]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Remove usage of find_inferior in linux_mourn
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int
1245 last_thread_of_process_p (int pid)
1246 {
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265 }
1266
1267 /* Kill LWP. */
1268
1269 static void
1270 linux_kill_one_lwp (struct lwp_info *lwp)
1271 {
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309 }
1310
1311 /* Kill LWP and wait for it to die. */
1312
1313 static void
1314 kill_wait_lwp (struct lwp_info *lwp)
1315 {
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352 }
1353
1354 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357 static void
1358 kill_one_lwp_callback (thread_info *thread, int pid)
1359 {
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376 }
1377
1378 static int
1379 linux_kill (int pid)
1380 {
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416 }
1417
1418 /* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422 static int
1423 get_detach_signal (struct thread_info *thread)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496 }
1497
1498 /* Detach from LWP. */
1499
1500 static void
1501 linux_detach_one_lwp (struct lwp_info *lwp)
1502 {
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582 }
1583
1584 /* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587 static void
1588 linux_detach_lwp_callback (thread_info *thread)
1589 {
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598 }
1599
1600 static int
1601 linux_detach (int pid)
1602 {
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621 #ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623 #endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642 }
1643
1644 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646 static void
1647 linux_mourn (struct process_info *process)
1648 {
1649 struct process_info_private *priv;
1650
1651 #ifdef USE_THREAD_DB
1652 thread_db_mourn (process);
1653 #endif
1654
1655 for_each_thread (process->pid, [] (thread_info *thread)
1656 {
1657 delete_lwp (get_thread_lwp (thread));
1658 });
1659
1660 /* Freeing all private data. */
1661 priv = process->priv;
1662 if (the_low_target.delete_process != NULL)
1663 the_low_target.delete_process (priv->arch_private);
1664 else
1665 gdb_assert (priv->arch_private == NULL);
1666 free (priv);
1667 process->priv = NULL;
1668
1669 remove_process (process);
1670 }
1671
1672 static void
1673 linux_join (int pid)
1674 {
1675 int status, ret;
1676
1677 do {
1678 ret = my_waitpid (pid, &status, 0);
1679 if (WIFEXITED (status) || WIFSIGNALED (status))
1680 break;
1681 } while (ret != -1 || errno != ECHILD);
1682 }
1683
1684 /* Return nonzero if the given thread is still alive. */
1685 static int
1686 linux_thread_alive (ptid_t ptid)
1687 {
1688 struct lwp_info *lwp = find_lwp_pid (ptid);
1689
1690 /* We assume we always know if a thread exits. If a whole process
1691 exited but we still haven't been able to report it to GDB, we'll
1692 hold on to the last lwp of the dead process. */
1693 if (lwp != NULL)
1694 return !lwp_is_marked_dead (lwp);
1695 else
1696 return 0;
1697 }
1698
1699 /* Return 1 if this lwp still has an interesting status pending. If
1700 not (e.g., it had stopped for a breakpoint that is gone), return
1701 false. */
1702
1703 static int
1704 thread_still_has_status_pending_p (struct thread_info *thread)
1705 {
1706 struct lwp_info *lp = get_thread_lwp (thread);
1707
1708 if (!lp->status_pending_p)
1709 return 0;
1710
1711 if (thread->last_resume_kind != resume_stop
1712 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1713 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1714 {
1715 struct thread_info *saved_thread;
1716 CORE_ADDR pc;
1717 int discard = 0;
1718
1719 gdb_assert (lp->last_status != 0);
1720
1721 pc = get_pc (lp);
1722
1723 saved_thread = current_thread;
1724 current_thread = thread;
1725
1726 if (pc != lp->stop_pc)
1727 {
1728 if (debug_threads)
1729 debug_printf ("PC of %ld changed\n",
1730 lwpid_of (thread));
1731 discard = 1;
1732 }
1733
1734 #if !USE_SIGTRAP_SIGINFO
1735 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 && !(*the_low_target.breakpoint_at) (pc))
1737 {
1738 if (debug_threads)
1739 debug_printf ("previous SW breakpoint of %ld gone\n",
1740 lwpid_of (thread));
1741 discard = 1;
1742 }
1743 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1744 && !hardware_breakpoint_inserted_here (pc))
1745 {
1746 if (debug_threads)
1747 debug_printf ("previous HW breakpoint of %ld gone\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751 #endif
1752
1753 current_thread = saved_thread;
1754
1755 if (discard)
1756 {
1757 if (debug_threads)
1758 debug_printf ("discarding pending breakpoint status\n");
1759 lp->status_pending_p = 0;
1760 return 0;
1761 }
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Returns true if LWP is resumed from the client's perspective. */
1768
1769 static int
1770 lwp_resumed (struct lwp_info *lwp)
1771 {
1772 struct thread_info *thread = get_lwp_thread (lwp);
1773
1774 if (thread->last_resume_kind != resume_stop)
1775 return 1;
1776
1777 /* Did gdb send us a `vCont;t', but we haven't reported the
1778 corresponding stop to gdb yet? If so, the thread is still
1779 resumed/running from gdb's perspective. */
1780 if (thread->last_resume_kind == resume_stop
1781 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1782 return 1;
1783
1784 return 0;
1785 }
1786
1787 /* Return true if this lwp has an interesting status pending. */
1788 static bool
1789 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1790 {
1791 struct lwp_info *lp = get_thread_lwp (thread);
1792
1793 /* Check if we're only interested in events from a specific process
1794 or a specific LWP. */
1795 if (!thread->id.matches (ptid))
1796 return 0;
1797
1798 if (!lwp_resumed (lp))
1799 return 0;
1800
1801 if (lp->status_pending_p
1802 && !thread_still_has_status_pending_p (thread))
1803 {
1804 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1805 return 0;
1806 }
1807
1808 return lp->status_pending_p;
1809 }
1810
1811 static int
1812 same_lwp (thread_info *thread, void *data)
1813 {
1814 ptid_t ptid = *(ptid_t *) data;
1815 int lwp;
1816
1817 if (ptid_get_lwp (ptid) != 0)
1818 lwp = ptid_get_lwp (ptid);
1819 else
1820 lwp = ptid_get_pid (ptid);
1821
1822 if (thread->id.lwp () == lwp)
1823 return 1;
1824
1825 return 0;
1826 }
1827
1828 struct lwp_info *
1829 find_lwp_pid (ptid_t ptid)
1830 {
1831 thread_info *thread = find_inferior (&all_threads, same_lwp, &ptid);
1832
1833 if (thread == NULL)
1834 return NULL;
1835
1836 return get_thread_lwp (thread);
1837 }
1838
1839 /* Return the number of known LWPs in the tgid given by PID. */
1840
1841 static int
1842 num_lwps (int pid)
1843 {
1844 int count = 0;
1845
1846 for_each_thread (pid, [&] (thread_info *thread)
1847 {
1848 count++;
1849 });
1850
1851 return count;
1852 }
1853
1854 /* See nat/linux-nat.h. */
1855
1856 struct lwp_info *
1857 iterate_over_lwps (ptid_t filter,
1858 iterate_over_lwps_ftype callback,
1859 void *data)
1860 {
1861 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1862 {
1863 lwp_info *lwp = get_thread_lwp (thread);
1864
1865 return callback (lwp, data);
1866 });
1867
1868 if (thread == NULL)
1869 return NULL;
1870
1871 return get_thread_lwp (thread);
1872 }
1873
1874 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1875 their exits until all other threads in the group have exited. */
1876
1877 static void
1878 check_zombie_leaders (void)
1879 {
1880 for_each_process ([] (process_info *proc) {
1881 pid_t leader_pid = pid_of (proc);
1882 struct lwp_info *leader_lp;
1883
1884 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1885
1886 if (debug_threads)
1887 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1888 "num_lwps=%d, zombie=%d\n",
1889 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1890 linux_proc_pid_is_zombie (leader_pid));
1891
1892 if (leader_lp != NULL && !leader_lp->stopped
1893 /* Check if there are other threads in the group, as we may
1894 have raced with the inferior simply exiting. */
1895 && !last_thread_of_process_p (leader_pid)
1896 && linux_proc_pid_is_zombie (leader_pid))
1897 {
1898 /* A leader zombie can mean one of two things:
1899
1900 - It exited, and there's an exit status pending
1901 available, or only the leader exited (not the whole
1902 program). In the latter case, we can't waitpid the
1903 leader's exit status until all other threads are gone.
1904
1905 - There are 3 or more threads in the group, and a thread
1906 other than the leader exec'd. On an exec, the Linux
1907 kernel destroys all other threads (except the execing
1908 one) in the thread group, and resets the execing thread's
1909 tid to the tgid. No exit notification is sent for the
1910 execing thread -- from the ptracer's perspective, it
1911 appears as though the execing thread just vanishes.
1912 Until we reap all other threads except the leader and the
1913 execing thread, the leader will be zombie, and the
1914 execing thread will be in `D (disc sleep)'. As soon as
1915 all other threads are reaped, the execing thread changes
1916 it's tid to the tgid, and the previous (zombie) leader
1917 vanishes, giving place to the "new" leader. We could try
1918 distinguishing the exit and exec cases, by waiting once
1919 more, and seeing if something comes out, but it doesn't
1920 sound useful. The previous leader _does_ go away, and
1921 we'll re-add the new one once we see the exec event
1922 (which is just the same as what would happen if the
1923 previous leader did exit voluntarily before some other
1924 thread execs). */
1925
1926 if (debug_threads)
1927 debug_printf ("CZL: Thread group leader %d zombie "
1928 "(it exited, or another thread execd).\n",
1929 leader_pid);
1930
1931 delete_lwp (leader_lp);
1932 }
1933 });
1934 }
1935
1936 /* Callback for `find_inferior'. Returns the first LWP that is not
1937 stopped. ARG is a PTID filter. */
1938
1939 static int
1940 not_stopped_callback (thread_info *thread, void *arg)
1941 {
1942 struct lwp_info *lwp;
1943 ptid_t filter = *(ptid_t *) arg;
1944
1945 if (!ptid_match (ptid_of (thread), filter))
1946 return 0;
1947
1948 lwp = get_thread_lwp (thread);
1949 if (!lwp->stopped)
1950 return 1;
1951
1952 return 0;
1953 }
1954
1955 /* Increment LWP's suspend count. */
1956
1957 static void
1958 lwp_suspended_inc (struct lwp_info *lwp)
1959 {
1960 lwp->suspended++;
1961
1962 if (debug_threads && lwp->suspended > 4)
1963 {
1964 struct thread_info *thread = get_lwp_thread (lwp);
1965
1966 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1967 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1968 }
1969 }
1970
1971 /* Decrement LWP's suspend count. */
1972
1973 static void
1974 lwp_suspended_decr (struct lwp_info *lwp)
1975 {
1976 lwp->suspended--;
1977
1978 if (lwp->suspended < 0)
1979 {
1980 struct thread_info *thread = get_lwp_thread (lwp);
1981
1982 internal_error (__FILE__, __LINE__,
1983 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1984 lwp->suspended);
1985 }
1986 }
1987
1988 /* This function should only be called if the LWP got a SIGTRAP.
1989
1990 Handle any tracepoint steps or hits. Return true if a tracepoint
1991 event was handled, 0 otherwise. */
1992
1993 static int
1994 handle_tracepoints (struct lwp_info *lwp)
1995 {
1996 struct thread_info *tinfo = get_lwp_thread (lwp);
1997 int tpoint_related_event = 0;
1998
1999 gdb_assert (lwp->suspended == 0);
2000
2001 /* If this tracepoint hit causes a tracing stop, we'll immediately
2002 uninsert tracepoints. To do this, we temporarily pause all
2003 threads, unpatch away, and then unpause threads. We need to make
2004 sure the unpausing doesn't resume LWP too. */
2005 lwp_suspended_inc (lwp);
2006
2007 /* And we need to be sure that any all-threads-stopping doesn't try
2008 to move threads out of the jump pads, as it could deadlock the
2009 inferior (LWP could be in the jump pad, maybe even holding the
2010 lock.) */
2011
2012 /* Do any necessary step collect actions. */
2013 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2014
2015 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2016
2017 /* See if we just hit a tracepoint and do its main collect
2018 actions. */
2019 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2020
2021 lwp_suspended_decr (lwp);
2022
2023 gdb_assert (lwp->suspended == 0);
2024 gdb_assert (!stabilizing_threads
2025 || (lwp->collecting_fast_tracepoint
2026 != fast_tpoint_collect_result::not_collecting));
2027
2028 if (tpoint_related_event)
2029 {
2030 if (debug_threads)
2031 debug_printf ("got a tracepoint event\n");
2032 return 1;
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2039 collection status. */
2040
2041 static fast_tpoint_collect_result
2042 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2043 struct fast_tpoint_collect_status *status)
2044 {
2045 CORE_ADDR thread_area;
2046 struct thread_info *thread = get_lwp_thread (lwp);
2047
2048 if (the_low_target.get_thread_area == NULL)
2049 return fast_tpoint_collect_result::not_collecting;
2050
2051 /* Get the thread area address. This is used to recognize which
2052 thread is which when tracing with the in-process agent library.
2053 We don't read anything from the address, and treat it as opaque;
2054 it's the address itself that we assume is unique per-thread. */
2055 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2056 return fast_tpoint_collect_result::not_collecting;
2057
2058 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2059 }
2060
2061 /* The reason we resume in the caller, is because we want to be able
2062 to pass lwp->status_pending as WSTAT, and we need to clear
2063 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2064 refuses to resume. */
2065
2066 static int
2067 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2068 {
2069 struct thread_info *saved_thread;
2070
2071 saved_thread = current_thread;
2072 current_thread = get_lwp_thread (lwp);
2073
2074 if ((wstat == NULL
2075 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2076 && supports_fast_tracepoints ()
2077 && agent_loaded_p ())
2078 {
2079 struct fast_tpoint_collect_status status;
2080
2081 if (debug_threads)
2082 debug_printf ("Checking whether LWP %ld needs to move out of the "
2083 "jump pad.\n",
2084 lwpid_of (current_thread));
2085
2086 fast_tpoint_collect_result r
2087 = linux_fast_tracepoint_collecting (lwp, &status);
2088
2089 if (wstat == NULL
2090 || (WSTOPSIG (*wstat) != SIGILL
2091 && WSTOPSIG (*wstat) != SIGFPE
2092 && WSTOPSIG (*wstat) != SIGSEGV
2093 && WSTOPSIG (*wstat) != SIGBUS))
2094 {
2095 lwp->collecting_fast_tracepoint = r;
2096
2097 if (r != fast_tpoint_collect_result::not_collecting)
2098 {
2099 if (r == fast_tpoint_collect_result::before_insn
2100 && lwp->exit_jump_pad_bkpt == NULL)
2101 {
2102 /* Haven't executed the original instruction yet.
