
3750 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3751 }
3752 while ((target_options & TARGET_WNOHANG) == 0
3753 && ptid_equal (event_ptid, null_ptid)
3754 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3755
3756 /* If at least one stop was reported, there may be more. A single
3757 SIGCHLD can signal more than one child stop. */
3758 if (target_is_async_p ()
3759 && (target_options & TARGET_WNOHANG) != 0
3760 && !ptid_equal (event_ptid, null_ptid))
3761 async_file_mark ();
3762
3763 return event_ptid;
3764 }
3765
3766 /* Send a signal to an LWP. */
3767
3768 static int
3769 kill_lwp (unsigned long lwpid, int signo)
3770 {
3771 int ret;
3772
3773 errno = 0;
3774 ret = syscall (__NR_tkill, lwpid, signo);
3775 if (errno == ENOSYS)
3776 {
3777 /* If tkill fails, then we are not using nptl threads, a
3778 configuration we no longer support. */
3779 perror_with_name (("tkill"));
3780 }
3781 return ret;
3782 }
3783
3784 void
3785 linux_stop_lwp (struct lwp_info *lwp)
3786 {
3787 send_sigstop (lwp);
3788 }
3789
3790 static void
3791 send_sigstop (struct lwp_info *lwp)
3792 {
3793 int pid;
3794
3795 pid = lwpid_of (get_lwp_thread (lwp));
3796
3797 /* If we already have a pending stop signal for this process, don't
3798 send another. */
3799 if (lwp->stop_expected)
3800 {
3801 if (debug_threads)
3802 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3803
3804 return;
3805 }
3806
3807 if (debug_threads)
3808 debug_printf ("Sending sigstop to lwp %d\n", pid);
3809
3810 lwp->stop_expected = 1;
3811 kill_lwp (pid, SIGSTOP);
3812 }
3813
3814 static int
3815 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3816 {
3817 struct thread_info *thread = (struct thread_info *) entry;
3818 struct lwp_info *lwp = get_thread_lwp (thread);
3819
3820 /* Ignore EXCEPT. */
3821 if (lwp == except)
3822 return 0;
3823
3824 if (lwp->stopped)
3825 return 0;
3826
3827 send_sigstop (lwp);
3828 return 0;
3829 }
3830
3831 /* Increment the suspend count of an LWP, and stop it, if not stopped
3832 yet. */
3833 static int
3834 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3835 void *except)
3836 {
3837 struct thread_info *thread = (struct thread_info *) entry;
3838 struct lwp_info *lwp = get_thread_lwp (thread);
3839
3840 /* Ignore EXCEPT. */
3841 if (lwp == except)
3842 return 0;
3843
3844 lwp_suspended_inc (lwp);
3845
3846 return send_sigstop_callback (entry, except);
3847 }
3848
3849 static void
3850 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3851 {
3852 /* Store the exit status for later. */
3853 lwp->status_pending_p = 1;
3854 lwp->status_pending = wstat;
3855
3856 /* Store in waitstatus as well, as there's nothing else to process
3857 for this event. */
3858 if (WIFEXITED (wstat))
3859 {
3860 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3861 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3862 }
3863 else if (WIFSIGNALED (wstat))
3864 {
3865 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3866 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3867 }
3868
3869 /* Prevent trying to stop it. */
3870 lwp->stopped = 1;
3871
3872 /* No further stops are expected from a dead lwp. */
3873 lwp->stop_expected = 0;
3874 }
3875
3876 /* Return true if LWP has exited already, and has a pending exit event
3877 to report to GDB. */
3878
3879 static int
3880 lwp_is_marked_dead (struct lwp_info *lwp)
3881 {
3882 return (lwp->status_pending_p
3883 && (WIFEXITED (lwp->status_pending)
3884 || WIFSIGNALED (lwp->status_pending)));
3885 }
3886
3887 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3888
3889 static void
3890 wait_for_sigstop (void)
3891 {
3892 struct thread_info *saved_thread;
3893 ptid_t saved_tid;
3894 int wstat;
3895 int ret;
3896
3897 saved_thread = current_thread;
3898 if (saved_thread != NULL)
3899 saved_tid = saved_thread->entry.id;
3900 else
3901 saved_tid = null_ptid; /* avoid bogus unused warning */
3902
3903 if (debug_threads)
3904 debug_printf ("wait_for_sigstop: pulling events\n");
3905
3906 /* Passing NULL_PTID as filter indicates we want all events to be
3907 left pending. Eventually this returns when there are no
3908 unwaited-for children left. */
3909 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3910 &wstat, __WALL);
3911 gdb_assert (ret == -1);
3912
3913 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3914 current_thread = saved_thread;
3915 else
3916 {
3917 if (debug_threads)
3918 debug_printf ("Previously current thread died.\n");
3919
3920 /* We can't change the current inferior behind GDB's back,
3921 otherwise, a subsequent command may apply to the wrong
3922 process. */
3923 current_thread = NULL;
3924 }
3925 }
3926
3927 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3928 move it out, because we need to report the stop event to GDB. For
3929 example, if the user puts a breakpoint in the jump pad, it's
3930 because she wants to debug it. */
3931
3932 static int
3933 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3934 {
3935 struct thread_info *thread = (struct thread_info *) entry;
3936 struct lwp_info *lwp = get_thread_lwp (thread);
3937
3938 if (lwp->suspended != 0)
3939 {
3940 internal_error (__FILE__, __LINE__,
3941 "LWP %ld is suspended, suspended=%d\n",
3942 lwpid_of (thread), lwp->suspended);
3943 }
3944 gdb_assert (lwp->stopped);
3945
3946 /* Allow debugging the jump pad, gdb_collect, etc.. */
3947 return (supports_fast_tracepoints ()
3948 && agent_loaded_p ()
3949 && (gdb_breakpoint_here (lwp->stop_pc)
3950 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3951 || thread->last_resume_kind == resume_step)
3952 && linux_fast_tracepoint_collecting (lwp, NULL));
3953 }
3954
3955 static void
3956 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3957 {
3958 struct thread_info *thread = (struct thread_info *) entry;
3959 struct thread_info *saved_thread;
3960 struct lwp_info *lwp = get_thread_lwp (thread);
3961 int *wstat;
3962
3963 if (lwp->suspended != 0)
3964 {
3965 internal_error (__FILE__, __LINE__,
3966 "LWP %ld is suspended, suspended=%d\n",
3967 lwpid_of (thread), lwp->suspended);
3968 }
3969 gdb_assert (lwp->stopped);
3970
3971 /* For gdb_breakpoint_here. */
3972 saved_thread = current_thread;
3973 current_thread = thread;
3974
3975 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3976
3977 /* Allow debugging the jump pad, gdb_collect, etc. */
3978 if (!gdb_breakpoint_here (lwp->stop_pc)
3979 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3980 && thread->last_resume_kind != resume_step
3981 && maybe_move_out_of_jump_pad (lwp, wstat))
3982 {
3983 if (debug_threads)
3984 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3985 lwpid_of (thread));
3986
3987 if (wstat)
3988 {
3989 lwp->status_pending_p = 0;
3990 enqueue_one_deferred_signal (lwp, wstat);
3991
3992 if (debug_threads)
3993 debug_printf ("Signal %d for LWP %ld deferred "
3994 "(in jump pad)\n",
3995 WSTOPSIG (*wstat), lwpid_of (thread));
3996 }
3997
3998 linux_resume_one_lwp (lwp, 0, 0, NULL);
3999 }
4000 else
4001 lwp_suspended_inc (lwp);
4002
4003 current_thread = saved_thread;
4004 }
4005
4006 static int
4007 lwp_running (struct inferior_list_entry *entry, void *data)
4008 {
4009 struct thread_info *thread = (struct thread_info *) entry;
4010 struct lwp_info *lwp = get_thread_lwp (thread);
4011
4012 if (lwp_is_marked_dead (lwp))
4013 return 0;
4014 if (lwp->stopped)
4015 return 0;
4016 return 1;
4017 }
4018
4019 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4020 If SUSPEND, then also increase the suspend count of every LWP,
4021 except EXCEPT. */
4022
4023 static void
4024 stop_all_lwps (int suspend, struct lwp_info *except)
4025 {
4026 /* Should not be called recursively. */
4027 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4028
4029 if (debug_threads)
4030 {
4031 debug_enter ();
4032 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4033 suspend ? "stop-and-suspend" : "stop",
4034 except != NULL
4035 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4036 : "none");
4037 }
4038
4039 stopping_threads = (suspend
4040 ? STOPPING_AND_SUSPENDING_THREADS
4041 : STOPPING_THREADS);
4042
4043 if (suspend)
4044 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4045 else
4046 find_inferior (&all_threads, send_sigstop_callback, except);
4047 wait_for_sigstop ();
4048 stopping_threads = NOT_STOPPING_THREADS;
4049
4050 if (debug_threads)
4051 {
4052 debug_printf ("stop_all_lwps done, setting stopping_threads "
4053 "back to !stopping\n");
4054 debug_exit ();
4055 }
4056 }
4057
4058 /* Enqueue one signal in the chain of signals which need to be
4059 delivered to this process on next resume. */
4060
4061 static void
4062 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4063 {
4064 struct pending_signals *p_sig = XNEW (struct pending_signals);
4065
4066 p_sig->prev = lwp->pending_signals;
4067 p_sig->signal = signal;
4068 if (info == NULL)
4069 memset (&p_sig->info, 0, sizeof (siginfo_t));
4070 else
4071 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4072 lwp->pending_signals = p_sig;
4073 }
4074
4075 /* Install breakpoints for software single stepping. */
4076
4077 static void
4078 install_software_single_step_breakpoints (struct lwp_info *lwp)
4079 {
4080 int i;
4081 CORE_ADDR pc;
4082 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4083 VEC (CORE_ADDR) *next_pcs = NULL;
4084 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
4085
4086 next_pcs = (*the_low_target.get_next_pcs) (regcache);
4087
4088 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); ++i)
4089 set_reinsert_breakpoint (pc);
4090
4091 do_cleanups (old_chain);
4092 }
4093
4094 /* Single step via hardware or software single step.
4095 Return 1 if hardware single stepping, 0 if software single stepping
4096 or can't single step. */
4097
4098 static int
4099 single_step (struct lwp_info* lwp)
4100 {
4101 int step = 0;
4102
4103 if (can_hardware_single_step ())
4104 {
4105 step = 1;
4106 }
4107 else if (can_software_single_step ())
4108 {
4109 install_software_single_step_breakpoints (lwp);
4110 step = 0;
4111 }
4112 else
4113 {
4114 if (debug_threads)
4115 debug_printf ("stepping is not implemented on this target");
4116 }
4117
4118 return step;
4119 }
4120
4121 /* The signal can be delivered to the inferior if we are not trying to
4122 reinsert a breakpoint and not trying to finish a fast tracepoint
4123 collect. */
4124
4125 static int
4126 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4127 {
4128 return (lwp->bp_reinsert == 0 && !lwp->collecting_fast_tracepoint);
4129 }
4130
4131 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4132 SIGNAL is nonzero, give it that signal. */
4133
4134 static void
4135 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4136 int step, int signal, siginfo_t *info)
4137 {
4138 struct thread_info *thread = get_lwp_thread (lwp);
4139 struct thread_info *saved_thread;
4140 int fast_tp_collecting;
4141 int ptrace_request;
4142 struct process_info *proc = get_thread_process (thread);
4143
4144 /* Note that target description may not be initialised
4145 (proc->tdesc == NULL) at this point because the program hasn't
4146 stopped at the first instruction yet. It means GDBserver skips
4147 the extra traps from the wrapper program (see option --wrapper).
4148 Code in this function that requires register access should be
4149 guarded by proc->tdesc == NULL or something else. */
4150
4151 if (lwp->stopped == 0)
4152 return;
4153
4154 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4155
4156 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4157
4158 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4159
4160 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4161 user used the "jump" command, or "set $pc = foo"). */
4162 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4163 {
4164 /* Collecting 'while-stepping' actions doesn't make sense
4165 anymore. */
4166 release_while_stepping_state_list (thread);
4167 }
4168
4169 /* If we have pending signals or status, and a new signal, enqueue the
4170 signal. Also enqueue the signal if it can't be delivered to the
4171 inferior right now. */
4172 if (signal != 0
4173 && (lwp->status_pending_p
4174 || lwp->pending_signals != NULL
4175 || !lwp_signal_can_be_delivered (lwp)))
4176 {
4177 enqueue_pending_signal (lwp, signal, info);
4178
4179 /* Postpone any pending signal. It was enqueued above. */
4180 signal = 0;
4181 }
4182
4183 if (lwp->status_pending_p)
4184 {
4185 if (debug_threads)
4186 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4187 " has pending status\n",
4188 lwpid_of (thread), step ? "step" : "continue",
4189 lwp->stop_expected ? "expected" : "not expected");
4190 return;
4191 }
4192
4193 saved_thread = current_thread;
4194 current_thread = thread;
4195
4196 /* This bit needs some thinking about. If we get a signal that
4197 we must report while a single-step reinsert is still pending,
4198 we often end up resuming the thread. It might be better to
4199 (ew) allow a stack of pending events; then we could be sure that
4200 the reinsert happened right away and not lose any signals.
