]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Remove usage of find_inferior in linux_stabilize_threads
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int
1245 last_thread_of_process_p (int pid)
1246 {
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265 }
1266
1267 /* Kill LWP. */
1268
1269 static void
1270 linux_kill_one_lwp (struct lwp_info *lwp)
1271 {
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309 }
1310
1311 /* Kill LWP and wait for it to die. */
1312
1313 static void
1314 kill_wait_lwp (struct lwp_info *lwp)
1315 {
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352 }
1353
1354 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357 static void
1358 kill_one_lwp_callback (thread_info *thread, int pid)
1359 {
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376 }
1377
1378 static int
1379 linux_kill (int pid)
1380 {
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416 }
1417
1418 /* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422 static int
1423 get_detach_signal (struct thread_info *thread)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496 }
1497
1498 /* Detach from LWP. */
1499
1500 static void
1501 linux_detach_one_lwp (struct lwp_info *lwp)
1502 {
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582 }
1583
1584 /* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587 static void
1588 linux_detach_lwp_callback (thread_info *thread)
1589 {
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598 }
1599
1600 static int
1601 linux_detach (int pid)
1602 {
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621 #ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623 #endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642 }
1643
1644 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646 static void
1647 linux_mourn (struct process_info *process)
1648 {
1649 struct process_info_private *priv;
1650
1651 #ifdef USE_THREAD_DB
1652 thread_db_mourn (process);
1653 #endif
1654
1655 for_each_thread (process->pid, [] (thread_info *thread)
1656 {
1657 delete_lwp (get_thread_lwp (thread));
1658 });
1659
1660 /* Freeing all private data. */
1661 priv = process->priv;
1662 if (the_low_target.delete_process != NULL)
1663 the_low_target.delete_process (priv->arch_private);
1664 else
1665 gdb_assert (priv->arch_private == NULL);
1666 free (priv);
1667 process->priv = NULL;
1668
1669 remove_process (process);
1670 }
1671
1672 static void
1673 linux_join (int pid)
1674 {
1675 int status, ret;
1676
1677 do {
1678 ret = my_waitpid (pid, &status, 0);
1679 if (WIFEXITED (status) || WIFSIGNALED (status))
1680 break;
1681 } while (ret != -1 || errno != ECHILD);
1682 }
1683
1684 /* Return nonzero if the given thread is still alive. */
1685 static int
1686 linux_thread_alive (ptid_t ptid)
1687 {
1688 struct lwp_info *lwp = find_lwp_pid (ptid);
1689
1690 /* We assume we always know if a thread exits. If a whole process
1691 exited but we still haven't been able to report it to GDB, we'll
1692 hold on to the last lwp of the dead process. */
1693 if (lwp != NULL)
1694 return !lwp_is_marked_dead (lwp);
1695 else
1696 return 0;
1697 }
1698
1699 /* Return 1 if this lwp still has an interesting status pending. If
1700 not (e.g., it had stopped for a breakpoint that is gone), return
1701 false. */
1702
1703 static int
1704 thread_still_has_status_pending_p (struct thread_info *thread)
1705 {
1706 struct lwp_info *lp = get_thread_lwp (thread);
1707
1708 if (!lp->status_pending_p)
1709 return 0;
1710
1711 if (thread->last_resume_kind != resume_stop
1712 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1713 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1714 {
1715 struct thread_info *saved_thread;
1716 CORE_ADDR pc;
1717 int discard = 0;
1718
1719 gdb_assert (lp->last_status != 0);
1720
1721 pc = get_pc (lp);
1722
1723 saved_thread = current_thread;
1724 current_thread = thread;
1725
1726 if (pc != lp->stop_pc)
1727 {
1728 if (debug_threads)
1729 debug_printf ("PC of %ld changed\n",
1730 lwpid_of (thread));
1731 discard = 1;
1732 }
1733
1734 #if !USE_SIGTRAP_SIGINFO
1735 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 && !(*the_low_target.breakpoint_at) (pc))
1737 {
1738 if (debug_threads)
1739 debug_printf ("previous SW breakpoint of %ld gone\n",
1740 lwpid_of (thread));
1741 discard = 1;
1742 }
1743 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1744 && !hardware_breakpoint_inserted_here (pc))
1745 {
1746 if (debug_threads)
1747 debug_printf ("previous HW breakpoint of %ld gone\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751 #endif
1752
1753 current_thread = saved_thread;
1754
1755 if (discard)
1756 {
1757 if (debug_threads)
1758 debug_printf ("discarding pending breakpoint status\n");
1759 lp->status_pending_p = 0;
1760 return 0;
1761 }
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Returns true if LWP is resumed from the client's perspective. */
1768
1769 static int
1770 lwp_resumed (struct lwp_info *lwp)
1771 {
1772 struct thread_info *thread = get_lwp_thread (lwp);
1773
1774 if (thread->last_resume_kind != resume_stop)
1775 return 1;
1776
1777 /* Did gdb send us a `vCont;t', but we haven't reported the
1778 corresponding stop to gdb yet? If so, the thread is still
1779 resumed/running from gdb's perspective. */
1780 if (thread->last_resume_kind == resume_stop
1781 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1782 return 1;
1783
1784 return 0;
1785 }
1786
1787 /* Return true if this lwp has an interesting status pending. */
1788 static bool
1789 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1790 {
1791 struct lwp_info *lp = get_thread_lwp (thread);
1792
1793 /* Check if we're only interested in events from a specific process
1794 or a specific LWP. */
1795 if (!thread->id.matches (ptid))
1796 return 0;
1797
1798 if (!lwp_resumed (lp))
1799 return 0;
1800
1801 if (lp->status_pending_p
1802 && !thread_still_has_status_pending_p (thread))
1803 {
1804 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1805 return 0;
1806 }
1807
1808 return lp->status_pending_p;
1809 }
1810
1811 struct lwp_info *
1812 find_lwp_pid (ptid_t ptid)
1813 {
1814 thread_info *thread = find_thread ([&] (thread_info *thread)
1815 {
1816 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1817 return thread->id.lwp () == lwp;
1818 });
1819
1820 if (thread == NULL)
1821 return NULL;
1822
1823 return get_thread_lwp (thread);
1824 }
1825
1826 /* Return the number of known LWPs in the tgid given by PID. */
1827
1828 static int
1829 num_lwps (int pid)
1830 {
1831 int count = 0;
1832
1833 for_each_thread (pid, [&] (thread_info *thread)
1834 {
1835 count++;
1836 });
1837
1838 return count;
1839 }
1840
1841 /* See nat/linux-nat.h. */
1842
1843 struct lwp_info *
1844 iterate_over_lwps (ptid_t filter,
1845 iterate_over_lwps_ftype callback,
1846 void *data)
1847 {
1848 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1849 {
1850 lwp_info *lwp = get_thread_lwp (thread);
1851
1852 return callback (lwp, data);
1853 });
1854
1855 if (thread == NULL)
1856 return NULL;
1857
1858 return get_thread_lwp (thread);
1859 }
1860
1861 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1862 their exits until all other threads in the group have exited. */
1863
1864 static void
1865 check_zombie_leaders (void)
1866 {
1867 for_each_process ([] (process_info *proc) {
1868 pid_t leader_pid = pid_of (proc);
1869 struct lwp_info *leader_lp;
1870
1871 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1872
1873 if (debug_threads)
1874 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1875 "num_lwps=%d, zombie=%d\n",
1876 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1877 linux_proc_pid_is_zombie (leader_pid));
1878
1879 if (leader_lp != NULL && !leader_lp->stopped
1880 /* Check if there are other threads in the group, as we may
1881 have raced with the inferior simply exiting. */
1882 && !last_thread_of_process_p (leader_pid)
1883 && linux_proc_pid_is_zombie (leader_pid))
1884 {
1885 /* A leader zombie can mean one of two things:
1886
1887 - It exited, and there's an exit status pending
1888 available, or only the leader exited (not the whole
1889 program). In the latter case, we can't waitpid the
1890 leader's exit status until all other threads are gone.
1891
1892 - There are 3 or more threads in the group, and a thread
1893 other than the leader exec'd. On an exec, the Linux
1894 kernel destroys all other threads (except the execing
1895 one) in the thread group, and resets the execing thread's
1896 tid to the tgid. No exit notification is sent for the
1897 execing thread -- from the ptracer's perspective, it
1898 appears as though the execing thread just vanishes.
1899 Until we reap all other threads except the leader and the
1900 execing thread, the leader will be zombie, and the
1901 execing thread will be in `D (disc sleep)'. As soon as
1902 all other threads are reaped, the execing thread changes
1903 it's tid to the tgid, and the previous (zombie) leader
1904 vanishes, giving place to the "new" leader. We could try
1905 distinguishing the exit and exec cases, by waiting once
1906 more, and seeing if something comes out, but it doesn't
1907 sound useful. The previous leader _does_ go away, and
1908 we'll re-add the new one once we see the exec event
1909 (which is just the same as what would happen if the
1910 previous leader did exit voluntarily before some other
1911 thread execs). */
1912
1913 if (debug_threads)
1914 debug_printf ("CZL: Thread group leader %d zombie "
1915 "(it exited, or another thread execd).\n",
1916 leader_pid);
1917
1918 delete_lwp (leader_lp);
1919 }
1920 });
1921 }
1922
1923 /* Callback for `find_thread'. Returns the first LWP that is not
1924 stopped. */
1925
1926 static bool
1927 not_stopped_callback (thread_info *thread, ptid_t filter)
1928 {
1929 if (!thread->id.matches (filter))
1930 return false;
1931
1932 lwp_info *lwp = get_thread_lwp (thread);
1933
1934 return !lwp->stopped;
1935 }
1936
1937 /* Increment LWP's suspend count. */
1938
1939 static void
1940 lwp_suspended_inc (struct lwp_info *lwp)
1941 {
1942 lwp->suspended++;
1943
1944 if (debug_threads && lwp->suspended > 4)
1945 {
1946 struct thread_info *thread = get_lwp_thread (lwp);
1947
1948 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1949 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1950 }
1951 }
1952
1953 /* Decrement LWP's suspend count. */
1954
1955 static void
1956 lwp_suspended_decr (struct lwp_info *lwp)
1957 {
1958 lwp->suspended--;
1959
1960 if (lwp->suspended < 0)
1961 {
1962 struct thread_info *thread = get_lwp_thread (lwp);
1963
1964 internal_error (__FILE__, __LINE__,
1965 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1966 lwp->suspended);
1967 }
1968 }
1969
1970 /* This function should only be called if the LWP got a SIGTRAP.
1971
1972 Handle any tracepoint steps or hits. Return true if a tracepoint
1973 event was handled, 0 otherwise. */
1974
1975 static int
1976 handle_tracepoints (struct lwp_info *lwp)
1977 {
1978 struct thread_info *tinfo = get_lwp_thread (lwp);
1979 int tpoint_related_event = 0;
1980
1981 gdb_assert (lwp->suspended == 0);
1982
1983 /* If this tracepoint hit causes a tracing stop, we'll immediately
1984 uninsert tracepoints. To do this, we temporarily pause all
1985 threads, unpatch away, and then unpause threads. We need to make
1986 sure the unpausing doesn't resume LWP too. */
1987 lwp_suspended_inc (lwp);
1988
1989 /* And we need to be sure that any all-threads-stopping doesn't try
1990 to move threads out of the jump pads, as it could deadlock the
1991 inferior (LWP could be in the jump pad, maybe even holding the
1992 lock.) */
1993
1994 /* Do any necessary step collect actions. */
1995 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1996
1997 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1998
1999 /* See if we just hit a tracepoint and do its main collect
2000 actions. */
2001 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2002
2003 lwp_suspended_decr (lwp);
2004
2005 gdb_assert (lwp->suspended == 0);
2006 gdb_assert (!stabilizing_threads
2007 || (lwp->collecting_fast_tracepoint
2008 != fast_tpoint_collect_result::not_collecting));
2009
2010 if (tpoint_related_event)
2011 {
2012 if (debug_threads)
2013 debug_printf ("got a tracepoint event\n");
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2021 collection status. */
2022
2023 static fast_tpoint_collect_result
2024 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2025 struct fast_tpoint_collect_status *status)
2026 {
2027 CORE_ADDR thread_area;
2028 struct thread_info *thread = get_lwp_thread (lwp);
2029
2030 if (the_low_target.get_thread_area == NULL)
2031 return fast_tpoint_collect_result::not_collecting;
2032
2033 /* Get the thread area address. This is used to recognize which
2034 thread is which when tracing with the in-process agent library.
2035 We don't read anything from the address, and treat it as opaque;
2036 it's the address itself that we assume is unique per-thread. */
2037 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2038 return fast_tpoint_collect_result::not_collecting;
2039
2040 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2041 }
2042
2043 /* The reason we resume in the caller, is because we want to be able
2044 to pass lwp->status_pending as WSTAT, and we need to clear
2045 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2046 refuses to resume. */
2047
2048 static int
2049 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2050 {
2051 struct thread_info *saved_thread;
2052
2053 saved_thread = current_thread;
2054 current_thread = get_lwp_thread (lwp);
2055
2056 if ((wstat == NULL
2057 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2058 && supports_fast_tracepoints ()
2059 && agent_loaded_p ())
2060 {
2061 struct fast_tpoint_collect_status status;
2062
2063 if (debug_threads)
2064 debug_printf ("Checking whether LWP %ld needs to move out of the "
2065 "jump pad.\n",
2066 lwpid_of (current_thread));
2067
2068 fast_tpoint_collect_result r
2069 = linux_fast_tracepoint_collecting (lwp, &status);
2070
2071 if (wstat == NULL
2072 || (WSTOPSIG (*wstat) != SIGILL
2073 && WSTOPSIG (*wstat) != SIGFPE
2074 && WSTOPSIG (*wstat) != SIGSEGV
2075 && WSTOPSIG (*wstat) != SIGBUS))
2076 {
2077 lwp->collecting_fast_tracepoint = r;
2078
2079 if (r != fast_tpoint_collect_result::not_collecting)
2080 {
2081 if (r == fast_tpoint_collect_result::before_insn
2082 && lwp->exit_jump_pad_bkpt == NULL)
2083 {
2084 /* Haven't executed the original instruction yet.
2085 Set breakpoint there, and wait till it's hit,
2086 then single-step until exiting the jump pad. */
2087 lwp->exit_jump_pad_bkpt
2088 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2089 }
2090
2091 if (debug_threads)
2092 debug_printf ("Checking whether LWP %ld needs to move out of "
2093 "the jump pad...it does\n",
2094 lwpid_of (current_thread));
2095 current_thread = saved_thread;
2096
2097 return 1;
2098 }
2099 }
2100 else
2101 {
2102 /* If we get a synchronous signal while collecting, *and*
2103 while executing the (relocated) original instruction,
2104 reset the PC to point at the tpoint address, before
2105 reporting to GDB. Otherwise, it's an IPA lib bug: just
2106 report the signal to GDB, and pray for the best. */
2107
2108 lwp->collecting_fast_tracepoint
2109 = fast_tpoint_collect_result::not_collecting;
2110
2111 if (r != fast_tpoint_collect_result::not_collecting
2112 && (status.adjusted_insn_addr <= lwp->stop_pc
2113 && lwp->stop_pc < status.adjusted_insn_addr_end))
2114 {
2115 siginfo_t info;
2116 struct regcache *regcache;
2117
2118 /* The si_addr on a few signals references the address
2119 of the faulting instruction. Adjust that as
2120 well. */
2121 if ((WSTOPSIG (*wstat) == SIGILL
2122 || WSTOPSIG (*wstat) == SIGFPE
2123 || WSTOPSIG (*wstat) == SIGBUS
2124 || WSTOPSIG (*wstat) == SIGSEGV)
2125 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2126 (PTRACE_TYPE_ARG3) 0, &info) == 0
2127 /* Final check just to make sure we don't clobber
2128 the siginfo of non-kernel-sent signals. */
2129 && (uintptr_t) info.si_addr == lwp->stop_pc)
2130 {
2131 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2132 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2133 (PTRACE_TYPE_ARG3) 0, &info);
2134 }
2135
2136 regcache = get_thread_regcache (current_thread, 1);
2137 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2138 lwp->stop_pc = status.tpoint_addr;
2139
2140 /* Cancel any fast tracepoint lock this thread was
2141 holding. */
2142 force_unlock_trace_buffer ();
2143 }
2144
2145 if (lwp->exit_jump_pad_bkpt != NULL)
2146 {
2147 if (debug_threads)
2148 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2149 "stopping all threads momentarily.\n");
2150
2151 stop_all_lwps (1, lwp);
2152
2153 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2154 lwp->exit_jump_pad_bkpt = NULL;
2155
2156 unstop_all_lwps (1, lwp);
2157
2158 gdb_assert (lwp->suspended >= 0);
2159 }
2160 }
2161 }
2162
2163 if (debug_threads)
2164 debug_printf ("Checking whether LWP %ld needs to move out of the "
2165 "jump pad...no\n",
2166 lwpid_of (current_thread));
2167
2168 current_thread = saved_thread;
2169 return 0;
2170 }
2171
2172 /* Enqueue one signal in the "signals to report later when out of the
2173 jump pad" list. */
2174
2175 static void
2176 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2177 {
2178 struct pending_signals *p_sig;
2179 struct thread_info *thread = get_lwp_thread (lwp);
2180
2181 if (debug_threads)
2182 debug_printf ("Deferring signal %d for LWP %ld.\n",
2183 WSTOPSIG (*wstat), lwpid_of (thread));
2184
2185 if (debug_threads)
2186 {
2187 struct pending_signals *sig;
2188
2189 for (sig = lwp->pending_signals_to_report;
2190 sig != NULL;
2191 sig = sig->prev)
2192 debug_printf (" Already queued %d\n",
2193 sig->signal);
2194
2195 debug_printf (" (no more currently queued signals)\n");
2196 }
2197
2198 /* Don't enqueue non-RT signals if they are already in the deferred
2199 queue. (SIGSTOP being the easiest signal to see ending up here
2200 twice) */
2201 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2202 {
2203 struct pending_signals *sig;
2204
2205 for (sig = lwp->pending_signals_to_report;
2206 sig != NULL;
2207 sig = sig->prev)
2208 {
2209 if (sig->signal == WSTOPSIG (*wstat))
2210 {
2211 if (debug_threads)
2212 debug_printf ("Not requeuing already queued non-RT signal %d"
2213 " for LWP %ld\n",
2214 sig->signal,
2215 lwpid_of (thread));
2216 return;
2217 }
2218 }
2219 }
2220
2221 p_sig = XCNEW (struct pending_signals);
2222 p_sig->prev = lwp->pending_signals_to_report;
2223 p_sig->signal = WSTOPSIG (*wstat);
2224
2225 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2226 &p_sig->info);
2227
2228 lwp->pending_signals_to_report = p_sig;
2229 }
2230
2231 /* Dequeue one signal from the "signals to report later when out of
2232 the jump pad" list. */
2233
2234 static int
2235 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2236 {
2237 struct thread_info *thread = get_lwp_thread (lwp);
2238
2239 if (lwp->pending_signals_to_report != NULL)
2240 {
2241 struct pending_signals **p_sig;
2242
2243 p_sig = &lwp->pending_signals_to_report;
2244 while ((*p_sig)->prev != NULL)
2245 p_sig = &(*p_sig)->prev;
2246
2247 *wstat = W_STOPCODE ((*p_sig)->signal);
2248 if ((*p_sig)->info.si_signo != 0)
2249 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2250 &(*p_sig)->info);
2251 free (*p_sig);
2252 *p_sig = NULL;
2253
2254 if (debug_threads)
2255 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2256 WSTOPSIG (*wstat), lwpid_of (thread));
2257
2258 if (debug_threads)
2259 {
2260 struct pending_signals *sig;
2261
2262 for (sig = lwp->pending_signals_to_report;
2263 sig != NULL;
2264 sig = sig->prev)
2265 debug_printf (" Still queued %d\n",
2266 sig->signal);
2267
2268 debug_printf (" (no more queued signals)\n");
2269 }
2270
2271 return 1;
2272 }
2273
2274 return 0;
2275 }
2276
2277 /* Fetch the possibly triggered data watchpoint info and store it in
2278 CHILD.
2279
2280 On some archs, like x86, that use debug registers to set
2281 watchpoints, it's possible that the way to know which watched
2282 address trapped, is to check the register that is used to select
2283 which address to watch. Problem is, between setting the watchpoint
2284 and reading back which data address trapped, the user may change
2285 the set of watchpoints, and, as a consequence, GDB changes the
2286 debug registers in the inferior. To avoid reading back a stale
2287 stopped-data-address when that happens, we cache in LP the fact
2288 that a watchpoint trapped, and the corresponding data address, as
2289 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2290 registers meanwhile, we have the cached data we can rely on. */
2291
2292 static int
2293 check_stopped_by_watchpoint (struct lwp_info *child)
2294 {
2295 if (the_low_target.stopped_by_watchpoint != NULL)
2296 {
2297 struct thread_info *saved_thread;
2298
2299 saved_thread = current_thread;
2300 current_thread = get_lwp_thread (child);
2301
2302 if (the_low_target.stopped_by_watchpoint ())
2303 {
2304 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2305
2306 if (the_low_target.stopped_data_address != NULL)
2307 child->stopped_data_address
2308 = the_low_target.stopped_data_address ();
2309 else
2310 child->stopped_data_address = 0;
2311 }
2312
2313 current_thread = saved_thread;
2314 }
2315
2316 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2317 }
2318
2319 /* Return the ptrace options that we want to try to enable. */
2320
2321 static int
2322 linux_low_ptrace_options (int attached)
2323 {
2324 int options = 0;
2325
2326 if (!attached)
2327 options |= PTRACE_O_EXITKILL;
2328
2329 if (report_fork_events)
2330 options |= PTRACE_O_TRACEFORK;
2331
2332 if (report_vfork_events)
2333 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2334
2335 if (report_exec_events)
2336 options |= PTRACE_O_TRACEEXEC;
2337
2338 options |= PTRACE_O_TRACESYSGOOD;
2339
2340 return options;
2341 }
2342
2343 /* Do low-level handling of the event, and check if we should go on
2344 and pass it to caller code. Return the affected lwp if we are, or
2345 NULL otherwise. */
2346
2347 static struct lwp_info *
2348 linux_low_filter_event (int lwpid, int wstat)
2349 {
2350 struct lwp_info *child;
2351 struct thread_info *thread;
2352 int have_stop_pc = 0;
2353
2354 child = find_lwp_pid (pid_to_ptid (lwpid));
2355
2356 /* Check for stop events reported by a process we didn't already
2357 know about - anything not already in our LWP list.