2103 Set breakpoint there, and wait till it's hit,
2104 then single-step until exiting the jump pad. */
2105 lwp->exit_jump_pad_bkpt
2106 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2107 }
2108
2109 if (debug_threads)
2110 debug_printf ("Checking whether LWP %ld needs to move out of "
2111 "the jump pad...it does\n",
2112 lwpid_of (current_thread));
2113 current_thread = saved_thread;
2114
2115 return 1;
2116 }
2117 }
2118 else
2119 {
2120 /* If we get a synchronous signal while collecting, *and*
2121 while executing the (relocated) original instruction,
2122 reset the PC to point at the tpoint address, before
2123 reporting to GDB. Otherwise, it's an IPA lib bug: just
2124 report the signal to GDB, and pray for the best. */
2125
2126 lwp->collecting_fast_tracepoint
2127 = fast_tpoint_collect_result::not_collecting;
2128
2129 if (r != fast_tpoint_collect_result::not_collecting
2130 && (status.adjusted_insn_addr <= lwp->stop_pc
2131 && lwp->stop_pc < status.adjusted_insn_addr_end))
2132 {
2133 siginfo_t info;
2134 struct regcache *regcache;
2135
2136 /* The si_addr on a few signals references the address
2137 of the faulting instruction. Adjust that as
2138 well. */
2139 if ((WSTOPSIG (*wstat) == SIGILL
2140 || WSTOPSIG (*wstat) == SIGFPE
2141 || WSTOPSIG (*wstat) == SIGBUS
2142 || WSTOPSIG (*wstat) == SIGSEGV)
2143 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2144 (PTRACE_TYPE_ARG3) 0, &info) == 0
2145 /* Final check just to make sure we don't clobber
2146 the siginfo of non-kernel-sent signals. */
2147 && (uintptr_t) info.si_addr == lwp->stop_pc)
2148 {
2149 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2150 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2151 (PTRACE_TYPE_ARG3) 0, &info);
2152 }
2153
2154 regcache = get_thread_regcache (current_thread, 1);
2155 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2156 lwp->stop_pc = status.tpoint_addr;
2157
2158 /* Cancel any fast tracepoint lock this thread was
2159 holding. */
2160 force_unlock_trace_buffer ();
2161 }
2162
2163 if (lwp->exit_jump_pad_bkpt != NULL)
2164 {
2165 if (debug_threads)
2166 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2167 "stopping all threads momentarily.\n");
2168
2169 stop_all_lwps (1, lwp);
2170
2171 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2172 lwp->exit_jump_pad_bkpt = NULL;
2173
2174 unstop_all_lwps (1, lwp);
2175
2176 gdb_assert (lwp->suspended >= 0);
2177 }
2178 }
2179 }
2180
2181 if (debug_threads)
2182 debug_printf ("Checking whether LWP %ld needs to move out of the "
2183 "jump pad...no\n",
2184 lwpid_of (current_thread));
2185
2186 current_thread = saved_thread;
2187 return 0;
2188 }
2189
2190 /* Enqueue one signal in the "signals to report later when out of the
2191 jump pad" list. */
2192
2193 static void
2194 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2195 {
2196 struct pending_signals *p_sig;
2197 struct thread_info *thread = get_lwp_thread (lwp);
2198
2199 if (debug_threads)
2200 debug_printf ("Deferring signal %d for LWP %ld.\n",
2201 WSTOPSIG (*wstat), lwpid_of (thread));
2202
2203 if (debug_threads)
2204 {
2205 struct pending_signals *sig;
2206
2207 for (sig = lwp->pending_signals_to_report;
2208 sig != NULL;
2209 sig = sig->prev)
2210 debug_printf (" Already queued %d\n",
2211 sig->signal);
2212
2213 debug_printf (" (no more currently queued signals)\n");
2214 }
2215
2216 /* Don't enqueue non-RT signals if they are already in the deferred
2217 queue. (SIGSTOP being the easiest signal to see ending up here
2218 twice) */
2219 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2220 {
2221 struct pending_signals *sig;
2222
2223 for (sig = lwp->pending_signals_to_report;
2224 sig != NULL;
2225 sig = sig->prev)
2226 {
2227 if (sig->signal == WSTOPSIG (*wstat))
2228 {
2229 if (debug_threads)
2230 debug_printf ("Not requeuing already queued non-RT signal %d"
2231 " for LWP %ld\n",
2232 sig->signal,
2233 lwpid_of (thread));
2234 return;
2235 }
2236 }
2237 }
2238
2239 p_sig = XCNEW (struct pending_signals);
2240 p_sig->prev = lwp->pending_signals_to_report;
2241 p_sig->signal = WSTOPSIG (*wstat);
2242
2243 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2244 &p_sig->info);
2245
2246 lwp->pending_signals_to_report = p_sig;
2247 }
2248
2249 /* Dequeue one signal from the "signals to report later when out of
2250 the jump pad" list. */
2251
2252 static int
2253 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2254 {
2255 struct thread_info *thread = get_lwp_thread (lwp);
2256
2257 if (lwp->pending_signals_to_report != NULL)
2258 {
2259 struct pending_signals **p_sig;
2260
2261 p_sig = &lwp->pending_signals_to_report;
2262 while ((*p_sig)->prev != NULL)
2263 p_sig = &(*p_sig)->prev;
2264
2265 *wstat = W_STOPCODE ((*p_sig)->signal);
2266 if ((*p_sig)->info.si_signo != 0)
2267 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2268 &(*p_sig)->info);
2269 free (*p_sig);
2270 *p_sig = NULL;
2271
2272 if (debug_threads)
2273 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2274 WSTOPSIG (*wstat), lwpid_of (thread));
2275
2276 if (debug_threads)
2277 {
2278 struct pending_signals *sig;
2279
2280 for (sig = lwp->pending_signals_to_report;
2281 sig != NULL;
2282 sig = sig->prev)
2283 debug_printf (" Still queued %d\n",
2284 sig->signal);
2285
2286 debug_printf (" (no more queued signals)\n");
2287 }
2288
2289 return 1;
2290 }
2291
2292 return 0;
2293 }
2294
2295 /* Fetch the possibly triggered data watchpoint info and store it in
2296 CHILD.
2297
2298 On some archs, like x86, that use debug registers to set
2299 watchpoints, it's possible that the way to know which watched
2300 address trapped, is to check the register that is used to select
2301 which address to watch. Problem is, between setting the watchpoint
2302 and reading back which data address trapped, the user may change
2303 the set of watchpoints, and, as a consequence, GDB changes the
2304 debug registers in the inferior. To avoid reading back a stale
2305 stopped-data-address when that happens, we cache in LP the fact
2306 that a watchpoint trapped, and the corresponding data address, as
2307 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2308 registers meanwhile, we have the cached data we can rely on. */
2309
2310 static int
2311 check_stopped_by_watchpoint (struct lwp_info *child)
2312 {
2313 if (the_low_target.stopped_by_watchpoint != NULL)
2314 {
2315 struct thread_info *saved_thread;
2316
2317 saved_thread = current_thread;
2318 current_thread = get_lwp_thread (child);
2319
2320 if (the_low_target.stopped_by_watchpoint ())
2321 {
2322 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2323
2324 if (the_low_target.stopped_data_address != NULL)
2325 child->stopped_data_address
2326 = the_low_target.stopped_data_address ();
2327 else
2328 child->stopped_data_address = 0;
2329 }
2330
2331 current_thread = saved_thread;
2332 }
2333
2334 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2335 }
2336
2337 /* Return the ptrace options that we want to try to enable. */
2338
2339 static int
2340 linux_low_ptrace_options (int attached)
2341 {
2342 int options = 0;
2343
2344 if (!attached)
2345 options |= PTRACE_O_EXITKILL;
2346
2347 if (report_fork_events)
2348 options |= PTRACE_O_TRACEFORK;
2349
2350 if (report_vfork_events)
2351 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2352
2353 if (report_exec_events)
2354 options |= PTRACE_O_TRACEEXEC;
2355
2356 options |= PTRACE_O_TRACESYSGOOD;
2357
2358 return options;
2359 }
2360
2361 /* Do low-level handling of the event, and check if we should go on
2362 and pass it to caller code. Return the affected lwp if we are, or
2363 NULL otherwise. */
2364
2365 static struct lwp_info *
2366 linux_low_filter_event (int lwpid, int wstat)
2367 {
2368 struct lwp_info *child;
2369 struct thread_info *thread;
2370 int have_stop_pc = 0;
2371
2372 child = find_lwp_pid (pid_to_ptid (lwpid));
2373
2374 /* Check for stop events reported by a process we didn't already
2375 know about - anything not already in our LWP list.
2376
2377 If we're expecting to receive stopped processes after
2378 fork, vfork, and clone events, then we'll just add the
2379 new one to our list and go back to waiting for the event
2380 to be reported - the stopped process might be returned
2381 from waitpid before or after the event is.
2382
2383 But note the case of a non-leader thread exec'ing after the
2384 leader having exited, and gone from our lists (because
2385 check_zombie_leaders deleted it). The non-leader thread
2386 changes its tid to the tgid. */
2387
2388 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2389 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2390 {
2391 ptid_t child_ptid;
2392
2393 /* A multi-thread exec after we had seen the leader exiting. */
2394 if (debug_threads)
2395 {
2396 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2397 "after exec.\n", lwpid);
2398 }
2399
2400 child_ptid = ptid_build (lwpid, lwpid, 0);
2401 child = add_lwp (child_ptid);
2402 child->stopped = 1;
2403 current_thread = child->thread;
2404 }
2405
2406 /* If we didn't find a process, one of two things presumably happened:
2407 - A process we started and then detached from has exited. Ignore it.
2408 - A process we are controlling has forked and the new child's stop
2409 was reported to us by the kernel. Save its PID. */
2410 if (child == NULL && WIFSTOPPED (wstat))
2411 {
2412 add_to_pid_list (&stopped_pids, lwpid, wstat);
2413 return NULL;
2414 }
2415 else if (child == NULL)
2416 return NULL;
2417
2418 thread = get_lwp_thread (child);
2419
2420 child->stopped = 1;
2421
2422 child->last_status = wstat;
2423
2424 /* Check if the thread has exited. */
2425 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2426 {
2427 if (debug_threads)
2428 debug_printf ("LLFE: %d exited.\n", lwpid);
2429
2430 if (finish_step_over (child))
2431 {
2432 /* Unsuspend all other LWPs, and set them back running again. */
2433 unsuspend_all_lwps (child);
2434 }
2435
2436 /* If there is at least one more LWP, then the exit signal was
2437 not the end of the debugged application and should be
2438 ignored, unless GDB wants to hear about thread exits. */
2439 if (report_thread_events
2440 || last_thread_of_process_p (pid_of (thread)))
2441 {
2442 /* Since events are serialized to GDB core, and we can't
2443 report this one right now. Leave the status pending for
2444 the next time we're able to report it. */
2445 mark_lwp_dead (child, wstat);
2446 return child;
2447 }
2448 else
2449 {
2450 delete_lwp (child);
2451 return NULL;
2452 }
2453 }
2454
2455 gdb_assert (WIFSTOPPED (wstat));
2456
2457 if (WIFSTOPPED (wstat))
2458 {
2459 struct process_info *proc;
2460
2461 /* Architecture-specific setup after inferior is running. */
2462 proc = find_process_pid (pid_of (thread));
2463 if (proc->tdesc == NULL)
2464 {
2465 if (proc->attached)
2466 {
2467 /* This needs to happen after we have attached to the
2468 inferior and it is stopped for the first time, but
2469 before we access any inferior registers. */
2470 linux_arch_setup_thread (thread);
2471 }
2472 else
2473 {
2474 /* The process is started, but GDBserver will do
2475 architecture-specific setup after the program stops at
2476 the first instruction. */
2477 child->status_pending_p = 1;
2478 child->status_pending = wstat;
2479 return child;
2480 }
2481 }
2482 }
2483
2484 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2485 {
2486 struct process_info *proc = find_process_pid (pid_of (thread));
2487 int options = linux_low_ptrace_options (proc->attached);
2488
2489 linux_enable_event_reporting (lwpid, options);
2490 child->must_set_ptrace_flags = 0;
2491 }
2492
2493 /* Always update syscall_state, even if it will be filtered later. */
2494 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2495 {
2496 child->syscall_state
2497 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2498 ? TARGET_WAITKIND_SYSCALL_RETURN
2499 : TARGET_WAITKIND_SYSCALL_ENTRY);
2500 }
2501 else
2502 {
2503 /* Almost all other ptrace-stops are known to be outside of system
2504 calls, with further exceptions in handle_extended_wait. */
2505 child->syscall_state = TARGET_WAITKIND_IGNORE;
2506 }
2507
2508 /* Be careful to not overwrite stop_pc until save_stop_reason is
2509 called. */
2510 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2511 && linux_is_extended_waitstatus (wstat))
2512 {
2513 child->stop_pc = get_pc (child);
2514 if (handle_extended_wait (&child, wstat))
2515 {
2516 /* The event has been handled, so just return without
2517 reporting it. */
2518 return NULL;
2519 }
2520 }
2521
2522 if (linux_wstatus_maybe_breakpoint (wstat))
2523 {
2524 if (save_stop_reason (child))
2525 have_stop_pc = 1;
2526 }
2527
2528 if (!have_stop_pc)
2529 child->stop_pc = get_pc (child);
2530
2531 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2532 && child->stop_expected)
2533 {
2534 if (debug_threads)
2535 debug_printf ("Expected stop.\n");
2536 child->stop_expected = 0;
2537
2538 if (thread->last_resume_kind == resume_stop)
2539 {
2540 /* We want to report the stop to the core. Treat the
2541 SIGSTOP as a normal event. */
2542 if (debug_threads)
2543 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2544 target_pid_to_str (ptid_of (thread)));
2545 }
2546 else if (stopping_threads != NOT_STOPPING_THREADS)
2547 {
2548 /* Stopping threads. We don't want this SIGSTOP to end up
2549 pending. */
2550 if (debug_threads)
2551 debug_printf ("LLW: SIGSTOP caught for %s "
2552 "while stopping threads.\n",
2553 target_pid_to_str (ptid_of (thread)));
2554 return NULL;
2555 }
2556 else
2557 {
2558 /* This is a delayed SIGSTOP. Filter out the event. */
2559 if (debug_threads)
2560 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2561 child->stepping ? "step" : "continue",
2562 target_pid_to_str (ptid_of (thread)));
2563
2564 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2565 return NULL;
2566 }
2567 }
2568
2569 child->status_pending_p = 1;
2570 child->status_pending = wstat;
2571 return child;
2572 }
2573
2574 /* Return true if THREAD is doing hardware single step. */
2575
2576 static int
2577 maybe_hw_step (struct thread_info *thread)
2578 {
2579 if (can_hardware_single_step ())
2580 return 1;
2581 else
2582 {
2583 /* GDBserver must insert single-step breakpoint for software
2584 single step. */
2585 gdb_assert (has_single_step_breakpoints (thread));
2586 return 0;
2587 }
2588 }
2589
2590 /* Resume LWPs that are currently stopped without any pending status
2591 to report, but are resumed from the core's perspective. */
2592
2593 static void
2594 resume_stopped_resumed_lwps (thread_info *thread)
2595 {
2596 struct lwp_info *lp = get_thread_lwp (thread);
2597
2598 if (lp->stopped
2599 && !lp->suspended
2600 && !lp->status_pending_p
2601 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2602 {
2603 int step = 0;
2604
2605 if (thread->last_resume_kind == resume_step)
2606 step = maybe_hw_step (thread);
2607
2608 if (debug_threads)
2609 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2610 target_pid_to_str (ptid_of (thread)),
2611 paddress (lp->stop_pc),
2612 step);
2613
2614 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2615 }
2616 }
2617
2618 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2619 match FILTER_PTID (leaving others pending). The PTIDs can be:
2620 minus_one_ptid, to specify any child; a pid PTID, specifying all
2621 lwps of a thread group; or a PTID representing a single lwp. Store
2622 the stop status through the status pointer WSTAT. OPTIONS is
2623 passed to the waitpid call. Return 0 if no event was found and
2624 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2625 was found. Return the PID of the stopped child otherwise. */
2626
2627 static int
2628 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2629 int *wstatp, int options)
2630 {
2631 struct thread_info *event_thread;
2632 struct lwp_info *event_child, *requested_child;
2633 sigset_t block_mask, prev_mask;
2634
2635 retry:
2636 /* N.B. event_thread points to the thread_info struct that contains
2637 event_child. Keep them in sync. */
2638 event_thread = NULL;
2639 event_child = NULL;
2640 requested_child = NULL;
2641
2642 /* Check for a lwp with a pending status. */
2643
2644 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2645 {
2646 event_thread = find_thread_in_random ([&] (thread_info *thread)
2647 {
2648 return status_pending_p_callback (thread, filter_ptid);
2649 });
2650
2651 if (event_thread != NULL)
2652 event_child = get_thread_lwp (event_thread);
2653 if (debug_threads && event_thread)
2654 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2655 }
2656 else if (!ptid_equal (filter_ptid, null_ptid))
2657 {
2658 requested_child = find_lwp_pid (filter_ptid);
2659
2660 if (stopping_threads == NOT_STOPPING_THREADS
2661 && requested_child->status_pending_p
2662 && (requested_child->collecting_fast_tracepoint
2663 != fast_tpoint_collect_result::not_collecting))
2664 {
2665 enqueue_one_deferred_signal (requested_child,
2666 &requested_child->status_pending);
2667 requested_child->status_pending_p = 0;
2668 requested_child->status_pending = 0;
2669 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2670 }
2671
2672 if (requested_child->suspended
2673 && requested_child->status_pending_p)
2674 {
2675 internal_error (__FILE__, __LINE__,
2676 "requesting an event out of a"
2677 " suspended child?");
2678 }
2679
2680 if (requested_child->status_pending_p)
2681 {
2682 event_child = requested_child;
2683 event_thread = get_lwp_thread (event_child);
2684 }
2685 }
2686
2687 if (event_child != NULL)
2688 {
2689 if (debug_threads)
2690 debug_printf ("Got an event from pending child %ld (%04x)\n",
2691 lwpid_of (event_thread), event_child->status_pending);
2692 *wstatp = event_child->status_pending;
2693 event_child->status_pending_p = 0;
2694 event_child->status_pending = 0;
2695 current_thread = event_thread;
2696 return lwpid_of (event_thread);
2697 }
2698
2699 /* But if we don't find a pending event, we'll have to wait.
2700
2701 We only enter this loop if no process has a pending wait status.
2702 Thus any action taken in response to a wait status inside this
2703 loop is responding as soon as we detect the status, not after any
2704 pending events. */
2705
2706 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2707 all signals while here. */
2708 sigfillset (&block_mask);
2709 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2710
2711 /* Always pull all events out of the kernel. We'll randomly select
2712 an event LWP out of all that have events, to prevent
2713 starvation. */
2714 while (event_child == NULL)
2715 {
2716 pid_t ret = 0;
2717
2718 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2719 quirks:
2720
2721 - If the thread group leader exits while other threads in the
2722 thread group still exist, waitpid(TGID, ...) hangs. That
2723 waitpid won't return an exit status until the other threads
2724 in the group are reaped.