4201
4202 Making this stack would also shrink the window in which breakpoints are
4203 uninserted (see comment in linux_wait_for_lwp) but not enough for
4204 complete correctness, so it won't solve that problem. It may be
4205 worthwhile just to solve this one, however. */
4206 if (lwp->bp_reinsert != 0)
4207 {
4208 if (debug_threads)
4209 debug_printf (" pending reinsert at 0x%s\n",
4210 paddress (lwp->bp_reinsert));
4211
4212 if (can_hardware_single_step ())
4213 {
4214 if (fast_tp_collecting == 0)
4215 {
4216 if (step == 0)
4217 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4218 if (lwp->suspended)
4219 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4220 lwp->suspended);
4221 }
4222
4223 step = 1;
4224 }
4225 }
4226
4227 if (fast_tp_collecting == 1)
4228 {
4229 if (debug_threads)
4230 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4231 " (exit-jump-pad-bkpt)\n",
4232 lwpid_of (thread));
4233 }
4234 else if (fast_tp_collecting == 2)
4235 {
4236 if (debug_threads)
4237 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4238 " single-stepping\n",
4239 lwpid_of (thread));
4240
4241 if (can_hardware_single_step ())
4242 step = 1;
4243 else
4244 {
4245 internal_error (__FILE__, __LINE__,
4246 "moving out of jump pad single-stepping"
4247 " not implemented on this target");
4248 }
4249 }
4250
4251 /* If we have while-stepping actions in this thread set it stepping.
4252 If we have a signal to deliver, it may or may not be set to
4253 SIG_IGN, we don't know. Assume so, and allow collecting
4254 while-stepping into a signal handler. A possible smart thing to
4255 do would be to set an internal breakpoint at the signal return
4256 address, continue, and carry on catching this while-stepping
4257 action only when that breakpoint is hit. A future
4258 enhancement. */
4259 if (thread->while_stepping != NULL)
4260 {
4261 if (debug_threads)
4262 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4263 lwpid_of (thread));
4264
4265 step = single_step (lwp);
4266 }
4267
4268 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4269 {
4270 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4271
4272 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4273
4274 if (debug_threads)
4275 {
4276 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4277 (long) lwp->stop_pc);
4278 }
4279 }
4280
4281 /* If we have pending signals, consume one if it can be delivered to
4282 the inferior. */
4283 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4284 {
4285 struct pending_signals **p_sig;
4286
4287 p_sig = &lwp->pending_signals;
4288 while ((*p_sig)->prev != NULL)
4289 p_sig = &(*p_sig)->prev;
4290
4291 signal = (*p_sig)->signal;
4292 if ((*p_sig)->info.si_signo != 0)
4293 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4294 &(*p_sig)->info);
4295
4296 free (*p_sig);
4297 *p_sig = NULL;
4298 }
4299
4300 if (debug_threads)
4301 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4302 lwpid_of (thread), step ? "step" : "continue", signal,
4303 lwp->stop_expected ? "expected" : "not expected");
4304
4305 if (the_low_target.prepare_to_resume != NULL)
4306 the_low_target.prepare_to_resume (lwp);
4307
4308 regcache_invalidate_thread (thread);
4309 errno = 0;
4310 lwp->stepping = step;
4311 if (step)
4312 ptrace_request = PTRACE_SINGLESTEP;
4313 else if (gdb_catching_syscalls_p (lwp))
4314 ptrace_request = PTRACE_SYSCALL;
4315 else
4316 ptrace_request = PTRACE_CONT;
4317 ptrace (ptrace_request,
4318 lwpid_of (thread),
4319 (PTRACE_TYPE_ARG3) 0,
4320 /* Coerce to a uintptr_t first to avoid potential gcc warning
4321 of coercing an 8 byte integer to a 4 byte pointer. */
4322 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4323
4324 current_thread = saved_thread;
4325 if (errno)
4326 perror_with_name ("resuming thread");
4327
4328 /* Successfully resumed. Clear state that no longer makes sense,
4329 and mark the LWP as running. Must not do this before resuming
4330 otherwise if that fails other code will be confused. E.g., we'd
4331 later try to stop the LWP and hang forever waiting for a stop
4332 status. Note that we must not throw after this is cleared,
4333 otherwise handle_zombie_lwp_error would get confused. */
4334 lwp->stopped = 0;
4335 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4336 }
4337
4338 /* Called when we try to resume a stopped LWP and that errors out. If
4339 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4340 or about to become), discard the error, clear any pending status
4341 the LWP may have, and return true (we'll collect the exit status
4342 soon enough). Otherwise, return false. */
4343
4344 static int
4345 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4346 {
4347 struct thread_info *thread = get_lwp_thread (lp);
4348
4349 /* If we get an error after resuming the LWP successfully, we'd
4350 confuse !T state for the LWP being gone. */
4351 gdb_assert (lp->stopped);
4352
4353 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4354 because even if ptrace failed with ESRCH, the tracee may be "not
4355 yet fully dead", but already refusing ptrace requests. In that
4356 case the tracee has 'R (Running)' state for a little bit
4357 (observed in Linux 3.18). See also the note on ESRCH in the
4358 ptrace(2) man page. Instead, check whether the LWP has any state
4359 other than ptrace-stopped. */
4360
4361 /* Don't assume anything if /proc/PID/status can't be read. */
4362 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4363 {
4364 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4365 lp->status_pending_p = 0;
4366 return 1;
4367 }
4368 return 0;
4369 }
4370
4371 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4372 disappears while we try to resume it. */
4373
4374 static void
4375 linux_resume_one_lwp (struct lwp_info *lwp,
4376 int step, int signal, siginfo_t *info)
4377 {
4378 TRY
4379 {
4380 linux_resume_one_lwp_throw (lwp, step, signal, info);
4381 }
4382 CATCH (ex, RETURN_MASK_ERROR)
4383 {
4384 if (!check_ptrace_stopped_lwp_gone (lwp))
4385 throw_exception (ex);
4386 }
4387 END_CATCH
4388 }
4389
4390 struct thread_resume_array
4391 {
4392 struct thread_resume *resume;
4393 size_t n;
4394 };
4395
4396 /* This function is called once per thread via find_inferior.
4397 ARG is a pointer to a thread_resume_array struct.
4398 We look up the thread specified by ENTRY in ARG, and mark the thread
4399 with a pointer to the appropriate resume request.
4400
4401 This algorithm is O(threads * resume elements), but resume elements
4402 is small (and will remain small at least until GDB supports thread
4403 suspension). */
4404
4405 static int
4406 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4407 {
4408 struct thread_info *thread = (struct thread_info *) entry;
4409 struct lwp_info *lwp = get_thread_lwp (thread);
4410 int ndx;
4411 struct thread_resume_array *r;
4412
4413 r = (struct thread_resume_array *) arg;
4414
4415 for (ndx = 0; ndx < r->n; ndx++)
4416 {
4417 ptid_t ptid = r->resume[ndx].thread;
4418 if (ptid_equal (ptid, minus_one_ptid)
4419 || ptid_equal (ptid, entry->id)
4420 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4421 of PID'. */
4422 || (ptid_get_pid (ptid) == pid_of (thread)
4423 && (ptid_is_pid (ptid)
4424 || ptid_get_lwp (ptid) == -1)))
4425 {
4426 if (r->resume[ndx].kind == resume_stop
4427 && thread->last_resume_kind == resume_stop)
4428 {
4429 if (debug_threads)
4430 debug_printf ("already %s LWP %ld at GDB's request\n",
4431 (thread->last_status.kind
4432 == TARGET_WAITKIND_STOPPED)
4433 ? "stopped"
4434 : "stopping",
4435 lwpid_of (thread));
4436
4437 continue;
4438 }
4439
4440 lwp->resume = &r->resume[ndx];
4441 thread->last_resume_kind = lwp->resume->kind;
4442
4443 lwp->step_range_start = lwp->resume->step_range_start;
4444 lwp->step_range_end = lwp->resume->step_range_end;
4445
4446 /* If we had a deferred signal to report, dequeue one now.
4447 This can happen if LWP gets more than one signal while
4448 trying to get out of a jump pad. */
4449 if (lwp->stopped
4450 && !lwp->status_pending_p
4451 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4452 {
4453 lwp->status_pending_p = 1;
4454
4455 if (debug_threads)
4456 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4457 "leaving status pending.\n",
4458 WSTOPSIG (lwp->status_pending),
4459 lwpid_of (thread));
4460 }
4461
4462 return 0;
4463 }
4464 }
4465
4466 /* No resume action for this thread. */
4467 lwp->resume = NULL;
4468
4469 return 0;
4470 }
4471
4472 /* find_inferior callback for linux_resume.
4473 Set *FLAG_P if this lwp has an interesting status pending. */
4474
4475 static int
4476 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4477 {
4478 struct thread_info *thread = (struct thread_info *) entry;
4479 struct lwp_info *lwp = get_thread_lwp (thread);
4480
4481 /* LWPs which will not be resumed are not interesting, because
4482 we might not wait for them next time through linux_wait. */
4483 if (lwp->resume == NULL)
4484 return 0;
4485
4486 if (thread_still_has_status_pending_p (thread))
4487 * (int *) flag_p = 1;
4488
4489 return 0;
4490 }
4491
4492 /* Return 1 if this lwp that GDB wants running is stopped at an
4493 internal breakpoint that we need to step over. It assumes that any
4494 required STOP_PC adjustment has already been propagated to the
4495 inferior's regcache. */
4496
4497 static int
4498 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4499 {
4500 struct thread_info *thread = (struct thread_info *) entry;
4501 struct lwp_info *lwp = get_thread_lwp (thread);
4502 struct thread_info *saved_thread;
4503 CORE_ADDR pc;
4504 struct process_info *proc = get_thread_process (thread);
4505
4506 /* GDBserver is skipping the extra traps from the wrapper program,
4507 don't have to do step over. */
4508 if (proc->tdesc == NULL)
4509 return 0;
4510
4511 /* LWPs which will not be resumed are not interesting, because we
4512 might not wait for them next time through linux_wait. */
4513
4514 if (!lwp->stopped)
4515 {
4516 if (debug_threads)
4517 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4518 lwpid_of (thread));
4519 return 0;
4520 }
4521
4522 if (thread->last_resume_kind == resume_stop)
4523 {
4524 if (debug_threads)
4525 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4526 " stopped\n",
4527 lwpid_of (thread));
4528 return 0;
4529 }
4530
4531 gdb_assert (lwp->suspended >= 0);
4532
4533 if (lwp->suspended)
4534 {
4535 if (debug_threads)
4536 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4537 lwpid_of (thread));
4538 return 0;
4539 }
4540
4541 if (!lwp->need_step_over)
4542 {
4543 if (debug_threads)
4544 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4545 }
4546
4547 if (lwp->status_pending_p)
4548 {
4549 if (debug_threads)
4550 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4551 " status.\n",
4552 lwpid_of (thread));
4553 return 0;
4554 }
4555
4556 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4557 or we have. */
4558 pc = get_pc (lwp);
4559
4560 /* If the PC has changed since we stopped, then don't do anything,
4561 and let the breakpoint/tracepoint be hit. This happens if, for
4562 instance, GDB handled the decr_pc_after_break subtraction itself,
4563 GDB is OOL stepping this thread, or the user has issued a "jump"
4564 command, or poked thread's registers herself. */
4565 if (pc != lwp->stop_pc)
4566 {
4567 if (debug_threads)
4568 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4569 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4570 lwpid_of (thread),
4571 paddress (lwp->stop_pc), paddress (pc));
4572
4573 lwp->need_step_over = 0;
4574 return 0;
4575 }
4576
4577 saved_thread = current_thread;
4578 current_thread = thread;
4579
4580 /* We can only step over breakpoints we know about. */
4581 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4582 {
4583 /* Don't step over a breakpoint that GDB expects to hit
4584 though. If the condition is being evaluated on the target's side
4585 and it evaluate to false, step over this breakpoint as well. */
4586 if (gdb_breakpoint_here (pc)