2358
2359 If we're expecting to receive stopped processes after
2360 fork, vfork, and clone events, then we'll just add the
2361 new one to our list and go back to waiting for the event
2362 to be reported - the stopped process might be returned
2363 from waitpid before or after the event is.
2364
2365 But note the case of a non-leader thread exec'ing after the
2366 leader having exited, and gone from our lists (because
2367 check_zombie_leaders deleted it). The non-leader thread
2368 changes its tid to the tgid. */
2369
2370 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2371 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2372 {
2373 ptid_t child_ptid;
2374
2375 /* A multi-thread exec after we had seen the leader exiting. */
2376 if (debug_threads)
2377 {
2378 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2379 "after exec.\n", lwpid);
2380 }
2381
2382 child_ptid = ptid_build (lwpid, lwpid, 0);
2383 child = add_lwp (child_ptid);
2384 child->stopped = 1;
2385 current_thread = child->thread;
2386 }
2387
2388 /* If we didn't find a process, one of two things presumably happened:
2389 - A process we started and then detached from has exited. Ignore it.
2390 - A process we are controlling has forked and the new child's stop
2391 was reported to us by the kernel. Save its PID. */
2392 if (child == NULL && WIFSTOPPED (wstat))
2393 {
2394 add_to_pid_list (&stopped_pids, lwpid, wstat);
2395 return NULL;
2396 }
2397 else if (child == NULL)
2398 return NULL;
2399
2400 thread = get_lwp_thread (child);
2401
2402 child->stopped = 1;
2403
2404 child->last_status = wstat;
2405
2406 /* Check if the thread has exited. */
2407 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2408 {
2409 if (debug_threads)
2410 debug_printf ("LLFE: %d exited.\n", lwpid);
2411
2412 if (finish_step_over (child))
2413 {
2414 /* Unsuspend all other LWPs, and set them back running again. */
2415 unsuspend_all_lwps (child);
2416 }
2417
2418 /* If there is at least one more LWP, then the exit signal was
2419 not the end of the debugged application and should be
2420 ignored, unless GDB wants to hear about thread exits. */
2421 if (report_thread_events
2422 || last_thread_of_process_p (pid_of (thread)))
2423 {
2424 /* Since events are serialized to GDB core, and we can't
2425 report this one right now. Leave the status pending for
2426 the next time we're able to report it. */
2427 mark_lwp_dead (child, wstat);
2428 return child;
2429 }
2430 else
2431 {
2432 delete_lwp (child);
2433 return NULL;
2434 }
2435 }
2436
2437 gdb_assert (WIFSTOPPED (wstat));
2438
2439 if (WIFSTOPPED (wstat))
2440 {
2441 struct process_info *proc;
2442
2443 /* Architecture-specific setup after inferior is running. */
2444 proc = find_process_pid (pid_of (thread));
2445 if (proc->tdesc == NULL)
2446 {
2447 if (proc->attached)
2448 {
2449 /* This needs to happen after we have attached to the
2450 inferior and it is stopped for the first time, but
2451 before we access any inferior registers. */
2452 linux_arch_setup_thread (thread);
2453 }
2454 else
2455 {
2456 /* The process is started, but GDBserver will do
2457 architecture-specific setup after the program stops at
2458 the first instruction. */
2459 child->status_pending_p = 1;
2460 child->status_pending = wstat;
2461 return child;
2462 }
2463 }
2464 }
2465
2466 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2467 {
2468 struct process_info *proc = find_process_pid (pid_of (thread));
2469 int options = linux_low_ptrace_options (proc->attached);
2470
2471 linux_enable_event_reporting (lwpid, options);
2472 child->must_set_ptrace_flags = 0;
2473 }
2474
2475 /* Always update syscall_state, even if it will be filtered later. */
2476 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2477 {
2478 child->syscall_state
2479 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2480 ? TARGET_WAITKIND_SYSCALL_RETURN
2481 : TARGET_WAITKIND_SYSCALL_ENTRY);
2482 }
2483 else
2484 {
2485 /* Almost all other ptrace-stops are known to be outside of system
2486 calls, with further exceptions in handle_extended_wait. */
2487 child->syscall_state = TARGET_WAITKIND_IGNORE;
2488 }
2489
2490 /* Be careful to not overwrite stop_pc until save_stop_reason is
2491 called. */
2492 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2493 && linux_is_extended_waitstatus (wstat))
2494 {
2495 child->stop_pc = get_pc (child);
2496 if (handle_extended_wait (&child, wstat))
2497 {
2498 /* The event has been handled, so just return without
2499 reporting it. */
2500 return NULL;
2501 }
2502 }
2503
2504 if (linux_wstatus_maybe_breakpoint (wstat))
2505 {
2506 if (save_stop_reason (child))
2507 have_stop_pc = 1;
2508 }
2509
2510 if (!have_stop_pc)
2511 child->stop_pc = get_pc (child);
2512
2513 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2514 && child->stop_expected)
2515 {
2516 if (debug_threads)
2517 debug_printf ("Expected stop.\n");
2518 child->stop_expected = 0;
2519
2520 if (thread->last_resume_kind == resume_stop)
2521 {
2522 /* We want to report the stop to the core. Treat the
2523 SIGSTOP as a normal event. */
2524 if (debug_threads)
2525 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2526 target_pid_to_str (ptid_of (thread)));
2527 }
2528 else if (stopping_threads != NOT_STOPPING_THREADS)
2529 {
2530 /* Stopping threads. We don't want this SIGSTOP to end up
2531 pending. */
2532 if (debug_threads)
2533 debug_printf ("LLW: SIGSTOP caught for %s "
2534 "while stopping threads.\n",
2535 target_pid_to_str (ptid_of (thread)));
2536 return NULL;
2537 }
2538 else
2539 {
2540 /* This is a delayed SIGSTOP. Filter out the event. */
2541 if (debug_threads)
2542 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2543 child->stepping ? "step" : "continue",
2544 target_pid_to_str (ptid_of (thread)));
2545
2546 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2547 return NULL;
2548 }
2549 }
2550
2551 child->status_pending_p = 1;
2552 child->status_pending = wstat;
2553 return child;
2554 }
2555
2556 /* Return true if THREAD is doing hardware single step. */
2557
2558 static int
2559 maybe_hw_step (struct thread_info *thread)
2560 {
2561 if (can_hardware_single_step ())
2562 return 1;
2563 else
2564 {
2565 /* GDBserver must insert single-step breakpoint for software
2566 single step. */
2567 gdb_assert (has_single_step_breakpoints (thread));
2568 return 0;
2569 }
2570 }
2571
2572 /* Resume LWPs that are currently stopped without any pending status
2573 to report, but are resumed from the core's perspective. */
2574
2575 static void
2576 resume_stopped_resumed_lwps (thread_info *thread)
2577 {
2578 struct lwp_info *lp = get_thread_lwp (thread);
2579
2580 if (lp->stopped
2581 && !lp->suspended
2582 && !lp->status_pending_p
2583 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2584 {
2585 int step = 0;
2586
2587 if (thread->last_resume_kind == resume_step)
2588 step = maybe_hw_step (thread);
2589
2590 if (debug_threads)
2591 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2592 target_pid_to_str (ptid_of (thread)),
2593 paddress (lp->stop_pc),
2594 step);
2595
2596 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2597 }
2598 }
2599
2600 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2601 match FILTER_PTID (leaving others pending). The PTIDs can be:
2602 minus_one_ptid, to specify any child; a pid PTID, specifying all
2603 lwps of a thread group; or a PTID representing a single lwp. Store
2604 the stop status through the status pointer WSTAT. OPTIONS is
2605 passed to the waitpid call. Return 0 if no event was found and
2606 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2607 was found. Return the PID of the stopped child otherwise. */
2608
2609 static int
2610 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2611 int *wstatp, int options)
2612 {
2613 struct thread_info *event_thread;
2614 struct lwp_info *event_child, *requested_child;
2615 sigset_t block_mask, prev_mask;
2616
2617 retry:
2618 /* N.B. event_thread points to the thread_info struct that contains
2619 event_child. Keep them in sync. */
2620 event_thread = NULL;
2621 event_child = NULL;
2622 requested_child = NULL;
2623
2624 /* Check for a lwp with a pending status. */
2625
2626 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2627 {
2628 event_thread = find_thread_in_random ([&] (thread_info *thread)
2629 {
2630 return status_pending_p_callback (thread, filter_ptid);
2631 });
2632
2633 if (event_thread != NULL)
2634 event_child = get_thread_lwp (event_thread);
2635 if (debug_threads && event_thread)
2636 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2637 }
2638 else if (!ptid_equal (filter_ptid, null_ptid))
2639 {
2640 requested_child = find_lwp_pid (filter_ptid);
2641
2642 if (stopping_threads == NOT_STOPPING_THREADS
2643 && requested_child->status_pending_p
2644 && (requested_child->collecting_fast_tracepoint
2645 != fast_tpoint_collect_result::not_collecting))
2646 {
2647 enqueue_one_deferred_signal (requested_child,
2648 &requested_child->status_pending);
2649 requested_child->status_pending_p = 0;
2650 requested_child->status_pending = 0;
2651 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2652 }
2653
2654 if (requested_child->suspended
2655 && requested_child->status_pending_p)
2656 {
2657 internal_error (__FILE__, __LINE__,
2658 "requesting an event out of a"
2659 " suspended child?");
2660 }
2661
2662 if (requested_child->status_pending_p)
2663 {
2664 event_child = requested_child;
2665 event_thread = get_lwp_thread (event_child);
2666 }
2667 }
2668
2669 if (event_child != NULL)
2670 {
2671 if (debug_threads)
2672 debug_printf ("Got an event from pending child %ld (%04x)\n",
2673 lwpid_of (event_thread), event_child->status_pending);
2674 *wstatp = event_child->status_pending;
2675 event_child->status_pending_p = 0;
2676 event_child->status_pending = 0;
2677 current_thread = event_thread;
2678 return lwpid_of (event_thread);
2679 }
2680
2681 /* But if we don't find a pending event, we'll have to wait.
2682
2683 We only enter this loop if no process has a pending wait status.
2684 Thus any action taken in response to a wait status inside this
2685 loop is responding as soon as we detect the status, not after any
2686 pending events. */
2687
2688 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2689 all signals while here. */
2690 sigfillset (&block_mask);
2691 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2692
2693 /* Always pull all events out of the kernel. We'll randomly select
2694 an event LWP out of all that have events, to prevent
2695 starvation. */
2696 while (event_child == NULL)
2697 {
2698 pid_t ret = 0;
2699
2700 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2701 quirks:
2702
2703 - If the thread group leader exits while other threads in the
2704 thread group still exist, waitpid(TGID, ...) hangs. That
2705 waitpid won't return an exit status until the other threads
2706 in the group are reaped.
2707
2708 - When a non-leader thread execs, that thread just vanishes
2709 without reporting an exit (so we'd hang if we waited for it
2710 explicitly in that case). The exec event is reported to
2711 the TGID pid. */
2712 errno = 0;
2713 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2714
2715 if (debug_threads)
2716 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2717 ret, errno ? strerror (errno) : "ERRNO-OK");
2718
2719 if (ret > 0)
2720 {
2721 if (debug_threads)
2722 {
2723 debug_printf ("LLW: waitpid %ld received %s\n",
2724 (long) ret, status_to_str (*wstatp));
2725 }
2726
2727 /* Filter all events. IOW, leave all events pending. We'll
2728 randomly select an event LWP out of all that have events
2729 below. */
2730 linux_low_filter_event (ret, *wstatp);
2731 /* Retry until nothing comes out of waitpid. A single
2732 SIGCHLD can indicate more than one child stopped. */
2733 continue;
2734 }
2735
2736 /* Now that we've pulled all events out of the kernel, resume
2737 LWPs that don't have an interesting event to report. */
2738 if (stopping_threads == NOT_STOPPING_THREADS)
2739 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2740
2741 /* ... and find an LWP with a status to report to the core, if
2742 any. */
2743 event_thread = find_thread_in_random ([&] (thread_info *thread)
2744 {
2745 return status_pending_p_callback (thread, filter_ptid);
2746 });
2747
2748 if (event_thread != NULL)
2749 {
2750 event_child = get_thread_lwp (event_thread);
2751 *wstatp = event_child->status_pending;
2752 event_child->status_pending_p = 0;
2753 event_child->status_pending = 0;
2754 break;
2755 }
2756
2757 /* Check for zombie thread group leaders. Those can't be reaped
2758 until all other threads in the thread group are. */
2759 check_zombie_leaders ();
2760
2761 auto not_stopped = [&] (thread_info *thread)
2762 {
2763 return not_stopped_callback (thread, wait_ptid);
2764 };
2765
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if (find_thread (not_stopped) == NULL)
2774 {
2775 if (debug_threads)
2776 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2777 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2778 return -1;
2779 }
2780
2781 /* No interesting event to report to the caller. */
2782 if ((options & WNOHANG))
2783 {
2784 if (debug_threads)
2785 debug_printf ("WNOHANG set, no event found\n");
2786
2787 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2788 return 0;
2789 }
2790
2791 /* Block until we get an event reported with SIGCHLD. */
2792 if (debug_threads)
2793 debug_printf ("sigsuspend'ing\n");
2794
2795 sigsuspend (&prev_mask);
2796 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2797 goto retry;
2798 }
2799
2800 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2801
2802 current_thread = event_thread;
2803
2804 return lwpid_of (event_thread);
2805 }
2806
2807 /* Wait for an event from child(ren) PTID. PTIDs can be:
2808 minus_one_ptid, to specify any child; a pid PTID, specifying all
2809 lwps of a thread group; or a PTID representing a single lwp. Store
2810 the stop status through the status pointer WSTAT. OPTIONS is
2811 passed to the waitpid call. Return 0 if no event was found and
2812 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2813 was found. Return the PID of the stopped child otherwise. */
2814
2815 static int
2816 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2817 {
2818 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2819 }
2820
2821 /* Select one LWP out of those that have events pending. */
2822
2823 static void
2824 select_event_lwp (struct lwp_info **orig_lp)
2825 {
2826 int random_selector;
2827 struct thread_info *event_thread = NULL;
2828
2829 /* In all-stop, give preference to the LWP that is being
2830 single-stepped. There will be at most one, and it's the LWP that
2831 the core is most interested in. If we didn't do this, then we'd
2832 have to handle pending step SIGTRAPs somehow in case the core
2833 later continues the previously-stepped thread, otherwise we'd
2834 report the pending SIGTRAP, and the core, not having stepped the
2835 thread, wouldn't understand what the trap was for, and therefore
2836 would report it to the user as a random signal. */
2837 if (!non_stop)
2838 {
2839 event_thread = find_thread ([] (thread_info *thread)
2840 {
2841 lwp_info *lp = get_thread_lwp (thread);
2842
2843 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2844 && thread->last_resume_kind == resume_step
2845 && lp->status_pending_p);
2846 });
2847
2848 if (event_thread != NULL)
2849 {
2850 if (debug_threads)
2851 debug_printf ("SEL: Select single-step %s\n",
2852 target_pid_to_str (ptid_of (event_thread)));
2853 }
2854 }
2855 if (event_thread == NULL)
2856 {
2857 /* No single-stepping LWP. Select one at random, out of those
2858 which have had events. */
2859
2860 /* First see how many events we have. */
2861 int num_events = 0;
2862 for_each_thread ([&] (thread_info *thread)
2863 {
2864 lwp_info *lp = get_thread_lwp (thread);
2865
2866 /* Count only resumed LWPs that have an event pending. */
2867 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2868 && lp->status_pending_p)
2869 num_events++;
2870 });
2871 gdb_assert (num_events > 0);
2872
2873 /* Now randomly pick a LWP out of those that have had
2874 events. */
2875 random_selector = (int)
2876 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2877
2878 if (debug_threads && num_events > 1)
2879 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2880 num_events, random_selector);
2881
2882 event_thread = find_thread ([&] (thread_info *thread)
2883 {
2884 lwp_info *lp = get_thread_lwp (thread);
2885
2886 /* Select only resumed LWPs that have an event pending. */
2887 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2888 && lp->status_pending_p)
2889 if (random_selector-- == 0)
2890 return true;
2891
2892 return false;
2893 });
2894 }
2895
2896 if (event_thread != NULL)
2897 {
2898 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2899
2900 /* Switch the event LWP. */
2901 *orig_lp = event_lp;
2902 }
2903 }
2904
2905 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2906 NULL. */
2907
2908 static void
2909 unsuspend_all_lwps (struct lwp_info *except)
2910 {
2911 for_each_thread ([&] (thread_info *thread)
2912 {
2913 lwp_info *lwp = get_thread_lwp (thread);
2914
2915 if (lwp != except)
2916 lwp_suspended_decr (lwp);
2917 });
2918 }
2919
2920 static void move_out_of_jump_pad_callback (thread_info *thread);
2921 static bool stuck_in_jump_pad_callback (thread_info *thread);
2922 static bool lwp_running (thread_info *thread);
2923 static ptid_t linux_wait_1 (ptid_t ptid,
2924 struct target_waitstatus *ourstatus,
2925 int target_options);
2926
2927 /* Stabilize threads (move out of jump pads).
2928
2929 If a thread is midway collecting a fast tracepoint, we need to
2930 finish the collection and move it out of the jump pad before
2931 reporting the signal.
2932
2933 This avoids recursion while collecting (when a signal arrives
2934 midway, and the signal handler itself collects), which would trash
2935 the trace buffer. In case the user set a breakpoint in a signal
2936 handler, this avoids the backtrace showing the jump pad, etc..
2937 Most importantly, there are certain things we can't do safely if
2938 threads are stopped in a jump pad (or in its callee's). For
2939 example:
2940
2941 - starting a new trace run. A thread still collecting the
2942 previous run, could trash the trace buffer when resumed. The trace
2943 buffer control structures would have been reset but the thread had
2944 no way to tell. The thread could even midway memcpy'ing to the
2945 buffer, which would mean that when resumed, it would clobber the
2946 trace buffer that had been set for a new run.
2947
2948 - we can't rewrite/reuse the jump pads for new tracepoints
2949 safely. Say you do tstart while a thread is stopped midway while
2950 collecting. When the thread is later resumed, it finishes the
2951 collection, and returns to the jump pad, to execute the original
2952 instruction that was under the tracepoint jump at the time the
2953 older run had been started. If the jump pad had been rewritten
2954 since for something else in the new run, the thread would now
2955 execute the wrong / random instructions. */
2956
2957 static void
2958 linux_stabilize_threads (void)
2959 {
2960 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2961
2962 if (thread_stuck != NULL)
2963 {
2964 if (debug_threads)
2965 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2966 lwpid_of (thread_stuck));
2967 return;
2968 }
2969
2970 thread_info *saved_thread = current_thread;
2971
2972 stabilizing_threads = 1;
2973
2974 /* Kick 'em all. */
2975 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2976
2977 /* Loop until all are stopped out of the jump pads. */
2978 while (find_thread (lwp_running) != NULL)
2979 {
2980 struct target_waitstatus ourstatus;
2981 struct lwp_info *lwp;
2982 int wstat;
2983
2984 /* Note that we go through the full wait even loop. While
2985 moving threads out of jump pad, we need to be able to step
2986 over internal breakpoints and such. */
2987 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2988
2989 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2990 {
2991 lwp = get_thread_lwp (current_thread);
2992
2993 /* Lock it. */
2994 lwp_suspended_inc (lwp);
2995
2996 if (ourstatus.value.sig != GDB_SIGNAL_0
2997 || current_thread->last_resume_kind == resume_stop)
2998 {
2999 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3000 enqueue_one_deferred_signal (lwp, &wstat);
3001 }
3002 }
3003 }
3004
3005 unsuspend_all_lwps (NULL);
3006
3007 stabilizing_threads = 0;
3008
3009 current_thread = saved_thread;
3010
3011 if (debug_threads)
3012 {
3013 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3014
3015 if (thread_stuck != NULL)
3016 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3017 lwpid_of (thread_stuck));
3018 }
3019 }
3020
3021 /* Convenience function that is called when the kernel reports an
3022 event that is not passed out to GDB. */
3023
3024 static ptid_t
3025 ignore_event (struct target_waitstatus *ourstatus)
3026 {
3027 /* If we got an event, there may still be others, as a single
3028 SIGCHLD can indicate more than one child stopped. This forces
3029 another target_wait call. */
3030 async_file_mark ();
3031
3032 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3033 return null_ptid;
3034 }
3035
3036 /* Convenience function that is called when the kernel reports an exit
3037 event. This decides whether to report the event to GDB as a
3038 process exit event, a thread exit event, or to suppress the
3039 event. */
3040
3041 static ptid_t
3042 filter_exit_event (struct lwp_info *event_child,
3043 struct target_waitstatus *ourstatus)
3044 {
3045 struct thread_info *thread = get_lwp_thread (event_child);
3046 ptid_t ptid = ptid_of (thread);
3047
3048 if (!last_thread_of_process_p (pid_of (thread)))
3049 {
3050 if (report_thread_events)
3051 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3052 else
3053 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3054
3055 delete_lwp (event_child);
3056 }
3057 return ptid;
3058 }
3059
3060 /* Returns 1 if GDB is interested in any event_child syscalls. */
3061
3062 static int
3063 gdb_catching_syscalls_p (struct lwp_info *event_child)
3064 {
3065 struct thread_info *thread = get_lwp_thread (event_child);
3066 struct process_info *proc = get_thread_process (thread);
3067
3068 return !proc->syscalls_to_catch.empty ();
3069 }
3070
3071 /* Returns 1 if GDB is interested in the event_child syscall.