2725
2726 - When a non-leader thread execs, that thread just vanishes
2727 without reporting an exit (so we'd hang if we waited for it
2728 explicitly in that case). The exec event is reported to
2729 the TGID pid. */
2730 errno = 0;
2731 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2732
2733 if (debug_threads)
2734 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2735 ret, errno ? strerror (errno) : "ERRNO-OK");
2736
2737 if (ret > 0)
2738 {
2739 if (debug_threads)
2740 {
2741 debug_printf ("LLW: waitpid %ld received %s\n",
2742 (long) ret, status_to_str (*wstatp));
2743 }
2744
2745 /* Filter all events. IOW, leave all events pending. We'll
2746 randomly select an event LWP out of all that have events
2747 below. */
2748 linux_low_filter_event (ret, *wstatp);
2749 /* Retry until nothing comes out of waitpid. A single
2750 SIGCHLD can indicate more than one child stopped. */
2751 continue;
2752 }
2753
2754 /* Now that we've pulled all events out of the kernel, resume
2755 LWPs that don't have an interesting event to report. */
2756 if (stopping_threads == NOT_STOPPING_THREADS)
2757 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2758
2759 /* ... and find an LWP with a status to report to the core, if
2760 any. */
2761 event_thread = find_thread_in_random ([&] (thread_info *thread)
2762 {
2763 return status_pending_p_callback (thread, filter_ptid);
2764 });
2765
2766 if (event_thread != NULL)
2767 {
2768 event_child = get_thread_lwp (event_thread);
2769 *wstatp = event_child->status_pending;
2770 event_child->status_pending_p = 0;
2771 event_child->status_pending = 0;
2772 break;
2773 }
2774
2775 /* Check for zombie thread group leaders. Those can't be reaped
2776 until all other threads in the thread group are. */
2777 check_zombie_leaders ();
2778
2779 /* If there are no resumed children left in the set of LWPs we
2780 want to wait for, bail. We can't just block in
2781 waitpid/sigsuspend, because lwps might have been left stopped
2782 in trace-stop state, and we'd be stuck forever waiting for
2783 their status to change (which would only happen if we resumed
2784 them). Even if WNOHANG is set, this return code is preferred
2785 over 0 (below), as it is more detailed. */
2786 if ((find_inferior (&all_threads,
2787 not_stopped_callback,
2788 &wait_ptid) == NULL))
2789 {
2790 if (debug_threads)
2791 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2792 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2793 return -1;
2794 }
2795
2796 /* No interesting event to report to the caller. */
2797 if ((options & WNOHANG))
2798 {
2799 if (debug_threads)
2800 debug_printf ("WNOHANG set, no event found\n");
2801
2802 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2803 return 0;
2804 }
2805
2806 /* Block until we get an event reported with SIGCHLD. */
2807 if (debug_threads)
2808 debug_printf ("sigsuspend'ing\n");
2809
2810 sigsuspend (&prev_mask);
2811 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2812 goto retry;
2813 }
2814
2815 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2816
2817 current_thread = event_thread;
2818
2819 return lwpid_of (event_thread);
2820 }
2821
2822 /* Wait for an event from child(ren) PTID. PTIDs can be:
2823 minus_one_ptid, to specify any child; a pid PTID, specifying all
2824 lwps of a thread group; or a PTID representing a single lwp. Store
2825 the stop status through the status pointer WSTAT. OPTIONS is
2826 passed to the waitpid call. Return 0 if no event was found and
2827 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2828 was found. Return the PID of the stopped child otherwise. */
2829
2830 static int
2831 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2832 {
2833 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2834 }
2835
2836 /* Count the LWP's that have had events. */
2837
2838 static int
2839 count_events_callback (thread_info *thread, void *data)
2840 {
2841 struct lwp_info *lp = get_thread_lwp (thread);
2842 int *count = (int *) data;
2843
2844 gdb_assert (count != NULL);
2845
2846 /* Count only resumed LWPs that have an event pending. */
2847 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2848 && lp->status_pending_p)
2849 (*count)++;
2850
2851 return 0;
2852 }
2853
2854 /* Select the LWP (if any) that is currently being single-stepped. */
2855
2856 static int
2857 select_singlestep_lwp_callback (thread_info *thread, void *data)
2858 {
2859 struct lwp_info *lp = get_thread_lwp (thread);
2860
2861 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2862 && thread->last_resume_kind == resume_step
2863 && lp->status_pending_p)
2864 return 1;
2865 else
2866 return 0;
2867 }
2868
2869 /* Select the Nth LWP that has had an event. */
2870
2871 static int
2872 select_event_lwp_callback (thread_info *thread, void *data)
2873 {
2874 struct lwp_info *lp = get_thread_lwp (thread);
2875 int *selector = (int *) data;
2876
2877 gdb_assert (selector != NULL);
2878
2879 /* Select only resumed LWPs that have an event pending. */
2880 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2881 && lp->status_pending_p)
2882 if ((*selector)-- == 0)
2883 return 1;
2884
2885 return 0;
2886 }
2887
2888 /* Select one LWP out of those that have events pending. */
2889
2890 static void
2891 select_event_lwp (struct lwp_info **orig_lp)
2892 {
2893 int num_events = 0;
2894 int random_selector;
2895 struct thread_info *event_thread = NULL;
2896
2897 /* In all-stop, give preference to the LWP that is being
2898 single-stepped. There will be at most one, and it's the LWP that
2899 the core is most interested in. If we didn't do this, then we'd
2900 have to handle pending step SIGTRAPs somehow in case the core
2901 later continues the previously-stepped thread, otherwise we'd
2902 report the pending SIGTRAP, and the core, not having stepped the
2903 thread, wouldn't understand what the trap was for, and therefore
2904 would report it to the user as a random signal. */
2905 if (!non_stop)
2906 {
2907 event_thread
2908 = (struct thread_info *) find_inferior (&all_threads,
2909 select_singlestep_lwp_callback,
2910 NULL);
2911 if (event_thread != NULL)
2912 {
2913 if (debug_threads)
2914 debug_printf ("SEL: Select single-step %s\n",
2915 target_pid_to_str (ptid_of (event_thread)));
2916 }
2917 }
2918 if (event_thread == NULL)
2919 {
2920 /* No single-stepping LWP. Select one at random, out of those
2921 which have had events. */
2922
2923 /* First see how many events we have. */
2924 find_inferior (&all_threads, count_events_callback, &num_events);
2925 gdb_assert (num_events > 0);
2926
2927 /* Now randomly pick a LWP out of those that have had
2928 events. */
2929 random_selector = (int)
2930 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2931
2932 if (debug_threads && num_events > 1)
2933 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2934 num_events, random_selector);
2935
2936 event_thread
2937 = (struct thread_info *) find_inferior (&all_threads,
2938 select_event_lwp_callback,
2939 &random_selector);
2940 }
2941
2942 if (event_thread != NULL)
2943 {
2944 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2945
2946 /* Switch the event LWP. */
2947 *orig_lp = event_lp;
2948 }
2949 }
2950
2951 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2952 NULL. */
2953
2954 static void
2955 unsuspend_all_lwps (struct lwp_info *except)
2956 {
2957 for_each_thread ([&] (thread_info *thread)
2958 {
2959 lwp_info *lwp = get_thread_lwp (thread);
2960
2961 if (lwp != except)
2962 lwp_suspended_decr (lwp);
2963 });
2964 }
2965
2966 static void move_out_of_jump_pad_callback (thread_info *thread);
2967 static bool stuck_in_jump_pad_callback (thread_info *thread);
2968 static int lwp_running (thread_info *thread, void *data);
2969 static ptid_t linux_wait_1 (ptid_t ptid,
2970 struct target_waitstatus *ourstatus,
2971 int target_options);
2972
2973 /* Stabilize threads (move out of jump pads).
2974
2975 If a thread is midway collecting a fast tracepoint, we need to
2976 finish the collection and move it out of the jump pad before
2977 reporting the signal.
2978
2979 This avoids recursion while collecting (when a signal arrives
2980 midway, and the signal handler itself collects), which would trash
2981 the trace buffer. In case the user set a breakpoint in a signal
2982 handler, this avoids the backtrace showing the jump pad, etc..
2983 Most importantly, there are certain things we can't do safely if
2984 threads are stopped in a jump pad (or in its callee's). For
2985 example:
2986
2987 - starting a new trace run. A thread still collecting the
2988 previous run, could trash the trace buffer when resumed. The trace
2989 buffer control structures would have been reset but the thread had
2990 no way to tell. The thread could even midway memcpy'ing to the
2991 buffer, which would mean that when resumed, it would clobber the
2992 trace buffer that had been set for a new run.
2993
2994 - we can't rewrite/reuse the jump pads for new tracepoints
2995 safely. Say you do tstart while a thread is stopped midway while
2996 collecting. When the thread is later resumed, it finishes the
2997 collection, and returns to the jump pad, to execute the original
2998 instruction that was under the tracepoint jump at the time the
2999 older run had been started. If the jump pad had been rewritten
3000 since for something else in the new run, the thread would now
3001 execute the wrong / random instructions. */
3002
3003 static void
3004 linux_stabilize_threads (void)
3005 {
3006 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
3007
3008 if (thread_stuck != NULL)
3009 {
3010 if (debug_threads)
3011 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3012 lwpid_of (thread_stuck));
3013 return;
3014 }
3015
3016 thread_info *saved_thread = current_thread;
3017
3018 stabilizing_threads = 1;
3019
3020 /* Kick 'em all. */
3021 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3022
3023 /* Loop until all are stopped out of the jump pads. */
3024 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3025 {
3026 struct target_waitstatus ourstatus;
3027 struct lwp_info *lwp;
3028 int wstat;
3029
3030 /* Note that we go through the full wait even loop. While
3031 moving threads out of jump pad, we need to be able to step
3032 over internal breakpoints and such. */
3033 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3034
3035 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3036 {
3037 lwp = get_thread_lwp (current_thread);
3038
3039 /* Lock it. */
3040 lwp_suspended_inc (lwp);
3041
3042 if (ourstatus.value.sig != GDB_SIGNAL_0
3043 || current_thread->last_resume_kind == resume_stop)
3044 {
3045 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3046 enqueue_one_deferred_signal (lwp, &wstat);
3047 }
3048 }
3049 }
3050
3051 unsuspend_all_lwps (NULL);
3052
3053 stabilizing_threads = 0;
3054
3055 current_thread = saved_thread;
3056
3057 if (debug_threads)
3058 {
3059 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3060
3061 if (thread_stuck != NULL)
3062 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3063 lwpid_of (thread_stuck));
3064 }
3065 }
3066
3067 /* Convenience function that is called when the kernel reports an
3068 event that is not passed out to GDB. */
3069
3070 static ptid_t
3071 ignore_event (struct target_waitstatus *ourstatus)
3072 {
3073 /* If we got an event, there may still be others, as a single
3074 SIGCHLD can indicate more than one child stopped. This forces
3075 another target_wait call. */
3076 async_file_mark ();
3077
3078 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3079 return null_ptid;
3080 }
3081
3082 /* Convenience function that is called when the kernel reports an exit
3083 event. This decides whether to report the event to GDB as a
3084 process exit event, a thread exit event, or to suppress the
3085 event. */
3086
3087 static ptid_t
3088 filter_exit_event (struct lwp_info *event_child,
3089 struct target_waitstatus *ourstatus)
3090 {
3091 struct thread_info *thread = get_lwp_thread (event_child);
3092 ptid_t ptid = ptid_of (thread);
3093
3094 if (!last_thread_of_process_p (pid_of (thread)))
3095 {
3096 if (report_thread_events)
3097 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3098 else
3099 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3100
3101 delete_lwp (event_child);
3102 }
3103 return ptid;
3104 }
3105
3106 /* Returns 1 if GDB is interested in any event_child syscalls. */
3107
3108 static int
3109 gdb_catching_syscalls_p (struct lwp_info *event_child)
3110 {
3111 struct thread_info *thread = get_lwp_thread (event_child);
3112 struct process_info *proc = get_thread_process (thread);
3113
3114 return !proc->syscalls_to_catch.empty ();
3115 }
3116
3117 /* Returns 1 if GDB is interested in the event_child syscall.
3118 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3119
3120 static int
3121 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3122 {
3123 int sysno;
3124 struct thread_info *thread = get_lwp_thread (event_child);
3125 struct process_info *proc = get_thread_process (thread);
3126
3127 if (proc->syscalls_to_catch.empty ())
3128 return 0;
3129
3130 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3131 return 1;
3132
3133 get_syscall_trapinfo (event_child, &sysno);
3134
3135 for (int iter : proc->syscalls_to_catch)
3136 if (iter == sysno)
3137 return 1;
3138
3139 return 0;
3140 }
3141
3142 /* Wait for process, returns status. */
3143
3144 static ptid_t
3145 linux_wait_1 (ptid_t ptid,
3146 struct target_waitstatus *ourstatus, int target_options)
3147 {
3148 int w;
3149 struct lwp_info *event_child;
3150 int options;
3151 int pid;
3152 int step_over_finished;
3153 int bp_explains_trap;
3154 int maybe_internal_trap;
3155 int report_to_gdb;
3156 int trace_event;
3157 int in_step_range;
3158 int any_resumed;
3159
3160 if (debug_threads)
3161 {
3162 debug_enter ();
3163 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3164 }
3165
3166 /* Translate generic target options into linux options. */
3167 options = __WALL;
3168 if (target_options & TARGET_WNOHANG)
3169 options |= WNOHANG;
3170
3171 bp_explains_trap = 0;
3172 trace_event = 0;
3173 in_step_range = 0;
3174 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3175
3176 auto status_pending_p_any = [&] (thread_info *thread)
3177 {
3178 return status_pending_p_callback (thread, minus_one_ptid);
3179 };
3180
3181 /* Find a resumed LWP, if any. */
3182 if (find_thread (status_pending_p_any) != NULL)
3183 any_resumed = 1;
3184 else if ((find_inferior (&all_threads,
3185 not_stopped_callback,
3186 &minus_one_ptid) != NULL))
3187 any_resumed = 1;
3188 else
3189 any_resumed = 0;
3190
3191 if (ptid_equal (step_over_bkpt, null_ptid))
3192 pid = linux_wait_for_event (ptid, &w, options);
3193 else
3194 {
3195 if (debug_threads)
3196 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3197 target_pid_to_str (step_over_bkpt));
3198 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3199 }
3200
3201 if (pid == 0 || (pid == -1 && !any_resumed))
3202 {
3203 gdb_assert (target_options & TARGET_WNOHANG);
3204
3205 if (debug_threads)
3206 {
3207 debug_printf ("linux_wait_1 ret = null_ptid, "
3208 "TARGET_WAITKIND_IGNORE\n");
3209 debug_exit ();
3210 }
3211
3212 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3213 return null_ptid;
3214 }
3215 else if (pid == -1)
3216 {
3217 if (debug_threads)
3218 {
3219 debug_printf ("linux_wait_1 ret = null_ptid, "
3220 "TARGET_WAITKIND_NO_RESUMED\n");
3221 debug_exit ();
3222 }
3223
3224 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3225 return null_ptid;
3226 }
3227
3228 event_child = get_thread_lwp (current_thread);
3229
3230 /* linux_wait_for_event only returns an exit status for the last
3231 child of a process. Report it. */
3232 if (WIFEXITED (w) || WIFSIGNALED (w))
3233 {
3234 if (WIFEXITED (w))
3235 {
3236 ourstatus->kind = TARGET_WAITKIND_EXITED;
3237 ourstatus->value.integer = WEXITSTATUS (w);
3238
3239 if (debug_threads)
3240 {
3241 debug_printf ("linux_wait_1 ret = %s, exited with "
3242 "retcode %d\n",
3243 target_pid_to_str (ptid_of (current_thread)),
3244 WEXITSTATUS (w));
3245 debug_exit ();
3246 }
3247 }
3248 else
3249 {
3250 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3251 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3252
3253 if (debug_threads)
3254 {
3255 debug_printf ("linux_wait_1 ret = %s, terminated with "
3256 "signal %d\n",
3257 target_pid_to_str (ptid_of (current_thread)),
3258 WTERMSIG (w));
3259 debug_exit ();
3260 }
3261 }
3262
3263 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3264 return filter_exit_event (event_child, ourstatus);
3265
3266 return ptid_of (current_thread);
3267 }
3268
3269 /* If step-over executes a breakpoint instruction, in the case of a
3270 hardware single step it means a gdb/gdbserver breakpoint had been
3271 planted on top of a permanent breakpoint, in the case of a software
3272 single step it may just mean that gdbserver hit the reinsert breakpoint.
3273 The PC has been adjusted by save_stop_reason to point at
3274 the breakpoint address.
3275 So in the case of the hardware single step advance the PC manually
3276 past the breakpoint and in the case of software single step advance only
3277 if it's not the single_step_breakpoint we are hitting.
3278 This avoids that a program would keep trapping a permanent breakpoint
3279 forever. */
3280 if (!ptid_equal (step_over_bkpt, null_ptid)
3281 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3282 && (event_child->stepping
3283 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3284 {
3285 int increment_pc = 0;
3286 int breakpoint_kind = 0;
3287 CORE_ADDR stop_pc = event_child->stop_pc;
3288
3289 breakpoint_kind =
3290 the_target->breakpoint_kind_from_current_state (&stop_pc);
3291 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3292
3293 if (debug_threads)
3294 {
3295 debug_printf ("step-over for %s executed software breakpoint\n",
3296 target_pid_to_str (ptid_of (current_thread)));
3297 }
3298
3299 if (increment_pc != 0)
3300 {
3301 struct regcache *regcache
3302 = get_thread_regcache (current_thread, 1);
3303
3304 event_child->stop_pc += increment_pc;
3305 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3306
3307 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3308 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3309 }
3310 }
3311
3312 /* If this event was not handled before, and is not a SIGTRAP, we
3313 report it. SIGILL and SIGSEGV are also treated as traps in case
3314 a breakpoint is inserted at the current PC. If this target does
3315 not support internal breakpoints at all, we also report the
3316 SIGTRAP without further processing; it's of no concern to us. */
3317 maybe_internal_trap
3318 = (supports_breakpoints ()
3319 && (WSTOPSIG (w) == SIGTRAP
3320 || ((WSTOPSIG (w) == SIGILL
3321 || WSTOPSIG (w) == SIGSEGV)
3322 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3323
3324 if (maybe_internal_trap)
3325 {
3326 /* Handle anything that requires bookkeeping before deciding to
3327 report the event or continue waiting. */
3328
3329 /* First check if we can explain the SIGTRAP with an internal
3330 breakpoint, or if we should possibly report the event to GDB.