4587 && gdb_condition_true_at_breakpoint (pc)
4588 && gdb_no_commands_at_breakpoint (pc))
4589 {
4590 if (debug_threads)
4591 debug_printf ("Need step over [LWP %ld]? yes, but found"
4592 " GDB breakpoint at 0x%s; skipping step over\n",
4593 lwpid_of (thread), paddress (pc));
4594
4595 current_thread = saved_thread;
4596 return 0;
4597 }
4598 else
4599 {
4600 if (debug_threads)
4601 debug_printf ("Need step over [LWP %ld]? yes, "
4602 "found breakpoint at 0x%s\n",
4603 lwpid_of (thread), paddress (pc));
4604
4605 /* We've found an lwp that needs stepping over --- return 1 so
4606 that find_inferior stops looking. */
4607 current_thread = saved_thread;
4608
4609 /* If the step over is cancelled, this is set again. */
4610 lwp->need_step_over = 0;
4611 return 1;
4612 }
4613 }
4614
4615 current_thread = saved_thread;
4616
4617 if (debug_threads)
4618 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4619 " at 0x%s\n",
4620 lwpid_of (thread), paddress (pc));
4621
4622 return 0;
4623 }
4624
4625 /* Start a step-over operation on LWP. When LWP stopped at a
4626 breakpoint, to make progress, we need to remove the breakpoint out
4627 of the way. If we let other threads run while we do that, they may
4628 pass by the breakpoint location and miss hitting it. To avoid
4629 that, a step-over momentarily stops all threads while LWP is
4630 single-stepped by either hardware or software while the breakpoint
4631 is temporarily uninserted from the inferior. When the single-step
4632 finishes, we reinsert the breakpoint, and let all threads that are
4633 supposed to be running, run again. */
4634
4635 static int
4636 start_step_over (struct lwp_info *lwp)
4637 {
4638 struct thread_info *thread = get_lwp_thread (lwp);
4639 struct thread_info *saved_thread;
4640 CORE_ADDR pc;
4641 int step;
4642
4643 if (debug_threads)
4644 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4645 lwpid_of (thread));
4646
4647 stop_all_lwps (1, lwp);
4648
4649 if (lwp->suspended != 0)
4650 {
4651 internal_error (__FILE__, __LINE__,
4652 "LWP %ld suspended=%d\n", lwpid_of (thread),
4653 lwp->suspended);
4654 }
4655
4656 if (debug_threads)
4657 debug_printf ("Done stopping all threads for step-over.\n");
4658
4659 /* Note, we should always reach here with an already adjusted PC,
4660 either by GDB (if we're resuming due to GDB's request), or by our
4661 caller, if we just finished handling an internal breakpoint GDB
4662 shouldn't care about. */
4663 pc = get_pc (lwp);
4664
4665 saved_thread = current_thread;
4666 current_thread = thread;
4667
4668 lwp->bp_reinsert = pc;
4669 uninsert_breakpoints_at (pc);
4670 uninsert_fast_tracepoint_jumps_at (pc);
4671
4672 step = single_step (lwp);
4673
4674 current_thread = saved_thread;
4675
4676 linux_resume_one_lwp (lwp, step, 0, NULL);
4677
4678 /* Require next event from this LWP. */
4679 step_over_bkpt = thread->entry.id;
4680 return 1;
4681 }
4682
4683 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4684 start_step_over, if still there, and delete any reinsert
4685 breakpoints we've set, on non hardware single-step targets. */
4686
4687 static int
4688 finish_step_over (struct lwp_info *lwp)
4689 {
4690 if (lwp->bp_reinsert != 0)
4691 {
4692 if (debug_threads)
4693 debug_printf ("Finished step over.\n");
4694
4695 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4696 may be no breakpoint to reinsert there by now. */
4697 reinsert_breakpoints_at (lwp->bp_reinsert);
4698 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4699
4700 lwp->bp_reinsert = 0;
4701
4702 /* Delete any software-single-step reinsert breakpoints. No
4703 longer needed. We don't have to worry about other threads
4704 hitting this trap, and later not being able to explain it,
4705 because we were stepping over a breakpoint, and we hold all
4706 threads but LWP stopped while doing that. */
4707 if (!can_hardware_single_step ())
4708 delete_reinsert_breakpoints ();
4709
4710 step_over_bkpt = null_ptid;
4711 return 1;
4712 }
4713 else
4714 return 0;
4715 }
4716
4717 /* If there's a step over in progress, wait until all threads stop
4718 (that is, until the stepping thread finishes its step), and
4719 unsuspend all lwps. The stepping thread ends with its status
4720 pending, which is processed later when we get back to processing
4721 events. */
4722
4723 static void
4724 complete_ongoing_step_over (void)
4725 {
4726 if (!ptid_equal (step_over_bkpt, null_ptid))
4727 {
4728 struct lwp_info *lwp;
4729 int wstat;
4730 int ret;
4731
4732 if (debug_threads)
4733 debug_printf ("detach: step over in progress, finish it first\n");
4734
4735 /* Passing NULL_PTID as filter indicates we want all events to
4736 be left pending. Eventually this returns when there are no
4737 unwaited-for children left. */
4738 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4739 &wstat, __WALL);
4740 gdb_assert (ret == -1);
4741
4742 lwp = find_lwp_pid (step_over_bkpt);
4743 if (lwp != NULL)
4744 finish_step_over (lwp);
4745 step_over_bkpt = null_ptid;
4746 unsuspend_all_lwps (lwp);
4747 }
4748 }
4749
4750 /* This function is called once per thread. We check the thread's resume
4751 request, which will tell us whether to resume, step, or leave the thread
4752 stopped; and what signal, if any, it should be sent.
4753
4754 For threads which we aren't explicitly told otherwise, we preserve
4755 the stepping flag; this is used for stepping over gdbserver-placed
4756 breakpoints.
4757
4758 If pending_flags was set in any thread, we queue any needed
4759 signals, since we won't actually resume. We already have a pending
4760 event to report, so we don't need to preserve any step requests;
4761 they should be re-issued if necessary. */
4762
4763 static int
4764 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4765 {
4766 struct thread_info *thread = (struct thread_info *) entry;
4767 struct lwp_info *lwp = get_thread_lwp (thread);
4768 int step;
4769 int leave_all_stopped = * (int *) arg;
4770 int leave_pending;
4771
4772 if (lwp->resume == NULL)
4773 return 0;
4774
4775 if (lwp->resume->kind == resume_stop)
4776 {
4777 if (debug_threads)
4778 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4779
4780 if (!lwp->stopped)
4781 {
4782 if (debug_threads)
4783 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4784
4785 /* Stop the thread, and wait for the event asynchronously,
4786 through the event loop. */
4787 send_sigstop (lwp);
4788 }
4789 else
4790 {
4791 if (debug_threads)
4792 debug_printf ("already stopped LWP %ld\n",
4793 lwpid_of (thread));
4794
4795 /* The LWP may have been stopped in an internal event that
4796 was not meant to be notified back to GDB (e.g., gdbserver
4797 breakpoint), so we should be reporting a stop event in
4798 this case too. */
4799
4800 /* If the thread already has a pending SIGSTOP, this is a
4801 no-op. Otherwise, something later will presumably resume
4802 the thread and this will cause it to cancel any pending
4803 operation, due to last_resume_kind == resume_stop. If
4804 the thread already has a pending status to report, we
4805 will still report it the next time we wait - see
4806 status_pending_p_callback. */
4807
4808 /* If we already have a pending signal to report, then
4809 there's no need to queue a SIGSTOP, as this means we're
4810 midway through moving the LWP out of the jumppad, and we
4811 will report the pending signal as soon as that is
4812 finished. */
4813 if (lwp->pending_signals_to_report == NULL)
4814 send_sigstop (lwp);
4815 }
4816
4817 /* For stop requests, we're done. */
4818 lwp->resume = NULL;
4819 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4820 return 0;
4821 }
4822
4823 /* If this thread which is about to be resumed has a pending status,
4824 then don't resume it - we can just report the pending status.
4825 Likewise if it is suspended, because e.g., another thread is
4826 stepping past a breakpoint. Make sure to queue any signals that
4827 would otherwise be sent. In all-stop mode, we do this decision
4828 based on if *any* thread has a pending status. If there's a
4829 thread that needs the step-over-breakpoint dance, then don't
4830 resume any other thread but that particular one. */
4831 leave_pending = (lwp->suspended
4832 || lwp->status_pending_p
4833 || leave_all_stopped);
4834
4835 if (!leave_pending)
4836 {
4837 if (debug_threads)
4838 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4839
4840 step = (lwp->resume->kind == resume_step);
4841 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4842 }
4843 else
4844 {
4845 if (debug_threads)
4846 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4847
4848 /* If we have a new signal, enqueue the signal. */
4849 if (lwp->resume->sig != 0)
4850 {
4851 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4852
4853 p_sig->prev = lwp->pending_signals;
4854 p_sig->signal = lwp->resume->sig;
4855
4856 /* If this is the same signal we were previously stopped by,
4857 make sure to queue its siginfo. We can ignore the return
4858 value of ptrace; if it fails, we'll skip
4859 PTRACE_SETSIGINFO. */
4860 if (WIFSTOPPED (lwp->last_status)
4861 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4862 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4863 &p_sig->info);
4864
4865 lwp->pending_signals = p_sig;
4866 }
4867 }
4868
4869 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4870 lwp->resume = NULL;
4871 return 0;
4872 }
4873
4874 static void
4875 linux_resume (struct thread_resume *resume_info, size_t n)
4876 {
4877 struct thread_resume_array array = { resume_info, n };
4878 struct thread_info *need_step_over = NULL;
4879 int any_pending;
4880 int leave_all_stopped;
4881
4882 if (debug_threads)
4883 {
4884 debug_enter ();
4885 debug_printf ("linux_resume:\n");
4886 }
4887
4888 find_inferior (&all_threads, linux_set_resume_request, &array);
4889
4890 /* If there is a thread which would otherwise be resumed, which has
4891 a pending status, then don't resume any threads - we can just
4892 report the pending status. Make sure to queue any signals that
4893 would otherwise be sent. In non-stop mode, we'll apply this
4894 logic to each thread individually. We consume all pending events
4895 before considering to start a step-over (in all-stop). */
4896 any_pending = 0;
4897 if (!non_stop)
4898 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4899
4900 /* If there is a thread which would otherwise be resumed, which is
4901 stopped at a breakpoint that needs stepping over, then don't
4902 resume any threads - have it step over the breakpoint with all
4903 other threads stopped, then resume all threads again. Make sure
4904 to queue any signals that would otherwise be delivered or
4905 queued. */
4906 if (!any_pending && supports_breakpoints ())
4907 need_step_over
4908 = (struct thread_info *) find_inferior (&all_threads,
4909 need_step_over_p, NULL);
4910
4911 leave_all_stopped = (need_step_over != NULL || any_pending);
4912
4913 if (debug_threads)
4914 {
4915 if (need_step_over != NULL)
4916 debug_printf ("Not resuming all, need step over\n");
4917 else if (any_pending)
4918 debug_printf ("Not resuming, all-stop and found "
4919 "an LWP with pending status\n");
4920 else
4921 debug_printf ("Resuming, no pending status or step over needed\n");
4922 }
4923
4924 /* Even if we're leaving threads stopped, queue all signals we'd
4925 otherwise deliver. */
4926 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4927
4928 if (need_step_over)
4929 start_step_over (get_thread_lwp (need_step_over));
4930
4931 if (debug_threads)
4932 {
4933 debug_printf ("linux_resume done\n");
4934 debug_exit ();
4935 }
4936
4937 /* We may have events that were pending that can/should be sent to
4938 the client now. Trigger a linux_wait call. */
4939 if (target_is_async_p ())
4940 async_file_mark ();
4941 }
4942
4943 /* This function is called once per thread. We check the thread's
4944 last resume request, which will tell us whether to resume, step, or
4945 leave the thread stopped. Any signal the client requested to be
4946 delivered has already been enqueued at this point.