3072 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3073
3074 static int
3075 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3076 {
3077 int sysno;
3078 struct thread_info *thread = get_lwp_thread (event_child);
3079 struct process_info *proc = get_thread_process (thread);
3080
3081 if (proc->syscalls_to_catch.empty ())
3082 return 0;
3083
3084 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3085 return 1;
3086
3087 get_syscall_trapinfo (event_child, &sysno);
3088
3089 for (int iter : proc->syscalls_to_catch)
3090 if (iter == sysno)
3091 return 1;
3092
3093 return 0;
3094 }
3095
3096 /* Wait for process, returns status. */
3097
3098 static ptid_t
3099 linux_wait_1 (ptid_t ptid,
3100 struct target_waitstatus *ourstatus, int target_options)
3101 {
3102 int w;
3103 struct lwp_info *event_child;
3104 int options;
3105 int pid;
3106 int step_over_finished;
3107 int bp_explains_trap;
3108 int maybe_internal_trap;
3109 int report_to_gdb;
3110 int trace_event;
3111 int in_step_range;
3112 int any_resumed;
3113
3114 if (debug_threads)
3115 {
3116 debug_enter ();
3117 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3118 }
3119
3120 /* Translate generic target options into linux options. */
3121 options = __WALL;
3122 if (target_options & TARGET_WNOHANG)
3123 options |= WNOHANG;
3124
3125 bp_explains_trap = 0;
3126 trace_event = 0;
3127 in_step_range = 0;
3128 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3129
3130 auto status_pending_p_any = [&] (thread_info *thread)
3131 {
3132 return status_pending_p_callback (thread, minus_one_ptid);
3133 };
3134
3135 auto not_stopped = [&] (thread_info *thread)
3136 {
3137 return not_stopped_callback (thread, minus_one_ptid);
3138 };
3139
3140 /* Find a resumed LWP, if any. */
3141 if (find_thread (status_pending_p_any) != NULL)
3142 any_resumed = 1;
3143 else if (find_thread (not_stopped) != NULL)
3144 any_resumed = 1;
3145 else
3146 any_resumed = 0;
3147
3148 if (ptid_equal (step_over_bkpt, null_ptid))
3149 pid = linux_wait_for_event (ptid, &w, options);
3150 else
3151 {
3152 if (debug_threads)
3153 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3154 target_pid_to_str (step_over_bkpt));
3155 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3156 }
3157
3158 if (pid == 0 || (pid == -1 && !any_resumed))
3159 {
3160 gdb_assert (target_options & TARGET_WNOHANG);
3161
3162 if (debug_threads)
3163 {
3164 debug_printf ("linux_wait_1 ret = null_ptid, "
3165 "TARGET_WAITKIND_IGNORE\n");
3166 debug_exit ();
3167 }
3168
3169 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3170 return null_ptid;
3171 }
3172 else if (pid == -1)
3173 {
3174 if (debug_threads)
3175 {
3176 debug_printf ("linux_wait_1 ret = null_ptid, "
3177 "TARGET_WAITKIND_NO_RESUMED\n");
3178 debug_exit ();
3179 }
3180
3181 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3182 return null_ptid;
3183 }
3184
3185 event_child = get_thread_lwp (current_thread);
3186
3187 /* linux_wait_for_event only returns an exit status for the last
3188 child of a process. Report it. */
3189 if (WIFEXITED (w) || WIFSIGNALED (w))
3190 {
3191 if (WIFEXITED (w))
3192 {
3193 ourstatus->kind = TARGET_WAITKIND_EXITED;
3194 ourstatus->value.integer = WEXITSTATUS (w);
3195
3196 if (debug_threads)
3197 {
3198 debug_printf ("linux_wait_1 ret = %s, exited with "
3199 "retcode %d\n",
3200 target_pid_to_str (ptid_of (current_thread)),
3201 WEXITSTATUS (w));
3202 debug_exit ();
3203 }
3204 }
3205 else
3206 {
3207 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3208 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3209
3210 if (debug_threads)
3211 {
3212 debug_printf ("linux_wait_1 ret = %s, terminated with "
3213 "signal %d\n",
3214 target_pid_to_str (ptid_of (current_thread)),
3215 WTERMSIG (w));
3216 debug_exit ();
3217 }
3218 }
3219
3220 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3221 return filter_exit_event (event_child, ourstatus);
3222
3223 return ptid_of (current_thread);
3224 }
3225
3226 /* If step-over executes a breakpoint instruction, in the case of a
3227 hardware single step it means a gdb/gdbserver breakpoint had been
3228 planted on top of a permanent breakpoint, in the case of a software
3229 single step it may just mean that gdbserver hit the reinsert breakpoint.
3230 The PC has been adjusted by save_stop_reason to point at
3231 the breakpoint address.
3232 So in the case of the hardware single step advance the PC manually
3233 past the breakpoint and in the case of software single step advance only
3234 if it's not the single_step_breakpoint we are hitting.
3235 This avoids that a program would keep trapping a permanent breakpoint
3236 forever. */
3237 if (!ptid_equal (step_over_bkpt, null_ptid)
3238 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3239 && (event_child->stepping
3240 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3241 {
3242 int increment_pc = 0;
3243 int breakpoint_kind = 0;
3244 CORE_ADDR stop_pc = event_child->stop_pc;
3245
3246 breakpoint_kind =
3247 the_target->breakpoint_kind_from_current_state (&stop_pc);
3248 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3249
3250 if (debug_threads)
3251 {
3252 debug_printf ("step-over for %s executed software breakpoint\n",
3253 target_pid_to_str (ptid_of (current_thread)));
3254 }
3255
3256 if (increment_pc != 0)
3257 {
3258 struct regcache *regcache
3259 = get_thread_regcache (current_thread, 1);
3260
3261 event_child->stop_pc += increment_pc;
3262 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3263
3264 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3265 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3266 }
3267 }
3268
3269 /* If this event was not handled before, and is not a SIGTRAP, we
3270 report it. SIGILL and SIGSEGV are also treated as traps in case
3271 a breakpoint is inserted at the current PC. If this target does
3272 not support internal breakpoints at all, we also report the
3273 SIGTRAP without further processing; it's of no concern to us. */
3274 maybe_internal_trap
3275 = (supports_breakpoints ()
3276 && (WSTOPSIG (w) == SIGTRAP
3277 || ((WSTOPSIG (w) == SIGILL
3278 || WSTOPSIG (w) == SIGSEGV)
3279 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3280
3281 if (maybe_internal_trap)
3282 {
3283 /* Handle anything that requires bookkeeping before deciding to
3284 report the event or continue waiting. */
3285
3286 /* First check if we can explain the SIGTRAP with an internal
3287 breakpoint, or if we should possibly report the event to GDB.
3288 Do this before anything that may remove or insert a
3289 breakpoint. */
3290 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3291
3292 /* We have a SIGTRAP, possibly a step-over dance has just
3293 finished. If so, tweak the state machine accordingly,
3294 reinsert breakpoints and delete any single-step
3295 breakpoints. */
3296 step_over_finished = finish_step_over (event_child);
3297
3298 /* Now invoke the callbacks of any internal breakpoints there. */
3299 check_breakpoints (event_child->stop_pc);
3300
3301 /* Handle tracepoint data collecting. This may overflow the
3302 trace buffer, and cause a tracing stop, removing
3303 breakpoints. */
3304 trace_event = handle_tracepoints (event_child);
3305
3306 if (bp_explains_trap)
3307 {
3308 if (debug_threads)
3309 debug_printf ("Hit a gdbserver breakpoint.\n");
3310 }
3311 }
3312 else
3313 {
3314 /* We have some other signal, possibly a step-over dance was in
3315 progress, and it should be cancelled too. */
3316 step_over_finished = finish_step_over (event_child);
3317 }
3318
3319 /* We have all the data we need. Either report the event to GDB, or
3320 resume threads and keep waiting for more. */
3321
3322 /* If we're collecting a fast tracepoint, finish the collection and
3323 move out of the jump pad before delivering a signal. See
3324 linux_stabilize_threads. */
3325
3326 if (WIFSTOPPED (w)
3327 && WSTOPSIG (w) != SIGTRAP
3328 && supports_fast_tracepoints ()
3329 && agent_loaded_p ())
3330 {
3331 if (debug_threads)
3332 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3333 "to defer or adjust it.\n",
3334 WSTOPSIG (w), lwpid_of (current_thread));
3335
3336 /* Allow debugging the jump pad itself. */
3337 if (current_thread->last_resume_kind != resume_step
3338 && maybe_move_out_of_jump_pad (event_child, &w))
3339 {
3340 enqueue_one_deferred_signal (event_child, &w);
3341
3342 if (debug_threads)
3343 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3344 WSTOPSIG (w), lwpid_of (current_thread));
3345
3346 linux_resume_one_lwp (event_child, 0, 0, NULL);
3347
3348 if (debug_threads)
3349 debug_exit ();
3350 return ignore_event (ourstatus);
3351 }
3352 }
3353
3354 if (event_child->collecting_fast_tracepoint
3355 != fast_tpoint_collect_result::not_collecting)
3356 {
3357 if (debug_threads)
3358 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3359 "Check if we're already there.\n",
3360 lwpid_of (current_thread),
3361 (int) event_child->collecting_fast_tracepoint);
3362
3363 trace_event = 1;
3364
3365 event_child->collecting_fast_tracepoint
3366 = linux_fast_tracepoint_collecting (event_child, NULL);
3367
3368 if (event_child->collecting_fast_tracepoint
3369 != fast_tpoint_collect_result::before_insn)
3370 {
3371 /* No longer need this breakpoint. */
3372 if (event_child->exit_jump_pad_bkpt != NULL)
3373 {
3374 if (debug_threads)
3375 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3376 "stopping all threads momentarily.\n");
3377
3378 /* Other running threads could hit this breakpoint.
3379 We don't handle moribund locations like GDB does,
3380 instead we always pause all threads when removing
3381 breakpoints, so that any step-over or
3382 decr_pc_after_break adjustment is always taken
3383 care of while the breakpoint is still
3384 inserted. */
3385 stop_all_lwps (1, event_child);
3386
3387 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3388 event_child->exit_jump_pad_bkpt = NULL;
3389
3390 unstop_all_lwps (1, event_child);
3391
3392 gdb_assert (event_child->suspended >= 0);
3393 }
3394 }
3395
3396 if (event_child->collecting_fast_tracepoint
3397 == fast_tpoint_collect_result::not_collecting)
3398 {
3399 if (debug_threads)
3400 debug_printf ("fast tracepoint finished "
3401 "collecting successfully.\n");
3402
3403 /* We may have a deferred signal to report. */
3404 if (dequeue_one_deferred_signal (event_child, &w))
3405 {
3406 if (debug_threads)
3407 debug_printf ("dequeued one signal.\n");
3408 }
3409 else
3410 {
3411 if (debug_threads)
3412 debug_printf ("no deferred signals.\n");
3413
3414 if (stabilizing_threads)
3415 {
3416 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3417 ourstatus->value.sig = GDB_SIGNAL_0;
3418
3419 if (debug_threads)
3420 {
3421 debug_printf ("linux_wait_1 ret = %s, stopped "
3422 "while stabilizing threads\n",
3423 target_pid_to_str (ptid_of (current_thread)));
3424 debug_exit ();
3425 }
3426
3427 return ptid_of (current_thread);
3428 }
3429 }
3430 }
3431 }
3432
3433 /* Check whether GDB would be interested in this event. */
3434
3435 /* Check if GDB is interested in this syscall. */
3436 if (WIFSTOPPED (w)
3437 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3438 && !gdb_catch_this_syscall_p (event_child))
3439 {
3440 if (debug_threads)
3441 {
3442 debug_printf ("Ignored syscall for LWP %ld.\n",
3443 lwpid_of (current_thread));
3444 }
3445
3446 linux_resume_one_lwp (event_child, event_child->stepping,
3447 0, NULL);
3448
3449 if (debug_threads)
3450 debug_exit ();
3451 return ignore_event (ourstatus);
3452 }
3453
3454 /* If GDB is not interested in this signal, don't stop other
3455 threads, and don't report it to GDB. Just resume the inferior
3456 right away. We do this for threading-related signals as well as
3457 any that GDB specifically requested we ignore. But never ignore
3458 SIGSTOP if we sent it ourselves, and do not ignore signals when
3459 stepping - they may require special handling to skip the signal
3460 handler. Also never ignore signals that could be caused by a
3461 breakpoint. */
3462 if (WIFSTOPPED (w)
3463 && current_thread->last_resume_kind != resume_step
3464 && (
3465 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3466 (current_process ()->priv->thread_db != NULL
3467 && (WSTOPSIG (w) == __SIGRTMIN
3468 || WSTOPSIG (w) == __SIGRTMIN + 1))
3469 ||
3470 #endif
3471 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3472 && !(WSTOPSIG (w) == SIGSTOP
3473 && current_thread->last_resume_kind == resume_stop)
3474 && !linux_wstatus_maybe_breakpoint (w))))
3475 {
3476 siginfo_t info, *info_p;
3477
3478 if (debug_threads)
3479 debug_printf ("Ignored signal %d for LWP %ld.\n",
3480 WSTOPSIG (w), lwpid_of (current_thread));
3481
3482 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3483 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3484 info_p = &info;
3485 else
3486 info_p = NULL;
3487
3488 if (step_over_finished)
3489 {
3490 /* We cancelled this thread's step-over above. We still
3491 need to unsuspend all other LWPs, and set them back
3492 running again while the signal handler runs. */
3493 unsuspend_all_lwps (event_child);
3494
3495 /* Enqueue the pending signal info so that proceed_all_lwps
3496 doesn't lose it. */
3497 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3498
3499 proceed_all_lwps ();
3500 }
3501 else
3502 {
3503 linux_resume_one_lwp (event_child, event_child->stepping,
3504 WSTOPSIG (w), info_p);
3505 }
3506
3507 if (debug_threads)
3508 debug_exit ();
3509
3510 return ignore_event (ourstatus);
3511 }
3512
3513 /* Note that all addresses are always "out of the step range" when
3514 there's no range to begin with. */
3515 in_step_range = lwp_in_step_range (event_child);
3516
3517 /* If GDB wanted this thread to single step, and the thread is out
3518 of the step range, we always want to report the SIGTRAP, and let
3519 GDB handle it. Watchpoints should always be reported. So should
3520 signals we can't explain. A SIGTRAP we can't explain could be a
3521 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3522 do, we're be able to handle GDB breakpoints on top of internal
3523 breakpoints, by handling the internal breakpoint and still
3524 reporting the event to GDB. If we don't, we're out of luck, GDB
3525 won't see the breakpoint hit. If we see a single-step event but
3526 the thread should be continuing, don't pass the trap to gdb.
3527 That indicates that we had previously finished a single-step but
3528 left the single-step pending -- see
3529 complete_ongoing_step_over. */
3530 report_to_gdb = (!maybe_internal_trap
3531 || (current_thread->last_resume_kind == resume_step
3532 && !in_step_range)
3533 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3534 || (!in_step_range
3535 && !bp_explains_trap
3536 && !trace_event
3537 && !step_over_finished
3538 && !(current_thread->last_resume_kind == resume_continue
3539 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3540 || (gdb_breakpoint_here (event_child->stop_pc)
3541 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3542 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3543 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3544
3545 run_breakpoint_commands (event_child->stop_pc);
3546
3547 /* We found no reason GDB would want us to stop. We either hit one
3548 of our own breakpoints, or finished an internal step GDB
3549 shouldn't know about. */
3550 if (!report_to_gdb)
3551 {
3552 if (debug_threads)
3553 {
3554 if (bp_explains_trap)
3555 debug_printf ("Hit a gdbserver breakpoint.\n");
3556 if (step_over_finished)
3557 debug_printf ("Step-over finished.\n");
3558 if (trace_event)
3559 debug_printf ("Tracepoint event.\n");
3560 if (lwp_in_step_range (event_child))
3561 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3562 paddress (event_child->stop_pc),
3563 paddress (event_child->step_range_start),
3564 paddress (event_child->step_range_end));
3565 }
3566
3567 /* We're not reporting this breakpoint to GDB, so apply the
3568 decr_pc_after_break adjustment to the inferior's regcache
3569 ourselves. */
3570
3571 if (the_low_target.set_pc != NULL)
3572 {
3573 struct regcache *regcache
3574 = get_thread_regcache (current_thread, 1);
3575 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3576 }
3577
3578 if (step_over_finished)
3579 {
3580 /* If we have finished stepping over a breakpoint, we've
3581 stopped and suspended all LWPs momentarily except the
3582 stepping one. This is where we resume them all again.