3331 Do this before anything that may remove or insert a
3332 breakpoint. */
3333 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3334
3335 /* We have a SIGTRAP, possibly a step-over dance has just
3336 finished. If so, tweak the state machine accordingly,
3337 reinsert breakpoints and delete any single-step
3338 breakpoints. */
3339 step_over_finished = finish_step_over (event_child);
3340
3341 /* Now invoke the callbacks of any internal breakpoints there. */
3342 check_breakpoints (event_child->stop_pc);
3343
3344 /* Handle tracepoint data collecting. This may overflow the
3345 trace buffer, and cause a tracing stop, removing
3346 breakpoints. */
3347 trace_event = handle_tracepoints (event_child);
3348
3349 if (bp_explains_trap)
3350 {
3351 if (debug_threads)
3352 debug_printf ("Hit a gdbserver breakpoint.\n");
3353 }
3354 }
3355 else
3356 {
3357 /* We have some other signal, possibly a step-over dance was in
3358 progress, and it should be cancelled too. */
3359 step_over_finished = finish_step_over (event_child);
3360 }
3361
3362 /* We have all the data we need. Either report the event to GDB, or
3363 resume threads and keep waiting for more. */
3364
3365 /* If we're collecting a fast tracepoint, finish the collection and
3366 move out of the jump pad before delivering a signal. See
3367 linux_stabilize_threads. */
3368
3369 if (WIFSTOPPED (w)
3370 && WSTOPSIG (w) != SIGTRAP
3371 && supports_fast_tracepoints ()
3372 && agent_loaded_p ())
3373 {
3374 if (debug_threads)
3375 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3376 "to defer or adjust it.\n",
3377 WSTOPSIG (w), lwpid_of (current_thread));
3378
3379 /* Allow debugging the jump pad itself. */
3380 if (current_thread->last_resume_kind != resume_step
3381 && maybe_move_out_of_jump_pad (event_child, &w))
3382 {
3383 enqueue_one_deferred_signal (event_child, &w);
3384
3385 if (debug_threads)
3386 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3387 WSTOPSIG (w), lwpid_of (current_thread));
3388
3389 linux_resume_one_lwp (event_child, 0, 0, NULL);
3390
3391 if (debug_threads)
3392 debug_exit ();
3393 return ignore_event (ourstatus);
3394 }
3395 }
3396
3397 if (event_child->collecting_fast_tracepoint
3398 != fast_tpoint_collect_result::not_collecting)
3399 {
3400 if (debug_threads)
3401 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3402 "Check if we're already there.\n",
3403 lwpid_of (current_thread),
3404 (int) event_child->collecting_fast_tracepoint);
3405
3406 trace_event = 1;
3407
3408 event_child->collecting_fast_tracepoint
3409 = linux_fast_tracepoint_collecting (event_child, NULL);
3410
3411 if (event_child->collecting_fast_tracepoint
3412 != fast_tpoint_collect_result::before_insn)
3413 {
3414 /* No longer need this breakpoint. */
3415 if (event_child->exit_jump_pad_bkpt != NULL)
3416 {
3417 if (debug_threads)
3418 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3419 "stopping all threads momentarily.\n");
3420
3421 /* Other running threads could hit this breakpoint.
3422 We don't handle moribund locations like GDB does,
3423 instead we always pause all threads when removing
3424 breakpoints, so that any step-over or
3425 decr_pc_after_break adjustment is always taken
3426 care of while the breakpoint is still
3427 inserted. */
3428 stop_all_lwps (1, event_child);
3429
3430 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3431 event_child->exit_jump_pad_bkpt = NULL;
3432
3433 unstop_all_lwps (1, event_child);
3434
3435 gdb_assert (event_child->suspended >= 0);
3436 }
3437 }
3438
3439 if (event_child->collecting_fast_tracepoint
3440 == fast_tpoint_collect_result::not_collecting)
3441 {
3442 if (debug_threads)
3443 debug_printf ("fast tracepoint finished "
3444 "collecting successfully.\n");
3445
3446 /* We may have a deferred signal to report. */
3447 if (dequeue_one_deferred_signal (event_child, &w))
3448 {
3449 if (debug_threads)
3450 debug_printf ("dequeued one signal.\n");
3451 }
3452 else
3453 {
3454 if (debug_threads)
3455 debug_printf ("no deferred signals.\n");
3456
3457 if (stabilizing_threads)
3458 {
3459 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3460 ourstatus->value.sig = GDB_SIGNAL_0;
3461
3462 if (debug_threads)
3463 {
3464 debug_printf ("linux_wait_1 ret = %s, stopped "
3465 "while stabilizing threads\n",
3466 target_pid_to_str (ptid_of (current_thread)));
3467 debug_exit ();
3468 }
3469
3470 return ptid_of (current_thread);
3471 }
3472 }
3473 }
3474 }
3475
3476 /* Check whether GDB would be interested in this event. */
3477
3478 /* Check if GDB is interested in this syscall. */
3479 if (WIFSTOPPED (w)
3480 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3481 && !gdb_catch_this_syscall_p (event_child))
3482 {
3483 if (debug_threads)
3484 {
3485 debug_printf ("Ignored syscall for LWP %ld.\n",
3486 lwpid_of (current_thread));
3487 }
3488
3489 linux_resume_one_lwp (event_child, event_child->stepping,
3490 0, NULL);
3491
3492 if (debug_threads)
3493 debug_exit ();
3494 return ignore_event (ourstatus);
3495 }
3496
3497 /* If GDB is not interested in this signal, don't stop other
3498 threads, and don't report it to GDB. Just resume the inferior
3499 right away. We do this for threading-related signals as well as
3500 any that GDB specifically requested we ignore. But never ignore
3501 SIGSTOP if we sent it ourselves, and do not ignore signals when
3502 stepping - they may require special handling to skip the signal
3503 handler. Also never ignore signals that could be caused by a
3504 breakpoint. */
3505 if (WIFSTOPPED (w)
3506 && current_thread->last_resume_kind != resume_step
3507 && (
3508 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3509 (current_process ()->priv->thread_db != NULL
3510 && (WSTOPSIG (w) == __SIGRTMIN
3511 || WSTOPSIG (w) == __SIGRTMIN + 1))
3512 ||
3513 #endif
3514 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3515 && !(WSTOPSIG (w) == SIGSTOP
3516 && current_thread->last_resume_kind == resume_stop)
3517 && !linux_wstatus_maybe_breakpoint (w))))
3518 {
3519 siginfo_t info, *info_p;
3520
3521 if (debug_threads)
3522 debug_printf ("Ignored signal %d for LWP %ld.\n",
3523 WSTOPSIG (w), lwpid_of (current_thread));
3524
3525 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3526 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3527 info_p = &info;
3528 else
3529 info_p = NULL;
3530
3531 if (step_over_finished)
3532 {
3533 /* We cancelled this thread's step-over above. We still
3534 need to unsuspend all other LWPs, and set them back
3535 running again while the signal handler runs. */
3536 unsuspend_all_lwps (event_child);
3537
3538 /* Enqueue the pending signal info so that proceed_all_lwps
3539 doesn't lose it. */
3540 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3541
3542 proceed_all_lwps ();
3543 }
3544 else
3545 {
3546 linux_resume_one_lwp (event_child, event_child->stepping,
3547 WSTOPSIG (w), info_p);
3548 }
3549
3550 if (debug_threads)
3551 debug_exit ();
3552
3553 return ignore_event (ourstatus);
3554 }
3555
3556 /* Note that all addresses are always "out of the step range" when
3557 there's no range to begin with. */
3558 in_step_range = lwp_in_step_range (event_child);
3559
3560 /* If GDB wanted this thread to single step, and the thread is out
3561 of the step range, we always want to report the SIGTRAP, and let
3562 GDB handle it. Watchpoints should always be reported. So should
3563 signals we can't explain. A SIGTRAP we can't explain could be a
3564 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3565 do, we're be able to handle GDB breakpoints on top of internal
3566 breakpoints, by handling the internal breakpoint and still
3567 reporting the event to GDB. If we don't, we're out of luck, GDB
3568 won't see the breakpoint hit. If we see a single-step event but
3569 the thread should be continuing, don't pass the trap to gdb.
3570 That indicates that we had previously finished a single-step but
3571 left the single-step pending -- see
3572 complete_ongoing_step_over. */
3573 report_to_gdb = (!maybe_internal_trap
3574 || (current_thread->last_resume_kind == resume_step
3575 && !in_step_range)
3576 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3577 || (!in_step_range
3578 && !bp_explains_trap
3579 && !trace_event
3580 && !step_over_finished
3581 && !(current_thread->last_resume_kind == resume_continue
3582 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3583 || (gdb_breakpoint_here (event_child->stop_pc)
3584 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3585 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3586 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3587
3588 run_breakpoint_commands (event_child->stop_pc);
3589
3590 /* We found no reason GDB would want us to stop. We either hit one
3591 of our own breakpoints, or finished an internal step GDB
3592 shouldn't know about. */
3593 if (!report_to_gdb)
3594 {
3595 if (debug_threads)
3596 {
3597 if (bp_explains_trap)
3598 debug_printf ("Hit a gdbserver breakpoint.\n");
3599 if (step_over_finished)
3600 debug_printf ("Step-over finished.\n");
3601 if (trace_event)
3602 debug_printf ("Tracepoint event.\n");
3603 if (lwp_in_step_range (event_child))
3604 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3605 paddress (event_child->stop_pc),
3606 paddress (event_child->step_range_start),
3607 paddress (event_child->step_range_end));
3608 }
3609
3610 /* We're not reporting this breakpoint to GDB, so apply the
3611 decr_pc_after_break adjustment to the inferior's regcache
3612 ourselves. */
3613
3614 if (the_low_target.set_pc != NULL)
3615 {
3616 struct regcache *regcache
3617 = get_thread_regcache (current_thread, 1);
3618 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3619 }
3620
3621 if (step_over_finished)
3622 {
3623 /* If we have finished stepping over a breakpoint, we've
3624 stopped and suspended all LWPs momentarily except the
3625 stepping one. This is where we resume them all again.
3626 We're going to keep waiting, so use proceed, which
3627 handles stepping over the next breakpoint. */
3628 unsuspend_all_lwps (event_child);
3629 }
3630 else
3631 {
3632 /* Remove the single-step breakpoints if any. Note that
3633 there isn't single-step breakpoint if we finished stepping
3634 over. */
3635 if (can_software_single_step ()
3636 && has_single_step_breakpoints (current_thread))
3637 {
3638 stop_all_lwps (0, event_child);
3639 delete_single_step_breakpoints (current_thread);
3640 unstop_all_lwps (0, event_child);
3641 }
3642 }
3643
3644 if (debug_threads)
3645 debug_printf ("proceeding all threads.\n");
3646 proceed_all_lwps ();
3647
3648 if (debug_threads)
3649 debug_exit ();
3650
3651 return ignore_event (ourstatus);
3652 }
3653
3654 if (debug_threads)
3655 {
3656 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3657 {
3658 std::string str
3659 = target_waitstatus_to_string (&event_child->waitstatus);
3660
3661 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3662 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3663 }
3664 if (current_thread->last_resume_kind == resume_step)
3665 {
3666 if (event_child->step_range_start == event_child->step_range_end)
3667 debug_printf ("GDB wanted to single-step, reporting event.\n");
3668 else if (!lwp_in_step_range (event_child))
3669 debug_printf ("Out of step range, reporting event.\n");
3670 }
3671 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3672 debug_printf ("Stopped by watchpoint.\n");
3673 else if (gdb_breakpoint_here (event_child->stop_pc))
3674 debug_printf ("Stopped by GDB breakpoint.\n");
3675 if (debug_threads)
3676 debug_printf ("Hit a non-gdbserver trap event.\n");
3677 }
3678
3679 /* Alright, we're going to report a stop. */
3680
3681 /* Remove single-step breakpoints. */
3682 if (can_software_single_step ())
3683 {
3684 /* Remove single-step breakpoints or not. It it is true, stop all
3685 lwps, so that other threads won't hit the breakpoint in the
3686 staled memory. */
3687 int remove_single_step_breakpoints_p = 0;
3688
3689 if (non_stop)
3690 {
3691 remove_single_step_breakpoints_p
3692 = has_single_step_breakpoints (current_thread);
3693 }
3694 else
3695 {
3696 /* In all-stop, a stop reply cancels all previous resume
3697 requests. Delete all single-step breakpoints. */
3698
3699 find_thread ([&] (thread_info *thread) {
3700 if (has_single_step_breakpoints (thread))
3701 {
3702 remove_single_step_breakpoints_p = 1;
3703 return true;
3704 }
3705
3706 return false;
3707 });
3708 }
3709
3710 if (remove_single_step_breakpoints_p)
3711 {
3712 /* If we remove single-step breakpoints from memory, stop all lwps,
3713 so that other threads won't hit the breakpoint in the staled
3714 memory. */
3715 stop_all_lwps (0, event_child);
3716
3717 if (non_stop)
3718 {
3719 gdb_assert (has_single_step_breakpoints (current_thread));
3720 delete_single_step_breakpoints (current_thread);
3721 }
3722 else
3723 {
3724 for_each_thread ([] (thread_info *thread){
3725 if (has_single_step_breakpoints (thread))
3726 delete_single_step_breakpoints (thread);
3727 });
3728 }
3729
3730 unstop_all_lwps (0, event_child);
3731 }
3732 }
3733
3734 if (!stabilizing_threads)
3735 {
3736 /* In all-stop, stop all threads. */
3737 if (!non_stop)
3738 stop_all_lwps (0, NULL);
3739
3740 if (step_over_finished)
3741 {
3742 if (!non_stop)
3743 {
3744 /* If we were doing a step-over, all other threads but
3745 the stepping one had been paused in start_step_over,
3746 with their suspend counts incremented. We don't want
3747 to do a full unstop/unpause, because we're in
3748 all-stop mode (so we want threads stopped), but we
3749 still need to unsuspend the other threads, to
3750 decrement their `suspended' count back. */
3751 unsuspend_all_lwps (event_child);
3752 }
3753 else
3754 {
3755 /* If we just finished a step-over, then all threads had
3756 been momentarily paused. In all-stop, that's fine,
3757 we want threads stopped by now anyway. In non-stop,
3758 we need to re-resume threads that GDB wanted to be
3759 running. */
3760 unstop_all_lwps (1, event_child);
3761 }
3762 }
3763
3764 /* If we're not waiting for a specific LWP, choose an event LWP
3765 from among those that have had events. Giving equal priority
3766 to all LWPs that have had events helps prevent
3767 starvation. */
3768 if (ptid_equal (ptid, minus_one_ptid))
3769 {
3770 event_child->status_pending_p = 1;
3771 event_child->status_pending = w;
3772
3773 select_event_lwp (&event_child);
3774
3775 /* current_thread and event_child must stay in sync. */
3776 current_thread = get_lwp_thread (event_child);
3777
3778 event_child->status_pending_p = 0;
3779 w = event_child->status_pending;
3780 }
3781
3782
3783 /* Stabilize threads (move out of jump pads). */
3784 if (!non_stop)
3785 stabilize_threads ();
3786 }
3787 else
3788 {
3789 /* If we just finished a step-over, then all threads had been
3790 momentarily paused. In all-stop, that's fine, we want
3791 threads stopped by now anyway. In non-stop, we need to
3792 re-resume threads that GDB wanted to be running. */
3793 if (step_over_finished)
3794 unstop_all_lwps (1, event_child);
3795 }
3796
3797 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3798 {
3799 /* If the reported event is an exit, fork, vfork or exec, let
3800 GDB know. */
3801
3802 /* Break the unreported fork relationship chain. */
3803 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3804 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3805 {
3806 event_child->fork_relative->fork_relative = NULL;
3807 event_child->fork_relative = NULL;
3808 }
3809
3810 *ourstatus = event_child->waitstatus;
3811 /* Clear the event lwp's waitstatus since we handled it already. */
3812 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3813 }
3814 else
3815 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3816
3817 /* Now that we've selected our final event LWP, un-adjust its PC if
3818 it was a software breakpoint, and the client doesn't know we can
3819 adjust the breakpoint ourselves. */
3820 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3821 && !swbreak_feature)
3822 {
3823 int decr_pc = the_low_target.decr_pc_after_break;
3824
3825 if (decr_pc != 0)
3826 {
3827 struct regcache *regcache
3828 = get_thread_regcache (current_thread, 1);
3829 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3830 }
3831 }
3832
3833 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3834 {
3835 get_syscall_trapinfo (event_child,
3836 &ourstatus->value.syscall_number);
3837 ourstatus->kind = event_child->syscall_state;
3838 }
3839 else if (current_thread->last_resume_kind == resume_stop
3840 && WSTOPSIG (w) == SIGSTOP)
3841 {
3842 /* A thread that has been requested to stop by GDB with vCont;t,
3843 and it stopped cleanly, so report as SIG0. The use of
3844 SIGSTOP is an implementation detail. */
3845 ourstatus->value.sig = GDB_SIGNAL_0;
3846 }
3847 else if (current_thread->last_resume_kind == resume_stop
3848 && WSTOPSIG (w) != SIGSTOP)
3849 {
3850 /* A thread that has been requested to stop by GDB with vCont;t,
3851 but, it stopped for other reasons. */
3852 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3853 }
3854 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3855 {
3856 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3857 }
3858
3859 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3860
3861 if (debug_threads)
3862 {
3863 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3864 target_pid_to_str (ptid_of (current_thread)),
3865 ourstatus->kind, ourstatus->value.sig);
3866 debug_exit ();
3867 }
3868
3869 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3870 return filter_exit_event (event_child, ourstatus);
3871
3872 return ptid_of (current_thread);
3873 }
3874
3875 /* Get rid of any pending event in the pipe. */
3876 static void
3877 async_file_flush (void)
3878 {
3879 int ret;
3880 char buf;
3881
3882 do
3883 ret = read (linux_event_pipe[0], &buf, 1);
3884 while (ret >= 0 || (ret == -1 && errno == EINTR));
3885 }
3886
3887 /* Put something in the pipe, so the event loop wakes up. */
3888 static void
3889 async_file_mark (void)
3890 {
3891 int ret;
3892
3893 async_file_flush ();
3894
3895 do
3896 ret = write (linux_event_pipe[1], "+", 1);
3897 while (ret == 0 || (ret == -1 && errno == EINTR));
3898
3899 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3900 be awakened anyway. */
3901 }
3902
3903 static ptid_t
3904 linux_wait (ptid_t ptid,
3905 struct target_waitstatus *ourstatus, int target_options)
3906 {
3907 ptid_t event_ptid;
3908
3909 /* Flush the async file first. */
3910 if (target_is_async_p ())
3911 async_file_flush ();
3912
3913 do
3914 {
3915 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3916 }
3917 while ((target_options & TARGET_WNOHANG) == 0
3918 && ptid_equal (event_ptid, null_ptid)
3919 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3920
3921 /* If at least one stop was reported, there may be more. A single
3922 SIGCHLD can signal more than one child stop. */