4947
4948 If any thread that GDB wants running is stopped at an internal
4949 breakpoint that needs stepping over, we start a step-over operation
4950 on that particular thread, and leave all others stopped. */
4951
4952 static int
4953 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4954 {
4955 struct thread_info *thread = (struct thread_info *) entry;
4956 struct lwp_info *lwp = get_thread_lwp (thread);
4957 int step;
4958
4959 if (lwp == except)
4960 return 0;
4961
4962 if (debug_threads)
4963 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4964
4965 if (!lwp->stopped)
4966 {
4967 if (debug_threads)
4968 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4969 return 0;
4970 }
4971
4972 if (thread->last_resume_kind == resume_stop
4973 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4974 {
4975 if (debug_threads)
4976 debug_printf (" client wants LWP to remain %ld stopped\n",
4977 lwpid_of (thread));
4978 return 0;
4979 }
4980
4981 if (lwp->status_pending_p)
4982 {
4983 if (debug_threads)
4984 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4985 lwpid_of (thread));
4986 return 0;
4987 }
4988
4989 gdb_assert (lwp->suspended >= 0);
4990
4991 if (lwp->suspended)
4992 {
4993 if (debug_threads)
4994 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4995 return 0;
4996 }
4997
4998 if (thread->last_resume_kind == resume_stop
4999 && lwp->pending_signals_to_report == NULL
5000 && lwp->collecting_fast_tracepoint == 0)
5001 {
5002 /* We haven't reported this LWP as stopped yet (otherwise, the
5003 last_status.kind check above would catch it, and we wouldn't
5004 reach here. This LWP may have been momentarily paused by a
5005 stop_all_lwps call while handling for example, another LWP's
5006 step-over. In that case, the pending expected SIGSTOP signal
5007 that was queued at vCont;t handling time will have already
5008 been consumed by wait_for_sigstop, and so we need to requeue
5009 another one here. Note that if the LWP already has a SIGSTOP
5010 pending, this is a no-op. */
5011
5012 if (debug_threads)
5013 debug_printf ("Client wants LWP %ld to stop. "
5014 "Making sure it has a SIGSTOP pending\n",
5015 lwpid_of (thread));
5016
5017 send_sigstop (lwp);
5018 }
5019
5020 if (thread->last_resume_kind == resume_step)
5021 {
5022 if (debug_threads)
5023 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5024 lwpid_of (thread));
5025 step = 1;
5026 }
5027 else if (lwp->bp_reinsert != 0)
5028 {
5029 if (debug_threads)
5030 debug_printf (" stepping LWP %ld, reinsert set\n",
5031 lwpid_of (thread));
5032 step = 1;
5033 }
5034 else
5035 step = 0;
5036
5037 linux_resume_one_lwp (lwp, step, 0, NULL);
5038 return 0;
5039 }
5040
5041 static int
5042 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5043 {
5044 struct thread_info *thread = (struct thread_info *) entry;
5045 struct lwp_info *lwp = get_thread_lwp (thread);
5046
5047 if (lwp == except)
5048 return 0;
5049
5050 lwp_suspended_decr (lwp);
5051
5052 return proceed_one_lwp (entry, except);
5053 }
5054
5055 /* When we finish a step-over, set threads running again. If there's
5056 another thread that may need a step-over, now's the time to start
5057 it. Eventually, we'll move all threads past their breakpoints. */
5058
5059 static void
5060 proceed_all_lwps (void)
5061 {
5062 struct thread_info *need_step_over;
5063
5064 /* If there is a thread which would otherwise be resumed, which is
5065 stopped at a breakpoint that needs stepping over, then don't
5066 resume any threads - have it step over the breakpoint with all
5067 other threads stopped, then resume all threads again. */
5068
5069 if (supports_breakpoints ())
5070 {
5071 need_step_over
5072 = (struct thread_info *) find_inferior (&all_threads,
5073 need_step_over_p, NULL);
5074
5075 if (need_step_over != NULL)
5076 {
5077 if (debug_threads)
5078 debug_printf ("proceed_all_lwps: found "
5079 "thread %ld needing a step-over\n",
5080 lwpid_of (need_step_over));
5081
5082 start_step_over (get_thread_lwp (need_step_over));
5083 return;
5084 }
5085 }
5086
5087 if (debug_threads)
5088 debug_printf ("Proceeding, no step-over needed\n");
5089
5090 find_inferior (&all_threads, proceed_one_lwp, NULL);
5091 }
5092
5093 /* Stopped LWPs that the client wanted to be running, that don't have
5094 pending statuses, are set to run again, except for EXCEPT, if not
5095 NULL. This undoes a stop_all_lwps call. */
5096
5097 static void
5098 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5099 {
5100 if (debug_threads)
5101 {
5102 debug_enter ();
5103 if (except)
5104 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5105 lwpid_of (get_lwp_thread (except)));
5106 else
5107 debug_printf ("unstopping all lwps\n");
5108 }
5109
5110 if (unsuspend)
5111 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5112 else
5113 find_inferior (&all_threads, proceed_one_lwp, except);
5114
5115 if (debug_threads)
5116 {
5117 debug_printf ("unstop_all_lwps done\n");
5118 debug_exit ();
5119 }
5120 }
5121
5122
5123 #ifdef HAVE_LINUX_REGSETS
5124
5125 #define use_linux_regsets 1
5126
5127 /* Returns true if REGSET has been disabled. */
5128
5129 static int
5130 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5131 {
5132 return (info->disabled_regsets != NULL
5133 && info->disabled_regsets[regset - info->regsets]);
5134 }
5135
5136 /* Disable REGSET. */
5137
5138 static void
5139 disable_regset (struct regsets_info *info, struct regset_info *regset)
5140 {
5141 int dr_offset;
5142
5143 dr_offset = regset - info->regsets;
5144 if (info->disabled_regsets == NULL)
5145 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5146 info->disabled_regsets[dr_offset] = 1;
5147 }
5148
5149 static int
5150 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5151 struct regcache *regcache)
5152 {
5153 struct regset_info *regset;
5154 int saw_general_regs = 0;
5155 int pid;
5156 struct iovec iov;
5157
5158 pid = lwpid_of (current_thread);
5159 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5160 {
5161 void *buf, *data;
5162 int nt_type, res;
5163
5164 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5165 continue;
5166
5167 buf = xmalloc (regset->size);
5168
5169 nt_type = regset->nt_type;
5170 if (nt_type)
5171 {
5172 iov.iov_base = buf;
5173 iov.iov_len = regset->size;
5174 data = (void *) &iov;
5175 }
5176 else
5177 data = buf;
5178
5179 #ifndef __sparc__
5180 res = ptrace (regset->get_request, pid,
5181 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5182 #else
5183 res = ptrace (regset->get_request, pid, data, nt_type);
5184 #endif
5185 if (res < 0)
5186 {
5187 if (errno == EIO)
5188 {
5189 /* If we get EIO on a regset, do not try it again for
5190 this process mode. */
5191 disable_regset (regsets_info, regset);
5192 }
5193 else if (errno == ENODATA)
5194 {
5195 /* ENODATA may be returned if the regset is currently
5196 not "active". This can happen in normal operation,
5197 so suppress the warning in this case. */
5198 }
5199 else
5200 {
5201 char s[256];
5202 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5203 pid);
5204 perror (s);
5205 }
5206 }
5207 else
5208 {
5209 if (regset->type == GENERAL_REGS)
5210 saw_general_regs = 1;
5211 regset->store_function (regcache, buf);
5212 }
5213 free (buf);
5214 }
5215 if (saw_general_regs)
5216 return 0;
5217 else
5218 return 1;
5219 }
5220
5221 static int
5222 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5223 struct regcache *regcache)
5224 {
5225 struct regset_info *regset;
5226 int saw_general_regs = 0;
5227 int pid;
5228 struct iovec iov;
5229
5230 pid = lwpid_of (current_thread);
5231 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5232 {
5233 void *buf, *data;
5234 int nt_type, res;
5235
5236 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5237 || regset->fill_function == NULL)
5238 continue;
5239
5240 buf = xmalloc (regset->size);
5241
5242 /* First fill the buffer with the current register set contents,
5243 in case there are any items in the kernel's regset that are
5244 not in gdbserver's regcache. */
5245
5246 nt_type = regset->nt_type;
5247 if (nt_type)
5248 {
5249 iov.iov_base = buf;
5250 iov.iov_len = regset->size;
5251 data = (void *) &iov;
5252 }
5253 else
5254 data = buf;
5255
5256 #ifndef __sparc__
5257 res = ptrace (regset->get_request, pid,
5258 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5259 #else
5260 res = ptrace (regset->get_request, pid, data, nt_type);
5261 #endif
5262
5263 if (res == 0)
5264 {
5265 /* Then overlay our cached registers on that. */
5266 regset->fill_function (regcache, buf);
5267
5268 /* Only now do we write the register set. */
5269 #ifndef __sparc__
5270 res = ptrace (regset->set_request, pid,
5271 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5272 #else
5273 res = ptrace (regset->set_request, pid, data, nt_type);
5274 #endif
5275 }
5276
5277 if (res < 0)
5278 {
5279 if (errno == EIO)
5280 {
5281 /* If we get EIO on a regset, do not try it again for
5282 this process mode. */
5283 disable_regset (regsets_info, regset);
5284 }
5285 else if (errno == ESRCH)
5286 {
5287 /* At this point, ESRCH should mean the process is
5288 already gone, in which case we simply ignore attempts
5289 to change its registers. See also the related
5290 comment in linux_resume_one_lwp. */
5291 free (buf);
5292 return 0;
5293 }
5294 else
5295 {
5296 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5297 }
5298 }
5299 else if (regset->type == GENERAL_REGS)
5300 saw_general_regs = 1;
5301 free (buf);
5302 }
5303 if (saw_general_regs)
5304 return 0;
5305 else
5306 return 1;
5307 }
5308
5309 #else /* !HAVE_LINUX_REGSETS */
5310
5311 #define use_linux_regsets 0
5312 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5313 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5314
5315 #endif
5316
5317 /* Return 1 if register REGNO is supported by one of the regset ptrace
5318 calls or 0 if it has to be transferred individually. */
5319
5320 static int
5321 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5322 {
5323 unsigned char mask = 1 << (regno % 8);
5324 size_t index = regno / 8;
5325
5326 return (use_linux_regsets
5327 && (regs_info->regset_bitmap == NULL
5328 || (regs_info->regset_bitmap[index] & mask) != 0));
5329 }
5330
5331 #ifdef HAVE_LINUX_USRREGS
5332
5333 static int
5334 register_addr (const struct usrregs_info *usrregs, int regnum)
5335 {
5336 int addr;
5337
5338 if (regnum < 0 || regnum >= usrregs->num_regs)
5339 error ("Invalid register number %d.", regnum);
5340
5341 addr = usrregs->regmap[regnum];
5342
5343 return addr;
5344 }
5345
5346 /* Fetch one register. */
5347 static void
5348 fetch_register (const struct usrregs_info *usrregs,
5349 struct regcache *regcache, int regno)
5350 {
5351 CORE_ADDR regaddr;
5352 int i, size;
5353 char *buf;
5354 int pid;
5355
5356 if (regno >= usrregs->num_regs)
5357 return;
5358 if ((*the_low_target.cannot_fetch_register) (regno))
5359 return;
5360
5361 regaddr = register_addr (usrregs, regno);
5362 if (regaddr == -1)
5363 return;
5364
5365 size = ((register_size (regcache->tdesc, regno)
5366 + sizeof (PTRACE_XFER_TYPE) - 1)
5367 & -sizeof (PTRACE_XFER_TYPE));
5368 buf = (char *) alloca (size);
5369
5370 pid = lwpid_of (current_thread);
5371 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5372 {
5373 errno = 0;
5374 *(PTRACE_XFER_TYPE *) (buf + i) =
5375 ptrace (PTRACE_PEEKUSER, pid,
5376 /* Coerce to a uintptr_t first to avoid potential gcc warning
5377 of coercing an 8 byte integer to a 4 byte pointer. */
5378 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5379 regaddr += sizeof (PTRACE_XFER_TYPE);
5380 if (errno != 0)
5381 error ("reading register %d: %s", regno, strerror (errno));
5382 }
5383
5384 if (the_low_target.supply_ptrace_register)
5385 the_low_target.supply_ptrace_register (regcache, regno, buf);
5386 else
5387 supply_register (regcache, regno, buf);
5388 }
5389
5390 /* Store one register. */
5391 static void
5392 store_register (const struct usrregs_info *usrregs,
5393 struct regcache *regcache, int regno)
5394 {
5395 CORE_ADDR regaddr;
5396 int i, size;
5397 char *buf;
5398 int pid;
5399
5400 if (regno >= usrregs->num_regs)
5401 return;
5402 if ((*the_low_target.cannot_store_register) (regno))
5403 return;
5404
5405 regaddr = register_addr (usrregs, regno);
5406 if (regaddr == -1)
5407 return;
5408
5409 size = ((register_size (regcache->tdesc, regno)
5410 + sizeof (PTRACE_XFER_TYPE) - 1)
5411 & -sizeof (PTRACE_XFER_TYPE));
5412 buf = (char *) alloca (size);
5413 memset (buf, 0, size);
5414
5415 if (the_low_target.collect_ptrace_register)
5416 the_low_target.collect_ptrace_register (regcache, regno, buf);
5417 else
5418 collect_register (regcache, regno, buf);
5419
5420 pid = lwpid_of (current_thread);
5421 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5422 {
5423 errno = 0;
5424 ptrace (PTRACE_POKEUSER, pid,
5425 /* Coerce to a uintptr_t first to avoid potential gcc warning
5426 about coercing an 8 byte integer to a 4 byte pointer. */
5427 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5428 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5429 if (errno != 0)
5430 {
5431 /* At this point, ESRCH should mean the process is
5432 already gone, in which case we simply ignore attempts
5433 to change its registers. See also the related
5434 comment in linux_resume_one_lwp. */
5435 if (errno == ESRCH)
5436 return;
5437
5438 if ((*the_low_target.cannot_store_register) (regno) == 0)
5439 error ("writing register %d: %s", regno, strerror (errno));
5440 }
5441 regaddr += sizeof (PTRACE_XFER_TYPE);
5442 }
5443 }
5444
5445 /* Fetch all registers, or just one, from the child process.
5446 If REGNO is -1, do this for all registers, skipping any that are
5447 assumed to have been retrieved by regsets_fetch_inferior_registers,
5448 unless ALL is non-zero.
5449 Otherwise, REGNO specifies which register (so we can save time). */
5450 static void
5451 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5452 struct regcache *regcache, int regno, int all)
5453 {
5454 struct usrregs_info *usr = regs_info->usrregs;
5455
5456 if (regno == -1)
5457 {
5458 for (regno = 0; regno < usr->num_regs; regno++)
5459 if (all || !linux_register_in_regsets (regs_info, regno))
5460 fetch_register (usr, regcache, regno);
5461 }
5462 else
5463 fetch_register (usr, regcache, regno);
5464 }
5465
5466 /* Store our register values back into the inferior.
5467 If REGNO is -1, do this for all registers, skipping any that are
5468 assumed to have been saved by regsets_store_inferior_registers,
5469 unless ALL is non-zero.