3583 We're going to keep waiting, so use proceed, which
3584 handles stepping over the next breakpoint. */
3585 unsuspend_all_lwps (event_child);
3586 }
3587 else
3588 {
3589 /* Remove the single-step breakpoints if any. Note that
3590 there isn't single-step breakpoint if we finished stepping
3591 over. */
3592 if (can_software_single_step ()
3593 && has_single_step_breakpoints (current_thread))
3594 {
3595 stop_all_lwps (0, event_child);
3596 delete_single_step_breakpoints (current_thread);
3597 unstop_all_lwps (0, event_child);
3598 }
3599 }
3600
3601 if (debug_threads)
3602 debug_printf ("proceeding all threads.\n");
3603 proceed_all_lwps ();
3604
3605 if (debug_threads)
3606 debug_exit ();
3607
3608 return ignore_event (ourstatus);
3609 }
3610
3611 if (debug_threads)
3612 {
3613 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3614 {
3615 std::string str
3616 = target_waitstatus_to_string (&event_child->waitstatus);
3617
3618 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3619 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3620 }
3621 if (current_thread->last_resume_kind == resume_step)
3622 {
3623 if (event_child->step_range_start == event_child->step_range_end)
3624 debug_printf ("GDB wanted to single-step, reporting event.\n");
3625 else if (!lwp_in_step_range (event_child))
3626 debug_printf ("Out of step range, reporting event.\n");
3627 }
3628 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3629 debug_printf ("Stopped by watchpoint.\n");
3630 else if (gdb_breakpoint_here (event_child->stop_pc))
3631 debug_printf ("Stopped by GDB breakpoint.\n");
3632 if (debug_threads)
3633 debug_printf ("Hit a non-gdbserver trap event.\n");
3634 }
3635
3636 /* Alright, we're going to report a stop. */
3637
3638 /* Remove single-step breakpoints. */
3639 if (can_software_single_step ())
3640 {
3641 /* Remove single-step breakpoints or not. It it is true, stop all
3642 lwps, so that other threads won't hit the breakpoint in the
3643 staled memory. */
3644 int remove_single_step_breakpoints_p = 0;
3645
3646 if (non_stop)
3647 {
3648 remove_single_step_breakpoints_p
3649 = has_single_step_breakpoints (current_thread);
3650 }
3651 else
3652 {
3653 /* In all-stop, a stop reply cancels all previous resume
3654 requests. Delete all single-step breakpoints. */
3655
3656 find_thread ([&] (thread_info *thread) {
3657 if (has_single_step_breakpoints (thread))
3658 {
3659 remove_single_step_breakpoints_p = 1;
3660 return true;
3661 }
3662
3663 return false;
3664 });
3665 }
3666
3667 if (remove_single_step_breakpoints_p)
3668 {
3669 /* If we remove single-step breakpoints from memory, stop all lwps,
3670 so that other threads won't hit the breakpoint in the staled
3671 memory. */
3672 stop_all_lwps (0, event_child);
3673
3674 if (non_stop)
3675 {
3676 gdb_assert (has_single_step_breakpoints (current_thread));
3677 delete_single_step_breakpoints (current_thread);
3678 }
3679 else
3680 {
3681 for_each_thread ([] (thread_info *thread){
3682 if (has_single_step_breakpoints (thread))
3683 delete_single_step_breakpoints (thread);
3684 });
3685 }
3686
3687 unstop_all_lwps (0, event_child);
3688 }
3689 }
3690
3691 if (!stabilizing_threads)
3692 {
3693 /* In all-stop, stop all threads. */
3694 if (!non_stop)
3695 stop_all_lwps (0, NULL);
3696
3697 if (step_over_finished)
3698 {
3699 if (!non_stop)
3700 {
3701 /* If we were doing a step-over, all other threads but
3702 the stepping one had been paused in start_step_over,
3703 with their suspend counts incremented. We don't want
3704 to do a full unstop/unpause, because we're in
3705 all-stop mode (so we want threads stopped), but we
3706 still need to unsuspend the other threads, to
3707 decrement their `suspended' count back. */
3708 unsuspend_all_lwps (event_child);
3709 }
3710 else
3711 {
3712 /* If we just finished a step-over, then all threads had
3713 been momentarily paused. In all-stop, that's fine,
3714 we want threads stopped by now anyway. In non-stop,
3715 we need to re-resume threads that GDB wanted to be
3716 running. */
3717 unstop_all_lwps (1, event_child);
3718 }
3719 }
3720
3721 /* If we're not waiting for a specific LWP, choose an event LWP
3722 from among those that have had events. Giving equal priority
3723 to all LWPs that have had events helps prevent
3724 starvation. */
3725 if (ptid_equal (ptid, minus_one_ptid))
3726 {
3727 event_child->status_pending_p = 1;
3728 event_child->status_pending = w;
3729
3730 select_event_lwp (&event_child);
3731
3732 /* current_thread and event_child must stay in sync. */
3733 current_thread = get_lwp_thread (event_child);
3734
3735 event_child->status_pending_p = 0;
3736 w = event_child->status_pending;
3737 }
3738
3739
3740 /* Stabilize threads (move out of jump pads). */
3741 if (!non_stop)
3742 stabilize_threads ();
3743 }
3744 else
3745 {
3746 /* If we just finished a step-over, then all threads had been
3747 momentarily paused. In all-stop, that's fine, we want
3748 threads stopped by now anyway. In non-stop, we need to
3749 re-resume threads that GDB wanted to be running. */
3750 if (step_over_finished)
3751 unstop_all_lwps (1, event_child);
3752 }
3753
3754 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3755 {
3756 /* If the reported event is an exit, fork, vfork or exec, let
3757 GDB know. */
3758
3759 /* Break the unreported fork relationship chain. */
3760 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3761 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3762 {
3763 event_child->fork_relative->fork_relative = NULL;
3764 event_child->fork_relative = NULL;
3765 }
3766
3767 *ourstatus = event_child->waitstatus;
3768 /* Clear the event lwp's waitstatus since we handled it already. */
3769 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3770 }
3771 else
3772 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3773
3774 /* Now that we've selected our final event LWP, un-adjust its PC if
3775 it was a software breakpoint, and the client doesn't know we can
3776 adjust the breakpoint ourselves. */
3777 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3778 && !swbreak_feature)
3779 {
3780 int decr_pc = the_low_target.decr_pc_after_break;
3781
3782 if (decr_pc != 0)
3783 {
3784 struct regcache *regcache
3785 = get_thread_regcache (current_thread, 1);
3786 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3787 }
3788 }
3789
3790 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3791 {
3792 get_syscall_trapinfo (event_child,
3793 &ourstatus->value.syscall_number);
3794 ourstatus->kind = event_child->syscall_state;
3795 }
3796 else if (current_thread->last_resume_kind == resume_stop
3797 && WSTOPSIG (w) == SIGSTOP)
3798 {
3799 /* A thread that has been requested to stop by GDB with vCont;t,
3800 and it stopped cleanly, so report as SIG0. The use of
3801 SIGSTOP is an implementation detail. */
3802 ourstatus->value.sig = GDB_SIGNAL_0;
3803 }
3804 else if (current_thread->last_resume_kind == resume_stop
3805 && WSTOPSIG (w) != SIGSTOP)
3806 {
3807 /* A thread that has been requested to stop by GDB with vCont;t,
3808 but, it stopped for other reasons. */
3809 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3810 }
3811 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3812 {
3813 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3814 }
3815
3816 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3817
3818 if (debug_threads)
3819 {
3820 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3821 target_pid_to_str (ptid_of (current_thread)),
3822 ourstatus->kind, ourstatus->value.sig);
3823 debug_exit ();
3824 }
3825
3826 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3827 return filter_exit_event (event_child, ourstatus);
3828
3829 return ptid_of (current_thread);
3830 }
3831
3832 /* Get rid of any pending event in the pipe. */
3833 static void
3834 async_file_flush (void)
3835 {
3836 int ret;
3837 char buf;
3838
3839 do
3840 ret = read (linux_event_pipe[0], &buf, 1);
3841 while (ret >= 0 || (ret == -1 && errno == EINTR));
3842 }
3843
3844 /* Put something in the pipe, so the event loop wakes up. */
3845 static void
3846 async_file_mark (void)
3847 {
3848 int ret;
3849
3850 async_file_flush ();
3851
3852 do
3853 ret = write (linux_event_pipe[1], "+", 1);
3854 while (ret == 0 || (ret == -1 && errno == EINTR));
3855
3856 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3857 be awakened anyway. */
3858 }
3859
3860 static ptid_t
3861 linux_wait (ptid_t ptid,
3862 struct target_waitstatus *ourstatus, int target_options)
3863 {
3864 ptid_t event_ptid;
3865
3866 /* Flush the async file first. */
3867 if (target_is_async_p ())
3868 async_file_flush ();
3869
3870 do
3871 {
3872 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3873 }
3874 while ((target_options & TARGET_WNOHANG) == 0
3875 && ptid_equal (event_ptid, null_ptid)
3876 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3877
3878 /* If at least one stop was reported, there may be more. A single
3879 SIGCHLD can signal more than one child stop. */
3880 if (target_is_async_p ()
3881 && (target_options & TARGET_WNOHANG) != 0
3882 && !ptid_equal (event_ptid, null_ptid))
3883 async_file_mark ();
3884
3885 return event_ptid;
3886 }
3887
3888 /* Send a signal to an LWP. */
3889
3890 static int
3891 kill_lwp (unsigned long lwpid, int signo)
3892 {
3893 int ret;
3894
3895 errno = 0;
3896 ret = syscall (__NR_tkill, lwpid, signo);
3897 if (errno == ENOSYS)
3898 {
3899 /* If tkill fails, then we are not using nptl threads, a
3900 configuration we no longer support. */
3901 perror_with_name (("tkill"));
3902 }
3903 return ret;
3904 }
3905
3906 void
3907 linux_stop_lwp (struct lwp_info *lwp)
3908 {
3909 send_sigstop (lwp);
3910 }
3911
3912 static void
3913 send_sigstop (struct lwp_info *lwp)
3914 {
3915 int pid;
3916
3917 pid = lwpid_of (get_lwp_thread (lwp));
3918
3919 /* If we already have a pending stop signal for this process, don't
3920 send another. */
3921 if (lwp->stop_expected)
3922 {
3923 if (debug_threads)
3924 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3925
3926 return;
3927 }
3928
3929 if (debug_threads)
3930 debug_printf ("Sending sigstop to lwp %d\n", pid);
3931
3932 lwp->stop_expected = 1;
3933 kill_lwp (pid, SIGSTOP);
3934 }
3935
3936 static int
3937 send_sigstop_callback (thread_info *thread, void *except)
3938 {
3939 struct lwp_info *lwp = get_thread_lwp (thread);
3940
3941 /* Ignore EXCEPT. */
3942 if (lwp == except)
3943 return 0;
3944
3945 if (lwp->stopped)
3946 return 0;
3947
3948 send_sigstop (lwp);
3949 return 0;
3950 }
3951
3952 /* Increment the suspend count of an LWP, and stop it, if not stopped
3953 yet. */
3954 static int
3955 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
3956 {
3957 struct lwp_info *lwp = get_thread_lwp (thread);
3958
3959 /* Ignore EXCEPT. */
3960 if (lwp == except)
3961 return 0;
3962
3963 lwp_suspended_inc (lwp);
3964
3965 return send_sigstop_callback (thread, except);
3966 }
3967
3968 static void
3969 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3970 {
3971 /* Store the exit status for later. */
3972 lwp->status_pending_p = 1;
3973 lwp->status_pending = wstat;
3974
3975 /* Store in waitstatus as well, as there's nothing else to process
3976 for this event. */
3977 if (WIFEXITED (wstat))
3978 {
3979 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3980 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3981 }
3982 else if (WIFSIGNALED (wstat))
3983 {
3984 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3985 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3986 }
3987
3988 /* Prevent trying to stop it. */
3989 lwp->stopped = 1;
3990
3991 /* No further stops are expected from a dead lwp. */
3992 lwp->stop_expected = 0;
3993 }
3994
3995 /* Return true if LWP has exited already, and has a pending exit event
3996 to report to GDB. */
3997
3998 static int
3999 lwp_is_marked_dead (struct lwp_info *lwp)
4000 {
4001 return (lwp->status_pending_p
4002 && (WIFEXITED (lwp->status_pending)
4003 || WIFSIGNALED (lwp->status_pending)));
4004 }
4005
4006 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4007
4008 static void
4009 wait_for_sigstop (void)
4010 {
4011 struct thread_info *saved_thread;
4012 ptid_t saved_tid;
4013 int wstat;
4014 int ret;
4015
4016 saved_thread = current_thread;
4017 if (saved_thread != NULL)
4018 saved_tid = saved_thread->id;
4019 else
4020 saved_tid = null_ptid; /* avoid bogus unused warning */
4021
4022 if (debug_threads)
4023 debug_printf ("wait_for_sigstop: pulling events\n");
4024
4025 /* Passing NULL_PTID as filter indicates we want all events to be
4026 left pending. Eventually this returns when there are no
4027 unwaited-for children left. */
4028 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4029 &wstat, __WALL);
4030 gdb_assert (ret == -1);
4031
4032 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4033 current_thread = saved_thread;
4034 else
4035 {
4036 if (debug_threads)
4037 debug_printf ("Previously current thread died.\n");
4038
4039 /* We can't change the current inferior behind GDB's back,
4040 otherwise, a subsequent command may apply to the wrong
4041 process. */
4042 current_thread = NULL;
4043 }
4044 }
4045
4046 /* Returns true if THREAD is stopped in a jump pad, and we can't
4047 move it out, because we need to report the stop event to GDB. For
4048 example, if the user puts a breakpoint in the jump pad, it's
4049 because she wants to debug it. */
4050
4051 static bool
4052 stuck_in_jump_pad_callback (thread_info *thread)
4053 {
4054 struct lwp_info *lwp = get_thread_lwp (thread);
4055
4056 if (lwp->suspended != 0)
4057 {
4058 internal_error (__FILE__, __LINE__,
4059 "LWP %ld is suspended, suspended=%d\n",
4060 lwpid_of (thread), lwp->suspended);
4061 }
4062 gdb_assert (lwp->stopped);
4063
4064 /* Allow debugging the jump pad, gdb_collect, etc.. */
4065 return (supports_fast_tracepoints ()
4066 && agent_loaded_p ()
4067 && (gdb_breakpoint_here (lwp->stop_pc)
4068 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4069 || thread->last_resume_kind == resume_step)
4070 && (linux_fast_tracepoint_collecting (lwp, NULL)
4071 != fast_tpoint_collect_result::not_collecting));
4072 }
4073
4074 static void
4075 move_out_of_jump_pad_callback (thread_info *thread)
4076 {
4077 struct thread_info *saved_thread;
4078 struct lwp_info *lwp = get_thread_lwp (thread);
4079 int *wstat;
4080
4081 if (lwp->suspended != 0)
4082 {
4083 internal_error (__FILE__, __LINE__,
4084 "LWP %ld is suspended, suspended=%d\n",
4085 lwpid_of (thread), lwp->suspended);
4086 }
4087 gdb_assert (lwp->stopped);
4088
4089 /* For gdb_breakpoint_here. */
4090 saved_thread = current_thread;
4091 current_thread = thread;
4092
4093 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4094
4095 /* Allow debugging the jump pad, gdb_collect, etc. */
4096 if (!gdb_breakpoint_here (lwp->stop_pc)
4097 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4098 && thread->last_resume_kind != resume_step
4099 && maybe_move_out_of_jump_pad (lwp, wstat))
4100 {
4101 if (debug_threads)
4102 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4103 lwpid_of (thread));
4104
4105 if (wstat)
4106 {
4107 lwp->status_pending_p = 0;
4108 enqueue_one_deferred_signal (lwp, wstat);
4109
4110 if (debug_threads)
4111 debug_printf ("Signal %d for LWP %ld deferred "
4112 "(in jump pad)\n",
4113 WSTOPSIG (*wstat), lwpid_of (thread));
4114 }
4115
4116 linux_resume_one_lwp (lwp, 0, 0, NULL);
4117 }
4118 else
4119 lwp_suspended_inc (lwp);
4120
4121 current_thread = saved_thread;
4122 }
4123
4124 static bool
4125 lwp_running (thread_info *thread)
4126 {
4127 struct lwp_info *lwp = get_thread_lwp (thread);
4128
4129 if (lwp_is_marked_dead (lwp))
4130 return false;
4131
4132 return !lwp->stopped;
4133 }
4134
4135 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4136 If SUSPEND, then also increase the suspend count of every LWP,
4137 except EXCEPT. */
4138
4139 static void
4140 stop_all_lwps (int suspend, struct lwp_info *except)
4141 {
4142 /* Should not be called recursively. */
4143 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4144
4145 if (debug_threads)
4146 {
4147 debug_enter ();
4148 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4149 suspend ? "stop-and-suspend" : "stop",
4150 except != NULL
4151 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4152 : "none");
4153 }
4154
4155 stopping_threads = (suspend
4156 ? STOPPING_AND_SUSPENDING_THREADS
4157 : STOPPING_THREADS);
4158
4159 if (suspend)
4160 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4161 else
4162 find_inferior (&all_threads, send_sigstop_callback, except);
4163 wait_for_sigstop ();
4164 stopping_threads = NOT_STOPPING_THREADS;
4165
4166 if (debug_threads)
4167 {
4168 debug_printf ("stop_all_lwps done, setting stopping_threads "
4169 "back to !stopping\n");
4170 debug_exit ();
4171 }
4172 }
4173
4174 /* Enqueue one signal in the chain of signals which need to be
4175 delivered to this process on next resume. */
4176
4177 static void
4178 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4179 {
4180 struct pending_signals *p_sig = XNEW (struct pending_signals);
4181
4182 p_sig->prev = lwp->pending_signals;
4183 p_sig->signal = signal;
4184 if (info == NULL)
4185 memset (&p_sig->info, 0, sizeof (siginfo_t));
4186 else
4187 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4188 lwp->pending_signals = p_sig;
4189 }
4190
4191 /* Install breakpoints for software single stepping. */
4192
4193 static void
4194 install_software_single_step_breakpoints (struct lwp_info *lwp)
4195 {
4196 struct thread_info *thread = get_lwp_thread (lwp);
4197 struct regcache *regcache = get_thread_regcache (thread, 1);
4198 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4199
4200 current_thread = thread;
4201 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4202
4203 for (CORE_ADDR pc : next_pcs)
4204 set_single_step_breakpoint (pc, current_ptid);
4205
4206 do_cleanups (old_chain);
4207 }
4208
4209 /* Single step via hardware or software single step.
4210 Return 1 if hardware single stepping, 0 if software single stepping
4211 or can't single step. */
4212
4213 static int
4214 single_step (struct lwp_info* lwp)
4215 {
4216 int step = 0;
4217
4218 if (can_hardware_single_step ())
4219 {
4220 step = 1;
4221 }
4222 else if (can_software_single_step ())
4223 {
4224 install_software_single_step_breakpoints (lwp);
4225 step = 0;
4226 }
4227 else
4228 {
4229 if (debug_threads)
4230 debug_printf ("stepping is not implemented on this target");
4231 }
4232
4233 return step;
4234 }
4235
4236 /* The signal can be delivered to the inferior if we are not trying to
4237 finish a fast tracepoint collect. Since signal can be delivered in
4238 the step-over, the program may go to signal handler and trap again
4239 after return from the signal handler. We can live with the spurious
4240 double traps. */
4241
4242 static int
4243 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4244 {
4245 return (lwp->collecting_fast_tracepoint
4246 == fast_tpoint_collect_result::not_collecting);
4247 }
4248
4249 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4250 SIGNAL is nonzero, give it that signal. */
4251
4252 static void
4253 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4254 int step, int signal, siginfo_t *info)
4255 {
4256 struct thread_info *thread = get_lwp_thread (lwp);
4257 struct thread_info *saved_thread;
4258 int ptrace_request;
4259 struct process_info *proc = get_thread_process (thread);
4260
4261 /* Note that target description may not be initialised
4262 (proc->tdesc == NULL) at this point because the program hasn't
4263 stopped at the first instruction yet. It means GDBserver skips
4264 the extra traps from the wrapper program (see option --wrapper).
4265 Code in this function that requires register access should be
4266 guarded by proc->tdesc == NULL or something else. */
4267
4268 if (lwp->stopped == 0)
4269 return;
4270
4271 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4272
4273 fast_tpoint_collect_result fast_tp_collecting
4274 = lwp->collecting_fast_tracepoint;
4275
4276 gdb_assert (!stabilizing_threads
4277 || (fast_tp_collecting
4278 != fast_tpoint_collect_result::not_collecting));
4279
4280 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4281 user used the "jump" command, or "set $pc = foo"). */
4282 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4283 {
4284 /* Collecting 'while-stepping' actions doesn't make sense
4285 anymore. */
4286 release_while_stepping_state_list (thread);
4287 }
4288
4289 /* If we have pending signals or status, and a new signal, enqueue the
4290 signal. Also enqueue the signal if it can't be delivered to the
4291 inferior right now. */
4292 if (signal != 0
4293 && (lwp->status_pending_p
4294 || lwp->pending_signals != NULL
4295 || !lwp_signal_can_be_delivered (lwp)))
4296 {
4297 enqueue_pending_signal (lwp, signal, info);
4298
4299 /* Postpone any pending signal. It was enqueued above. */
4300 signal = 0;
4301 }
4302
4303 if (lwp->status_pending_p)
4304 {
4305 if (debug_threads)
4306 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4307 " has pending status\n",
4308 lwpid_of (thread), step ? "step" : "continue",
4309 lwp->stop_expected ? "expected" : "not expected");
4310 return;
4311 }
4312
4313 saved_thread = current_thread;
4314 current_thread = thread;
4315
4316 /* This bit needs some thinking about. If we get a signal that
4317 we must report while a single-step reinsert is still pending,
4318 we often end up resuming the thread. It might be better to
4319 (ew) allow a stack of pending events; then we could be sure that
4320 the reinsert happened right away and not lose any signals.
4321
4322 Making this stack would also shrink the window in which breakpoints are
4323 uninserted (see comment in linux_wait_for_lwp) but not enough for
4324 complete correctness, so it won't solve that problem. It may be
4325 worthwhile just to solve this one, however. */
4326 if (lwp->bp_reinsert != 0)
4327 {
4328 if (debug_threads)
4329 debug_printf (" pending reinsert at 0x%s\n",
4330 paddress (lwp->bp_reinsert));
4331
4332 if (can_hardware_single_step ())
4333 {
4334 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4335 {
4336 if (step == 0)
4337 warning ("BAD - reinserting but not stepping.");
4338 if (lwp->suspended)
4339 warning ("BAD - reinserting and suspended(%d).",
4340 lwp->suspended);
4341 }
4342 }
4343
4344 step = maybe_hw_step (thread);
4345 }
4346
4347 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4348 {
4349 if (debug_threads)
4350 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4351 " (exit-jump-pad-bkpt)\n",
4352 lwpid_of (thread));
4353 }
4354 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4355 {
4356 if (debug_threads)
4357 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4358 " single-stepping\n",
4359 lwpid_of (thread));
4360
4361 if (can_hardware_single_step ())
4362 step = 1;
4363 else
4364 {
4365 internal_error (__FILE__, __LINE__,
4366 "moving out of jump pad single-stepping"
4367 " not implemented on this target");
4368 }
4369 }
4370
4371 /* If we have while-stepping actions in this thread set it stepping.
4372 If we have a signal to deliver, it may or may not be set to
4373 SIG_IGN, we don't know. Assume so, and allow collecting
4374 while-stepping into a signal handler. A possible smart thing to
4375 do would be to set an internal breakpoint at the signal return
4376 address, continue, and carry on catching this while-stepping
4377 action only when that breakpoint is hit. A future
4378 enhancement. */
4379 if (thread->while_stepping != NULL)
4380 {
4381 if (debug_threads)
4382 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4383 lwpid_of (thread));
4384
4385 step = single_step (lwp);
4386 }
4387
4388 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4389 {
4390 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4391
4392 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4393
4394 if (debug_threads)
4395 {
4396 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4397 (long) lwp->stop_pc);
4398 }
4399 }
4400
4401 /* If we have pending signals, consume one if it can be delivered to
4402 the inferior. */
4403 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4404 {
4405 struct pending_signals **p_sig;
4406
4407 p_sig = &lwp->pending_signals;
4408 while ((*p_sig)->prev != NULL)
4409 p_sig = &(*p_sig)->prev;
4410
4411 signal = (*p_sig)->signal;
4412 if ((*p_sig)->info.si_signo != 0)
4413 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4414 &(*p_sig)->info);
4415
4416 free (*p_sig);
4417 *p_sig = NULL;
4418 }
4419
4420 if (debug_threads)
4421 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4422 lwpid_of (thread), step ? "step" : "continue", signal,
4423 lwp->stop_expected ? "expected" : "not expected");
4424
4425 if (the_low_target.prepare_to_resume != NULL)
4426 the_low_target.prepare_to_resume (lwp);
4427
4428 regcache_invalidate_thread (thread);
4429 errno = 0;
4430 lwp->stepping = step;
4431 if (step)
4432 ptrace_request = PTRACE_SINGLESTEP;
4433 else if (gdb_catching_syscalls_p (lwp))
4434 ptrace_request = PTRACE_SYSCALL;
4435 else
4436 ptrace_request = PTRACE_CONT;
4437 ptrace (ptrace_request,
4438 lwpid_of (thread),
4439 (PTRACE_TYPE_ARG3) 0,
4440 /* Coerce to a uintptr_t first to avoid potential gcc warning
4441 of coercing an 8 byte integer to a 4 byte pointer. */
4442 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4443
4444 current_thread = saved_thread;
4445 if (errno)
4446 perror_with_name ("resuming thread");
4447
4448 /* Successfully resumed. Clear state that no longer makes sense,
4449 and mark the LWP as running. Must not do this before resuming
4450 otherwise if that fails other code will be confused. E.g., we'd
4451 later try to stop the LWP and hang forever waiting for a stop
4452 status. Note that we must not throw after this is cleared,
4453 otherwise handle_zombie_lwp_error would get confused. */
4454 lwp->stopped = 0;
4455 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4456 }
4457
4458 /* Called when we try to resume a stopped LWP and that errors out. If
4459 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4460 or about to become), discard the error, clear any pending status
4461 the LWP may have, and return true (we'll collect the exit status
4462 soon enough). Otherwise, return false. */
4463
4464 static int
4465 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4466 {
4467 struct thread_info *thread = get_lwp_thread (lp);
4468
4469 /* If we get an error after resuming the LWP successfully, we'd
4470 confuse !T state for the LWP being gone. */
4471 gdb_assert (lp->stopped);
4472
4473 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4474 because even if ptrace failed with ESRCH, the tracee may be "not
4475 yet fully dead", but already refusing ptrace requests. In that
4476 case the tracee has 'R (Running)' state for a little bit
4477 (observed in Linux 3.18). See also the note on ESRCH in the
4478 ptrace(2) man page. Instead, check whether the LWP has any state
4479 other than ptrace-stopped. */
4480
4481 /* Don't assume anything if /proc/PID/status can't be read. */
4482 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4483 {
4484 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4485 lp->status_pending_p = 0;
4486 return 1;
4487 }
4488 return 0;
4489 }
4490
4491 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4492 disappears while we try to resume it. */
4493
4494 static void
4495 linux_resume_one_lwp (struct lwp_info *lwp,
4496 int step, int signal, siginfo_t *info)
4497 {
4498 TRY
4499 {
4500 linux_resume_one_lwp_throw (lwp, step, signal, info);
4501 }
4502 CATCH (ex, RETURN_MASK_ERROR)
4503 {
4504 if (!check_ptrace_stopped_lwp_gone (lwp))
4505 throw_exception (ex);
4506 }
4507 END_CATCH
4508 }
4509
4510 /* This function is called once per thread via for_each_thread.