3923 if (target_is_async_p ()
3924 && (target_options & TARGET_WNOHANG) != 0
3925 && !ptid_equal (event_ptid, null_ptid))
3926 async_file_mark ();
3927
3928 return event_ptid;
3929 }
3930
3931 /* Send a signal to an LWP. */
3932
3933 static int
3934 kill_lwp (unsigned long lwpid, int signo)
3935 {
3936 int ret;
3937
3938 errno = 0;
3939 ret = syscall (__NR_tkill, lwpid, signo);
3940 if (errno == ENOSYS)
3941 {
3942 /* If tkill fails, then we are not using nptl threads, a
3943 configuration we no longer support. */
3944 perror_with_name (("tkill"));
3945 }
3946 return ret;
3947 }
3948
3949 void
3950 linux_stop_lwp (struct lwp_info *lwp)
3951 {
3952 send_sigstop (lwp);
3953 }
3954
3955 static void
3956 send_sigstop (struct lwp_info *lwp)
3957 {
3958 int pid;
3959
3960 pid = lwpid_of (get_lwp_thread (lwp));
3961
3962 /* If we already have a pending stop signal for this process, don't
3963 send another. */
3964 if (lwp->stop_expected)
3965 {
3966 if (debug_threads)
3967 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3968
3969 return;
3970 }
3971
3972 if (debug_threads)
3973 debug_printf ("Sending sigstop to lwp %d\n", pid);
3974
3975 lwp->stop_expected = 1;
3976 kill_lwp (pid, SIGSTOP);
3977 }
3978
3979 static int
3980 send_sigstop_callback (thread_info *thread, void *except)
3981 {
3982 struct lwp_info *lwp = get_thread_lwp (thread);
3983
3984 /* Ignore EXCEPT. */
3985 if (lwp == except)
3986 return 0;
3987
3988 if (lwp->stopped)
3989 return 0;
3990
3991 send_sigstop (lwp);
3992 return 0;
3993 }
3994
3995 /* Increment the suspend count of an LWP, and stop it, if not stopped
3996 yet. */
3997 static int
3998 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
3999 {
4000 struct lwp_info *lwp = get_thread_lwp (thread);
4001
4002 /* Ignore EXCEPT. */
4003 if (lwp == except)
4004 return 0;
4005
4006 lwp_suspended_inc (lwp);
4007
4008 return send_sigstop_callback (thread, except);
4009 }
4010
4011 static void
4012 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4013 {
4014 /* Store the exit status for later. */
4015 lwp->status_pending_p = 1;
4016 lwp->status_pending = wstat;
4017
4018 /* Store in waitstatus as well, as there's nothing else to process
4019 for this event. */
4020 if (WIFEXITED (wstat))
4021 {
4022 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4023 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4024 }
4025 else if (WIFSIGNALED (wstat))
4026 {
4027 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4028 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4029 }
4030
4031 /* Prevent trying to stop it. */
4032 lwp->stopped = 1;
4033
4034 /* No further stops are expected from a dead lwp. */
4035 lwp->stop_expected = 0;
4036 }
4037
4038 /* Return true if LWP has exited already, and has a pending exit event
4039 to report to GDB. */
4040
4041 static int
4042 lwp_is_marked_dead (struct lwp_info *lwp)
4043 {
4044 return (lwp->status_pending_p
4045 && (WIFEXITED (lwp->status_pending)
4046 || WIFSIGNALED (lwp->status_pending)));
4047 }
4048
4049 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4050
4051 static void
4052 wait_for_sigstop (void)
4053 {
4054 struct thread_info *saved_thread;
4055 ptid_t saved_tid;
4056 int wstat;
4057 int ret;
4058
4059 saved_thread = current_thread;
4060 if (saved_thread != NULL)
4061 saved_tid = saved_thread->id;
4062 else
4063 saved_tid = null_ptid; /* avoid bogus unused warning */
4064
4065 if (debug_threads)
4066 debug_printf ("wait_for_sigstop: pulling events\n");
4067
4068 /* Passing NULL_PTID as filter indicates we want all events to be
4069 left pending. Eventually this returns when there are no
4070 unwaited-for children left. */
4071 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4072 &wstat, __WALL);
4073 gdb_assert (ret == -1);
4074
4075 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4076 current_thread = saved_thread;
4077 else
4078 {
4079 if (debug_threads)
4080 debug_printf ("Previously current thread died.\n");
4081
4082 /* We can't change the current inferior behind GDB's back,
4083 otherwise, a subsequent command may apply to the wrong
4084 process. */
4085 current_thread = NULL;
4086 }
4087 }
4088
4089 /* Returns true if THREAD is stopped in a jump pad, and we can't
4090 move it out, because we need to report the stop event to GDB. For
4091 example, if the user puts a breakpoint in the jump pad, it's
4092 because she wants to debug it. */
4093
4094 static bool
4095 stuck_in_jump_pad_callback (thread_info *thread)
4096 {
4097 struct lwp_info *lwp = get_thread_lwp (thread);
4098
4099 if (lwp->suspended != 0)
4100 {
4101 internal_error (__FILE__, __LINE__,
4102 "LWP %ld is suspended, suspended=%d\n",
4103 lwpid_of (thread), lwp->suspended);
4104 }
4105 gdb_assert (lwp->stopped);
4106
4107 /* Allow debugging the jump pad, gdb_collect, etc.. */
4108 return (supports_fast_tracepoints ()
4109 && agent_loaded_p ()
4110 && (gdb_breakpoint_here (lwp->stop_pc)
4111 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4112 || thread->last_resume_kind == resume_step)
4113 && (linux_fast_tracepoint_collecting (lwp, NULL)
4114 != fast_tpoint_collect_result::not_collecting));
4115 }
4116
4117 static void
4118 move_out_of_jump_pad_callback (thread_info *thread)
4119 {
4120 struct thread_info *saved_thread;
4121 struct lwp_info *lwp = get_thread_lwp (thread);
4122 int *wstat;
4123
4124 if (lwp->suspended != 0)
4125 {
4126 internal_error (__FILE__, __LINE__,
4127 "LWP %ld is suspended, suspended=%d\n",
4128 lwpid_of (thread), lwp->suspended);
4129 }
4130 gdb_assert (lwp->stopped);
4131
4132 /* For gdb_breakpoint_here. */
4133 saved_thread = current_thread;
4134 current_thread = thread;
4135
4136 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4137
4138 /* Allow debugging the jump pad, gdb_collect, etc. */
4139 if (!gdb_breakpoint_here (lwp->stop_pc)
4140 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4141 && thread->last_resume_kind != resume_step
4142 && maybe_move_out_of_jump_pad (lwp, wstat))
4143 {
4144 if (debug_threads)
4145 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4146 lwpid_of (thread));
4147
4148 if (wstat)
4149 {
4150 lwp->status_pending_p = 0;
4151 enqueue_one_deferred_signal (lwp, wstat);
4152
4153 if (debug_threads)
4154 debug_printf ("Signal %d for LWP %ld deferred "
4155 "(in jump pad)\n",
4156 WSTOPSIG (*wstat), lwpid_of (thread));
4157 }
4158
4159 linux_resume_one_lwp (lwp, 0, 0, NULL);
4160 }
4161 else
4162 lwp_suspended_inc (lwp);
4163
4164 current_thread = saved_thread;
4165 }
4166
4167 static int
4168 lwp_running (thread_info *thread, void *data)
4169 {
4170 struct lwp_info *lwp = get_thread_lwp (thread);
4171
4172 if (lwp_is_marked_dead (lwp))
4173 return 0;
4174 if (lwp->stopped)
4175 return 0;
4176 return 1;
4177 }
4178
4179 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4180 If SUSPEND, then also increase the suspend count of every LWP,
4181 except EXCEPT. */
4182
4183 static void
4184 stop_all_lwps (int suspend, struct lwp_info *except)
4185 {
4186 /* Should not be called recursively. */
4187 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4188
4189 if (debug_threads)
4190 {
4191 debug_enter ();
4192 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4193 suspend ? "stop-and-suspend" : "stop",
4194 except != NULL
4195 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4196 : "none");
4197 }
4198
4199 stopping_threads = (suspend
4200 ? STOPPING_AND_SUSPENDING_THREADS
4201 : STOPPING_THREADS);
4202
4203 if (suspend)
4204 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4205 else
4206 find_inferior (&all_threads, send_sigstop_callback, except);
4207 wait_for_sigstop ();
4208 stopping_threads = NOT_STOPPING_THREADS;
4209
4210 if (debug_threads)
4211 {
4212 debug_printf ("stop_all_lwps done, setting stopping_threads "
4213 "back to !stopping\n");
4214 debug_exit ();
4215 }
4216 }
4217
4218 /* Enqueue one signal in the chain of signals which need to be
4219 delivered to this process on next resume. */
4220
4221 static void
4222 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4223 {
4224 struct pending_signals *p_sig = XNEW (struct pending_signals);
4225
4226 p_sig->prev = lwp->pending_signals;
4227 p_sig->signal = signal;
4228 if (info == NULL)
4229 memset (&p_sig->info, 0, sizeof (siginfo_t));
4230 else
4231 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4232 lwp->pending_signals = p_sig;
4233 }
4234
4235 /* Install breakpoints for software single stepping. */
4236
4237 static void
4238 install_software_single_step_breakpoints (struct lwp_info *lwp)
4239 {
4240 struct thread_info *thread = get_lwp_thread (lwp);
4241 struct regcache *regcache = get_thread_regcache (thread, 1);
4242 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4243
4244 current_thread = thread;
4245 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4246
4247 for (CORE_ADDR pc : next_pcs)
4248 set_single_step_breakpoint (pc, current_ptid);
4249
4250 do_cleanups (old_chain);
4251 }
4252
4253 /* Single step via hardware or software single step.
4254 Return 1 if hardware single stepping, 0 if software single stepping
4255 or can't single step. */
4256
4257 static int
4258 single_step (struct lwp_info* lwp)
4259 {
4260 int step = 0;
4261
4262 if (can_hardware_single_step ())
4263 {
4264 step = 1;
4265 }
4266 else if (can_software_single_step ())
4267 {
4268 install_software_single_step_breakpoints (lwp);
4269 step = 0;
4270 }
4271 else
4272 {
4273 if (debug_threads)
4274 debug_printf ("stepping is not implemented on this target");
4275 }
4276
4277 return step;
4278 }
4279
4280 /* The signal can be delivered to the inferior if we are not trying to
4281 finish a fast tracepoint collect. Since signal can be delivered in
4282 the step-over, the program may go to signal handler and trap again
4283 after return from the signal handler. We can live with the spurious
4284 double traps. */
4285
4286 static int
4287 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4288 {
4289 return (lwp->collecting_fast_tracepoint
4290 == fast_tpoint_collect_result::not_collecting);
4291 }
4292
4293 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4294 SIGNAL is nonzero, give it that signal. */
4295
4296 static void
4297 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4298 int step, int signal, siginfo_t *info)
4299 {
4300 struct thread_info *thread = get_lwp_thread (lwp);
4301 struct thread_info *saved_thread;
4302 int ptrace_request;
4303 struct process_info *proc = get_thread_process (thread);
4304
4305 /* Note that target description may not be initialised
4306 (proc->tdesc == NULL) at this point because the program hasn't
4307 stopped at the first instruction yet. It means GDBserver skips
4308 the extra traps from the wrapper program (see option --wrapper).
4309 Code in this function that requires register access should be
4310 guarded by proc->tdesc == NULL or something else. */
4311
4312 if (lwp->stopped == 0)
4313 return;
4314
4315 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4316
4317 fast_tpoint_collect_result fast_tp_collecting
4318 = lwp->collecting_fast_tracepoint;
4319
4320 gdb_assert (!stabilizing_threads
4321 || (fast_tp_collecting
4322 != fast_tpoint_collect_result::not_collecting));
4323
4324 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4325 user used the "jump" command, or "set $pc = foo"). */
4326 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4327 {
4328 /* Collecting 'while-stepping' actions doesn't make sense
4329 anymore. */
4330 release_while_stepping_state_list (thread);
4331 }
4332
4333 /* If we have pending signals or status, and a new signal, enqueue the
4334 signal. Also enqueue the signal if it can't be delivered to the
4335 inferior right now. */
4336 if (signal != 0
4337 && (lwp->status_pending_p
4338 || lwp->pending_signals != NULL
4339 || !lwp_signal_can_be_delivered (lwp)))
4340 {
4341 enqueue_pending_signal (lwp, signal, info);
4342
4343 /* Postpone any pending signal. It was enqueued above. */
4344 signal = 0;
4345 }
4346
4347 if (lwp->status_pending_p)
4348 {
4349 if (debug_threads)
4350 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4351 " has pending status\n",
4352 lwpid_of (thread), step ? "step" : "continue",
4353 lwp->stop_expected ? "expected" : "not expected");
4354 return;
4355 }
4356
4357 saved_thread = current_thread;
4358 current_thread = thread;
4359
4360 /* This bit needs some thinking about. If we get a signal that
4361 we must report while a single-step reinsert is still pending,
4362 we often end up resuming the thread. It might be better to
4363 (ew) allow a stack of pending events; then we could be sure that
4364 the reinsert happened right away and not lose any signals.
4365
4366 Making this stack would also shrink the window in which breakpoints are
4367 uninserted (see comment in linux_wait_for_lwp) but not enough for
4368 complete correctness, so it won't solve that problem. It may be
4369 worthwhile just to solve this one, however. */
4370 if (lwp->bp_reinsert != 0)
4371 {
4372 if (debug_threads)
4373 debug_printf (" pending reinsert at 0x%s\n",
4374 paddress (lwp->bp_reinsert));
4375
4376 if (can_hardware_single_step ())
4377 {
4378 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4379 {
4380 if (step == 0)
4381 warning ("BAD - reinserting but not stepping.");
4382 if (lwp->suspended)
4383 warning ("BAD - reinserting and suspended(%d).",
4384 lwp->suspended);
4385 }
4386 }
4387
4388 step = maybe_hw_step (thread);
4389 }
4390
4391 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4392 {
4393 if (debug_threads)
4394 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4395 " (exit-jump-pad-bkpt)\n",
4396 lwpid_of (thread));
4397 }
4398 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4399 {
4400 if (debug_threads)
4401 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4402 " single-stepping\n",
4403 lwpid_of (thread));
4404
4405 if (can_hardware_single_step ())
4406 step = 1;
4407 else
4408 {
4409 internal_error (__FILE__, __LINE__,
4410 "moving out of jump pad single-stepping"
4411 " not implemented on this target");
4412 }
4413 }
4414
4415 /* If we have while-stepping actions in this thread set it stepping.
4416 If we have a signal to deliver, it may or may not be set to
4417 SIG_IGN, we don't know. Assume so, and allow collecting
4418 while-stepping into a signal handler. A possible smart thing to
4419 do would be to set an internal breakpoint at the signal return
4420 address, continue, and carry on catching this while-stepping
4421 action only when that breakpoint is hit. A future
4422 enhancement. */
4423 if (thread->while_stepping != NULL)
4424 {
4425 if (debug_threads)
4426 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4427 lwpid_of (thread));
4428
4429 step = single_step (lwp);
4430 }
4431
4432 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4433 {
4434 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4435
4436 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4437
4438 if (debug_threads)
4439 {
4440 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4441 (long) lwp->stop_pc);
4442 }
4443 }
4444
4445 /* If we have pending signals, consume one if it can be delivered to
4446 the inferior. */
4447 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4448 {
4449 struct pending_signals **p_sig;
4450
4451 p_sig = &lwp->pending_signals;
4452 while ((*p_sig)->prev != NULL)
4453 p_sig = &(*p_sig)->prev;
4454
4455 signal = (*p_sig)->signal;
4456 if ((*p_sig)->info.si_signo != 0)
4457 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4458 &(*p_sig)->info);
4459
4460 free (*p_sig);
4461 *p_sig = NULL;
4462 }
4463
4464 if (debug_threads)
4465 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4466 lwpid_of (thread), step ? "step" : "continue", signal,
4467 lwp->stop_expected ? "expected" : "not expected");
4468
4469 if (the_low_target.prepare_to_resume != NULL)
4470 the_low_target.prepare_to_resume (lwp);
4471
4472 regcache_invalidate_thread (thread);
4473 errno = 0;
4474 lwp->stepping = step;
4475 if (step)
4476 ptrace_request = PTRACE_SINGLESTEP;
4477 else if (gdb_catching_syscalls_p (lwp))
4478 ptrace_request = PTRACE_SYSCALL;
4479 else
4480 ptrace_request = PTRACE_CONT;
4481 ptrace (ptrace_request,
4482 lwpid_of (thread),
4483 (PTRACE_TYPE_ARG3) 0,
4484 /* Coerce to a uintptr_t first to avoid potential gcc warning
4485 of coercing an 8 byte integer to a 4 byte pointer. */
4486 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4487
4488 current_thread = saved_thread;
4489 if (errno)
4490 perror_with_name ("resuming thread");
4491
4492 /* Successfully resumed. Clear state that no longer makes sense,
4493 and mark the LWP as running. Must not do this before resuming
4494 otherwise if that fails other code will be confused. E.g., we'd
4495 later try to stop the LWP and hang forever waiting for a stop
4496 status. Note that we must not throw after this is cleared,
4497 otherwise handle_zombie_lwp_error would get confused. */
4498 lwp->stopped = 0;
4499 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4500 }
4501
4502 /* Called when we try to resume a stopped LWP and that errors out. If
4503 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4504 or about to become), discard the error, clear any pending status
4505 the LWP may have, and return true (we'll collect the exit status
4506 soon enough). Otherwise, return false. */
4507
4508 static int
4509 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4510 {
4511 struct thread_info *thread = get_lwp_thread (lp);
4512
4513 /* If we get an error after resuming the LWP successfully, we'd
4514 confuse !T state for the LWP being gone. */
4515 gdb_assert (lp->stopped);
4516
4517 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4518 because even if ptrace failed with ESRCH, the tracee may be "not
4519 yet fully dead", but already refusing ptrace requests. In that
4520 case the tracee has 'R (Running)' state for a little bit
4521 (observed in Linux 3.18). See also the note on ESRCH in the
4522 ptrace(2) man page. Instead, check whether the LWP has any state
4523 other than ptrace-stopped. */
4524
4525 /* Don't assume anything if /proc/PID/status can't be read. */
4526 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4527 {
4528 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4529 lp->status_pending_p = 0;
4530 return 1;
4531 }
4532 return 0;
4533 }
4534
4535 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4536 disappears while we try to resume it. */
4537
4538 static void
4539 linux_resume_one_lwp (struct lwp_info *lwp,
4540 int step, int signal, siginfo_t *info)
4541 {
4542 TRY
4543 {
4544 linux_resume_one_lwp_throw (lwp, step, signal, info);
4545 }
4546 CATCH (ex, RETURN_MASK_ERROR)
4547 {
4548 if (!check_ptrace_stopped_lwp_gone (lwp))
4549 throw_exception (ex);
4550 }
4551 END_CATCH
4552 }
4553
4554 /* This function is called once per thread via for_each_thread.