5470 Otherwise, REGNO specifies which register (so we can save time). */
5471 static void
5472 usr_store_inferior_registers (const struct regs_info *regs_info,
5473 struct regcache *regcache, int regno, int all)
5474 {
5475 struct usrregs_info *usr = regs_info->usrregs;
5476
5477 if (regno == -1)
5478 {
5479 for (regno = 0; regno < usr->num_regs; regno++)
5480 if (all || !linux_register_in_regsets (regs_info, regno))
5481 store_register (usr, regcache, regno);
5482 }
5483 else
5484 store_register (usr, regcache, regno);
5485 }
5486
5487 #else /* !HAVE_LINUX_USRREGS */
5488
5489 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5490 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5491
5492 #endif
5493
5494
5495 static void
5496 linux_fetch_registers (struct regcache *regcache, int regno)
5497 {
5498 int use_regsets;
5499 int all = 0;
5500 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5501
5502 if (regno == -1)
5503 {
5504 if (the_low_target.fetch_register != NULL
5505 && regs_info->usrregs != NULL)
5506 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5507 (*the_low_target.fetch_register) (regcache, regno);
5508
5509 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5510 if (regs_info->usrregs != NULL)
5511 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5512 }
5513 else
5514 {
5515 if (the_low_target.fetch_register != NULL
5516 && (*the_low_target.fetch_register) (regcache, regno))
5517 return;
5518
5519 use_regsets = linux_register_in_regsets (regs_info, regno);
5520 if (use_regsets)
5521 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5522 regcache);
5523 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5524 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5525 }
5526 }
5527
5528 static void
5529 linux_store_registers (struct regcache *regcache, int regno)
5530 {
5531 int use_regsets;
5532 int all = 0;
5533 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5534
5535 if (regno == -1)
5536 {
5537 all = regsets_store_inferior_registers (regs_info->regsets_info,
5538 regcache);
5539 if (regs_info->usrregs != NULL)
5540 usr_store_inferior_registers (regs_info, regcache, regno, all);
5541 }
5542 else
5543 {
5544 use_regsets = linux_register_in_regsets (regs_info, regno);
5545 if (use_regsets)
5546 all = regsets_store_inferior_registers (regs_info->regsets_info,
5547 regcache);
5548 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5549 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5550 }
5551 }
5552
5553
5554 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5555 to debugger memory starting at MYADDR. */
5556
5557 static int
5558 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5559 {
5560 int pid = lwpid_of (current_thread);
5561 register PTRACE_XFER_TYPE *buffer;
5562 register CORE_ADDR addr;
5563 register int count;
5564 char filename[64];
5565 register int i;
5566 int ret;
5567 int fd;
5568
5569 /* Try using /proc. Don't bother for one word. */
5570 if (len >= 3 * sizeof (long))
5571 {
5572 int bytes;
5573
5574 /* We could keep this file open and cache it - possibly one per
5575 thread. That requires some juggling, but is even faster. */
5576 sprintf (filename, "/proc/%d/mem", pid);
5577 fd = open (filename, O_RDONLY | O_LARGEFILE);
5578 if (fd == -1)
5579 goto no_proc;
5580
5581 /* If pread64 is available, use it. It's faster if the kernel
5582 supports it (only one syscall), and it's 64-bit safe even on
5583 32-bit platforms (for instance, SPARC debugging a SPARC64
5584 application). */
5585 #ifdef HAVE_PREAD64
5586 bytes = pread64 (fd, myaddr, len, memaddr);
5587 #else
5588 bytes = -1;
5589 if (lseek (fd, memaddr, SEEK_SET) != -1)
5590 bytes = read (fd, myaddr, len);
5591 #endif
5592
5593 close (fd);
5594 if (bytes == len)
5595 return 0;
5596
5597 /* Some data was read, we'll try to get the rest with ptrace. */
5598 if (bytes > 0)
5599 {
5600 memaddr += bytes;
5601 myaddr += bytes;
5602 len -= bytes;
5603 }
5604 }
5605
5606 no_proc:
5607 /* Round starting address down to longword boundary. */
5608 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5609 /* Round ending address up; get number of longwords that makes. */
5610 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5611 / sizeof (PTRACE_XFER_TYPE));
5612 /* Allocate buffer of that many longwords. */
5613 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5614
5615 /* Read all the longwords */
5616 errno = 0;
5617 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5618 {
5619 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5620 about coercing an 8 byte integer to a 4 byte pointer. */
5621 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5622 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5623 (PTRACE_TYPE_ARG4) 0);
5624 if (errno)
5625 break;
5626 }
5627 ret = errno;
5628
5629 /* Copy appropriate bytes out of the buffer. */
5630 if (i > 0)
5631 {
5632 i *= sizeof (PTRACE_XFER_TYPE);
5633 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5634 memcpy (myaddr,
5635 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5636 i < len ? i : len);
5637 }
5638
5639 return ret;
5640 }
5641
5642 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5643 memory at MEMADDR. On failure (cannot write to the inferior)
5644 returns the value of errno. Always succeeds if LEN is zero. */
5645
5646 static int
5647 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5648 {
5649 register int i;
5650 /* Round starting address down to longword boundary. */
5651 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5652 /* Round ending address up; get number of longwords that makes. */
5653 register int count
5654 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5655 / sizeof (PTRACE_XFER_TYPE);
5656
5657 /* Allocate buffer of that many longwords. */
5658 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5659
5660 int pid = lwpid_of (current_thread);
5661
5662 if (len == 0)
5663 {
5664 /* Zero length write always succeeds. */
5665 return 0;
5666 }
5667
5668 if (debug_threads)
5669 {
5670 /* Dump up to four bytes. */
5671 char str[4 * 2 + 1];
5672 char *p = str;
5673 int dump = len < 4 ? len : 4;
5674
5675 for (i = 0; i < dump; i++)
5676 {
5677 sprintf (p, "%02x", myaddr[i]);
5678 p += 2;
5679 }
5680 *p = '\0';
5681
5682 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5683 str, (long) memaddr, pid);
5684 }
5685
5686 /* Fill start and end extra bytes of buffer with existing memory data. */
5687
5688 errno = 0;
5689 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5690 about coercing an 8 byte integer to a 4 byte pointer. */
5691 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5692 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5693 (PTRACE_TYPE_ARG4) 0);
5694 if (errno)
5695 return errno;
5696
5697 if (count > 1)
5698 {
5699 errno = 0;
5700 buffer[count - 1]
5701 = ptrace (PTRACE_PEEKTEXT, pid,
5702 /* Coerce to a uintptr_t first to avoid potential gcc warning
5703 about coercing an 8 byte integer to a 4 byte pointer. */
5704 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5705 * sizeof (PTRACE_XFER_TYPE)),
5706 (PTRACE_TYPE_ARG4) 0);
5707 if (errno)
5708 return errno;
5709 }
5710
5711 /* Copy data to be written over corresponding part of buffer. */
5712
5713 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5714 myaddr, len);
5715
5716 /* Write the entire buffer. */
5717
5718 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5719 {
5720 errno = 0;
5721 ptrace (PTRACE_POKETEXT, pid,
5722 /* Coerce to a uintptr_t first to avoid potential gcc warning
5723 about coercing an 8 byte integer to a 4 byte pointer. */
5724 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5725 (PTRACE_TYPE_ARG4) buffer[i]);
5726 if (errno)
5727 return errno;
5728 }
5729
5730 return 0;
5731 }
5732
5733 static void
5734 linux_look_up_symbols (void)
5735 {
5736 #ifdef USE_THREAD_DB
5737 struct process_info *proc = current_process ();
5738
5739 if (proc->priv->thread_db != NULL)
5740 return;
5741
5742 thread_db_init ();
5743 #endif
5744 }
5745
5746 static void
5747 linux_request_interrupt (void)
5748 {
5749 extern unsigned long signal_pid;
5750
5751 /* Send a SIGINT to the process group. This acts just like the user
5752 typed a ^C on the controlling terminal. */
5753 kill (-signal_pid, SIGINT);
5754 }
5755
5756 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5757 to debugger memory starting at MYADDR. */
5758
5759 static int
5760 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5761 {
5762 char filename[PATH_MAX];
5763 int fd, n;
5764 int pid = lwpid_of (current_thread);
5765
5766 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5767
5768 fd = open (filename, O_RDONLY);
5769 if (fd < 0)
5770 return -1;
5771
5772 if (offset != (CORE_ADDR) 0
5773 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5774 n = -1;
5775 else
5776 n = read (fd, myaddr, len);
5777
5778 close (fd);
5779
5780 return n;
5781 }
5782
5783 /* These breakpoint and watchpoint related wrapper functions simply
5784 pass on the function call if the target has registered a
5785 corresponding function. */
5786
5787 static int
5788 linux_supports_z_point_type (char z_type)
5789 {
5790 return (the_low_target.supports_z_point_type != NULL
5791 && the_low_target.supports_z_point_type (z_type));
5792 }
5793
5794 static int
5795 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5796 int size, struct raw_breakpoint *bp)
5797 {
5798 if (type == raw_bkpt_type_sw)
5799 return insert_memory_breakpoint (bp);
5800 else if (the_low_target.insert_point != NULL)
5801 return the_low_target.insert_point (type, addr, size, bp);
5802 else
5803 /* Unsupported (see target.h). */
5804 return 1;
5805 }
5806
5807 static int
5808 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5809 int size, struct raw_breakpoint *bp)
5810 {
5811 if (type == raw_bkpt_type_sw)
5812 return remove_memory_breakpoint (bp);
5813 else if (the_low_target.remove_point != NULL)
5814 return the_low_target.remove_point (type, addr, size, bp);
5815 else
5816 /* Unsupported (see target.h). */
5817 return 1;
5818 }
5819
5820 /* Implement the to_stopped_by_sw_breakpoint target_ops
5821 method. */
5822
5823 static int
5824 linux_stopped_by_sw_breakpoint (void)
5825 {
5826 struct lwp_info *lwp = get_thread_lwp (current_thread);
5827
5828 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5829 }
5830
5831 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5832 method. */
5833
5834 static int
5835 linux_supports_stopped_by_sw_breakpoint (void)
5836 {
5837 return USE_SIGTRAP_SIGINFO;
5838 }
5839
5840 /* Implement the to_stopped_by_hw_breakpoint target_ops
5841 method. */
5842
5843 static int
5844 linux_stopped_by_hw_breakpoint (void)
5845 {
5846 struct lwp_info *lwp = get_thread_lwp (current_thread);
5847
5848 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5849 }
5850
5851 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5852 method. */
5853
5854 static int
5855 linux_supports_stopped_by_hw_breakpoint (void)
5856 {
5857 return USE_SIGTRAP_SIGINFO;
5858 }
5859
5860 /* Implement the supports_hardware_single_step target_ops method. */
5861
5862 static int
5863 linux_supports_hardware_single_step (void)
5864 {
5865 return can_hardware_single_step ();
5866 }
5867
5868 static int
5869 linux_supports_software_single_step (void)
5870 {
5871 return can_software_single_step ();
5872 }
5873
5874 static int
5875 linux_stopped_by_watchpoint (void)
5876 {
5877 struct lwp_info *lwp = get_thread_lwp (current_thread);
5878
5879 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5880 }
5881
5882 static CORE_ADDR
5883 linux_stopped_data_address (void)
5884 {
5885 struct lwp_info *lwp = get_thread_lwp (current_thread);
5886
5887 return lwp->stopped_data_address;
5888 }
5889
5890 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5891 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5892 && defined(PT_TEXT_END_ADDR)
5893
5894 /* This is only used for targets that define PT_TEXT_ADDR,
5895 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5896 the target has different ways of acquiring this information, like
5897 loadmaps. */
5898
5899 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5900 to tell gdb about. */
5901
5902 static int
5903 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5904 {
5905 unsigned long text, text_end, data;
5906 int pid = lwpid_of (current_thread);
5907
5908 errno = 0;
5909
5910 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5911 (PTRACE_TYPE_ARG4) 0);
5912 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5913 (PTRACE_TYPE_ARG4) 0);
5914 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5915 (PTRACE_TYPE_ARG4) 0);
5916
5917 if (errno == 0)
5918 {
5919 /* Both text and data offsets produced at compile-time (and so
5920 used by gdb) are relative to the beginning of the program,
5921 with the data segment immediately following the text segment.