4511 We look up which resume request applies to THREAD and mark it with a
4512 pointer to the appropriate resume request.
4513
4514 This algorithm is O(threads * resume elements), but resume elements
4515 is small (and will remain small at least until GDB supports thread
4516 suspension). */
4517
4518 static void
4519 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4520 {
4521 struct lwp_info *lwp = get_thread_lwp (thread);
4522
4523 for (int ndx = 0; ndx < n; ndx++)
4524 {
4525 ptid_t ptid = resume[ndx].thread;
4526 if (ptid_equal (ptid, minus_one_ptid)
4527 || ptid == thread->id
4528 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4529 of PID'. */
4530 || (ptid_get_pid (ptid) == pid_of (thread)
4531 && (ptid_is_pid (ptid)
4532 || ptid_get_lwp (ptid) == -1)))
4533 {
4534 if (resume[ndx].kind == resume_stop
4535 && thread->last_resume_kind == resume_stop)
4536 {
4537 if (debug_threads)
4538 debug_printf ("already %s LWP %ld at GDB's request\n",
4539 (thread->last_status.kind
4540 == TARGET_WAITKIND_STOPPED)
4541 ? "stopped"
4542 : "stopping",
4543 lwpid_of (thread));
4544
4545 continue;
4546 }
4547
4548 /* Ignore (wildcard) resume requests for already-resumed
4549 threads. */
4550 if (resume[ndx].kind != resume_stop
4551 && thread->last_resume_kind != resume_stop)
4552 {
4553 if (debug_threads)
4554 debug_printf ("already %s LWP %ld at GDB's request\n",
4555 (thread->last_resume_kind
4556 == resume_step)
4557 ? "stepping"
4558 : "continuing",
4559 lwpid_of (thread));
4560 continue;
4561 }
4562
4563 /* Don't let wildcard resumes resume fork children that GDB
4564 does not yet know are new fork children. */
4565 if (lwp->fork_relative != NULL)
4566 {
4567 struct lwp_info *rel = lwp->fork_relative;
4568
4569 if (rel->status_pending_p
4570 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4571 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4572 {
4573 if (debug_threads)
4574 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4575 lwpid_of (thread));
4576 continue;
4577 }
4578 }
4579
4580 /* If the thread has a pending event that has already been
4581 reported to GDBserver core, but GDB has not pulled the
4582 event out of the vStopped queue yet, likewise, ignore the
4583 (wildcard) resume request. */
4584 if (in_queued_stop_replies (thread->id))
4585 {
4586 if (debug_threads)
4587 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4588 lwpid_of (thread));
4589 continue;
4590 }
4591
4592 lwp->resume = &resume[ndx];
4593 thread->last_resume_kind = lwp->resume->kind;
4594
4595 lwp->step_range_start = lwp->resume->step_range_start;
4596 lwp->step_range_end = lwp->resume->step_range_end;
4597
4598 /* If we had a deferred signal to report, dequeue one now.
4599 This can happen if LWP gets more than one signal while
4600 trying to get out of a jump pad. */
4601 if (lwp->stopped
4602 && !lwp->status_pending_p
4603 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4604 {
4605 lwp->status_pending_p = 1;
4606
4607 if (debug_threads)
4608 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4609 "leaving status pending.\n",
4610 WSTOPSIG (lwp->status_pending),
4611 lwpid_of (thread));
4612 }
4613
4614 return;
4615 }
4616 }
4617
4618 /* No resume action for this thread. */
4619 lwp->resume = NULL;
4620 }
4621
4622 /* find_inferior callback for linux_resume.
4623 Set *FLAG_P if this lwp has an interesting status pending. */
4624
4625 static bool
4626 resume_status_pending_p (thread_info *thread)
4627 {
4628 struct lwp_info *lwp = get_thread_lwp (thread);
4629
4630 /* LWPs which will not be resumed are not interesting, because
4631 we might not wait for them next time through linux_wait. */
4632 if (lwp->resume == NULL)
4633 return false;
4634
4635 return thread_still_has_status_pending_p (thread);
4636 }
4637
4638 /* Return 1 if this lwp that GDB wants running is stopped at an
4639 internal breakpoint that we need to step over. It assumes that any
4640 required STOP_PC adjustment has already been propagated to the
4641 inferior's regcache. */
4642
4643 static bool
4644 need_step_over_p (thread_info *thread)
4645 {
4646 struct lwp_info *lwp = get_thread_lwp (thread);
4647 struct thread_info *saved_thread;
4648 CORE_ADDR pc;
4649 struct process_info *proc = get_thread_process (thread);
4650
4651 /* GDBserver is skipping the extra traps from the wrapper program,
4652 don't have to do step over. */
4653 if (proc->tdesc == NULL)
4654 return false;
4655
4656 /* LWPs which will not be resumed are not interesting, because we
4657 might not wait for them next time through linux_wait. */
4658
4659 if (!lwp->stopped)
4660 {
4661 if (debug_threads)
4662 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4663 lwpid_of (thread));
4664 return false;
4665 }
4666
4667 if (thread->last_resume_kind == resume_stop)
4668 {
4669 if (debug_threads)
4670 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4671 " stopped\n",
4672 lwpid_of (thread));
4673 return false;
4674 }
4675
4676 gdb_assert (lwp->suspended >= 0);
4677
4678 if (lwp->suspended)
4679 {
4680 if (debug_threads)
4681 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4682 lwpid_of (thread));
4683 return false;
4684 }
4685
4686 if (lwp->status_pending_p)
4687 {
4688 if (debug_threads)
4689 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4690 " status.\n",
4691 lwpid_of (thread));
4692 return false;
4693 }
4694
4695 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4696 or we have. */
4697 pc = get_pc (lwp);
4698
4699 /* If the PC has changed since we stopped, then don't do anything,
4700 and let the breakpoint/tracepoint be hit. This happens if, for
4701 instance, GDB handled the decr_pc_after_break subtraction itself,
4702 GDB is OOL stepping this thread, or the user has issued a "jump"
4703 command, or poked thread's registers herself. */
4704 if (pc != lwp->stop_pc)
4705 {
4706 if (debug_threads)
4707 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4708 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4709 lwpid_of (thread),
4710 paddress (lwp->stop_pc), paddress (pc));
4711 return false;
4712 }
4713
4714 /* On software single step target, resume the inferior with signal
4715 rather than stepping over. */
4716 if (can_software_single_step ()
4717 && lwp->pending_signals != NULL
4718 && lwp_signal_can_be_delivered (lwp))
4719 {
4720 if (debug_threads)
4721 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4722 " signals.\n",
4723 lwpid_of (thread));
4724
4725 return false;
4726 }
4727
4728 saved_thread = current_thread;
4729 current_thread = thread;
4730
4731 /* We can only step over breakpoints we know about. */
4732 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4733 {
4734 /* Don't step over a breakpoint that GDB expects to hit
4735 though. If the condition is being evaluated on the target's side
4736 and it evaluate to false, step over this breakpoint as well. */
4737 if (gdb_breakpoint_here (pc)
4738 && gdb_condition_true_at_breakpoint (pc)
4739 && gdb_no_commands_at_breakpoint (pc))
4740 {
4741 if (debug_threads)
4742 debug_printf ("Need step over [LWP %ld]? yes, but found"
4743 " GDB breakpoint at 0x%s; skipping step over\n",
4744 lwpid_of (thread), paddress (pc));
4745
4746 current_thread = saved_thread;
4747 return false;
4748 }
4749 else
4750 {
4751 if (debug_threads)
4752 debug_printf ("Need step over [LWP %ld]? yes, "
4753 "found breakpoint at 0x%s\n",
4754 lwpid_of (thread), paddress (pc));
4755
4756 /* We've found an lwp that needs stepping over --- return 1 so
4757 that find_inferior stops looking. */
4758 current_thread = saved_thread;
4759
4760 return true;
4761 }
4762 }
4763
4764 current_thread = saved_thread;
4765
4766 if (debug_threads)
4767 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4768 " at 0x%s\n",
4769 lwpid_of (thread), paddress (pc));
4770
4771 return false;
4772 }
4773
4774 /* Start a step-over operation on LWP. When LWP stopped at a
4775 breakpoint, to make progress, we need to remove the breakpoint out
4776 of the way. If we let other threads run while we do that, they may
4777 pass by the breakpoint location and miss hitting it. To avoid
4778 that, a step-over momentarily stops all threads while LWP is
4779 single-stepped by either hardware or software while the breakpoint
4780 is temporarily uninserted from the inferior. When the single-step
4781 finishes, we reinsert the breakpoint, and let all threads that are
4782 supposed to be running, run again. */
4783
4784 static int
4785 start_step_over (struct lwp_info *lwp)
4786 {
4787 struct thread_info *thread = get_lwp_thread (lwp);
4788 struct thread_info *saved_thread;
4789 CORE_ADDR pc;
4790 int step;
4791
4792 if (debug_threads)
4793 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4794 lwpid_of (thread));
4795
4796 stop_all_lwps (1, lwp);
4797
4798 if (lwp->suspended != 0)
4799 {
4800 internal_error (__FILE__, __LINE__,
4801 "LWP %ld suspended=%d\n", lwpid_of (thread),
4802 lwp->suspended);
4803 }
4804
4805 if (debug_threads)
4806 debug_printf ("Done stopping all threads for step-over.\n");
4807
4808 /* Note, we should always reach here with an already adjusted PC,
4809 either by GDB (if we're resuming due to GDB's request), or by our
4810 caller, if we just finished handling an internal breakpoint GDB
4811 shouldn't care about. */
4812 pc = get_pc (lwp);
4813
4814 saved_thread = current_thread;
4815 current_thread = thread;
4816
4817 lwp->bp_reinsert = pc;
4818 uninsert_breakpoints_at (pc);
4819 uninsert_fast_tracepoint_jumps_at (pc);
4820
4821 step = single_step (lwp);
4822
4823 current_thread = saved_thread;
4824
4825 linux_resume_one_lwp (lwp, step, 0, NULL);
4826
4827 /* Require next event from this LWP. */
4828 step_over_bkpt = thread->id;
4829 return 1;
4830 }
4831
4832 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4833 start_step_over, if still there, and delete any single-step
4834 breakpoints we've set, on non hardware single-step targets. */
4835
4836 static int
4837 finish_step_over (struct lwp_info *lwp)
4838 {
4839 if (lwp->bp_reinsert != 0)
4840 {
4841 struct thread_info *saved_thread = current_thread;
4842
4843 if (debug_threads)
4844 debug_printf ("Finished step over.\n");
4845
4846 current_thread = get_lwp_thread (lwp);
4847
4848 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4849 may be no breakpoint to reinsert there by now. */
4850 reinsert_breakpoints_at (lwp->bp_reinsert);
4851 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4852
4853 lwp->bp_reinsert = 0;
4854
4855 /* Delete any single-step breakpoints. No longer needed. We
4856 don't have to worry about other threads hitting this trap,
4857 and later not being able to explain it, because we were
4858 stepping over a breakpoint, and we hold all threads but
4859 LWP stopped while doing that. */
4860 if (!can_hardware_single_step ())
4861 {
4862 gdb_assert (has_single_step_breakpoints (current_thread));
4863 delete_single_step_breakpoints (current_thread);
4864 }
4865
4866 step_over_bkpt = null_ptid;
4867 current_thread = saved_thread;
4868 return 1;
4869 }
4870 else
4871 return 0;
4872 }
4873
4874 /* If there's a step over in progress, wait until all threads stop
4875 (that is, until the stepping thread finishes its step), and
4876 unsuspend all lwps. The stepping thread ends with its status
4877 pending, which is processed later when we get back to processing
4878 events. */
4879
4880 static void
4881 complete_ongoing_step_over (void)
4882 {
4883 if (!ptid_equal (step_over_bkpt, null_ptid))
4884 {
4885 struct lwp_info *lwp;
4886 int wstat;
4887 int ret;
4888
4889 if (debug_threads)
4890 debug_printf ("detach: step over in progress, finish it first\n");
4891
4892 /* Passing NULL_PTID as filter indicates we want all events to
4893 be left pending. Eventually this returns when there are no
4894 unwaited-for children left. */
4895 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4896 &wstat, __WALL);
4897 gdb_assert (ret == -1);
4898
4899 lwp = find_lwp_pid (step_over_bkpt);
4900 if (lwp != NULL)
4901 finish_step_over (lwp);
4902 step_over_bkpt = null_ptid;
4903 unsuspend_all_lwps (lwp);
4904 }
4905 }
4906
4907 /* This function is called once per thread. We check the thread's resume
4908 request, which will tell us whether to resume, step, or leave the thread
4909 stopped; and what signal, if any, it should be sent.
4910
4911 For threads which we aren't explicitly told otherwise, we preserve
4912 the stepping flag; this is used for stepping over gdbserver-placed
4913 breakpoints.
4914
4915 If pending_flags was set in any thread, we queue any needed
4916 signals, since we won't actually resume. We already have a pending
4917 event to report, so we don't need to preserve any step requests;
4918 they should be re-issued if necessary. */
4919
4920 static int
4921 linux_resume_one_thread (thread_info *thread, void *arg)
4922 {
4923 struct lwp_info *lwp = get_thread_lwp (thread);
4924 int leave_all_stopped = * (int *) arg;
4925 int leave_pending;
4926
4927 if (lwp->resume == NULL)
4928 return 0;
4929
4930 if (lwp->resume->kind == resume_stop)
4931 {
4932 if (debug_threads)
4933 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4934
4935 if (!lwp->stopped)
4936 {
4937 if (debug_threads)
4938 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4939
4940 /* Stop the thread, and wait for the event asynchronously,
4941 through the event loop. */
4942 send_sigstop (lwp);
4943 }
4944 else
4945 {
4946 if (debug_threads)
4947 debug_printf ("already stopped LWP %ld\n",
4948 lwpid_of (thread));
4949
4950 /* The LWP may have been stopped in an internal event that
4951 was not meant to be notified back to GDB (e.g., gdbserver
4952 breakpoint), so we should be reporting a stop event in
4953 this case too. */
4954
4955 /* If the thread already has a pending SIGSTOP, this is a
4956 no-op. Otherwise, something later will presumably resume
4957 the thread and this will cause it to cancel any pending
4958 operation, due to last_resume_kind == resume_stop. If
4959 the thread already has a pending status to report, we
4960 will still report it the next time we wait - see
4961 status_pending_p_callback. */
4962
4963 /* If we already have a pending signal to report, then
4964 there's no need to queue a SIGSTOP, as this means we're
4965 midway through moving the LWP out of the jumppad, and we
4966 will report the pending signal as soon as that is
4967 finished. */
4968 if (lwp->pending_signals_to_report == NULL)
4969 send_sigstop (lwp);
4970 }
4971
4972 /* For stop requests, we're done. */
4973 lwp->resume = NULL;
4974 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4975 return 0;
4976 }
4977
4978 /* If this thread which is about to be resumed has a pending status,
4979 then don't resume it - we can just report the pending status.
4980 Likewise if it is suspended, because e.g., another thread is
4981 stepping past a breakpoint. Make sure to queue any signals that
4982 would otherwise be sent. In all-stop mode, we do this decision
4983 based on if *any* thread has a pending status. If there's a
4984 thread that needs the step-over-breakpoint dance, then don't
4985 resume any other thread but that particular one. */
4986 leave_pending = (lwp->suspended
4987 || lwp->status_pending_p
4988 || leave_all_stopped);
4989
4990 /* If we have a new signal, enqueue the signal. */
4991 if (lwp->resume->sig != 0)
4992 {
4993 siginfo_t info, *info_p;
4994
4995 /* If this is the same signal we were previously stopped by,
4996 make sure to queue its siginfo. */
4997 if (WIFSTOPPED (lwp->last_status)
4998 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4999 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5000 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5001 info_p = &info;
5002 else
5003 info_p = NULL;
5004
5005 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5006 }
5007
5008 if (!leave_pending)
5009 {
5010 if (debug_threads)
5011 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5012
5013 proceed_one_lwp (thread, NULL);
5014 }
5015 else
5016 {
5017 if (debug_threads)
5018 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5019 }
5020
5021 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5022 lwp->resume = NULL;
5023 return 0;
5024 }
5025
5026 static void
5027 linux_resume (struct thread_resume *resume_info, size_t n)
5028 {
5029 struct thread_info *need_step_over = NULL;
5030 int leave_all_stopped;
5031
5032 if (debug_threads)
5033 {
5034 debug_enter ();
5035 debug_printf ("linux_resume:\n");
5036 }
5037
5038 for_each_thread ([&] (thread_info *thread)
5039 {
5040 linux_set_resume_request (thread, resume_info, n);
5041 });
5042
5043 /* If there is a thread which would otherwise be resumed, which has
5044 a pending status, then don't resume any threads - we can just
5045 report the pending status. Make sure to queue any signals that
5046 would otherwise be sent. In non-stop mode, we'll apply this
5047 logic to each thread individually. We consume all pending events
5048 before considering to start a step-over (in all-stop). */
5049 bool any_pending = false;
5050 if (!non_stop)
5051 any_pending = find_thread (resume_status_pending_p) != NULL;
5052
5053 /* If there is a thread which would otherwise be resumed, which is
5054 stopped at a breakpoint that needs stepping over, then don't
5055 resume any threads - have it step over the breakpoint with all
5056 other threads stopped, then resume all threads again. Make sure
5057 to queue any signals that would otherwise be delivered or
5058 queued. */
5059 if (!any_pending && supports_breakpoints ())
5060 need_step_over = find_thread (need_step_over_p);
5061
5062 leave_all_stopped = (need_step_over != NULL || any_pending);
5063
5064 if (debug_threads)
5065 {
5066 if (need_step_over != NULL)
5067 debug_printf ("Not resuming all, need step over\n");
5068 else if (any_pending)
5069 debug_printf ("Not resuming, all-stop and found "
5070 "an LWP with pending status\n");
5071 else
5072 debug_printf ("Resuming, no pending status or step over needed\n");
5073 }
5074
5075 /* Even if we're leaving threads stopped, queue all signals we'd
5076 otherwise deliver. */
5077 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5078
5079 if (need_step_over)
5080 start_step_over (get_thread_lwp (need_step_over));
5081
5082 if (debug_threads)
5083 {
5084 debug_printf ("linux_resume done\n");
5085 debug_exit ();
5086 }
5087
5088 /* We may have events that were pending that can/should be sent to
5089 the client now. Trigger a linux_wait call. */
5090 if (target_is_async_p ())
5091 async_file_mark ();
5092 }
5093
5094 /* This function is called once per thread. We check the thread's
5095 last resume request, which will tell us whether to resume, step, or
5096 leave the thread stopped. Any signal the client requested to be
5097 delivered has already been enqueued at this point.