4555 We look up which resume request applies to THREAD and mark it with a
4556 pointer to the appropriate resume request.
4557
4558 This algorithm is O(threads * resume elements), but resume elements
4559 is small (and will remain small at least until GDB supports thread
4560 suspension). */
4561
4562 static void
4563 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4564 {
4565 struct lwp_info *lwp = get_thread_lwp (thread);
4566
4567 for (int ndx = 0; ndx < n; ndx++)
4568 {
4569 ptid_t ptid = resume[ndx].thread;
4570 if (ptid_equal (ptid, minus_one_ptid)
4571 || ptid == thread->id
4572 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4573 of PID'. */
4574 || (ptid_get_pid (ptid) == pid_of (thread)
4575 && (ptid_is_pid (ptid)
4576 || ptid_get_lwp (ptid) == -1)))
4577 {
4578 if (resume[ndx].kind == resume_stop
4579 && thread->last_resume_kind == resume_stop)
4580 {
4581 if (debug_threads)
4582 debug_printf ("already %s LWP %ld at GDB's request\n",
4583 (thread->last_status.kind
4584 == TARGET_WAITKIND_STOPPED)
4585 ? "stopped"
4586 : "stopping",
4587 lwpid_of (thread));
4588
4589 continue;
4590 }
4591
4592 /* Ignore (wildcard) resume requests for already-resumed
4593 threads. */
4594 if (resume[ndx].kind != resume_stop
4595 && thread->last_resume_kind != resume_stop)
4596 {
4597 if (debug_threads)
4598 debug_printf ("already %s LWP %ld at GDB's request\n",
4599 (thread->last_resume_kind
4600 == resume_step)
4601 ? "stepping"
4602 : "continuing",
4603 lwpid_of (thread));
4604 continue;
4605 }
4606
4607 /* Don't let wildcard resumes resume fork children that GDB
4608 does not yet know are new fork children. */
4609 if (lwp->fork_relative != NULL)
4610 {
4611 struct lwp_info *rel = lwp->fork_relative;
4612
4613 if (rel->status_pending_p
4614 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4615 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4616 {
4617 if (debug_threads)
4618 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4619 lwpid_of (thread));
4620 continue;
4621 }
4622 }
4623
4624 /* If the thread has a pending event that has already been
4625 reported to GDBserver core, but GDB has not pulled the
4626 event out of the vStopped queue yet, likewise, ignore the
4627 (wildcard) resume request. */
4628 if (in_queued_stop_replies (thread->id))
4629 {
4630 if (debug_threads)
4631 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4632 lwpid_of (thread));
4633 continue;
4634 }
4635
4636 lwp->resume = &resume[ndx];
4637 thread->last_resume_kind = lwp->resume->kind;
4638
4639 lwp->step_range_start = lwp->resume->step_range_start;
4640 lwp->step_range_end = lwp->resume->step_range_end;
4641
4642 /* If we had a deferred signal to report, dequeue one now.
4643 This can happen if LWP gets more than one signal while
4644 trying to get out of a jump pad. */
4645 if (lwp->stopped
4646 && !lwp->status_pending_p
4647 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4648 {
4649 lwp->status_pending_p = 1;
4650
4651 if (debug_threads)
4652 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4653 "leaving status pending.\n",
4654 WSTOPSIG (lwp->status_pending),
4655 lwpid_of (thread));
4656 }
4657
4658 return;
4659 }
4660 }
4661
4662 /* No resume action for this thread. */
4663 lwp->resume = NULL;
4664 }
4665
4666 /* find_inferior callback for linux_resume.
4667 Set *FLAG_P if this lwp has an interesting status pending. */
4668
4669 static bool
4670 resume_status_pending_p (thread_info *thread)
4671 {
4672 struct lwp_info *lwp = get_thread_lwp (thread);
4673
4674 /* LWPs which will not be resumed are not interesting, because
4675 we might not wait for them next time through linux_wait. */
4676 if (lwp->resume == NULL)
4677 return false;
4678
4679 return thread_still_has_status_pending_p (thread);
4680 }
4681
4682 /* Return 1 if this lwp that GDB wants running is stopped at an
4683 internal breakpoint that we need to step over. It assumes that any
4684 required STOP_PC adjustment has already been propagated to the
4685 inferior's regcache. */
4686
4687 static bool
4688 need_step_over_p (thread_info *thread)
4689 {
4690 struct lwp_info *lwp = get_thread_lwp (thread);
4691 struct thread_info *saved_thread;
4692 CORE_ADDR pc;
4693 struct process_info *proc = get_thread_process (thread);
4694
4695 /* GDBserver is skipping the extra traps from the wrapper program,
4696 don't have to do step over. */
4697 if (proc->tdesc == NULL)
4698 return false;
4699
4700 /* LWPs which will not be resumed are not interesting, because we
4701 might not wait for them next time through linux_wait. */
4702
4703 if (!lwp->stopped)
4704 {
4705 if (debug_threads)
4706 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4707 lwpid_of (thread));
4708 return false;
4709 }
4710
4711 if (thread->last_resume_kind == resume_stop)
4712 {
4713 if (debug_threads)
4714 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4715 " stopped\n",
4716 lwpid_of (thread));
4717 return false;
4718 }
4719
4720 gdb_assert (lwp->suspended >= 0);
4721
4722 if (lwp->suspended)
4723 {
4724 if (debug_threads)
4725 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4726 lwpid_of (thread));
4727 return false;
4728 }
4729
4730 if (lwp->status_pending_p)
4731 {
4732 if (debug_threads)
4733 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4734 " status.\n",
4735 lwpid_of (thread));
4736 return false;
4737 }
4738
4739 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4740 or we have. */
4741 pc = get_pc (lwp);
4742
4743 /* If the PC has changed since we stopped, then don't do anything,
4744 and let the breakpoint/tracepoint be hit. This happens if, for
4745 instance, GDB handled the decr_pc_after_break subtraction itself,
4746 GDB is OOL stepping this thread, or the user has issued a "jump"
4747 command, or poked thread's registers herself. */
4748 if (pc != lwp->stop_pc)
4749 {
4750 if (debug_threads)
4751 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4752 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4753 lwpid_of (thread),
4754 paddress (lwp->stop_pc), paddress (pc));
4755 return false;
4756 }
4757
4758 /* On software single step target, resume the inferior with signal
4759 rather than stepping over. */
4760 if (can_software_single_step ()
4761 && lwp->pending_signals != NULL
4762 && lwp_signal_can_be_delivered (lwp))
4763 {
4764 if (debug_threads)
4765 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4766 " signals.\n",
4767 lwpid_of (thread));
4768
4769 return false;
4770 }
4771
4772 saved_thread = current_thread;
4773 current_thread = thread;
4774
4775 /* We can only step over breakpoints we know about. */
4776 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4777 {
4778 /* Don't step over a breakpoint that GDB expects to hit
4779 though. If the condition is being evaluated on the target's side
4780 and it evaluate to false, step over this breakpoint as well. */
4781 if (gdb_breakpoint_here (pc)
4782 && gdb_condition_true_at_breakpoint (pc)
4783 && gdb_no_commands_at_breakpoint (pc))
4784 {
4785 if (debug_threads)
4786 debug_printf ("Need step over [LWP %ld]? yes, but found"
4787 " GDB breakpoint at 0x%s; skipping step over\n",
4788 lwpid_of (thread), paddress (pc));
4789
4790 current_thread = saved_thread;
4791 return false;
4792 }
4793 else
4794 {
4795 if (debug_threads)
4796 debug_printf ("Need step over [LWP %ld]? yes, "
4797 "found breakpoint at 0x%s\n",
4798 lwpid_of (thread), paddress (pc));
4799
4800 /* We've found an lwp that needs stepping over --- return 1 so
4801 that find_inferior stops looking. */
4802 current_thread = saved_thread;
4803
4804 return true;
4805 }
4806 }
4807
4808 current_thread = saved_thread;
4809
4810 if (debug_threads)
4811 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4812 " at 0x%s\n",
4813 lwpid_of (thread), paddress (pc));
4814
4815 return false;
4816 }
4817
4818 /* Start a step-over operation on LWP. When LWP stopped at a
4819 breakpoint, to make progress, we need to remove the breakpoint out
4820 of the way. If we let other threads run while we do that, they may
4821 pass by the breakpoint location and miss hitting it. To avoid
4822 that, a step-over momentarily stops all threads while LWP is
4823 single-stepped by either hardware or software while the breakpoint
4824 is temporarily uninserted from the inferior. When the single-step
4825 finishes, we reinsert the breakpoint, and let all threads that are
4826 supposed to be running, run again. */
4827
4828 static int
4829 start_step_over (struct lwp_info *lwp)
4830 {
4831 struct thread_info *thread = get_lwp_thread (lwp);
4832 struct thread_info *saved_thread;
4833 CORE_ADDR pc;
4834 int step;
4835
4836 if (debug_threads)
4837 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4838 lwpid_of (thread));
4839
4840 stop_all_lwps (1, lwp);
4841
4842 if (lwp->suspended != 0)
4843 {
4844 internal_error (__FILE__, __LINE__,
4845 "LWP %ld suspended=%d\n", lwpid_of (thread),
4846 lwp->suspended);
4847 }
4848
4849 if (debug_threads)
4850 debug_printf ("Done stopping all threads for step-over.\n");
4851
4852 /* Note, we should always reach here with an already adjusted PC,
4853 either by GDB (if we're resuming due to GDB's request), or by our
4854 caller, if we just finished handling an internal breakpoint GDB
4855 shouldn't care about. */
4856 pc = get_pc (lwp);
4857
4858 saved_thread = current_thread;
4859 current_thread = thread;
4860
4861 lwp->bp_reinsert = pc;
4862 uninsert_breakpoints_at (pc);
4863 uninsert_fast_tracepoint_jumps_at (pc);
4864
4865 step = single_step (lwp);
4866
4867 current_thread = saved_thread;
4868
4869 linux_resume_one_lwp (lwp, step, 0, NULL);
4870
4871 /* Require next event from this LWP. */
4872 step_over_bkpt = thread->id;
4873 return 1;
4874 }
4875
4876 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4877 start_step_over, if still there, and delete any single-step
4878 breakpoints we've set, on non hardware single-step targets. */
4879
4880 static int
4881 finish_step_over (struct lwp_info *lwp)
4882 {
4883 if (lwp->bp_reinsert != 0)
4884 {
4885 struct thread_info *saved_thread = current_thread;
4886
4887 if (debug_threads)
4888 debug_printf ("Finished step over.\n");
4889
4890 current_thread = get_lwp_thread (lwp);
4891
4892 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4893 may be no breakpoint to reinsert there by now. */
4894 reinsert_breakpoints_at (lwp->bp_reinsert);
4895 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4896
4897 lwp->bp_reinsert = 0;
4898
4899 /* Delete any single-step breakpoints. No longer needed. We
4900 don't have to worry about other threads hitting this trap,
4901 and later not being able to explain it, because we were
4902 stepping over a breakpoint, and we hold all threads but
4903 LWP stopped while doing that. */
4904 if (!can_hardware_single_step ())
4905 {
4906 gdb_assert (has_single_step_breakpoints (current_thread));
4907 delete_single_step_breakpoints (current_thread);
4908 }
4909
4910 step_over_bkpt = null_ptid;
4911 current_thread = saved_thread;
4912 return 1;
4913 }
4914 else
4915 return 0;
4916 }
4917
4918 /* If there's a step over in progress, wait until all threads stop
4919 (that is, until the stepping thread finishes its step), and
4920 unsuspend all lwps. The stepping thread ends with its status
4921 pending, which is processed later when we get back to processing
4922 events. */
4923
4924 static void
4925 complete_ongoing_step_over (void)
4926 {
4927 if (!ptid_equal (step_over_bkpt, null_ptid))
4928 {
4929 struct lwp_info *lwp;
4930 int wstat;
4931 int ret;
4932
4933 if (debug_threads)
4934 debug_printf ("detach: step over in progress, finish it first\n");
4935
4936 /* Passing NULL_PTID as filter indicates we want all events to
4937 be left pending. Eventually this returns when there are no
4938 unwaited-for children left. */
4939 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4940 &wstat, __WALL);
4941 gdb_assert (ret == -1);
4942
4943 lwp = find_lwp_pid (step_over_bkpt);
4944 if (lwp != NULL)
4945 finish_step_over (lwp);
4946 step_over_bkpt = null_ptid;
4947 unsuspend_all_lwps (lwp);
4948 }
4949 }
4950
4951 /* This function is called once per thread. We check the thread's resume
4952 request, which will tell us whether to resume, step, or leave the thread
4953 stopped; and what signal, if any, it should be sent.
4954
4955 For threads which we aren't explicitly told otherwise, we preserve
4956 the stepping flag; this is used for stepping over gdbserver-placed
4957 breakpoints.
4958
4959 If pending_flags was set in any thread, we queue any needed
4960 signals, since we won't actually resume. We already have a pending
4961 event to report, so we don't need to preserve any step requests;
4962 they should be re-issued if necessary. */
4963
4964 static int
4965 linux_resume_one_thread (thread_info *thread, void *arg)
4966 {
4967 struct lwp_info *lwp = get_thread_lwp (thread);
4968 int leave_all_stopped = * (int *) arg;
4969 int leave_pending;
4970
4971 if (lwp->resume == NULL)
4972 return 0;
4973
4974 if (lwp->resume->kind == resume_stop)
4975 {
4976 if (debug_threads)
4977 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4978
4979 if (!lwp->stopped)
4980 {
4981 if (debug_threads)
4982 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4983
4984 /* Stop the thread, and wait for the event asynchronously,
4985 through the event loop. */
4986 send_sigstop (lwp);
4987 }
4988 else
4989 {
4990 if (debug_threads)
4991 debug_printf ("already stopped LWP %ld\n",
4992 lwpid_of (thread));
4993
4994 /* The LWP may have been stopped in an internal event that
4995 was not meant to be notified back to GDB (e.g., gdbserver
4996 breakpoint), so we should be reporting a stop event in
4997 this case too. */
4998
4999 /* If the thread already has a pending SIGSTOP, this is a
5000 no-op. Otherwise, something later will presumably resume
5001 the thread and this will cause it to cancel any pending
5002 operation, due to last_resume_kind == resume_stop. If
5003 the thread already has a pending status to report, we
5004 will still report it the next time we wait - see
5005 status_pending_p_callback. */
5006
5007 /* If we already have a pending signal to report, then
5008 there's no need to queue a SIGSTOP, as this means we're
5009 midway through moving the LWP out of the jumppad, and we
5010 will report the pending signal as soon as that is
5011 finished. */
5012 if (lwp->pending_signals_to_report == NULL)
5013 send_sigstop (lwp);
5014 }
5015
5016 /* For stop requests, we're done. */
5017 lwp->resume = NULL;
5018 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5019 return 0;
5020 }
5021
5022 /* If this thread which is about to be resumed has a pending status,
5023 then don't resume it - we can just report the pending status.