5922 However, the actual runtime layout in memory may put the data
5923 somewhere else, so when we send gdb a data base-address, we
5924 use the real data base address and subtract the compile-time
5925 data base-address from it (which is just the length of the
5926 text segment). BSS immediately follows data in both
5927 cases. */
5928 *text_p = text;
5929 *data_p = data - (text_end - text);
5930
5931 return 1;
5932 }
5933 return 0;
5934 }
5935 #endif
5936
5937 static int
5938 linux_qxfer_osdata (const char *annex,
5939 unsigned char *readbuf, unsigned const char *writebuf,
5940 CORE_ADDR offset, int len)
5941 {
5942 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5943 }
5944
5945 /* Convert a native/host siginfo object, into/from the siginfo in the
5946 layout of the inferiors' architecture. */
5947
5948 static void
5949 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
5950 {
5951 int done = 0;
5952
5953 if (the_low_target.siginfo_fixup != NULL)
5954 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5955
5956 /* If there was no callback, or the callback didn't do anything,
5957 then just do a straight memcpy. */
5958 if (!done)
5959 {
5960 if (direction == 1)
5961 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5962 else
5963 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5964 }
5965 }
5966
5967 static int
5968 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5969 unsigned const char *writebuf, CORE_ADDR offset, int len)
5970 {
5971 int pid;
5972 siginfo_t siginfo;
5973 gdb_byte inf_siginfo[sizeof (siginfo_t)];
5974
5975 if (current_thread == NULL)
5976 return -1;
5977
5978 pid = lwpid_of (current_thread);
5979
5980 if (debug_threads)
5981 debug_printf ("%s siginfo for lwp %d.\n",
5982 readbuf != NULL ? "Reading" : "Writing",
5983 pid);
5984
5985 if (offset >= sizeof (siginfo))
5986 return -1;
5987
5988 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5989 return -1;
5990
5991 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5992 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5993 inferior with a 64-bit GDBSERVER should look the same as debugging it
5994 with a 32-bit GDBSERVER, we need to convert it. */
5995 siginfo_fixup (&siginfo, inf_siginfo, 0);
5996
5997 if (offset + len > sizeof (siginfo))
5998 len = sizeof (siginfo) - offset;
5999
6000 if (readbuf != NULL)
6001 memcpy (readbuf, inf_siginfo + offset, len);
6002 else
6003 {
6004 memcpy (inf_siginfo + offset, writebuf, len);
6005
6006 /* Convert back to ptrace layout before flushing it out. */
6007 siginfo_fixup (&siginfo, inf_siginfo, 1);
6008
6009 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6010 return -1;
6011 }
6012
6013 return len;
6014 }
6015
6016 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6017 so we notice when children change state; as the handler for the
6018 sigsuspend in my_waitpid. */
6019
6020 static void
6021 sigchld_handler (int signo)
6022 {
6023 int old_errno = errno;
6024
6025 if (debug_threads)
6026 {
6027 do
6028 {
6029 /* fprintf is not async-signal-safe, so call write
6030 directly. */
6031 if (write (2, "sigchld_handler\n",
6032 sizeof ("sigchld_handler\n") - 1) < 0)
6033 break; /* just ignore */
6034 } while (0);
6035 }
6036
6037 if (target_is_async_p ())
6038 async_file_mark (); /* trigger a linux_wait */
6039
6040 errno = old_errno;
6041 }
6042
6043 static int
6044 linux_supports_non_stop (void)
6045 {
6046 return 1;
6047 }
6048
6049 static int
6050 linux_async (int enable)
6051 {
6052 int previous = target_is_async_p ();
6053
6054 if (debug_threads)
6055 debug_printf ("linux_async (%d), previous=%d\n",
6056 enable, previous);
6057
6058 if (previous != enable)
6059 {
6060 sigset_t mask;
6061 sigemptyset (&mask);
6062 sigaddset (&mask, SIGCHLD);
6063
6064 sigprocmask (SIG_BLOCK, &mask, NULL);
6065
6066 if (enable)
6067 {
6068 if (pipe (linux_event_pipe) == -1)
6069 {
6070 linux_event_pipe[0] = -1;
6071 linux_event_pipe[1] = -1;
6072 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6073
6074 warning ("creating event pipe failed.");
6075 return previous;
6076 }
6077
6078 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6079 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6080
6081 /* Register the event loop handler. */
6082 add_file_handler (linux_event_pipe[0],
6083 handle_target_event, NULL);
6084
6085 /* Always trigger a linux_wait. */
6086 async_file_mark ();
6087 }
6088 else
6089 {
6090 delete_file_handler (linux_event_pipe[0]);
6091
6092 close (linux_event_pipe[0]);
6093 close (linux_event_pipe[1]);
6094 linux_event_pipe[0] = -1;
6095 linux_event_pipe[1] = -1;
6096 }
6097
6098 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6099 }
6100
6101 return previous;
6102 }
6103
6104 static int
6105 linux_start_non_stop (int nonstop)
6106 {
6107 /* Register or unregister from event-loop accordingly. */
6108 linux_async (nonstop);
6109
6110 if (target_is_async_p () != (nonstop != 0))
6111 return -1;
6112
6113 return 0;
6114 }
6115
6116 static int
6117 linux_supports_multi_process (void)
6118 {
6119 return 1;
6120 }
6121
6122 /* Check if fork events are supported. */
6123
6124 static int
6125 linux_supports_fork_events (void)
6126 {
6127 return linux_supports_tracefork ();
6128 }
6129
6130 /* Check if vfork events are supported. */
6131
6132 static int
6133 linux_supports_vfork_events (void)
6134 {
6135 return linux_supports_tracefork ();
6136 }
6137
6138 /* Check if exec events are supported. */
6139
6140 static int
6141 linux_supports_exec_events (void)
6142 {
6143 return linux_supports_traceexec ();
6144 }
6145
6146 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6147 options for the specified lwp. */
6148
6149 static int
6150 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6151 void *args)
6152 {
6153 struct thread_info *thread = (struct thread_info *) entry;
6154 struct lwp_info *lwp = get_thread_lwp (thread);
6155
6156 if (!lwp->stopped)
6157 {
6158 /* Stop the lwp so we can modify its ptrace options. */
6159 lwp->must_set_ptrace_flags = 1;
6160 linux_stop_lwp (lwp);
6161 }
6162 else
6163 {
6164 /* Already stopped; go ahead and set the ptrace options. */
6165 struct process_info *proc = find_process_pid (pid_of (thread));
6166 int options = linux_low_ptrace_options (proc->attached);
6167
6168 linux_enable_event_reporting (lwpid_of (thread), options);
6169 lwp->must_set_ptrace_flags = 0;
6170 }
6171
6172 return 0;
6173 }
6174
6175 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6176 ptrace flags for all inferiors. This is in case the new GDB connection
6177 doesn't support the same set of events that the previous one did. */
6178
6179 static void
6180 linux_handle_new_gdb_connection (void)
6181 {
6182 pid_t pid;
6183
6184 /* Request that all the lwps reset their ptrace options. */
6185 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6186 }
6187
6188 static int
6189 linux_supports_disable_randomization (void)
6190 {
6191 #ifdef HAVE_PERSONALITY
6192 return 1;
6193 #else
6194 return 0;
6195 #endif
6196 }
6197
6198 static int
6199 linux_supports_agent (void)
6200 {
6201 return 1;
6202 }
6203
6204 static int
6205 linux_supports_range_stepping (void)
6206 {
6207 if (*the_low_target.supports_range_stepping == NULL)
6208 return 0;
6209
6210 return (*the_low_target.supports_range_stepping) ();
6211 }
6212
6213 /* Enumerate spufs IDs for process PID. */
6214 static int
6215 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6216 {
6217 int pos = 0;
6218 int written = 0;
6219 char path[128];
6220 DIR *dir;
6221 struct dirent *entry;
6222
6223 sprintf (path, "/proc/%ld/fd", pid);
6224 dir = opendir (path);
6225 if (!dir)
6226 return -1;
6227
6228 rewinddir (dir);
6229 while ((entry = readdir (dir)) != NULL)
6230 {
6231 struct stat st;
6232 struct statfs stfs;
6233 int fd;
6234
6235 fd = atoi (entry->d_name);
6236 if (!fd)
6237 continue;
6238
6239 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6240 if (stat (path, &st) != 0)
6241 continue;
6242 if (!S_ISDIR (st.st_mode))
6243 continue;
6244
6245 if (statfs (path, &stfs) != 0)
6246 continue;
6247 if (stfs.f_type != SPUFS_MAGIC)
6248 continue;
6249
6250 if (pos >= offset && pos + 4 <= offset + len)
6251 {
6252 *(unsigned int *)(buf + pos - offset) = fd;
6253 written += 4;
6254 }
6255 pos += 4;
6256 }
6257
6258 closedir (dir);
6259 return written;
6260 }
6261
6262 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6263 object type, using the /proc file system. */
6264 static int
6265 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6266 unsigned const char *writebuf,
6267 CORE_ADDR offset, int len)
6268 {
6269 long pid = lwpid_of (current_thread);
6270 char buf[128];
6271 int fd = 0;
6272 int ret = 0;
6273
6274 if (!writebuf && !readbuf)
6275 return -1;
6276
6277 if (!*annex)
6278 {
6279 if (!readbuf)
6280 return -1;
6281 else
6282 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6283 }
6284
6285 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6286 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6287 if (fd <= 0)
6288 return -1;
6289
6290 if (offset != 0
6291 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6292 {
6293 close (fd);
6294 return 0;
6295 }
6296
6297 if (writebuf)
6298 ret = write (fd, writebuf, (size_t) len);
6299 else
6300 ret = read (fd, readbuf, (size_t) len);
6301
6302 close (fd);
6303 return ret;
6304 }
6305
6306 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6307 struct target_loadseg
6308 {
6309 /* Core address to which the segment is mapped. */
6310 Elf32_Addr addr;
6311 /* VMA recorded in the program header. */
6312 Elf32_Addr p_vaddr;
6313 /* Size of this segment in memory. */
6314 Elf32_Word p_memsz;
6315 };
6316
6317 # if defined PT_GETDSBT
6318 struct target_loadmap
6319 {
6320 /* Protocol version number, must be zero. */
6321 Elf32_Word version;
6322 /* Pointer to the DSBT table, its size, and the DSBT index. */
6323 unsigned *dsbt_table;
6324 unsigned dsbt_size, dsbt_index;
6325 /* Number of segments in this map. */
6326 Elf32_Word nsegs;
6327 /* The actual memory map. */
6328 struct target_loadseg segs[/*nsegs*/];
6329 };
6330 # define LINUX_LOADMAP PT_GETDSBT
6331 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6332 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6333 # else
6334 struct target_loadmap
6335 {
6336 /* Protocol version number, must be zero. */
6337 Elf32_Half version;
6338 /* Number of segments in this map. */
6339 Elf32_Half nsegs;
6340 /* The actual memory map. */
6341 struct target_loadseg segs[/*nsegs*/];
6342 };
6343 # define LINUX_LOADMAP PTRACE_GETFDPIC
6344 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6345 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6346 # endif
6347
6348 static int
6349 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6350 unsigned char *myaddr, unsigned int len)
6351 {
6352 int pid = lwpid_of (current_thread);
6353 int addr = -1;
6354 struct target_loadmap *data = NULL;
6355 unsigned int actual_length, copy_length;
6356
6357 if (strcmp (annex, "exec") == 0)
6358 addr = (int) LINUX_LOADMAP_EXEC;
6359 else if (strcmp (annex, "interp") == 0)
6360 addr = (int) LINUX_LOADMAP_INTERP;
6361 else
6362 return -1;
6363
6364 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6365 return -1;
6366
6367 if (data == NULL)
6368 return -1;
6369
6370 actual_length = sizeof (struct target_loadmap)
6371 + sizeof (struct target_loadseg) * data->nsegs;
6372
6373 if (offset < 0 || offset > actual_length)
6374 return -1;
6375
6376 copy_length = actual_length - offset < len ? actual_length - offset : len;
6377 memcpy (myaddr, (char *) data + offset, copy_length);
6378 return copy_length;
6379 }
6380 #else
6381 # define linux_read_loadmap NULL
6382 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6383
6384 static void
6385 linux_process_qsupported (char **features, int count)
6386 {
6387 if (the_low_target.process_qsupported != NULL)
6388 the_low_target.process_qsupported (features, count);
6389 }
6390
6391 static int
6392 linux_supports_catch_syscall (void)
6393 {
6394 return (the_low_target.get_syscall_trapinfo != NULL
6395 && linux_supports_tracesysgood ());
6396 }
6397
6398 static int
6399 linux_get_ipa_tdesc_idx (void)
6400 {
6401 if (the_low_target.get_ipa_tdesc_idx == NULL)
6402 return 0;
6403
6404 return (*the_low_target.get_ipa_tdesc_idx) ();
6405 }
6406
6407 static int
6408 linux_supports_tracepoints (void)
6409 {
6410 if (*the_low_target.supports_tracepoints == NULL)
6411 return 0;
6412
6413 return (*the_low_target.supports_tracepoints) ();
6414 }
6415
6416 static CORE_ADDR
6417 linux_read_pc (struct regcache *regcache)
6418 {
6419 if (the_low_target.get_pc == NULL)
6420 return 0;
6421
6422 return (*the_low_target.get_pc) (regcache);
6423 }
6424
6425 static void
6426 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6427 {
6428 gdb_assert (the_low_target.set_pc != NULL);
6429
6430 (*the_low_target.set_pc) (regcache, pc);
6431 }
6432
6433 static int
6434 linux_thread_stopped (struct thread_info *thread)
6435 {
6436 return get_thread_lwp (thread)->stopped;
6437 }
6438
6439 /* This exposes stop-all-threads functionality to other modules. */
6440
6441 static void
6442 linux_pause_all (int freeze)
6443 {
6444 stop_all_lwps (freeze, NULL);
6445 }
6446
6447 /* This exposes unstop-all-threads functionality to other gdbserver
6448 modules. */
6449
6450 static void
6451 linux_unpause_all (int unfreeze)
6452 {
6453 unstop_all_lwps (unfreeze, NULL);
6454 }
6455
6456 static int
6457 linux_prepare_to_access_memory (void)
6458 {
6459 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6460 running LWP. */
6461 if (non_stop)
6462 linux_pause_all (1);
6463 return 0;
6464 }
6465
6466 static void
6467 linux_done_accessing_memory (void)
6468 {
6469 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6470 running LWP. */
6471 if (non_stop)
6472 linux_unpause_all (1);
6473 }
6474
6475 static int
6476 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6477 CORE_ADDR collector,
6478 CORE_ADDR lockaddr,
6479 ULONGEST orig_size,
6480 CORE_ADDR *jump_entry,
6481 CORE_ADDR *trampoline,
6482 ULONGEST *trampoline_size,
6483 unsigned char *jjump_pad_insn,
6484 ULONGEST *jjump_pad_insn_size,
6485 CORE_ADDR *adjusted_insn_addr,
6486 CORE_ADDR *adjusted_insn_addr_end,
6487 char *err)
6488 {
6489 return (*the_low_target.install_fast_tracepoint_jump_pad)
6490 (tpoint, tpaddr, collector, lockaddr, orig_size,
6491 jump_entry, trampoline, trampoline_size,
6492 jjump_pad_insn, jjump_pad_insn_size,
6493 adjusted_insn_addr, adjusted_insn_addr_end,
6494 err);
6495 }
6496
6497 static struct emit_ops *
6498 linux_emit_ops (void)
6499 {
6500 if (the_low_target.emit_ops != NULL)
6501 return (*the_low_target.emit_ops) ();
6502 else
6503 return NULL;
6504 }
6505
6506 static int
6507 linux_get_min_fast_tracepoint_insn_len (void)
6508 {
6509 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6510 }
6511
6512 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6513
6514 static int
6515 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6516 CORE_ADDR *phdr_memaddr, int *num_phdr)
6517 {
6518 char filename[PATH_MAX];
6519 int fd;
6520 const int auxv_size = is_elf64
6521 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6522 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6523
6524 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6525
6526 fd = open (filename, O_RDONLY);
6527 if (fd < 0)
6528 return 1;
6529
6530 *phdr_memaddr = 0;
6531 *num_phdr = 0;
6532 while (read (fd, buf, auxv_size) == auxv_size
6533 && (*phdr_memaddr == 0 || *num_phdr == 0))
6534 {
6535 if (is_elf64)
6536 {
6537 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6538
6539 switch (aux->a_type)
6540 {
6541 case AT_PHDR:
6542 *phdr_memaddr = aux->a_un.a_val;
6543 break;
6544 case AT_PHNUM:
6545 *num_phdr = aux->a_un.a_val;
6546 break;
6547 }
6548 }
6549 else
6550 {
6551 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6552
6553 switch (aux->a_type)
6554 {
6555 case AT_PHDR:
6556 *phdr_memaddr = aux->a_un.a_val;
6557 break;
6558 case AT_PHNUM:
6559 *num_phdr = aux->a_un.a_val;
6560 break;
6561 }
6562 }
6563 }
6564
6565 close (fd);
6566
6567 if (*phdr_memaddr == 0 || *num_phdr == 0)
6568 {
6569 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6570 "phdr_memaddr = %ld, phdr_num = %d",
6571 (long) *phdr_memaddr, *num_phdr);
6572 return 2;
6573 }
6574
6575 return 0;
6576 }
6577
6578 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6579
6580 static CORE_ADDR
6581 get_dynamic (const int pid, const int is_elf64)
6582 {
6583 CORE_ADDR phdr_memaddr, relocation;
6584 int num_phdr, i;
6585 unsigned char *phdr_buf;
6586 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6587
6588 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6589 return 0;
6590
6591 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6592 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6593
6594 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6595 return 0;
6596
6597 /* Compute relocation: it is expected to be 0 for "regular" executables,
6598 non-zero for PIE ones. */
6599 relocation = -1;
6600 for (i = 0; relocation == -1 && i < num_phdr; i++)
6601 if (is_elf64)
6602 {
6603 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6604
6605 if (p->p_type == PT_PHDR)
6606 relocation = phdr_memaddr - p->p_vaddr;
6607 }
6608 else
6609 {
6610 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6611
6612 if (p->p_type == PT_PHDR)
6613 relocation = phdr_memaddr - p->p_vaddr;
6614 }
6615
6616 if (relocation == -1)
6617 {
6618 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6619 any real world executables, including PIE executables, have always
6620 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6621 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6622 or present DT_DEBUG anyway (fpc binaries are statically linked).