5098
5099 If any thread that GDB wants running is stopped at an internal
5100 breakpoint that needs stepping over, we start a step-over operation
5101 on that particular thread, and leave all others stopped. */
5102
5103 static int
5104 proceed_one_lwp (thread_info *thread, void *except)
5105 {
5106 struct lwp_info *lwp = get_thread_lwp (thread);
5107 int step;
5108
5109 if (lwp == except)
5110 return 0;
5111
5112 if (debug_threads)
5113 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5114
5115 if (!lwp->stopped)
5116 {
5117 if (debug_threads)
5118 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5119 return 0;
5120 }
5121
5122 if (thread->last_resume_kind == resume_stop
5123 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5124 {
5125 if (debug_threads)
5126 debug_printf (" client wants LWP to remain %ld stopped\n",
5127 lwpid_of (thread));
5128 return 0;
5129 }
5130
5131 if (lwp->status_pending_p)
5132 {
5133 if (debug_threads)
5134 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5135 lwpid_of (thread));
5136 return 0;
5137 }
5138
5139 gdb_assert (lwp->suspended >= 0);
5140
5141 if (lwp->suspended)
5142 {
5143 if (debug_threads)
5144 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5145 return 0;
5146 }
5147
5148 if (thread->last_resume_kind == resume_stop
5149 && lwp->pending_signals_to_report == NULL
5150 && (lwp->collecting_fast_tracepoint
5151 == fast_tpoint_collect_result::not_collecting))
5152 {
5153 /* We haven't reported this LWP as stopped yet (otherwise, the
5154 last_status.kind check above would catch it, and we wouldn't
5155 reach here. This LWP may have been momentarily paused by a
5156 stop_all_lwps call while handling for example, another LWP's
5157 step-over. In that case, the pending expected SIGSTOP signal
5158 that was queued at vCont;t handling time will have already
5159 been consumed by wait_for_sigstop, and so we need to requeue
5160 another one here. Note that if the LWP already has a SIGSTOP
5161 pending, this is a no-op. */
5162
5163 if (debug_threads)
5164 debug_printf ("Client wants LWP %ld to stop. "
5165 "Making sure it has a SIGSTOP pending\n",
5166 lwpid_of (thread));
5167
5168 send_sigstop (lwp);
5169 }
5170
5171 if (thread->last_resume_kind == resume_step)
5172 {
5173 if (debug_threads)
5174 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5175 lwpid_of (thread));
5176
5177 /* If resume_step is requested by GDB, install single-step
5178 breakpoints when the thread is about to be actually resumed if
5179 the single-step breakpoints weren't removed. */
5180 if (can_software_single_step ()
5181 && !has_single_step_breakpoints (thread))
5182 install_software_single_step_breakpoints (lwp);
5183
5184 step = maybe_hw_step (thread);
5185 }
5186 else if (lwp->bp_reinsert != 0)
5187 {
5188 if (debug_threads)
5189 debug_printf (" stepping LWP %ld, reinsert set\n",
5190 lwpid_of (thread));
5191
5192 step = maybe_hw_step (thread);
5193 }
5194 else
5195 step = 0;
5196
5197 linux_resume_one_lwp (lwp, step, 0, NULL);
5198 return 0;
5199 }
5200
5201 static int
5202 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5203 {
5204 struct lwp_info *lwp = get_thread_lwp (thread);
5205
5206 if (lwp == except)
5207 return 0;
5208
5209 lwp_suspended_decr (lwp);
5210
5211 return proceed_one_lwp (thread, except);
5212 }
5213
5214 /* When we finish a step-over, set threads running again. If there's
5215 another thread that may need a step-over, now's the time to start
5216 it. Eventually, we'll move all threads past their breakpoints. */
5217
5218 static void
5219 proceed_all_lwps (void)
5220 {
5221 struct thread_info *need_step_over;
5222
5223 /* If there is a thread which would otherwise be resumed, which is
5224 stopped at a breakpoint that needs stepping over, then don't
5225 resume any threads - have it step over the breakpoint with all
5226 other threads stopped, then resume all threads again. */
5227
5228 if (supports_breakpoints ())
5229 {
5230 need_step_over = find_thread (need_step_over_p);
5231
5232 if (need_step_over != NULL)
5233 {
5234 if (debug_threads)
5235 debug_printf ("proceed_all_lwps: found "
5236 "thread %ld needing a step-over\n",
5237 lwpid_of (need_step_over));
5238
5239 start_step_over (get_thread_lwp (need_step_over));
5240 return;
5241 }
5242 }
5243
5244 if (debug_threads)
5245 debug_printf ("Proceeding, no step-over needed\n");
5246
5247 find_inferior (&all_threads, proceed_one_lwp, NULL);
5248 }
5249
5250 /* Stopped LWPs that the client wanted to be running, that don't have
5251 pending statuses, are set to run again, except for EXCEPT, if not
5252 NULL. This undoes a stop_all_lwps call. */
5253
5254 static void
5255 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5256 {
5257 if (debug_threads)
5258 {
5259 debug_enter ();
5260 if (except)
5261 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5262 lwpid_of (get_lwp_thread (except)));
5263 else
5264 debug_printf ("unstopping all lwps\n");
5265 }
5266
5267 if (unsuspend)
5268 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5269 else
5270 find_inferior (&all_threads, proceed_one_lwp, except);
5271
5272 if (debug_threads)
5273 {
5274 debug_printf ("unstop_all_lwps done\n");
5275 debug_exit ();
5276 }
5277 }
5278
5279
5280 #ifdef HAVE_LINUX_REGSETS
5281
5282 #define use_linux_regsets 1
5283
5284 /* Returns true if REGSET has been disabled. */
5285
5286 static int
5287 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5288 {
5289 return (info->disabled_regsets != NULL
5290 && info->disabled_regsets[regset - info->regsets]);
5291 }
5292
5293 /* Disable REGSET. */
5294
5295 static void
5296 disable_regset (struct regsets_info *info, struct regset_info *regset)
5297 {
5298 int dr_offset;
5299
5300 dr_offset = regset - info->regsets;
5301 if (info->disabled_regsets == NULL)
5302 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5303 info->disabled_regsets[dr_offset] = 1;
5304 }
5305
5306 static int
5307 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5308 struct regcache *regcache)
5309 {
5310 struct regset_info *regset;
5311 int saw_general_regs = 0;
5312 int pid;
5313 struct iovec iov;
5314
5315 pid = lwpid_of (current_thread);
5316 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5317 {
5318 void *buf, *data;
5319 int nt_type, res;
5320
5321 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5322 continue;
5323
5324 buf = xmalloc (regset->size);
5325
5326 nt_type = regset->nt_type;
5327 if (nt_type)
5328 {
5329 iov.iov_base = buf;
5330 iov.iov_len = regset->size;
5331 data = (void *) &iov;
5332 }
5333 else
5334 data = buf;
5335
5336 #ifndef __sparc__
5337 res = ptrace (regset->get_request, pid,
5338 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5339 #else
5340 res = ptrace (regset->get_request, pid, data, nt_type);
5341 #endif
5342 if (res < 0)
5343 {
5344 if (errno == EIO)
5345 {
5346 /* If we get EIO on a regset, do not try it again for
5347 this process mode. */
5348 disable_regset (regsets_info, regset);
5349 }
5350 else if (errno == ENODATA)
5351 {
5352 /* ENODATA may be returned if the regset is currently
5353 not "active". This can happen in normal operation,
5354 so suppress the warning in this case. */
5355 }
5356 else if (errno == ESRCH)
5357 {
5358 /* At this point, ESRCH should mean the process is
5359 already gone, in which case we simply ignore attempts
5360 to read its registers. */
5361 }
5362 else
5363 {
5364 char s[256];
5365 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5366 pid);
5367 perror (s);
5368 }
5369 }
5370 else
5371 {
5372 if (regset->type == GENERAL_REGS)
5373 saw_general_regs = 1;
5374 regset->store_function (regcache, buf);
5375 }
5376 free (buf);
5377 }
5378 if (saw_general_regs)
5379 return 0;
5380 else
5381 return 1;
5382 }
5383
5384 static int
5385 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5386 struct regcache *regcache)
5387 {
5388 struct regset_info *regset;
5389 int saw_general_regs = 0;
5390 int pid;
5391 struct iovec iov;
5392
5393 pid = lwpid_of (current_thread);
5394 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5395 {
5396 void *buf, *data;
5397 int nt_type, res;
5398
5399 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5400 || regset->fill_function == NULL)
5401 continue;
5402
5403 buf = xmalloc (regset->size);
5404
5405 /* First fill the buffer with the current register set contents,
5406 in case there are any items in the kernel's regset that are
5407 not in gdbserver's regcache. */
5408
5409 nt_type = regset->nt_type;
5410 if (nt_type)
5411 {
5412 iov.iov_base = buf;
5413 iov.iov_len = regset->size;
5414 data = (void *) &iov;
5415 }
5416 else
5417 data = buf;
5418
5419 #ifndef __sparc__
5420 res = ptrace (regset->get_request, pid,
5421 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5422 #else
5423 res = ptrace (regset->get_request, pid, data, nt_type);
5424 #endif
5425
5426 if (res == 0)
5427 {
5428 /* Then overlay our cached registers on that. */
5429 regset->fill_function (regcache, buf);
5430
5431 /* Only now do we write the register set. */
5432 #ifndef __sparc__
5433 res = ptrace (regset->set_request, pid,
5434 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5435 #else
5436 res = ptrace (regset->set_request, pid, data, nt_type);
5437 #endif
5438 }
5439
5440 if (res < 0)
5441 {
5442 if (errno == EIO)
5443 {
5444 /* If we get EIO on a regset, do not try it again for
5445 this process mode. */
5446 disable_regset (regsets_info, regset);
5447 }
5448 else if (errno == ESRCH)
5449 {
5450 /* At this point, ESRCH should mean the process is
5451 already gone, in which case we simply ignore attempts
5452 to change its registers. See also the related
5453 comment in linux_resume_one_lwp. */
5454 free (buf);
5455 return 0;
5456 }
5457 else
5458 {
5459 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5460 }
5461 }
5462 else if (regset->type == GENERAL_REGS)
5463 saw_general_regs = 1;
5464 free (buf);
5465 }
5466 if (saw_general_regs)
5467 return 0;
5468 else
5469 return 1;
5470 }
5471
5472 #else /* !HAVE_LINUX_REGSETS */
5473
5474 #define use_linux_regsets 0
5475 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5476 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5477
5478 #endif
5479
5480 /* Return 1 if register REGNO is supported by one of the regset ptrace
5481 calls or 0 if it has to be transferred individually. */
5482
5483 static int
5484 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5485 {
5486 unsigned char mask = 1 << (regno % 8);
5487 size_t index = regno / 8;
5488
5489 return (use_linux_regsets
5490 && (regs_info->regset_bitmap == NULL
5491 || (regs_info->regset_bitmap[index] & mask) != 0));
5492 }
5493
5494 #ifdef HAVE_LINUX_USRREGS
5495
5496 static int
5497 register_addr (const struct usrregs_info *usrregs, int regnum)
5498 {
5499 int addr;
5500
5501 if (regnum < 0 || regnum >= usrregs->num_regs)
5502 error ("Invalid register number %d.", regnum);
5503
5504 addr = usrregs->regmap[regnum];
5505
5506 return addr;
5507 }
5508
5509 /* Fetch one register. */
5510 static void
5511 fetch_register (const struct usrregs_info *usrregs,
5512 struct regcache *regcache, int regno)
5513 {
5514 CORE_ADDR regaddr;
5515 int i, size;
5516 char *buf;
5517 int pid;
5518
5519 if (regno >= usrregs->num_regs)
5520 return;
5521 if ((*the_low_target.cannot_fetch_register) (regno))
5522 return;
5523
5524 regaddr = register_addr (usrregs, regno);
5525 if (regaddr == -1)
5526 return;
5527
5528 size = ((register_size (regcache->tdesc, regno)
5529 + sizeof (PTRACE_XFER_TYPE) - 1)
5530 & -sizeof (PTRACE_XFER_TYPE));
5531 buf = (char *) alloca (size);
5532
5533 pid = lwpid_of (current_thread);
5534 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5535 {
5536 errno = 0;
5537 *(PTRACE_XFER_TYPE *) (buf + i) =
5538 ptrace (PTRACE_PEEKUSER, pid,
5539 /* Coerce to a uintptr_t first to avoid potential gcc warning
5540 of coercing an 8 byte integer to a 4 byte pointer. */
5541 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5542 regaddr += sizeof (PTRACE_XFER_TYPE);
5543 if (errno != 0)
5544 error ("reading register %d: %s", regno, strerror (errno));
5545 }
5546
5547 if (the_low_target.supply_ptrace_register)
5548 the_low_target.supply_ptrace_register (regcache, regno, buf);
5549 else
5550 supply_register (regcache, regno, buf);
5551 }
5552
5553 /* Store one register. */
5554 static void
5555 store_register (const struct usrregs_info *usrregs,
5556 struct regcache *regcache, int regno)
5557 {
5558 CORE_ADDR regaddr;
5559 int i, size;
5560 char *buf;
5561 int pid;
5562
5563 if (regno >= usrregs->num_regs)
5564 return;
5565 if ((*the_low_target.cannot_store_register) (regno))
5566 return;
5567
5568 regaddr = register_addr (usrregs, regno);
5569 if (regaddr == -1)
5570 return;
5571
5572 size = ((register_size (regcache->tdesc, regno)
5573 + sizeof (PTRACE_XFER_TYPE) - 1)
5574 & -sizeof (PTRACE_XFER_TYPE));
5575 buf = (char *) alloca (size);
5576 memset (buf, 0, size);
5577
5578 if (the_low_target.collect_ptrace_register)
5579 the_low_target.collect_ptrace_register (regcache, regno, buf);
5580 else
5581 collect_register (regcache, regno, buf);
5582
5583 pid = lwpid_of (current_thread);
5584 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5585 {
5586 errno = 0;
5587 ptrace (PTRACE_POKEUSER, pid,
5588 /* Coerce to a uintptr_t first to avoid potential gcc warning
5589 about coercing an 8 byte integer to a 4 byte pointer. */
5590 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5591 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5592 if (errno != 0)
5593 {
5594 /* At this point, ESRCH should mean the process is
5595 already gone, in which case we simply ignore attempts
5596 to change its registers. See also the related
5597 comment in linux_resume_one_lwp. */
5598 if (errno == ESRCH)
5599 return;
5600
5601 if ((*the_low_target.cannot_store_register) (regno) == 0)
5602 error ("writing register %d: %s", regno, strerror (errno));
5603 }
5604 regaddr += sizeof (PTRACE_XFER_TYPE);
5605 }
5606 }
5607
5608 /* Fetch all registers, or just one, from the child process.
5609 If REGNO is -1, do this for all registers, skipping any that are
5610 assumed to have been retrieved by regsets_fetch_inferior_registers,
5611 unless ALL is non-zero.
5612 Otherwise, REGNO specifies which register (so we can save time). */
5613 static void
5614 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5615 struct regcache *regcache, int regno, int all)
5616 {
5617 struct usrregs_info *usr = regs_info->usrregs;
5618
5619 if (regno == -1)
5620 {
5621 for (regno = 0; regno < usr->num_regs; regno++)
5622 if (all || !linux_register_in_regsets (regs_info, regno))
5623 fetch_register (usr, regcache, regno);
5624 }
5625 else
5626 fetch_register (usr, regcache, regno);
5627 }
5628
5629 /* Store our register values back into the inferior.
5630 If REGNO is -1, do this for all registers, skipping any that are
5631 assumed to have been saved by regsets_store_inferior_registers,
5632 unless ALL is non-zero.
5633 Otherwise, REGNO specifies which register (so we can save time). */
5634 static void
5635 usr_store_inferior_registers (const struct regs_info *regs_info,
5636 struct regcache *regcache, int regno, int all)
5637 {
5638 struct usrregs_info *usr = regs_info->usrregs;
5639
5640 if (regno == -1)
5641 {
5642 for (regno = 0; regno < usr->num_regs; regno++)
5643 if (all || !linux_register_in_regsets (regs_info, regno))
5644 store_register (usr, regcache, regno);
5645 }
5646 else
5647 store_register (usr, regcache, regno);
5648 }
5649
5650 #else /* !HAVE_LINUX_USRREGS */
5651
5652 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5653 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5654
5655 #endif
5656
5657
5658 static void
5659 linux_fetch_registers (struct regcache *regcache, int regno)
5660 {
5661 int use_regsets;
5662 int all = 0;
5663 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5664
5665 if (regno == -1)
5666 {
5667 if (the_low_target.fetch_register != NULL
5668 && regs_info->usrregs != NULL)
5669 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5670 (*the_low_target.fetch_register) (regcache, regno);
5671
5672 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5673 if (regs_info->usrregs != NULL)
5674 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5675 }
5676 else
5677 {
5678 if (the_low_target.fetch_register != NULL
5679 && (*the_low_target.fetch_register) (regcache, regno))
5680 return;
5681
5682 use_regsets = linux_register_in_regsets (regs_info, regno);
5683 if (use_regsets)
5684 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5685 regcache);
5686 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5687 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5688 }
5689 }
5690
5691 static void
5692 linux_store_registers (struct regcache *regcache, int regno)
5693 {
5694 int use_regsets;
5695 int all = 0;
5696 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5697
5698 if (regno == -1)
5699 {
5700 all = regsets_store_inferior_registers (regs_info->regsets_info,
5701 regcache);
5702 if (regs_info->usrregs != NULL)
5703 usr_store_inferior_registers (regs_info, regcache, regno, all);
5704 }
5705 else
5706 {
5707 use_regsets = linux_register_in_regsets (regs_info, regno);
5708 if (use_regsets)
5709 all = regsets_store_inferior_registers (regs_info->regsets_info,
5710 regcache);
5711 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5712 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5713 }
5714 }
5715
5716
5717 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5718 to debugger memory starting at MYADDR. */
5719
5720 static int
5721 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5722 {
5723 int pid = lwpid_of (current_thread);
5724 PTRACE_XFER_TYPE *buffer;
5725 CORE_ADDR addr;
5726 int count;
5727 char filename[64];
5728 int i;
5729 int ret;
5730 int fd;
5731
5732 /* Try using /proc. Don't bother for one word. */
5733 if (len >= 3 * sizeof (long))
5734 {
5735 int bytes;
5736
5737 /* We could keep this file open and cache it - possibly one per
5738 thread. That requires some juggling, but is even faster. */
5739 sprintf (filename, "/proc/%d/mem", pid);
5740 fd = open (filename, O_RDONLY | O_LARGEFILE);
5741 if (fd == -1)
5742 goto no_proc;
5743
5744 /* If pread64 is available, use it. It's faster if the kernel
5745 supports it (only one syscall), and it's 64-bit safe even on
5746 32-bit platforms (for instance, SPARC debugging a SPARC64
5747 application). */
5748 #ifdef HAVE_PREAD64
5749 bytes = pread64 (fd, myaddr, len, memaddr);
5750 #else
5751 bytes = -1;
5752 if (lseek (fd, memaddr, SEEK_SET) != -1)
5753 bytes = read (fd, myaddr, len);
5754 #endif
5755
5756 close (fd);
5757 if (bytes == len)
5758 return 0;
5759
5760 /* Some data was read, we'll try to get the rest with ptrace. */
5761 if (bytes > 0)
5762 {
5763 memaddr += bytes;
5764 myaddr += bytes;
5765 len -= bytes;
5766 }
5767 }
5768
5769 no_proc:
5770 /* Round starting address down to longword boundary. */
5771 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5772 /* Round ending address up; get number of longwords that makes. */
5773 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5774 / sizeof (PTRACE_XFER_TYPE));
5775 /* Allocate buffer of that many longwords. */
5776 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5777
5778 /* Read all the longwords */
5779 errno = 0;
5780 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5781 {
5782 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5783 about coercing an 8 byte integer to a 4 byte pointer. */
5784 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5785 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5786 (PTRACE_TYPE_ARG4) 0);
5787 if (errno)
5788 break;
5789 }
5790 ret = errno;
5791
5792 /* Copy appropriate bytes out of the buffer. */
5793 if (i > 0)
5794 {
5795 i *= sizeof (PTRACE_XFER_TYPE);
5796 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5797 memcpy (myaddr,
5798 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5799 i < len ? i : len);
5800 }
5801
5802 return ret;
5803 }
5804
5805 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5806 memory at MEMADDR. On failure (cannot write to the inferior)
5807 returns the value of errno. Always succeeds if LEN is zero. */
5808
5809 static int
5810 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5811 {
5812 int i;
5813 /* Round starting address down to longword boundary. */
5814 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5815 /* Round ending address up; get number of longwords that makes. */
5816 int count
5817 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5818 / sizeof (PTRACE_XFER_TYPE);
5819
5820 /* Allocate buffer of that many longwords. */
5821 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5822
5823 int pid = lwpid_of (current_thread);
5824
5825 if (len == 0)
5826 {
5827 /* Zero length write always succeeds. */
5828 return 0;
5829 }
5830
5831 if (debug_threads)
5832 {
5833 /* Dump up to four bytes. */
5834 char str[4 * 2 + 1];
5835 char *p = str;
5836 int dump = len < 4 ? len : 4;
5837
5838 for (i = 0; i < dump; i++)
5839 {
5840 sprintf (p, "%02x", myaddr[i]);
5841 p += 2;
5842 }
5843 *p = '\0';
5844
5845 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5846 str, (long) memaddr, pid);
5847 }
5848
5849 /* Fill start and end extra bytes of buffer with existing memory data. */
5850
5851 errno = 0;
5852 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5853 about coercing an 8 byte integer to a 4 byte pointer. */
5854 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5855 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5856 (PTRACE_TYPE_ARG4) 0);
5857 if (errno)
5858 return errno;
5859
5860 if (count > 1)
5861 {
5862 errno = 0;
5863 buffer[count - 1]
5864 = ptrace (PTRACE_PEEKTEXT, pid,
5865 /* Coerce to a uintptr_t first to avoid potential gcc warning
5866 about coercing an 8 byte integer to a 4 byte pointer. */
5867 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5868 * sizeof (PTRACE_XFER_TYPE)),
5869 (PTRACE_TYPE_ARG4) 0);
5870 if (errno)
5871 return errno;
5872 }
5873
5874 /* Copy data to be written over corresponding part of buffer. */
5875
5876 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5877 myaddr, len);
5878
5879 /* Write the entire buffer. */
5880
5881 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5882 {
5883 errno = 0;
5884 ptrace (PTRACE_POKETEXT, pid,
5885 /* Coerce to a uintptr_t first to avoid potential gcc warning
5886 about coercing an 8 byte integer to a 4 byte pointer. */
5887 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5888 (PTRACE_TYPE_ARG4) buffer[i]);
5889 if (errno)
5890 return errno;
5891 }
5892
5893 return 0;
5894 }
5895
5896 static void
5897 linux_look_up_symbols (void)
5898 {
5899 #ifdef USE_THREAD_DB
5900 struct process_info *proc = current_process ();
5901
5902 if (proc->priv->thread_db != NULL)
5903 return;
5904
5905 thread_db_init ();
5906 #endif
5907 }
5908
5909 static void
5910 linux_request_interrupt (void)
5911 {
5912 /* Send a SIGINT to the process group. This acts just like the user
5913 typed a ^C on the controlling terminal. */
5914 kill (-signal_pid, SIGINT);
5915 }
5916
5917 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5918 to debugger memory starting at MYADDR. */
5919
5920 static int
5921 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5922 {
5923 char filename[PATH_MAX];
5924 int fd, n;
5925 int pid = lwpid_of (current_thread);
5926
5927 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5928
5929 fd = open (filename, O_RDONLY);
5930 if (fd < 0)
5931 return -1;
5932
5933 if (offset != (CORE_ADDR) 0
5934 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5935 n = -1;
5936 else
5937 n = read (fd, myaddr, len);
5938
5939 close (fd);
5940
5941 return n;
5942 }
5943
5944 /* These breakpoint and watchpoint related wrapper functions simply
5945 pass on the function call if the target has registered a
5946 corresponding function. */
5947
5948 static int
5949 linux_supports_z_point_type (char z_type)
5950 {
5951 return (the_low_target.supports_z_point_type != NULL
5952 && the_low_target.supports_z_point_type (z_type));
5953 }
5954
5955 static int
5956 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5957 int size, struct raw_breakpoint *bp)
5958 {
5959 if (type == raw_bkpt_type_sw)
5960 return insert_memory_breakpoint (bp);
5961 else if (the_low_target.insert_point != NULL)
5962 return the_low_target.insert_point (type, addr, size, bp);
5963 else
5964 /* Unsupported (see target.h). */
5965 return 1;
5966 }
5967
5968 static int
5969 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5970 int size, struct raw_breakpoint *bp)
5971 {
5972 if (type == raw_bkpt_type_sw)
5973 return remove_memory_breakpoint (bp);
5974 else if (the_low_target.remove_point != NULL)
5975 return the_low_target.remove_point (type, addr, size, bp);
5976 else
5977 /* Unsupported (see target.h). */
5978 return 1;
5979 }
5980
5981 /* Implement the to_stopped_by_sw_breakpoint target_ops
5982 method. */
5983
5984 static int
5985 linux_stopped_by_sw_breakpoint (void)
5986 {
5987 struct lwp_info *lwp = get_thread_lwp (current_thread);
5988
5989 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5990 }
5991
5992 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5993 method. */
5994
5995 static int
5996 linux_supports_stopped_by_sw_breakpoint (void)
5997 {
5998 return USE_SIGTRAP_SIGINFO;
5999 }
6000
6001 /* Implement the to_stopped_by_hw_breakpoint target_ops
6002 method. */
6003
6004 static int
6005 linux_stopped_by_hw_breakpoint (void)
6006 {
6007 struct lwp_info *lwp = get_thread_lwp (current_thread);
6008
6009 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6010 }
6011
6012 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6013 method. */
6014
6015 static int
6016 linux_supports_stopped_by_hw_breakpoint (void)
6017 {
6018 return USE_SIGTRAP_SIGINFO;
6019 }
6020
6021 /* Implement the supports_hardware_single_step target_ops method. */
6022
6023 static int
6024 linux_supports_hardware_single_step (void)
6025 {
6026 return can_hardware_single_step ();
6027 }
6028
6029 static int
6030 linux_supports_software_single_step (void)
6031 {
6032 return can_software_single_step ();
6033 }
6034
6035 static int
6036 linux_stopped_by_watchpoint (void)
6037 {
6038 struct lwp_info *lwp = get_thread_lwp (current_thread);
6039
6040 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6041 }
6042
6043 static CORE_ADDR
6044 linux_stopped_data_address (void)
6045 {
6046 struct lwp_info *lwp = get_thread_lwp (current_thread);
6047
6048 return lwp->stopped_data_address;
6049 }
6050
6051 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6052 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6053 && defined(PT_TEXT_END_ADDR)
6054
6055 /* This is only used for targets that define PT_TEXT_ADDR,
6056 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6057 the target has different ways of acquiring this information, like
6058 loadmaps. */
6059
6060 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6061 to tell gdb about. */
6062
6063 static int
6064 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6065 {
6066 unsigned long text, text_end, data;
6067 int pid = lwpid_of (current_thread);
6068
6069 errno = 0;
6070
6071 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6072 (PTRACE_TYPE_ARG4) 0);
6073 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6074 (PTRACE_TYPE_ARG4) 0);
6075 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6076 (PTRACE_TYPE_ARG4) 0);
6077
6078 if (errno == 0)
6079 {
6080 /* Both text and data offsets produced at compile-time (and so
6081 used by gdb) are relative to the beginning of the program,
6082 with the data segment immediately following the text segment.