5024 Likewise if it is suspended, because e.g., another thread is
5025 stepping past a breakpoint. Make sure to queue any signals that
5026 would otherwise be sent. In all-stop mode, we do this decision
5027 based on if *any* thread has a pending status. If there's a
5028 thread that needs the step-over-breakpoint dance, then don't
5029 resume any other thread but that particular one. */
5030 leave_pending = (lwp->suspended
5031 || lwp->status_pending_p
5032 || leave_all_stopped);
5033
5034 /* If we have a new signal, enqueue the signal. */
5035 if (lwp->resume->sig != 0)
5036 {
5037 siginfo_t info, *info_p;
5038
5039 /* If this is the same signal we were previously stopped by,
5040 make sure to queue its siginfo. */
5041 if (WIFSTOPPED (lwp->last_status)
5042 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5043 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5044 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5045 info_p = &info;
5046 else
5047 info_p = NULL;
5048
5049 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5050 }
5051
5052 if (!leave_pending)
5053 {
5054 if (debug_threads)
5055 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5056
5057 proceed_one_lwp (thread, NULL);
5058 }
5059 else
5060 {
5061 if (debug_threads)
5062 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5063 }
5064
5065 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5066 lwp->resume = NULL;
5067 return 0;
5068 }
5069
5070 static void
5071 linux_resume (struct thread_resume *resume_info, size_t n)
5072 {
5073 struct thread_info *need_step_over = NULL;
5074 int leave_all_stopped;
5075
5076 if (debug_threads)
5077 {
5078 debug_enter ();
5079 debug_printf ("linux_resume:\n");
5080 }
5081
5082 for_each_thread ([&] (thread_info *thread)
5083 {
5084 linux_set_resume_request (thread, resume_info, n);
5085 });
5086
5087 /* If there is a thread which would otherwise be resumed, which has
5088 a pending status, then don't resume any threads - we can just
5089 report the pending status. Make sure to queue any signals that
5090 would otherwise be sent. In non-stop mode, we'll apply this
5091 logic to each thread individually. We consume all pending events
5092 before considering to start a step-over (in all-stop). */
5093 bool any_pending = false;
5094 if (!non_stop)
5095 any_pending = find_thread (resume_status_pending_p) != NULL;
5096
5097 /* If there is a thread which would otherwise be resumed, which is
5098 stopped at a breakpoint that needs stepping over, then don't
5099 resume any threads - have it step over the breakpoint with all
5100 other threads stopped, then resume all threads again. Make sure
5101 to queue any signals that would otherwise be delivered or
5102 queued. */
5103 if (!any_pending && supports_breakpoints ())
5104 need_step_over = find_thread (need_step_over_p);
5105
5106 leave_all_stopped = (need_step_over != NULL || any_pending);
5107
5108 if (debug_threads)
5109 {
5110 if (need_step_over != NULL)
5111 debug_printf ("Not resuming all, need step over\n");
5112 else if (any_pending)
5113 debug_printf ("Not resuming, all-stop and found "
5114 "an LWP with pending status\n");
5115 else
5116 debug_printf ("Resuming, no pending status or step over needed\n");
5117 }
5118
5119 /* Even if we're leaving threads stopped, queue all signals we'd
5120 otherwise deliver. */
5121 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5122
5123 if (need_step_over)
5124 start_step_over (get_thread_lwp (need_step_over));
5125
5126 if (debug_threads)
5127 {
5128 debug_printf ("linux_resume done\n");
5129 debug_exit ();
5130 }
5131
5132 /* We may have events that were pending that can/should be sent to
5133 the client now. Trigger a linux_wait call. */
5134 if (target_is_async_p ())
5135 async_file_mark ();
5136 }
5137
5138 /* This function is called once per thread. We check the thread's
5139 last resume request, which will tell us whether to resume, step, or
5140 leave the thread stopped. Any signal the client requested to be
5141 delivered has already been enqueued at this point.
5142
5143 If any thread that GDB wants running is stopped at an internal
5144 breakpoint that needs stepping over, we start a step-over operation
5145 on that particular thread, and leave all others stopped. */
5146
5147 static int
5148 proceed_one_lwp (thread_info *thread, void *except)
5149 {
5150 struct lwp_info *lwp = get_thread_lwp (thread);
5151 int step;
5152
5153 if (lwp == except)
5154 return 0;
5155
5156 if (debug_threads)
5157 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5158
5159 if (!lwp->stopped)
5160 {
5161 if (debug_threads)
5162 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5163 return 0;
5164 }
5165
5166 if (thread->last_resume_kind == resume_stop
5167 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5168 {
5169 if (debug_threads)
5170 debug_printf (" client wants LWP to remain %ld stopped\n",
5171 lwpid_of (thread));
5172 return 0;
5173 }
5174
5175 if (lwp->status_pending_p)
5176 {
5177 if (debug_threads)
5178 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5179 lwpid_of (thread));
5180 return 0;
5181 }
5182
5183 gdb_assert (lwp->suspended >= 0);
5184
5185 if (lwp->suspended)
5186 {
5187 if (debug_threads)
5188 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5189 return 0;
5190 }
5191
5192 if (thread->last_resume_kind == resume_stop
5193 && lwp->pending_signals_to_report == NULL
5194 && (lwp->collecting_fast_tracepoint
5195 == fast_tpoint_collect_result::not_collecting))
5196 {
5197 /* We haven't reported this LWP as stopped yet (otherwise, the
5198 last_status.kind check above would catch it, and we wouldn't
5199 reach here. This LWP may have been momentarily paused by a
5200 stop_all_lwps call while handling for example, another LWP's
5201 step-over. In that case, the pending expected SIGSTOP signal
5202 that was queued at vCont;t handling time will have already
5203 been consumed by wait_for_sigstop, and so we need to requeue
5204 another one here. Note that if the LWP already has a SIGSTOP
5205 pending, this is a no-op. */
5206
5207 if (debug_threads)
5208 debug_printf ("Client wants LWP %ld to stop. "
5209 "Making sure it has a SIGSTOP pending\n",
5210 lwpid_of (thread));
5211
5212 send_sigstop (lwp);
5213 }
5214
5215 if (thread->last_resume_kind == resume_step)
5216 {
5217 if (debug_threads)
5218 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5219 lwpid_of (thread));
5220
5221 /* If resume_step is requested by GDB, install single-step
5222 breakpoints when the thread is about to be actually resumed if
5223 the single-step breakpoints weren't removed. */
5224 if (can_software_single_step ()
5225 && !has_single_step_breakpoints (thread))
5226 install_software_single_step_breakpoints (lwp);
5227
5228 step = maybe_hw_step (thread);
5229 }
5230 else if (lwp->bp_reinsert != 0)
5231 {
5232 if (debug_threads)
5233 debug_printf (" stepping LWP %ld, reinsert set\n",
5234 lwpid_of (thread));
5235
5236 step = maybe_hw_step (thread);
5237 }
5238 else
5239 step = 0;
5240
5241 linux_resume_one_lwp (lwp, step, 0, NULL);
5242 return 0;
5243 }
5244
5245 static int
5246 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5247 {
5248 struct lwp_info *lwp = get_thread_lwp (thread);
5249
5250 if (lwp == except)
5251 return 0;
5252
5253 lwp_suspended_decr (lwp);
5254
5255 return proceed_one_lwp (thread, except);
5256 }
5257
5258 /* When we finish a step-over, set threads running again. If there's
5259 another thread that may need a step-over, now's the time to start
5260 it. Eventually, we'll move all threads past their breakpoints. */
5261
5262 static void
5263 proceed_all_lwps (void)
5264 {
5265 struct thread_info *need_step_over;
5266
5267 /* If there is a thread which would otherwise be resumed, which is
5268 stopped at a breakpoint that needs stepping over, then don't
5269 resume any threads - have it step over the breakpoint with all
5270 other threads stopped, then resume all threads again. */
5271
5272 if (supports_breakpoints ())
5273 {
5274 need_step_over = find_thread (need_step_over_p);
5275
5276 if (need_step_over != NULL)
5277 {
5278 if (debug_threads)
5279 debug_printf ("proceed_all_lwps: found "
5280 "thread %ld needing a step-over\n",
5281 lwpid_of (need_step_over));
5282
5283 start_step_over (get_thread_lwp (need_step_over));
5284 return;
5285 }
5286 }
5287
5288 if (debug_threads)
5289 debug_printf ("Proceeding, no step-over needed\n");
5290
5291 find_inferior (&all_threads, proceed_one_lwp, NULL);
5292 }
5293
5294 /* Stopped LWPs that the client wanted to be running, that don't have
5295 pending statuses, are set to run again, except for EXCEPT, if not
5296 NULL. This undoes a stop_all_lwps call. */
5297
5298 static void
5299 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5300 {
5301 if (debug_threads)
5302 {
5303 debug_enter ();
5304 if (except)
5305 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5306 lwpid_of (get_lwp_thread (except)));
5307 else
5308 debug_printf ("unstopping all lwps\n");
5309 }
5310
5311 if (unsuspend)
5312 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5313 else
5314 find_inferior (&all_threads, proceed_one_lwp, except);
5315
5316 if (debug_threads)
5317 {
5318 debug_printf ("unstop_all_lwps done\n");
5319 debug_exit ();
5320 }
5321 }
5322
5323
5324 #ifdef HAVE_LINUX_REGSETS
5325
5326 #define use_linux_regsets 1
5327
5328 /* Returns true if REGSET has been disabled. */
5329
5330 static int
5331 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5332 {
5333 return (info->disabled_regsets != NULL
5334 && info->disabled_regsets[regset - info->regsets]);
5335 }
5336
5337 /* Disable REGSET. */
5338
5339 static void
5340 disable_regset (struct regsets_info *info, struct regset_info *regset)
5341 {
5342 int dr_offset;
5343
5344 dr_offset = regset - info->regsets;
5345 if (info->disabled_regsets == NULL)
5346 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5347 info->disabled_regsets[dr_offset] = 1;
5348 }
5349
5350 static int
5351 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5352 struct regcache *regcache)
5353 {
5354 struct regset_info *regset;
5355 int saw_general_regs = 0;
5356 int pid;
5357 struct iovec iov;
5358
5359 pid = lwpid_of (current_thread);
5360 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5361 {
5362 void *buf, *data;
5363 int nt_type, res;
5364
5365 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5366 continue;
5367
5368 buf = xmalloc (regset->size);
5369
5370 nt_type = regset->nt_type;
5371 if (nt_type)
5372 {
5373 iov.iov_base = buf;
5374 iov.iov_len = regset->size;
5375 data = (void *) &iov;
5376 }
5377 else
5378 data = buf;
5379
5380 #ifndef __sparc__
5381 res = ptrace (regset->get_request, pid,
5382 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5383 #else
5384 res = ptrace (regset->get_request, pid, data, nt_type);
5385 #endif
5386 if (res < 0)
5387 {
5388 if (errno == EIO)
5389 {
5390 /* If we get EIO on a regset, do not try it again for
5391 this process mode. */
5392 disable_regset (regsets_info, regset);
5393 }
5394 else if (errno == ENODATA)
5395 {
5396 /* ENODATA may be returned if the regset is currently
5397 not "active". This can happen in normal operation,
5398 so suppress the warning in this case. */
5399 }
5400 else if (errno == ESRCH)
5401 {
5402 /* At this point, ESRCH should mean the process is
5403 already gone, in which case we simply ignore attempts
5404 to read its registers. */
5405 }
5406 else
5407 {
5408 char s[256];
5409 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5410 pid);
5411 perror (s);
5412 }
5413 }
5414 else
5415 {
5416 if (regset->type == GENERAL_REGS)
5417 saw_general_regs = 1;
5418 regset->store_function (regcache, buf);
5419 }
5420 free (buf);
5421 }
5422 if (saw_general_regs)
5423 return 0;
5424 else
5425 return 1;
5426 }
5427
5428 static int
5429 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5430 struct regcache *regcache)
5431 {
5432 struct regset_info *regset;
5433 int saw_general_regs = 0;
5434 int pid;
5435 struct iovec iov;
5436
5437 pid = lwpid_of (current_thread);
5438 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5439 {
5440 void *buf, *data;
5441 int nt_type, res;
5442
5443 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5444 || regset->fill_function == NULL)
5445 continue;
5446
5447 buf = xmalloc (regset->size);
5448
5449 /* First fill the buffer with the current register set contents,
5450 in case there are any items in the kernel's regset that are
5451 not in gdbserver's regcache. */
5452
5453 nt_type = regset->nt_type;
5454 if (nt_type)
5455 {
5456 iov.iov_base = buf;
5457 iov.iov_len = regset->size;
5458 data = (void *) &iov;
5459 }
5460 else
5461 data = buf;
5462
5463 #ifndef __sparc__
5464 res = ptrace (regset->get_request, pid,
5465 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5466 #else
5467 res = ptrace (regset->get_request, pid, data, nt_type);
5468 #endif
5469
5470 if (res == 0)
5471 {
5472 /* Then overlay our cached registers on that. */
5473 regset->fill_function (regcache, buf);
5474
5475 /* Only now do we write the register set. */
5476 #ifndef __sparc__
5477 res = ptrace (regset->set_request, pid,
5478 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5479 #else
5480 res = ptrace (regset->set_request, pid, data, nt_type);
5481 #endif
5482 }
5483
5484 if (res < 0)
5485 {
5486 if (errno == EIO)
5487 {
5488 /* If we get EIO on a regset, do not try it again for
5489 this process mode. */
5490 disable_regset (regsets_info, regset);
5491 }
5492 else if (errno == ESRCH)
5493 {
5494 /* At this point, ESRCH should mean the process is
5495 already gone, in which case we simply ignore attempts
5496 to change its registers. See also the related
5497 comment in linux_resume_one_lwp. */
5498 free (buf);
5499 return 0;
5500 }
5501 else
5502 {
5503 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5504 }
5505 }
5506 else if (regset->type == GENERAL_REGS)
5507 saw_general_regs = 1;
5508 free (buf);
5509 }
5510 if (saw_general_regs)
5511 return 0;
5512 else
5513 return 1;
5514 }
5515
5516 #else /* !HAVE_LINUX_REGSETS */
5517
5518 #define use_linux_regsets 0
5519 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5520 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5521
5522 #endif
5523
5524 /* Return 1 if register REGNO is supported by one of the regset ptrace
5525 calls or 0 if it has to be transferred individually. */
5526
5527 static int
5528 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5529 {
5530 unsigned char mask = 1 << (regno % 8);
5531 size_t index = regno / 8;
5532
5533 return (use_linux_regsets
5534 && (regs_info->regset_bitmap == NULL
5535 || (regs_info->regset_bitmap[index] & mask) != 0));
5536 }
5537
5538 #ifdef HAVE_LINUX_USRREGS
5539
5540 static int
5541 register_addr (const struct usrregs_info *usrregs, int regnum)
5542 {
5543 int addr;
5544
5545 if (regnum < 0 || regnum >= usrregs->num_regs)
5546 error ("Invalid register number %d.", regnum);
5547
5548 addr = usrregs->regmap[regnum];
5549
5550 return addr;
5551 }
5552
5553 /* Fetch one register. */
5554 static void
5555 fetch_register (const struct usrregs_info *usrregs,
5556 struct regcache *regcache, int regno)
5557 {
5558 CORE_ADDR regaddr;
5559 int i, size;
5560 char *buf;
5561 int pid;
5562
5563 if (regno >= usrregs->num_regs)
5564 return;
5565 if ((*the_low_target.cannot_fetch_register) (regno))
5566 return;
5567
5568 regaddr = register_addr (usrregs, regno);
5569 if (regaddr == -1)
5570 return;
5571
5572 size = ((register_size (regcache->tdesc, regno)
5573 + sizeof (PTRACE_XFER_TYPE) - 1)
5574 & -sizeof (PTRACE_XFER_TYPE));
5575 buf = (char *) alloca (size);
5576
5577 pid = lwpid_of (current_thread);
5578 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5579 {
5580 errno = 0;
5581 *(PTRACE_XFER_TYPE *) (buf + i) =
5582 ptrace (PTRACE_PEEKUSER, pid,
5583 /* Coerce to a uintptr_t first to avoid potential gcc warning
5584 of coercing an 8 byte integer to a 4 byte pointer. */
5585 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5586 regaddr += sizeof (PTRACE_XFER_TYPE);
5587 if (errno != 0)
5588 error ("reading register %d: %s", regno, strerror (errno));
5589 }
5590
5591 if (the_low_target.supply_ptrace_register)
5592 the_low_target.supply_ptrace_register (regcache, regno, buf);
5593 else
5594 supply_register (regcache, regno, buf);
5595 }
5596
5597 /* Store one register. */
5598 static void
5599 store_register (const struct usrregs_info *usrregs,
5600 struct regcache *regcache, int regno)
5601 {
5602 CORE_ADDR regaddr;
5603 int i, size;
5604 char *buf;
5605 int pid;
5606
5607 if (regno >= usrregs->num_regs)
5608 return;
5609 if ((*the_low_target.cannot_store_register) (regno))
5610 return;
5611
5612 regaddr = register_addr (usrregs, regno);
5613 if (regaddr == -1)
5614 return;
5615
5616 size = ((register_size (regcache->tdesc, regno)
5617 + sizeof (PTRACE_XFER_TYPE) - 1)
5618 & -sizeof (PTRACE_XFER_TYPE));
5619 buf = (char *) alloca (size);
5620 memset (buf, 0, size);
5621
5622 if (the_low_target.collect_ptrace_register)
5623 the_low_target.collect_ptrace_register (regcache, regno, buf);
5624 else
5625 collect_register (regcache, regno, buf);
5626
5627 pid = lwpid_of (current_thread);
5628 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5629 {
5630 errno = 0;
5631 ptrace (PTRACE_POKEUSER, pid,
5632 /* Coerce to a uintptr_t first to avoid potential gcc warning
5633 about coercing an 8 byte integer to a 4 byte pointer. */
5634 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5635 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5636 if (errno != 0)
5637 {
5638 /* At this point, ESRCH should mean the process is
5639 already gone, in which case we simply ignore attempts
5640 to change its registers. See also the related
5641 comment in linux_resume_one_lwp. */
5642 if (errno == ESRCH)
5643 return;
5644
5645 if ((*the_low_target.cannot_store_register) (regno) == 0)
5646 error ("writing register %d: %s", regno, strerror (errno));
5647 }
5648 regaddr += sizeof (PTRACE_XFER_TYPE);
5649 }
5650 }
5651
5652 /* Fetch all registers, or just one, from the child process.