6623
6624 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6625
6626 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6627
6628 return 0;
6629 }
6630
6631 for (i = 0; i < num_phdr; i++)
6632 {
6633 if (is_elf64)
6634 {
6635 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6636
6637 if (p->p_type == PT_DYNAMIC)
6638 return p->p_vaddr + relocation;
6639 }
6640 else
6641 {
6642 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6643
6644 if (p->p_type == PT_DYNAMIC)
6645 return p->p_vaddr + relocation;
6646 }
6647 }
6648
6649 return 0;
6650 }
6651
6652 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6653 can be 0 if the inferior does not yet have the library list initialized.
6654 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6655 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6656
6657 static CORE_ADDR
6658 get_r_debug (const int pid, const int is_elf64)
6659 {
6660 CORE_ADDR dynamic_memaddr;
6661 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6662 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6663 CORE_ADDR map = -1;
6664
6665 dynamic_memaddr = get_dynamic (pid, is_elf64);
6666 if (dynamic_memaddr == 0)
6667 return map;
6668
6669 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6670 {
6671 if (is_elf64)
6672 {
6673 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6674 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6675 union
6676 {
6677 Elf64_Xword map;
6678 unsigned char buf[sizeof (Elf64_Xword)];
6679 }
6680 rld_map;
6681 #endif
6682 #ifdef DT_MIPS_RLD_MAP
6683 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6684 {
6685 if (linux_read_memory (dyn->d_un.d_val,
6686 rld_map.buf, sizeof (rld_map.buf)) == 0)
6687 return rld_map.map;
6688 else
6689 break;
6690 }
6691 #endif /* DT_MIPS_RLD_MAP */
6692 #ifdef DT_MIPS_RLD_MAP_REL
6693 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6694 {
6695 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6696 rld_map.buf, sizeof (rld_map.buf)) == 0)
6697 return rld_map.map;
6698 else
6699 break;
6700 }
6701 #endif /* DT_MIPS_RLD_MAP_REL */
6702
6703 if (dyn->d_tag == DT_DEBUG && map == -1)
6704 map = dyn->d_un.d_val;
6705
6706 if (dyn->d_tag == DT_NULL)
6707 break;
6708 }
6709 else
6710 {
6711 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6712 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6713 union
6714 {
6715 Elf32_Word map;
6716 unsigned char buf[sizeof (Elf32_Word)];
6717 }
6718 rld_map;
6719 #endif
6720 #ifdef DT_MIPS_RLD_MAP
6721 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6722 {
6723 if (linux_read_memory (dyn->d_un.d_val,
6724 rld_map.buf, sizeof (rld_map.buf)) == 0)
6725 return rld_map.map;
6726 else
6727 break;
6728 }
6729 #endif /* DT_MIPS_RLD_MAP */
6730 #ifdef DT_MIPS_RLD_MAP_REL
6731 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6732 {
6733 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6734 rld_map.buf, sizeof (rld_map.buf)) == 0)
6735 return rld_map.map;
6736 else
6737 break;
6738 }
6739 #endif /* DT_MIPS_RLD_MAP_REL */
6740
6741 if (dyn->d_tag == DT_DEBUG && map == -1)
6742 map = dyn->d_un.d_val;
6743
6744 if (dyn->d_tag == DT_NULL)
6745 break;
6746 }
6747
6748 dynamic_memaddr += dyn_size;
6749 }
6750
6751 return map;
6752 }
6753
6754 /* Read one pointer from MEMADDR in the inferior. */
6755
6756 static int
6757 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6758 {
6759 int ret;
6760
6761 /* Go through a union so this works on either big or little endian
6762 hosts, when the inferior's pointer size is smaller than the size
6763 of CORE_ADDR. It is assumed the inferior's endianness is the
6764 same of the superior's. */
6765 union
6766 {
6767 CORE_ADDR core_addr;
6768 unsigned int ui;
6769 unsigned char uc;
6770 } addr;
6771
6772 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6773 if (ret == 0)
6774 {
6775 if (ptr_size == sizeof (CORE_ADDR))
6776 *ptr = addr.core_addr;
6777 else if (ptr_size == sizeof (unsigned int))
6778 *ptr = addr.ui;
6779 else
6780 gdb_assert_not_reached ("unhandled pointer size");
6781 }
6782 return ret;
6783 }
6784
6785 struct link_map_offsets
6786 {
6787 /* Offset and size of r_debug.r_version. */
6788 int r_version_offset;
6789
6790 /* Offset and size of r_debug.r_map. */
6791 int r_map_offset;
6792
6793 /* Offset to l_addr field in struct link_map. */
6794 int l_addr_offset;
6795
6796 /* Offset to l_name field in struct link_map. */
6797 int l_name_offset;
6798
6799 /* Offset to l_ld field in struct link_map. */
6800 int l_ld_offset;
6801
6802 /* Offset to l_next field in struct link_map. */
6803 int l_next_offset;
6804
6805 /* Offset to l_prev field in struct link_map. */
6806 int l_prev_offset;
6807 };
6808
6809 /* Construct qXfer:libraries-svr4:read reply. */
6810
6811 static int
6812 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6813 unsigned const char *writebuf,
6814 CORE_ADDR offset, int len)
6815 {
6816 char *document;
6817 unsigned document_len;
6818 struct process_info_private *const priv = current_process ()->priv;
6819 char filename[PATH_MAX];
6820 int pid, is_elf64;
6821
6822 static const struct link_map_offsets lmo_32bit_offsets =
6823 {
6824 0, /* r_version offset. */
6825 4, /* r_debug.r_map offset. */
6826 0, /* l_addr offset in link_map. */
6827 4, /* l_name offset in link_map. */
6828 8, /* l_ld offset in link_map. */
6829 12, /* l_next offset in link_map. */
6830 16 /* l_prev offset in link_map. */
6831 };
6832
6833 static const struct link_map_offsets lmo_64bit_offsets =
6834 {
6835 0, /* r_version offset. */
6836 8, /* r_debug.r_map offset. */
6837 0, /* l_addr offset in link_map. */
6838 8, /* l_name offset in link_map. */
6839 16, /* l_ld offset in link_map. */
6840 24, /* l_next offset in link_map. */
6841 32 /* l_prev offset in link_map. */
6842 };
6843 const struct link_map_offsets *lmo;
6844 unsigned int machine;
6845 int ptr_size;
6846 CORE_ADDR lm_addr = 0, lm_prev = 0;
6847 int allocated = 1024;
6848 char *p;
6849 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6850 int header_done = 0;
6851
6852 if (writebuf != NULL)
6853 return -2;
6854 if (readbuf == NULL)
6855 return -1;
6856
6857 pid = lwpid_of (current_thread);
6858 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6859 is_elf64 = elf_64_file_p (filename, &machine);
6860 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6861 ptr_size = is_elf64 ? 8 : 4;
6862
6863 while (annex[0] != '\0')
6864 {
6865 const char *sep;
6866 CORE_ADDR *addrp;
6867 int len;
6868
6869 sep = strchr (annex, '=');
6870 if (sep == NULL)
6871 break;
6872
6873 len = sep - annex;
6874 if (len == 5 && startswith (annex, "start"))
6875 addrp = &lm_addr;
6876 else if (len == 4 && startswith (annex, "prev"))
6877 addrp = &lm_prev;
6878 else
6879 {
6880 annex = strchr (sep, ';');
6881 if (annex == NULL)
6882 break;
6883 annex++;
6884 continue;
6885 }
6886
6887 annex = decode_address_to_semicolon (addrp, sep + 1);
6888 }
6889
6890 if (lm_addr == 0)
6891 {
6892 int r_version = 0;
6893
6894 if (priv->r_debug == 0)
6895 priv->r_debug = get_r_debug (pid, is_elf64);
6896
6897 /* We failed to find DT_DEBUG. Such situation will not change
6898 for this inferior - do not retry it. Report it to GDB as
6899 E01, see for the reasons at the GDB solib-svr4.c side. */
6900 if (priv->r_debug == (CORE_ADDR) -1)
6901 return -1;
6902
6903 if (priv->r_debug != 0)
6904 {
6905 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6906 (unsigned char *) &r_version,
6907 sizeof (r_version)) != 0
6908 || r_version != 1)
6909 {
6910 warning ("unexpected r_debug version %d", r_version);
6911 }
6912 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6913 &lm_addr, ptr_size) != 0)
6914 {
6915 warning ("unable to read r_map from 0x%lx",
6916 (long) priv->r_debug + lmo->r_map_offset);
6917 }
6918 }
6919 }
6920
6921 document = (char *) xmalloc (allocated);
6922 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6923 p = document + strlen (document);
6924
6925 while (lm_addr
6926 && read_one_ptr (lm_addr + lmo->l_name_offset,
6927 &l_name, ptr_size) == 0
6928 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6929 &l_addr, ptr_size) == 0
6930 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6931 &l_ld, ptr_size) == 0
6932 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6933 &l_prev, ptr_size) == 0
6934 && read_one_ptr (lm_addr + lmo->l_next_offset,
6935 &l_next, ptr_size) == 0)
6936 {
6937 unsigned char libname[PATH_MAX];
6938
6939 if (lm_prev != l_prev)
6940 {
6941 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6942 (long) lm_prev, (long) l_prev);
6943 break;
6944 }
6945
6946 /* Ignore the first entry even if it has valid name as the first entry
6947 corresponds to the main executable. The first entry should not be
6948 skipped if the dynamic loader was loaded late by a static executable
6949 (see solib-svr4.c parameter ignore_first). But in such case the main
6950 executable does not have PT_DYNAMIC present and this function already
6951 exited above due to failed get_r_debug. */
6952 if (lm_prev == 0)
6953 {
6954 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6955 p = p + strlen (p);
6956 }
6957 else
6958 {
6959 /* Not checking for error because reading may stop before
6960 we've got PATH_MAX worth of characters. */
6961 libname[0] = '\0';
6962 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6963 libname[sizeof (libname) - 1] = '\0';
6964 if (libname[0] != '\0')
6965 {
6966 /* 6x the size for xml_escape_text below. */
6967 size_t len = 6 * strlen ((char *) libname);
6968 char *name;
6969
6970 if (!header_done)
6971 {
6972 /* Terminate `<library-list-svr4'. */
6973 *p++ = '>';
6974 header_done = 1;
6975 }
6976
6977 while (allocated < p - document + len + 200)
6978 {
6979 /* Expand to guarantee sufficient storage. */
6980 uintptr_t document_len = p - document;
6981
6982 document = (char *) xrealloc (document, 2 * allocated);
6983 allocated *= 2;
6984 p = document + document_len;
6985 }
6986
6987 name = xml_escape_text ((char *) libname);
6988 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6989 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6990 name, (unsigned long) lm_addr,
6991 (unsigned long) l_addr, (unsigned long) l_ld);
6992 free (name);
6993 }
6994 }
6995
6996 lm_prev = lm_addr;
6997 lm_addr = l_next;
6998 }
6999
7000 if (!header_done)
7001 {
7002 /* Empty list; terminate `<library-list-svr4'. */
7003 strcpy (p, "/>");
7004 }
7005 else
7006 strcpy (p, "</library-list-svr4>");
7007
7008 document_len = strlen (document);
7009 if (offset < document_len)