6083 However, the actual runtime layout in memory may put the data
6084 somewhere else, so when we send gdb a data base-address, we
6085 use the real data base address and subtract the compile-time
6086 data base-address from it (which is just the length of the
6087 text segment). BSS immediately follows data in both
6088 cases. */
6089 *text_p = text;
6090 *data_p = data - (text_end - text);
6091
6092 return 1;
6093 }
6094 return 0;
6095 }
6096 #endif
6097
6098 static int
6099 linux_qxfer_osdata (const char *annex,
6100 unsigned char *readbuf, unsigned const char *writebuf,
6101 CORE_ADDR offset, int len)
6102 {
6103 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6104 }
6105
6106 /* Convert a native/host siginfo object, into/from the siginfo in the
6107 layout of the inferiors' architecture. */
6108
6109 static void
6110 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6111 {
6112 int done = 0;
6113
6114 if (the_low_target.siginfo_fixup != NULL)
6115 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6116
6117 /* If there was no callback, or the callback didn't do anything,
6118 then just do a straight memcpy. */
6119 if (!done)
6120 {
6121 if (direction == 1)
6122 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6123 else
6124 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6125 }
6126 }
6127
6128 static int
6129 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6130 unsigned const char *writebuf, CORE_ADDR offset, int len)
6131 {
6132 int pid;
6133 siginfo_t siginfo;
6134 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6135
6136 if (current_thread == NULL)
6137 return -1;
6138
6139 pid = lwpid_of (current_thread);
6140
6141 if (debug_threads)
6142 debug_printf ("%s siginfo for lwp %d.\n",
6143 readbuf != NULL ? "Reading" : "Writing",
6144 pid);
6145
6146 if (offset >= sizeof (siginfo))
6147 return -1;
6148
6149 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6150 return -1;
6151
6152 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6153 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6154 inferior with a 64-bit GDBSERVER should look the same as debugging it
6155 with a 32-bit GDBSERVER, we need to convert it. */
6156 siginfo_fixup (&siginfo, inf_siginfo, 0);
6157
6158 if (offset + len > sizeof (siginfo))
6159 len = sizeof (siginfo) - offset;
6160
6161 if (readbuf != NULL)
6162 memcpy (readbuf, inf_siginfo + offset, len);
6163 else
6164 {
6165 memcpy (inf_siginfo + offset, writebuf, len);
6166
6167 /* Convert back to ptrace layout before flushing it out. */
6168 siginfo_fixup (&siginfo, inf_siginfo, 1);
6169
6170 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6171 return -1;
6172 }
6173
6174 return len;
6175 }
6176
6177 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6178 so we notice when children change state; as the handler for the
6179 sigsuspend in my_waitpid. */
6180
6181 static void
6182 sigchld_handler (int signo)
6183 {
6184 int old_errno = errno;
6185
6186 if (debug_threads)
6187 {
6188 do
6189 {
6190 /* fprintf is not async-signal-safe, so call write
6191 directly. */
6192 if (write (2, "sigchld_handler\n",
6193 sizeof ("sigchld_handler\n") - 1) < 0)
6194 break; /* just ignore */
6195 } while (0);
6196 }
6197
6198 if (target_is_async_p ())
6199 async_file_mark (); /* trigger a linux_wait */
6200
6201 errno = old_errno;
6202 }
6203
6204 static int
6205 linux_supports_non_stop (void)
6206 {
6207 return 1;
6208 }
6209
6210 static int
6211 linux_async (int enable)
6212 {
6213 int previous = target_is_async_p ();
6214
6215 if (debug_threads)
6216 debug_printf ("linux_async (%d), previous=%d\n",
6217 enable, previous);
6218
6219 if (previous != enable)
6220 {
6221 sigset_t mask;
6222 sigemptyset (&mask);
6223 sigaddset (&mask, SIGCHLD);
6224
6225 sigprocmask (SIG_BLOCK, &mask, NULL);
6226
6227 if (enable)
6228 {
6229 if (pipe (linux_event_pipe) == -1)
6230 {
6231 linux_event_pipe[0] = -1;
6232 linux_event_pipe[1] = -1;
6233 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6234
6235 warning ("creating event pipe failed.");
6236 return previous;
6237 }
6238
6239 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6240 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6241
6242 /* Register the event loop handler. */
6243 add_file_handler (linux_event_pipe[0],
6244 handle_target_event, NULL);
6245
6246 /* Always trigger a linux_wait. */
6247 async_file_mark ();
6248 }
6249 else
6250 {
6251 delete_file_handler (linux_event_pipe[0]);
6252
6253 close (linux_event_pipe[0]);
6254 close (linux_event_pipe[1]);
6255 linux_event_pipe[0] = -1;
6256 linux_event_pipe[1] = -1;
6257 }
6258
6259 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6260 }
6261
6262 return previous;
6263 }
6264
6265 static int
6266 linux_start_non_stop (int nonstop)
6267 {
6268 /* Register or unregister from event-loop accordingly. */
6269 linux_async (nonstop);
6270
6271 if (target_is_async_p () != (nonstop != 0))
6272 return -1;
6273
6274 return 0;
6275 }
6276
6277 static int
6278 linux_supports_multi_process (void)
6279 {
6280 return 1;
6281 }
6282
6283 /* Check if fork events are supported. */
6284
6285 static int
6286 linux_supports_fork_events (void)
6287 {
6288 return linux_supports_tracefork ();
6289 }
6290
6291 /* Check if vfork events are supported. */
6292
6293 static int
6294 linux_supports_vfork_events (void)
6295 {
6296 return linux_supports_tracefork ();
6297 }
6298
6299 /* Check if exec events are supported. */
6300
6301 static int
6302 linux_supports_exec_events (void)
6303 {
6304 return linux_supports_traceexec ();
6305 }
6306
6307 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6308 ptrace flags for all inferiors. This is in case the new GDB connection
6309 doesn't support the same set of events that the previous one did. */
6310
6311 static void
6312 linux_handle_new_gdb_connection (void)
6313 {
6314 /* Request that all the lwps reset their ptrace options. */
6315 for_each_thread ([] (thread_info *thread)
6316 {
6317 struct lwp_info *lwp = get_thread_lwp (thread);
6318
6319 if (!lwp->stopped)
6320 {
6321 /* Stop the lwp so we can modify its ptrace options. */
6322 lwp->must_set_ptrace_flags = 1;
6323 linux_stop_lwp (lwp);
6324 }
6325 else
6326 {
6327 /* Already stopped; go ahead and set the ptrace options. */
6328 struct process_info *proc = find_process_pid (pid_of (thread));
6329 int options = linux_low_ptrace_options (proc->attached);
6330
6331 linux_enable_event_reporting (lwpid_of (thread), options);
6332 lwp->must_set_ptrace_flags = 0;
6333 }
6334 });
6335 }
6336
6337 static int
6338 linux_supports_disable_randomization (void)
6339 {
6340 #ifdef HAVE_PERSONALITY
6341 return 1;
6342 #else
6343 return 0;
6344 #endif
6345 }
6346
6347 static int
6348 linux_supports_agent (void)
6349 {
6350 return 1;
6351 }
6352
6353 static int
6354 linux_supports_range_stepping (void)
6355 {
6356 if (can_software_single_step ())
6357 return 1;
6358 if (*the_low_target.supports_range_stepping == NULL)
6359 return 0;
6360
6361 return (*the_low_target.supports_range_stepping) ();
6362 }
6363
6364 /* Enumerate spufs IDs for process PID. */
6365 static int
6366 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6367 {
6368 int pos = 0;
6369 int written = 0;
6370 char path[128];
6371 DIR *dir;
6372 struct dirent *entry;
6373
6374 sprintf (path, "/proc/%ld/fd", pid);
6375 dir = opendir (path);
6376 if (!dir)
6377 return -1;
6378
6379 rewinddir (dir);
6380 while ((entry = readdir (dir)) != NULL)
6381 {
6382 struct stat st;
6383 struct statfs stfs;
6384 int fd;
6385
6386 fd = atoi (entry->d_name);
6387 if (!fd)
6388 continue;
6389
6390 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6391 if (stat (path, &st) != 0)
6392 continue;
6393 if (!S_ISDIR (st.st_mode))
6394 continue;
6395
6396 if (statfs (path, &stfs) != 0)
6397 continue;
6398 if (stfs.f_type != SPUFS_MAGIC)
6399 continue;
6400
6401 if (pos >= offset && pos + 4 <= offset + len)
6402 {
6403 *(unsigned int *)(buf + pos - offset) = fd;
6404 written += 4;
6405 }
6406 pos += 4;
6407 }
6408
6409 closedir (dir);
6410 return written;
6411 }
6412
6413 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6414 object type, using the /proc file system. */
6415 static int
6416 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6417 unsigned const char *writebuf,
6418 CORE_ADDR offset, int len)
6419 {
6420 long pid = lwpid_of (current_thread);
6421 char buf[128];
6422 int fd = 0;
6423 int ret = 0;
6424
6425 if (!writebuf && !readbuf)
6426 return -1;
6427
6428 if (!*annex)
6429 {
6430 if (!readbuf)
6431 return -1;
6432 else
6433 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6434 }
6435
6436 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6437 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6438 if (fd <= 0)
6439 return -1;
6440
6441 if (offset != 0
6442 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6443 {
6444 close (fd);
6445 return 0;
6446 }
6447
6448 if (writebuf)
6449 ret = write (fd, writebuf, (size_t) len);
6450 else
6451 ret = read (fd, readbuf, (size_t) len);
6452
6453 close (fd);
6454 return ret;
6455 }
6456
6457 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6458 struct target_loadseg
6459 {
6460 /* Core address to which the segment is mapped. */
6461 Elf32_Addr addr;
6462 /* VMA recorded in the program header. */
6463 Elf32_Addr p_vaddr;
6464 /* Size of this segment in memory. */
6465 Elf32_Word p_memsz;
6466 };
6467
6468 # if defined PT_GETDSBT
6469 struct target_loadmap
6470 {
6471 /* Protocol version number, must be zero. */
6472 Elf32_Word version;
6473 /* Pointer to the DSBT table, its size, and the DSBT index. */
6474 unsigned *dsbt_table;
6475 unsigned dsbt_size, dsbt_index;
6476 /* Number of segments in this map. */
6477 Elf32_Word nsegs;
6478 /* The actual memory map. */
6479 struct target_loadseg segs[/*nsegs*/];
6480 };
6481 # define LINUX_LOADMAP PT_GETDSBT
6482 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6483 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6484 # else
6485 struct target_loadmap
6486 {
6487 /* Protocol version number, must be zero. */
6488 Elf32_Half version;
6489 /* Number of segments in this map. */
6490 Elf32_Half nsegs;
6491 /* The actual memory map. */
6492 struct target_loadseg segs[/*nsegs*/];
6493 };
6494 # define LINUX_LOADMAP PTRACE_GETFDPIC
6495 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6496 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6497 # endif
6498
6499 static int
6500 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6501 unsigned char *myaddr, unsigned int len)
6502 {
6503 int pid = lwpid_of (current_thread);
6504 int addr = -1;
6505 struct target_loadmap *data = NULL;
6506 unsigned int actual_length, copy_length;
6507
6508 if (strcmp (annex, "exec") == 0)
6509 addr = (int) LINUX_LOADMAP_EXEC;
6510 else if (strcmp (annex, "interp") == 0)
6511 addr = (int) LINUX_LOADMAP_INTERP;
6512 else
6513 return -1;
6514
6515 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6516 return -1;
6517
6518 if (data == NULL)
6519 return -1;
6520
6521 actual_length = sizeof (struct target_loadmap)
6522 + sizeof (struct target_loadseg) * data->nsegs;
6523
6524 if (offset < 0 || offset > actual_length)
6525 return -1;
6526
6527 copy_length = actual_length - offset < len ? actual_length - offset : len;
6528 memcpy (myaddr, (char *) data + offset, copy_length);
6529 return copy_length;
6530 }
6531 #else
6532 # define linux_read_loadmap NULL
6533 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6534
6535 static void
6536 linux_process_qsupported (char **features, int count)
6537 {
6538 if (the_low_target.process_qsupported != NULL)
6539 the_low_target.process_qsupported (features, count);
6540 }
6541
6542 static int
6543 linux_supports_catch_syscall (void)
6544 {
6545 return (the_low_target.get_syscall_trapinfo != NULL
6546 && linux_supports_tracesysgood ());
6547 }
6548
6549 static int
6550 linux_get_ipa_tdesc_idx (void)
6551 {
6552 if (the_low_target.get_ipa_tdesc_idx == NULL)
6553 return 0;
6554
6555 return (*the_low_target.get_ipa_tdesc_idx) ();
6556 }
6557
6558 static int
6559 linux_supports_tracepoints (void)
6560 {
6561 if (*the_low_target.supports_tracepoints == NULL)
6562 return 0;
6563
6564 return (*the_low_target.supports_tracepoints) ();
6565 }
6566
6567 static CORE_ADDR
6568 linux_read_pc (struct regcache *regcache)
6569 {
6570 if (the_low_target.get_pc == NULL)
6571 return 0;
6572
6573 return (*the_low_target.get_pc) (regcache);
6574 }
6575
6576 static void
6577 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6578 {
6579 gdb_assert (the_low_target.set_pc != NULL);
6580
6581 (*the_low_target.set_pc) (regcache, pc);
6582 }
6583
6584 static int
6585 linux_thread_stopped (struct thread_info *thread)
6586 {
6587 return get_thread_lwp (thread)->stopped;
6588 }
6589
6590 /* This exposes stop-all-threads functionality to other modules. */
6591
6592 static void
6593 linux_pause_all (int freeze)
6594 {
6595 stop_all_lwps (freeze, NULL);
6596 }
6597
6598 /* This exposes unstop-all-threads functionality to other gdbserver
6599 modules. */
6600
6601 static void
6602 linux_unpause_all (int unfreeze)
6603 {
6604 unstop_all_lwps (unfreeze, NULL);
6605 }
6606
6607 static int
6608 linux_prepare_to_access_memory (void)
6609 {
6610 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6611 running LWP. */
6612 if (non_stop)
6613 linux_pause_all (1);
6614 return 0;
6615 }
6616
6617 static void
6618 linux_done_accessing_memory (void)
6619 {
6620 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6621 running LWP. */
6622 if (non_stop)
6623 linux_unpause_all (1);
6624 }
6625
6626 static int
6627 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6628 CORE_ADDR collector,
6629 CORE_ADDR lockaddr,
6630 ULONGEST orig_size,
6631 CORE_ADDR *jump_entry,
6632 CORE_ADDR *trampoline,
6633 ULONGEST *trampoline_size,
6634 unsigned char *jjump_pad_insn,
6635 ULONGEST *jjump_pad_insn_size,
6636 CORE_ADDR *adjusted_insn_addr,
6637 CORE_ADDR *adjusted_insn_addr_end,
6638 char *err)
6639 {
6640 return (*the_low_target.install_fast_tracepoint_jump_pad)
6641 (tpoint, tpaddr, collector, lockaddr, orig_size,
6642 jump_entry, trampoline, trampoline_size,
6643 jjump_pad_insn, jjump_pad_insn_size,
6644 adjusted_insn_addr, adjusted_insn_addr_end,
6645 err);
6646 }
6647
6648 static struct emit_ops *
6649 linux_emit_ops (void)
6650 {
6651 if (the_low_target.emit_ops != NULL)
6652 return (*the_low_target.emit_ops) ();
6653 else
6654 return NULL;
6655 }
6656
6657 static int
6658 linux_get_min_fast_tracepoint_insn_len (void)
6659 {
6660 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6661 }
6662
6663 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6664
6665 static int
6666 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6667 CORE_ADDR *phdr_memaddr, int *num_phdr)
6668 {
6669 char filename[PATH_MAX];
6670 int fd;
6671 const int auxv_size = is_elf64
6672 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6673 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6674
6675 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6676
6677 fd = open (filename, O_RDONLY);
6678 if (fd < 0)
6679 return 1;
6680
6681 *phdr_memaddr = 0;
6682 *num_phdr = 0;
6683 while (read (fd, buf, auxv_size) == auxv_size
6684 && (*phdr_memaddr == 0 || *num_phdr == 0))
6685 {
6686 if (is_elf64)
6687 {
6688 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6689
6690 switch (aux->a_type)
6691 {
6692 case AT_PHDR:
6693 *phdr_memaddr = aux->a_un.a_val;
6694 break;
6695 case AT_PHNUM:
6696 *num_phdr = aux->a_un.a_val;
6697 break;
6698 }
6699 }
6700 else
6701 {
6702 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6703
6704 switch (aux->a_type)
6705 {
6706 case AT_PHDR:
6707 *phdr_memaddr = aux->a_un.a_val;
6708 break;
6709 case AT_PHNUM:
6710 *num_phdr = aux->a_un.a_val;
6711 break;
6712 }
6713 }
6714 }
6715
6716 close (fd);
6717
6718 if (*phdr_memaddr == 0 || *num_phdr == 0)
6719 {
6720 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6721 "phdr_memaddr = %ld, phdr_num = %d",
6722 (long) *phdr_memaddr, *num_phdr);
6723 return 2;
6724 }
6725
6726 return 0;
6727 }
6728
6729 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6730
6731 static CORE_ADDR
6732 get_dynamic (const int pid, const int is_elf64)
6733 {
6734 CORE_ADDR phdr_memaddr, relocation;
6735 int num_phdr, i;
6736 unsigned char *phdr_buf;
6737 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6738
6739 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6740 return 0;
6741
6742 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6743 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6744
6745 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6746 return 0;
6747
6748 /* Compute relocation: it is expected to be 0 for "regular" executables,
6749 non-zero for PIE ones. */
6750 relocation = -1;
6751 for (i = 0; relocation == -1 && i < num_phdr; i++)
6752 if (is_elf64)
6753 {
6754 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6755
6756 if (p->p_type == PT_PHDR)
6757 relocation = phdr_memaddr - p->p_vaddr;
6758 }
6759 else
6760 {
6761 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6762
6763 if (p->p_type == PT_PHDR)
6764 relocation = phdr_memaddr - p->p_vaddr;
6765 }
6766
6767 if (relocation == -1)
6768 {
6769 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6770 any real world executables, including PIE executables, have always
6771 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6772 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6773 or present DT_DEBUG anyway (fpc binaries are statically linked).
6774
6775 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6776
6777 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6778
6779 return 0;
6780 }
6781
6782 for (i = 0; i < num_phdr; i++)
6783 {
6784 if (is_elf64)
6785 {
6786 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6787
6788 if (p->p_type == PT_DYNAMIC)
6789 return p->p_vaddr + relocation;
6790 }
6791 else
6792 {
6793 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6794
6795 if (p->p_type == PT_DYNAMIC)
6796 return p->p_vaddr + relocation;
6797 }
6798 }
6799
6800 return 0;
6801 }
6802
6803 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6804 can be 0 if the inferior does not yet have the library list initialized.
6805 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6806 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6807
6808 static CORE_ADDR
6809 get_r_debug (const int pid, const int is_elf64)
6810 {
6811 CORE_ADDR dynamic_memaddr;
6812 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6813 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6814 CORE_ADDR map = -1;
6815
6816 dynamic_memaddr = get_dynamic (pid, is_elf64);
6817 if (dynamic_memaddr == 0)
6818 return map;
6819
6820 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6821 {
6822 if (is_elf64)
6823 {
6824 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6825 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6826 union
6827 {
6828 Elf64_Xword map;
6829 unsigned char buf[sizeof (Elf64_Xword)];
6830 }
6831 rld_map;
6832 #endif
6833 #ifdef DT_MIPS_RLD_MAP
6834 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6835 {
6836 if (linux_read_memory (dyn->d_un.d_val,
6837 rld_map.buf, sizeof (rld_map.buf)) == 0)
6838 return rld_map.map;
6839 else
6840 break;
6841 }
6842 #endif /* DT_MIPS_RLD_MAP */
6843 #ifdef DT_MIPS_RLD_MAP_REL
6844 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6845 {
6846 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6847 rld_map.buf, sizeof (rld_map.buf)) == 0)
6848 return rld_map.map;
6849 else
6850 break;
6851 }
6852 #endif /* DT_MIPS_RLD_MAP_REL */
6853
6854 if (dyn->d_tag == DT_DEBUG && map == -1)
6855 map = dyn->d_un.d_val;
6856
6857 if (dyn->d_tag == DT_NULL)
6858 break;
6859 }
6860 else
6861 {
6862 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6863 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6864 union
6865 {
6866 Elf32_Word map;
6867 unsigned char buf[sizeof (Elf32_Word)];
6868 }
6869 rld_map;
6870 #endif
6871 #ifdef DT_MIPS_RLD_MAP
6872 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6873 {
6874 if (linux_read_memory (dyn->d_un.d_val,
6875 rld_map.buf, sizeof (rld_map.buf)) == 0)
6876 return rld_map.map;
6877 else
6878 break;
6879 }
6880 #endif /* DT_MIPS_RLD_MAP */
6881 #ifdef DT_MIPS_RLD_MAP_REL
6882 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6883 {
6884 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6885 rld_map.buf, sizeof (rld_map.buf)) == 0)
6886 return rld_map.map;
6887 else
6888 break;
6889 }
6890 #endif /* DT_MIPS_RLD_MAP_REL */
6891
6892 if (dyn->d_tag == DT_DEBUG && map == -1)
6893 map = dyn->d_un.d_val;
6894
6895 if (dyn->d_tag == DT_NULL)
6896 break;
6897 }
6898
6899 dynamic_memaddr += dyn_size;
6900 }
6901
6902 return map;
6903 }
6904
6905 /* Read one pointer from MEMADDR in the inferior. */
6906
6907 static int
6908 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6909 {
6910 int ret;
6911
6912 /* Go through a union so this works on either big or little endian
6913 hosts, when the inferior's pointer size is smaller than the size
6914 of CORE_ADDR. It is assumed the inferior's endianness is the
6915 same of the superior's. */
6916 union
6917 {
6918 CORE_ADDR core_addr;
6919 unsigned int ui;
6920 unsigned char uc;
6921 } addr;
6922
6923 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6924 if (ret == 0)
6925 {
6926 if (ptr_size == sizeof (CORE_ADDR))
6927 *ptr = addr.core_addr;
6928 else if (ptr_size == sizeof (unsigned int))
6929 *ptr = addr.ui;
6930 else
6931 gdb_assert_not_reached ("unhandled pointer size");
6932 }
6933 return ret;
6934 }
6935
6936 struct link_map_offsets
6937 {
6938 /* Offset and size of r_debug.r_version. */
6939 int r_version_offset;
6940
6941 /* Offset and size of r_debug.r_map. */
6942 int r_map_offset;
6943
6944 /* Offset to l_addr field in struct link_map. */
6945 int l_addr_offset;
6946
6947 /* Offset to l_name field in struct link_map. */
6948 int l_name_offset;
6949
6950 /* Offset to l_ld field in struct link_map. */
6951 int l_ld_offset;
6952
6953 /* Offset to l_next field in struct link_map. */
6954 int l_next_offset;
6955
6956 /* Offset to l_prev field in struct link_map. */
6957 int l_prev_offset;
6958 };
6959
6960 /* Construct qXfer:libraries-svr4:read reply. */
6961
6962 static int
6963 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6964 unsigned const char *writebuf,
6965 CORE_ADDR offset, int len)
6966 {
6967 char *document;
6968 unsigned document_len;
6969 struct process_info_private *const priv = current_process ()->priv;
6970 char filename[PATH_MAX];
6971 int pid, is_elf64;
6972
6973 static const struct link_map_offsets lmo_32bit_offsets =
6974 {
6975 0, /* r_version offset. */
6976 4, /* r_debug.r_map offset. */
6977 0, /* l_addr offset in link_map. */
6978 4, /* l_name offset in link_map. */
6979 8, /* l_ld offset in link_map. */
6980 12, /* l_next offset in link_map. */
6981 16 /* l_prev offset in link_map. */
6982 };
6983
6984 static const struct link_map_offsets lmo_64bit_offsets =
6985 {
6986 0, /* r_version offset. */
6987 8, /* r_debug.r_map offset. */
6988 0, /* l_addr offset in link_map. */
6989 8, /* l_name offset in link_map. */
6990 16, /* l_ld offset in link_map. */
6991 24, /* l_next offset in link_map. */
6992 32 /* l_prev offset in link_map. */
6993 };
6994 const struct link_map_offsets *lmo;
6995 unsigned int machine;
6996 int ptr_size;
6997 CORE_ADDR lm_addr = 0, lm_prev = 0;
6998 int allocated = 1024;
6999 char *p;
7000 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7001 int header_done = 0;
7002
7003 if (writebuf != NULL)
7004 return -2;
7005 if (readbuf == NULL)
7006 return -1;
7007
7008 pid = lwpid_of (current_thread);
7009 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7010 is_elf64 = elf_64_file_p (filename, &machine);
7011 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7012 ptr_size = is_elf64 ? 8 : 4;
7013
7014 while (annex[0] != '\0')
7015 {
7016 const char *sep;
7017 CORE_ADDR *addrp;
7018 int len;
7019
7020 sep = strchr (annex, '=');
7021 if (sep == NULL)
7022 break;
7023
7024 len = sep - annex;
7025 if (len == 5 && startswith (annex, "start"))
7026 addrp = &lm_addr;
7027 else if (len == 4 && startswith (annex, "prev"))
7028 addrp = &lm_prev;
7029 else
7030 {
7031 annex = strchr (sep, ';');
7032 if (annex == NULL)
7033 break;
7034 annex++;
7035 continue;
7036 }
7037
7038 annex = decode_address_to_semicolon (addrp, sep + 1);
7039 }
7040
7041 if (lm_addr == 0)
7042 {
7043 int r_version = 0;
7044
7045 if (priv->r_debug == 0)
7046 priv->r_debug = get_r_debug (pid, is_elf64);
7047
7048 /* We failed to find DT_DEBUG. Such situation will not change
7049 for this inferior - do not retry it. Report it to GDB as
7050 E01, see for the reasons at the GDB solib-svr4.c side. */
7051 if (priv->r_debug == (CORE_ADDR) -1)
7052 return -1;
7053
7054 if (priv->r_debug != 0)
7055 {
7056 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7057 (unsigned char *) &r_version,
7058 sizeof (r_version)) != 0
7059 || r_version != 1)
7060 {
7061 warning ("unexpected r_debug version %d", r_version);
7062 }
7063 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7064 &lm_addr, ptr_size) != 0)
7065 {
7066 warning ("unable to read r_map from 0x%lx",
7067 (long) priv->r_debug + lmo->r_map_offset);
7068 }
7069 }
7070 }
7071
7072 document = (char *) xmalloc (allocated);
7073 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7074 p = document + strlen (document);
7075
7076 while (lm_addr
7077 && read_one_ptr (lm_addr + lmo->l_name_offset,
7078 &l_name, ptr_size) == 0
7079 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7080 &l_addr, ptr_size) == 0
7081 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7082 &l_ld, ptr_size) == 0
7083 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7084 &l_prev, ptr_size) == 0
7085 && read_one_ptr (lm_addr + lmo->l_next_offset,
7086 &l_next, ptr_size) == 0)
7087 {
7088 unsigned char libname[PATH_MAX];
7089
7090 if (lm_prev != l_prev)
7091 {
7092 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7093 (long) lm_prev, (long) l_prev);
7094 break;
7095 }
7096
7097 /* Ignore the first entry even if it has valid name as the first entry
7098 corresponds to the main executable. The first entry should not be
7099 skipped if the dynamic loader was loaded late by a static executable
7100 (see solib-svr4.c parameter ignore_first). But in such case the main
7101 executable does not have PT_DYNAMIC present and this function already
7102 exited above due to failed get_r_debug. */
7103 if (lm_prev == 0)
7104 {
7105 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7106 p = p + strlen (p);
7107 }
7108 else
7109 {
7110 /* Not checking for error because reading may stop before
7111 we've got PATH_MAX worth of characters. */
7112 libname[0] = '\0';
7113 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7114 libname[sizeof (libname) - 1] = '\0';
7115 if (libname[0] != '\0')
7116 {
7117 /* 6x the size for xml_escape_text below. */
7118 size_t len = 6 * strlen ((char *) libname);
7119
7120 if (!header_done)
7121 {
7122 /* Terminate `<library-list-svr4'. */
7123 *p++ = '>';
7124 header_done = 1;
7125 }
7126
7127 while (allocated < p - document + len + 200)
7128 {
7129 /* Expand to guarantee sufficient storage. */
7130 uintptr_t document_len = p - document;
7131
7132 document = (char *) xrealloc (document, 2 * allocated);
7133 allocated *= 2;
7134 p = document + document_len;
7135 }
7136
7137 std::string name = xml_escape_text ((char *) libname);
7138 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7139 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7140 name.c_str (), (unsigned long) lm_addr,
7141 (unsigned long) l_addr, (unsigned long) l_ld);
7142 }
7143 }
7144
7145 lm_prev = lm_addr;
7146 lm_addr = l_next;
7147 }
7148
7149 if (!header_done)
7150 {
7151 /* Empty list; terminate `<library-list-svr4'. */
7152 strcpy (p, "/>");
7153 }
7154 else
7155 strcpy (p, "</library-list-svr4>");
7156
7157 document_len = strlen (document);
7158 if (offset < document_len)
7159 document_len -= offset;
7160 else
7161 document_len = 0;
7162 if (len > document_len)
7163 len = document_len;
7164
7165 memcpy (readbuf, document + offset, len);
7166 xfree (document);
7167
7168 return len;
7169 }
7170
7171 #ifdef HAVE_LINUX_BTRACE
7172
7173 /* See to_disable_btrace target method. */
7174
7175 static int
7176 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7177 {
7178 enum btrace_error err;
7179
7180 err = linux_disable_btrace (tinfo);
7181 return (err == BTRACE_ERR_NONE ? 0 : -1);
7182 }
7183
7184 /* Encode an Intel Processor Trace configuration. */
7185
7186 static void
7187 linux_low_encode_pt_config (struct buffer *buffer,
7188 const struct btrace_data_pt_config *config)
7189 {
7190 buffer_grow_str (buffer, "<pt-config>\n");
7191
7192 switch (config->cpu.vendor)
7193 {
7194 case CV_INTEL:
7195 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7196 "model=\"%u\" stepping=\"%u\"/>\n",
7197 config->cpu.family, config->cpu.model,
7198 config->cpu.stepping);
7199 break;
7200
7201 default:
7202 break;
7203 }
7204
7205 buffer_grow_str (buffer, "</pt-config>\n");
7206 }
7207
7208 /* Encode a raw buffer. */
7209
7210 static void
7211 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7212 unsigned int size)
7213 {
7214 if (size == 0)
7215 return;
7216
7217 /* We use hex encoding - see common/rsp-low.h. */
7218 buffer_grow_str (buffer, "<raw>\n");
7219
7220 while (size-- > 0)
7221 {
7222 char elem[2];
7223
7224 elem[0] = tohex ((*data >> 4) & 0xf);
7225 elem[1] = tohex (*data++ & 0xf);
7226
7227 buffer_grow (buffer, elem, 2);
7228 }
7229
7230 buffer_grow_str (buffer, "</raw>\n");
7231 }
7232
7233 /* See to_read_btrace target method. */
7234
7235 static int
7236 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7237 enum btrace_read_type type)
7238 {
7239 struct btrace_data btrace;
7240 struct btrace_block *block;
7241 enum btrace_error err;
7242 int i;
7243
7244 btrace_data_init (&btrace);
7245
7246 err = linux_read_btrace (&btrace, tinfo, type);
7247 if (err != BTRACE_ERR_NONE)
7248 {
7249 if (err == BTRACE_ERR_OVERFLOW)
7250 buffer_grow_str0 (buffer, "E.Overflow.");
7251 else
7252 buffer_grow_str0 (buffer, "E.Generic Error.");
7253
7254 goto err;
7255 }
7256
7257 switch (btrace.format)
7258 {
7259 case BTRACE_FORMAT_NONE:
7260 buffer_grow_str0 (buffer, "E.No Trace.");
7261 goto err;
7262
7263 case BTRACE_FORMAT_BTS:
7264 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7265 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7266
7267 for (i = 0;
7268 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7269 i++)
7270 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7271 paddress (block->begin), paddress (block->end));
7272
7273 buffer_grow_str0 (buffer, "</btrace>\n");
7274 break;
7275
7276 case BTRACE_FORMAT_PT:
7277 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7278 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7279 buffer_grow_str (buffer, "<pt>\n");
7280
7281 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7282
7283 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7284 btrace.variant.pt.size);
7285
7286 buffer_grow_str (buffer, "</pt>\n");
7287 buffer_grow_str0 (buffer, "</btrace>\n");
7288 break;
7289
7290 default:
7291 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7292 goto err;
7293 }
7294
7295 btrace_data_fini (&btrace);
7296 return 0;
7297
7298 err:
7299 btrace_data_fini (&btrace);
7300 return -1;
7301 }
7302
7303 /* See to_btrace_conf target method. */
7304
7305 static int
7306 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7307 struct buffer *buffer)
7308 {
7309 const struct btrace_config *conf;
7310
7311 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7312 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7313
7314 conf = linux_btrace_conf (tinfo);
7315 if (conf != NULL)
7316 {
7317 switch (conf->format)
7318 {
7319 case BTRACE_FORMAT_NONE:
7320 break;
7321
7322 case BTRACE_FORMAT_BTS:
7323 buffer_xml_printf (buffer, "<bts");
7324 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7325 buffer_xml_printf (buffer, " />\n");
7326 break;
7327
7328 case BTRACE_FORMAT_PT:
7329 buffer_xml_printf (buffer, "<pt");
7330 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7331 buffer_xml_printf (buffer, "/>\n");
7332 break;
7333 }
7334 }
7335
7336 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7337 return 0;
7338 }
7339 #endif /* HAVE_LINUX_BTRACE */
7340
7341 /* See nat/linux-nat.h. */
7342
7343 ptid_t
7344 current_lwp_ptid (void)
7345 {
7346 return ptid_of (current_thread);
7347 }
7348
7349 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7350
7351 static int
7352 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7353 {
7354 if (the_low_target.breakpoint_kind_from_pc != NULL)
7355 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7356 else
7357 return default_breakpoint_kind_from_pc (pcptr);
7358 }
7359
7360 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7361
7362 static const gdb_byte *
7363 linux_sw_breakpoint_from_kind (int kind, int *size)
7364 {
7365 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7366
7367 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7368 }
7369
7370 /* Implementation of the target_ops method
7371 "breakpoint_kind_from_current_state". */
7372
7373 static int
7374 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7375 {
7376 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7377 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7378 else
7379 return linux_breakpoint_kind_from_pc (pcptr);
7380 }
7381
7382 /* Default implementation of linux_target_ops method "set_pc" for
7383 32-bit pc register which is literally named "pc". */
7384
7385 void
7386 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7387 {
7388 uint32_t newpc = pc;
7389
7390 supply_register_by_name (regcache, "pc", &newpc);
7391 }
7392
7393 /* Default implementation of linux_target_ops method "get_pc" for
7394 32-bit pc register which is literally named "pc". */
7395
7396 CORE_ADDR
7397 linux_get_pc_32bit (struct regcache *regcache)
7398 {
7399 uint32_t pc;
7400
7401 collect_register_by_name (regcache, "pc", &pc);
7402 if (debug_threads)
7403 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7404 return pc;
7405 }
7406
7407 /* Default implementation of linux_target_ops method "set_pc" for
7408 64-bit pc register which is literally named "pc". */
7409
7410 void
7411 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7412 {
7413 uint64_t newpc = pc;
7414
7415 supply_register_by_name (regcache, "pc", &newpc);
7416 }
7417
7418 /* Default implementation of linux_target_ops method "get_pc" for
7419 64-bit pc register which is literally named "pc". */
7420
7421 CORE_ADDR
7422 linux_get_pc_64bit (struct regcache *regcache)
7423 {
7424 uint64_t pc;
7425
7426 collect_register_by_name (regcache, "pc", &pc);
7427 if (debug_threads)
7428 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7429 return pc;
7430 }
7431
7432
7433 static struct target_ops linux_target_ops = {
7434 linux_create_inferior,
7435 linux_post_create_inferior,
7436 linux_attach,
7437 linux_kill,
7438 linux_detach,
7439 linux_mourn,
7440 linux_join,
7441 linux_thread_alive,
7442 linux_resume,
7443 linux_wait,
7444 linux_fetch_registers,
7445 linux_store_registers,
7446 linux_prepare_to_access_memory,
7447 linux_done_accessing_memory,
7448 linux_read_memory,
7449 linux_write_memory,
7450 linux_look_up_symbols,
7451 linux_request_interrupt,
7452 linux_read_auxv,
7453 linux_supports_z_point_type,
7454 linux_insert_point,
7455 linux_remove_point,
7456 linux_stopped_by_sw_breakpoint,
7457 linux_supports_stopped_by_sw_breakpoint,
7458 linux_stopped_by_hw_breakpoint,
7459 linux_supports_stopped_by_hw_breakpoint,
7460 linux_supports_hardware_single_step,
7461 linux_stopped_by_watchpoint,
7462 linux_stopped_data_address,
7463 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7464 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7465 && defined(PT_TEXT_END_ADDR)
7466 linux_read_offsets,
7467 #else
7468 NULL,
7469 #endif
7470 #ifdef USE_THREAD_DB
7471 thread_db_get_tls_address,
7472 #else
7473 NULL,
7474 #endif
7475 linux_qxfer_spu,
7476 hostio_last_error_from_errno,
7477 linux_qxfer_osdata,
7478 linux_xfer_siginfo,
7479 linux_supports_non_stop,
7480 linux_async,
7481 linux_start_non_stop,
7482 linux_supports_multi_process,
7483 linux_supports_fork_events,
7484 linux_supports_vfork_events,
7485 linux_supports_exec_events,
7486 linux_handle_new_gdb_connection,
7487 #ifdef USE_THREAD_DB
7488 thread_db_handle_monitor_command,
7489 #else
7490 NULL,
7491 #endif
7492 linux_common_core_of_thread,
7493 linux_read_loadmap,
7494 linux_process_qsupported,
7495 linux_supports_tracepoints,
7496 linux_read_pc,
7497 linux_write_pc,
7498 linux_thread_stopped,
7499 NULL,
7500 linux_pause_all,
7501 linux_unpause_all,
7502 linux_stabilize_threads,
7503 linux_install_fast_tracepoint_jump_pad,
7504 linux_emit_ops,
7505 linux_supports_disable_randomization,
7506 linux_get_min_fast_tracepoint_insn_len,
7507 linux_qxfer_libraries_svr4,
7508 linux_supports_agent,
7509 #ifdef HAVE_LINUX_BTRACE
7510 linux_supports_btrace,
7511 linux_enable_btrace,
7512 linux_low_disable_btrace,
7513 linux_low_read_btrace,
7514 linux_low_btrace_conf,
7515 #else
7516 NULL,
7517 NULL,
7518 NULL,
7519 NULL,
7520 NULL,
7521 #endif
7522 linux_supports_range_stepping,
7523 linux_proc_pid_to_exec_file,
7524 linux_mntns_open_cloexec,
7525 linux_mntns_unlink,
7526 linux_mntns_readlink,
7527 linux_breakpoint_kind_from_pc,
7528 linux_sw_breakpoint_from_kind,
7529 linux_proc_tid_get_name,
7530 linux_breakpoint_kind_from_current_state,
7531 linux_supports_software_single_step,
7532 linux_supports_catch_syscall,
7533 linux_get_ipa_tdesc_idx,
7534 #if USE_THREAD_DB
7535 thread_db_thread_handle,
7536 #else
7537 NULL,
7538 #endif
7539 };
7540
7541 #ifdef HAVE_LINUX_REGSETS
7542 void
7543 initialize_regsets_info (struct regsets_info *info)
7544 {
7545 for (info->num_regsets = 0;
7546 info->regsets[info->num_regsets].size >= 0;
7547 info->num_regsets++)
7548 ;
7549 }
7550 #endif
7551
7552 void
7553 initialize_low (void)
7554 {
7555 struct sigaction sigchld_action;
7556
7557 memset (&sigchld_action, 0, sizeof (sigchld_action));
7558 set_target_ops (&linux_target_ops);
7559
7560 linux_ptrace_init_warnings ();
7561
7562 sigchld_action.sa_handler = sigchld_handler;
7563 sigemptyset (&sigchld_action.sa_mask);
7564 sigchld_action.sa_flags = SA_RESTART;
7565 sigaction (SIGCHLD, &sigchld_action, NULL);
7566
7567 initialize_low_arch ();
7568
7569 linux_check_ptrace_features ();
7570 }