7010 document_len -= offset;
7011 else
7012 document_len = 0;
7013 if (len > document_len)
7014 len = document_len;
7015
7016 memcpy (readbuf, document + offset, len);
7017 xfree (document);
7018
7019 return len;
7020 }
7021
7022 #ifdef HAVE_LINUX_BTRACE
7023
7024 /* See to_disable_btrace target method. */
7025
7026 static int
7027 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7028 {
7029 enum btrace_error err;
7030
7031 err = linux_disable_btrace (tinfo);
7032 return (err == BTRACE_ERR_NONE ? 0 : -1);
7033 }
7034
7035 /* Encode an Intel Processor Trace configuration. */
7036
7037 static void
7038 linux_low_encode_pt_config (struct buffer *buffer,
7039 const struct btrace_data_pt_config *config)
7040 {
7041 buffer_grow_str (buffer, "<pt-config>\n");
7042
7043 switch (config->cpu.vendor)
7044 {
7045 case CV_INTEL:
7046 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7047 "model=\"%u\" stepping=\"%u\"/>\n",
7048 config->cpu.family, config->cpu.model,
7049 config->cpu.stepping);
7050 break;
7051
7052 default:
7053 break;
7054 }
7055
7056 buffer_grow_str (buffer, "</pt-config>\n");
7057 }
7058
7059 /* Encode a raw buffer. */
7060
7061 static void
7062 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7063 unsigned int size)
7064 {
7065 if (size == 0)
7066 return;
7067
7068 /* We use hex encoding - see common/rsp-low.h. */
7069 buffer_grow_str (buffer, "<raw>\n");
7070
7071 while (size-- > 0)
7072 {
7073 char elem[2];
7074
7075 elem[0] = tohex ((*data >> 4) & 0xf);
7076 elem[1] = tohex (*data++ & 0xf);
7077
7078 buffer_grow (buffer, elem, 2);
7079 }
7080
7081 buffer_grow_str (buffer, "</raw>\n");
7082 }
7083
7084 /* See to_read_btrace target method. */
7085
7086 static int
7087 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7088 enum btrace_read_type type)
7089 {
7090 struct btrace_data btrace;
7091 struct btrace_block *block;
7092 enum btrace_error err;
7093 int i;
7094
7095 btrace_data_init (&btrace);
7096
7097 err = linux_read_btrace (&btrace, tinfo, type);
7098 if (err != BTRACE_ERR_NONE)
7099 {
7100 if (err == BTRACE_ERR_OVERFLOW)
7101 buffer_grow_str0 (buffer, "E.Overflow.");
7102 else
7103 buffer_grow_str0 (buffer, "E.Generic Error.");
7104
7105 goto err;
7106 }
7107
7108 switch (btrace.format)
7109 {
7110 case BTRACE_FORMAT_NONE:
7111 buffer_grow_str0 (buffer, "E.No Trace.");
7112 goto err;
7113
7114 case BTRACE_FORMAT_BTS:
7115 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7116 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7117
7118 for (i = 0;
7119 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7120 i++)
7121 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7122 paddress (block->begin), paddress (block->end));
7123
7124 buffer_grow_str0 (buffer, "</btrace>\n");
7125 break;
7126
7127 case BTRACE_FORMAT_PT:
7128 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7129 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7130 buffer_grow_str (buffer, "<pt>\n");
7131
7132 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7133
7134 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7135 btrace.variant.pt.size);
7136
7137 buffer_grow_str (buffer, "</pt>\n");
7138 buffer_grow_str0 (buffer, "</btrace>\n");
7139 break;
7140
7141 default:
7142 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7143 goto err;
7144 }
7145
7146 btrace_data_fini (&btrace);
7147 return 0;
7148
7149 err:
7150 btrace_data_fini (&btrace);
7151 return -1;
7152 }
7153
7154 /* See to_btrace_conf target method. */
7155
7156 static int
7157 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7158 struct buffer *buffer)
7159 {
7160 const struct btrace_config *conf;
7161
7162 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7163 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7164
7165 conf = linux_btrace_conf (tinfo);
7166 if (conf != NULL)
7167 {
7168 switch (conf->format)
7169 {
7170 case BTRACE_FORMAT_NONE:
7171 break;
7172
7173 case BTRACE_FORMAT_BTS:
7174 buffer_xml_printf (buffer, "<bts");
7175 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7176 buffer_xml_printf (buffer, " />\n");
7177 break;
7178
7179 case BTRACE_FORMAT_PT:
7180 buffer_xml_printf (buffer, "<pt");
7181 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7182 buffer_xml_printf (buffer, "/>\n");
7183 break;
7184 }
7185 }
7186
7187 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7188 return 0;
7189 }
7190 #endif /* HAVE_LINUX_BTRACE */
7191
7192 /* See nat/linux-nat.h. */
7193
7194 ptid_t
7195 current_lwp_ptid (void)
7196 {
7197 return ptid_of (current_thread);
7198 }
7199
7200 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7201
7202 static int
7203 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7204 {
7205 if (the_low_target.breakpoint_kind_from_pc != NULL)
7206 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7207 else
7208 return default_breakpoint_kind_from_pc (pcptr);
7209 }
7210
7211 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7212
7213 static const gdb_byte *
7214 linux_sw_breakpoint_from_kind (int kind, int *size)
7215 {
7216 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7217
7218 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7219 }
7220
7221 /* Implementation of the target_ops method
7222 "breakpoint_kind_from_current_state". */
7223
7224 static int
7225 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7226 {
7227 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7228 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7229 else
7230 return linux_breakpoint_kind_from_pc (pcptr);
7231 }
7232
7233 /* Default implementation of linux_target_ops method "set_pc" for
7234 32-bit pc register which is literally named "pc". */
7235
7236 void
7237 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7238 {
7239 uint32_t newpc = pc;
7240
7241 supply_register_by_name (regcache, "pc", &newpc);
7242 }
7243
7244 /* Default implementation of linux_target_ops method "get_pc" for
7245 32-bit pc register which is literally named "pc". */
7246
7247 CORE_ADDR
7248 linux_get_pc_32bit (struct regcache *regcache)
7249 {
7250 uint32_t pc;
7251
7252 collect_register_by_name (regcache, "pc", &pc);
7253 if (debug_threads)
7254 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7255 return pc;
7256 }
7257
7258 /* Default implementation of linux_target_ops method "set_pc" for
7259 64-bit pc register which is literally named "pc". */
7260
7261 void
7262 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7263 {
7264 uint64_t newpc = pc;
7265
7266 supply_register_by_name (regcache, "pc", &newpc);
7267 }
7268
7269 /* Default implementation of linux_target_ops method "get_pc" for
7270 64-bit pc register which is literally named "pc". */
7271
7272 CORE_ADDR
7273 linux_get_pc_64bit (struct regcache *regcache)
7274 {
7275 uint64_t pc;
7276
7277 collect_register_by_name (regcache, "pc", &pc);
7278 if (debug_threads)
7279 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7280 return pc;
7281 }
7282
7283
7284 static struct target_ops linux_target_ops = {
7285 linux_create_inferior,
7286 linux_post_create_inferior,
7287 linux_attach,
7288 linux_kill,
7289 linux_detach,
7290 linux_mourn,
7291 linux_join,
7292 linux_thread_alive,
7293 linux_resume,
7294 linux_wait,
7295 linux_fetch_registers,
7296 linux_store_registers,
7297 linux_prepare_to_access_memory,
7298 linux_done_accessing_memory,
7299 linux_read_memory,
7300 linux_write_memory,
7301 linux_look_up_symbols,
7302 linux_request_interrupt,
7303 linux_read_auxv,
7304 linux_supports_z_point_type,
7305 linux_insert_point,
7306 linux_remove_point,
7307 linux_stopped_by_sw_breakpoint,
7308 linux_supports_stopped_by_sw_breakpoint,
7309 linux_stopped_by_hw_breakpoint,
7310 linux_supports_stopped_by_hw_breakpoint,
7311 linux_supports_hardware_single_step,
7312 linux_stopped_by_watchpoint,
7313 linux_stopped_data_address,
7314 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7315 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7316 && defined(PT_TEXT_END_ADDR)
7317 linux_read_offsets,
7318 #else
7319 NULL,
7320 #endif
7321 #ifdef USE_THREAD_DB
7322 thread_db_get_tls_address,
7323 #else
7324 NULL,
7325 #endif
7326 linux_qxfer_spu,
7327 hostio_last_error_from_errno,
7328 linux_qxfer_osdata,
7329 linux_xfer_siginfo,
7330 linux_supports_non_stop,
7331 linux_async,
7332 linux_start_non_stop,
7333 linux_supports_multi_process,
7334 linux_supports_fork_events,
7335 linux_supports_vfork_events,
7336 linux_supports_exec_events,
7337 linux_handle_new_gdb_connection,
7338 #ifdef USE_THREAD_DB
7339 thread_db_handle_monitor_command,
7340 #else
7341 NULL,
7342 #endif
7343 linux_common_core_of_thread,
7344 linux_read_loadmap,
7345 linux_process_qsupported,
7346 linux_supports_tracepoints,
7347 linux_read_pc,
7348 linux_write_pc,
7349 linux_thread_stopped,
7350 NULL,
7351 linux_pause_all,
7352 linux_unpause_all,
7353 linux_stabilize_threads,
7354 linux_install_fast_tracepoint_jump_pad,
7355 linux_emit_ops,
7356 linux_supports_disable_randomization,
7357 linux_get_min_fast_tracepoint_insn_len,
7358 linux_qxfer_libraries_svr4,
7359 linux_supports_agent,
7360 #ifdef HAVE_LINUX_BTRACE
7361 linux_supports_btrace,
7362 linux_enable_btrace,
7363 linux_low_disable_btrace,
7364 linux_low_read_btrace,
7365 linux_low_btrace_conf,
7366 #else
7367 NULL,
7368 NULL,
7369 NULL,
7370 NULL,
7371 NULL,
7372 #endif
7373 linux_supports_range_stepping,
7374 linux_proc_pid_to_exec_file,
7375 linux_mntns_open_cloexec,
7376 linux_mntns_unlink,
7377 linux_mntns_readlink,
7378 linux_breakpoint_kind_from_pc,
7379 linux_sw_breakpoint_from_kind,
7380 linux_proc_tid_get_name,
7381 linux_breakpoint_kind_from_current_state,
7382 linux_supports_software_single_step,
7383 linux_supports_catch_syscall,
7384 linux_get_ipa_tdesc_idx,
7385 };
7386
7387 #ifdef HAVE_LINUX_REGSETS
7388 void
7389 initialize_regsets_info (struct regsets_info *info)
7390 {
7391 for (info->num_regsets = 0;
7392 info->regsets[info->num_regsets].size >= 0;
7393 info->num_regsets++)
7394 ;
7395 }
7396 #endif
7397
7398 void
7399 initialize_low (void)
7400 {
7401 struct sigaction sigchld_action;
7402
7403 memset (&sigchld_action, 0, sizeof (sigchld_action));
7404 set_target_ops (&linux_target_ops);
7405
7406 linux_ptrace_init_warnings ();
7407
7408 sigchld_action.sa_handler = sigchld_handler;
7409 sigemptyset (&sigchld_action.sa_mask);
7410 sigchld_action.sa_flags = SA_RESTART;
7411 sigaction (SIGCHLD, &sigchld_action, NULL);
7412
7413 initialize_low_arch ();
7414
7415 linux_check_ptrace_features ();
7416 }