5653 If REGNO is -1, do this for all registers, skipping any that are
5654 assumed to have been retrieved by regsets_fetch_inferior_registers,
5655 unless ALL is non-zero.
5656 Otherwise, REGNO specifies which register (so we can save time). */
5657 static void
5658 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5659 struct regcache *regcache, int regno, int all)
5660 {
5661 struct usrregs_info *usr = regs_info->usrregs;
5662
5663 if (regno == -1)
5664 {
5665 for (regno = 0; regno < usr->num_regs; regno++)
5666 if (all || !linux_register_in_regsets (regs_info, regno))
5667 fetch_register (usr, regcache, regno);
5668 }
5669 else
5670 fetch_register (usr, regcache, regno);
5671 }
5672
5673 /* Store our register values back into the inferior.
5674 If REGNO is -1, do this for all registers, skipping any that are
5675 assumed to have been saved by regsets_store_inferior_registers,
5676 unless ALL is non-zero.
5677 Otherwise, REGNO specifies which register (so we can save time). */
5678 static void
5679 usr_store_inferior_registers (const struct regs_info *regs_info,
5680 struct regcache *regcache, int regno, int all)
5681 {
5682 struct usrregs_info *usr = regs_info->usrregs;
5683
5684 if (regno == -1)
5685 {
5686 for (regno = 0; regno < usr->num_regs; regno++)
5687 if (all || !linux_register_in_regsets (regs_info, regno))
5688 store_register (usr, regcache, regno);
5689 }
5690 else
5691 store_register (usr, regcache, regno);
5692 }
5693
5694 #else /* !HAVE_LINUX_USRREGS */
5695
5696 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5697 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5698
5699 #endif
5700
5701
5702 static void
5703 linux_fetch_registers (struct regcache *regcache, int regno)
5704 {
5705 int use_regsets;
5706 int all = 0;
5707 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5708
5709 if (regno == -1)
5710 {
5711 if (the_low_target.fetch_register != NULL
5712 && regs_info->usrregs != NULL)
5713 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5714 (*the_low_target.fetch_register) (regcache, regno);
5715
5716 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5717 if (regs_info->usrregs != NULL)
5718 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5719 }
5720 else
5721 {
5722 if (the_low_target.fetch_register != NULL
5723 && (*the_low_target.fetch_register) (regcache, regno))
5724 return;
5725
5726 use_regsets = linux_register_in_regsets (regs_info, regno);
5727 if (use_regsets)
5728 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5729 regcache);
5730 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5731 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5732 }
5733 }
5734
5735 static void
5736 linux_store_registers (struct regcache *regcache, int regno)
5737 {
5738 int use_regsets;
5739 int all = 0;
5740 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5741
5742 if (regno == -1)
5743 {
5744 all = regsets_store_inferior_registers (regs_info->regsets_info,
5745 regcache);
5746 if (regs_info->usrregs != NULL)
5747 usr_store_inferior_registers (regs_info, regcache, regno, all);
5748 }
5749 else
5750 {
5751 use_regsets = linux_register_in_regsets (regs_info, regno);
5752 if (use_regsets)
5753 all = regsets_store_inferior_registers (regs_info->regsets_info,
5754 regcache);
5755 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5756 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5757 }
5758 }
5759
5760
5761 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5762 to debugger memory starting at MYADDR. */
5763
5764 static int
5765 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5766 {
5767 int pid = lwpid_of (current_thread);
5768 PTRACE_XFER_TYPE *buffer;
5769 CORE_ADDR addr;
5770 int count;
5771 char filename[64];
5772 int i;
5773 int ret;
5774 int fd;
5775
5776 /* Try using /proc. Don't bother for one word. */
5777 if (len >= 3 * sizeof (long))
5778 {
5779 int bytes;
5780
5781 /* We could keep this file open and cache it - possibly one per
5782 thread. That requires some juggling, but is even faster. */
5783 sprintf (filename, "/proc/%d/mem", pid);
5784 fd = open (filename, O_RDONLY | O_LARGEFILE);
5785 if (fd == -1)
5786 goto no_proc;
5787
5788 /* If pread64 is available, use it. It's faster if the kernel
5789 supports it (only one syscall), and it's 64-bit safe even on
5790 32-bit platforms (for instance, SPARC debugging a SPARC64
5791 application). */
5792 #ifdef HAVE_PREAD64
5793 bytes = pread64 (fd, myaddr, len, memaddr);
5794 #else
5795 bytes = -1;
5796 if (lseek (fd, memaddr, SEEK_SET) != -1)
5797 bytes = read (fd, myaddr, len);
5798 #endif
5799
5800 close (fd);
5801 if (bytes == len)
5802 return 0;
5803
5804 /* Some data was read, we'll try to get the rest with ptrace. */
5805 if (bytes > 0)
5806 {
5807 memaddr += bytes;
5808 myaddr += bytes;
5809 len -= bytes;
5810 }
5811 }
5812
5813 no_proc:
5814 /* Round starting address down to longword boundary. */
5815 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5816 /* Round ending address up; get number of longwords that makes. */
5817 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5818 / sizeof (PTRACE_XFER_TYPE));
5819 /* Allocate buffer of that many longwords. */
5820 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5821
5822 /* Read all the longwords */
5823 errno = 0;
5824 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5825 {
5826 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5827 about coercing an 8 byte integer to a 4 byte pointer. */
5828 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5829 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5830 (PTRACE_TYPE_ARG4) 0);
5831 if (errno)
5832 break;
5833 }
5834 ret = errno;
5835
5836 /* Copy appropriate bytes out of the buffer. */
5837 if (i > 0)
5838 {
5839 i *= sizeof (PTRACE_XFER_TYPE);
5840 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5841 memcpy (myaddr,
5842 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5843 i < len ? i : len);
5844 }
5845
5846 return ret;
5847 }
5848
5849 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5850 memory at MEMADDR. On failure (cannot write to the inferior)
5851 returns the value of errno. Always succeeds if LEN is zero. */
5852
5853 static int
5854 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5855 {
5856 int i;
5857 /* Round starting address down to longword boundary. */
5858 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5859 /* Round ending address up; get number of longwords that makes. */
5860 int count
5861 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5862 / sizeof (PTRACE_XFER_TYPE);
5863
5864 /* Allocate buffer of that many longwords. */
5865 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5866
5867 int pid = lwpid_of (current_thread);
5868
5869 if (len == 0)
5870 {
5871 /* Zero length write always succeeds. */
5872 return 0;
5873 }
5874
5875 if (debug_threads)
5876 {
5877 /* Dump up to four bytes. */
5878 char str[4 * 2 + 1];
5879 char *p = str;
5880 int dump = len < 4 ? len : 4;
5881
5882 for (i = 0; i < dump; i++)
5883 {
5884 sprintf (p, "%02x", myaddr[i]);
5885 p += 2;
5886 }
5887 *p = '\0';
5888
5889 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5890 str, (long) memaddr, pid);
5891 }
5892
5893 /* Fill start and end extra bytes of buffer with existing memory data. */
5894
5895 errno = 0;
5896 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5897 about coercing an 8 byte integer to a 4 byte pointer. */
5898 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5899 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5900 (PTRACE_TYPE_ARG4) 0);
5901 if (errno)
5902 return errno;
5903
5904 if (count > 1)
5905 {
5906 errno = 0;
5907 buffer[count - 1]
5908 = ptrace (PTRACE_PEEKTEXT, pid,
5909 /* Coerce to a uintptr_t first to avoid potential gcc warning
5910 about coercing an 8 byte integer to a 4 byte pointer. */
5911 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5912 * sizeof (PTRACE_XFER_TYPE)),
5913 (PTRACE_TYPE_ARG4) 0);
5914 if (errno)
5915 return errno;
5916 }
5917
5918 /* Copy data to be written over corresponding part of buffer. */
5919
5920 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5921 myaddr, len);
5922
5923 /* Write the entire buffer. */
5924
5925 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5926 {
5927 errno = 0;
5928 ptrace (PTRACE_POKETEXT, pid,
5929 /* Coerce to a uintptr_t first to avoid potential gcc warning
5930 about coercing an 8 byte integer to a 4 byte pointer. */
5931 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5932 (PTRACE_TYPE_ARG4) buffer[i]);
5933 if (errno)
5934 return errno;
5935 }
5936
5937 return 0;
5938 }
5939
5940 static void
5941 linux_look_up_symbols (void)
5942 {
5943 #ifdef USE_THREAD_DB
5944 struct process_info *proc = current_process ();
5945
5946 if (proc->priv->thread_db != NULL)
5947 return;
5948
5949 thread_db_init ();
5950 #endif
5951 }
5952
5953 static void
5954 linux_request_interrupt (void)
5955 {
5956 /* Send a SIGINT to the process group. This acts just like the user
5957 typed a ^C on the controlling terminal. */
5958 kill (-signal_pid, SIGINT);
5959 }
5960
5961 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5962 to debugger memory starting at MYADDR. */
5963
5964 static int
5965 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5966 {
5967 char filename[PATH_MAX];
5968 int fd, n;
5969 int pid = lwpid_of (current_thread);
5970
5971 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5972
5973 fd = open (filename, O_RDONLY);
5974 if (fd < 0)
5975 return -1;
5976
5977 if (offset != (CORE_ADDR) 0
5978 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5979 n = -1;
5980 else
5981 n = read (fd, myaddr, len);
5982
5983 close (fd);
5984
5985 return n;
5986 }
5987
5988 /* These breakpoint and watchpoint related wrapper functions simply
5989 pass on the function call if the target has registered a
5990 corresponding function. */
5991
5992 static int
5993 linux_supports_z_point_type (char z_type)
5994 {
5995 return (the_low_target.supports_z_point_type != NULL
5996 && the_low_target.supports_z_point_type (z_type));
5997 }
5998
5999 static int
6000 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6001 int size, struct raw_breakpoint *bp)
6002 {
6003 if (type == raw_bkpt_type_sw)
6004 return insert_memory_breakpoint (bp);
6005 else if (the_low_target.insert_point != NULL)
6006 return the_low_target.insert_point (type, addr, size, bp);
6007 else
6008 /* Unsupported (see target.h). */
6009 return 1;
6010 }
6011
6012 static int
6013 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6014 int size, struct raw_breakpoint *bp)
6015 {
6016 if (type == raw_bkpt_type_sw)
6017 return remove_memory_breakpoint (bp);
6018 else if (the_low_target.remove_point != NULL)
6019 return the_low_target.remove_point (type, addr, size, bp);
6020 else
6021 /* Unsupported (see target.h). */
6022 return 1;
6023 }
6024
6025 /* Implement the to_stopped_by_sw_breakpoint target_ops
6026 method. */
6027
6028 static int
6029 linux_stopped_by_sw_breakpoint (void)
6030 {
6031 struct lwp_info *lwp = get_thread_lwp (current_thread);
6032
6033 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6034 }
6035
6036 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6037 method. */
6038
6039 static int
6040 linux_supports_stopped_by_sw_breakpoint (void)
6041 {
6042 return USE_SIGTRAP_SIGINFO;
6043 }
6044
6045 /* Implement the to_stopped_by_hw_breakpoint target_ops
6046 method. */
6047
6048 static int
6049 linux_stopped_by_hw_breakpoint (void)
6050 {
6051 struct lwp_info *lwp = get_thread_lwp (current_thread);
6052
6053 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6054 }
6055
6056 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6057 method. */
6058
6059 static int
6060 linux_supports_stopped_by_hw_breakpoint (void)
6061 {
6062 return USE_SIGTRAP_SIGINFO;
6063 }
6064
6065 /* Implement the supports_hardware_single_step target_ops method. */
6066
6067 static int
6068 linux_supports_hardware_single_step (void)
6069 {
6070 return can_hardware_single_step ();
6071 }
6072
6073 static int
6074 linux_supports_software_single_step (void)
6075 {
6076 return can_software_single_step ();
6077 }
6078
6079 static int
6080 linux_stopped_by_watchpoint (void)
6081 {
6082 struct lwp_info *lwp = get_thread_lwp (current_thread);
6083
6084 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6085 }
6086
6087 static CORE_ADDR
6088 linux_stopped_data_address (void)
6089 {
6090 struct lwp_info *lwp = get_thread_lwp (current_thread);
6091
6092 return lwp->stopped_data_address;
6093 }
6094
6095 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6096 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6097 && defined(PT_TEXT_END_ADDR)
6098
6099 /* This is only used for targets that define PT_TEXT_ADDR,
6100 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6101 the target has different ways of acquiring this information, like
6102 loadmaps. */
6103
6104 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6105 to tell gdb about. */
6106
6107 static int
6108 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6109 {
6110 unsigned long text, text_end, data;
6111 int pid = lwpid_of (current_thread);
6112
6113 errno = 0;
6114
6115 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6116 (PTRACE_TYPE_ARG4) 0);
6117 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6118 (PTRACE_TYPE_ARG4) 0);
6119 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6120 (PTRACE_TYPE_ARG4) 0);
6121
6122 if (errno == 0)
6123 {
6124 /* Both text and data offsets produced at compile-time (and so
6125 used by gdb) are relative to the beginning of the program,
6126 with the data segment immediately following the text segment.
6127 However, the actual runtime layout in memory may put the data
6128 somewhere else, so when we send gdb a data base-address, we
6129 use the real data base address and subtract the compile-time
6130 data base-address from it (which is just the length of the
6131 text segment). BSS immediately follows data in both
6132 cases. */
6133 *text_p = text;
6134 *data_p = data - (text_end - text);
6135
6136 return 1;
6137 }
6138 return 0;
6139 }
6140 #endif
6141
6142 static int
6143 linux_qxfer_osdata (const char *annex,
6144 unsigned char *readbuf, unsigned const char *writebuf,
6145 CORE_ADDR offset, int len)
6146 {
6147 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6148 }
6149
6150 /* Convert a native/host siginfo object, into/from the siginfo in the
6151 layout of the inferiors' architecture. */
6152
6153 static void
6154 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6155 {
6156 int done = 0;
6157
6158 if (the_low_target.siginfo_fixup != NULL)
6159 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6160
6161 /* If there was no callback, or the callback didn't do anything,
6162 then just do a straight memcpy. */
6163 if (!done)
6164 {
6165 if (direction == 1)
6166 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6167 else
6168 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6169 }
6170 }
6171
6172 static int
6173 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6174 unsigned const char *writebuf, CORE_ADDR offset, int len)
6175 {
6176 int pid;
6177 siginfo_t siginfo;
6178 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6179
6180 if (current_thread == NULL)
6181 return -1;
6182
6183 pid = lwpid_of (current_thread);
6184
6185 if (debug_threads)
6186 debug_printf ("%s siginfo for lwp %d.\n",
6187 readbuf != NULL ? "Reading" : "Writing",
6188 pid);
6189
6190 if (offset >= sizeof (siginfo))
6191 return -1;
6192
6193 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6194 return -1;
6195
6196 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6197 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6198 inferior with a 64-bit GDBSERVER should look the same as debugging it
6199 with a 32-bit GDBSERVER, we need to convert it. */
6200 siginfo_fixup (&siginfo, inf_siginfo, 0);
6201
6202 if (offset + len > sizeof (siginfo))
6203 len = sizeof (siginfo) - offset;
6204
6205 if (readbuf != NULL)
6206 memcpy (readbuf, inf_siginfo + offset, len);
6207 else
6208 {
6209 memcpy (inf_siginfo + offset, writebuf, len);
6210
6211 /* Convert back to ptrace layout before flushing it out. */
6212 siginfo_fixup (&siginfo, inf_siginfo, 1);
6213
6214 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6215 return -1;
6216 }
6217
6218 return len;
6219 }
6220
6221 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6222 so we notice when children change state; as the handler for the
6223 sigsuspend in my_waitpid. */
6224
6225 static void
6226 sigchld_handler (int signo)
6227 {
6228 int old_errno = errno;
6229
6230 if (debug_threads)
6231 {
6232 do
6233 {
6234 /* fprintf is not async-signal-safe, so call write
6235 directly. */
6236 if (write (2, "sigchld_handler\n",
6237 sizeof ("sigchld_handler\n") - 1) < 0)
6238 break; /* just ignore */
6239 } while (0);
6240 }
6241
6242 if (target_is_async_p ())
6243 async_file_mark (); /* trigger a linux_wait */
6244
6245 errno = old_errno;
6246 }
6247
6248 static int
6249 linux_supports_non_stop (void)
6250 {
6251 return 1;
6252 }
6253
6254 static int
6255 linux_async (int enable)
6256 {
6257 int previous = target_is_async_p ();
6258
6259 if (debug_threads)
6260 debug_printf ("linux_async (%d), previous=%d\n",
6261 enable, previous);
6262
6263 if (previous != enable)
6264 {
6265 sigset_t mask;
6266 sigemptyset (&mask);
6267 sigaddset (&mask, SIGCHLD);
6268
6269 sigprocmask (SIG_BLOCK, &mask, NULL);
6270
6271 if (enable)
6272 {
6273 if (pipe (linux_event_pipe) == -1)
6274 {
6275 linux_event_pipe[0] = -1;
6276 linux_event_pipe[1] = -1;
6277 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6278
6279 warning ("creating event pipe failed.");
6280 return previous;
6281 }
6282
6283 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6284 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6285
6286 /* Register the event loop handler. */
6287 add_file_handler (linux_event_pipe[0],
6288 handle_target_event, NULL);
6289
6290 /* Always trigger a linux_wait. */
6291 async_file_mark ();
6292 }
6293 else
6294 {
6295 delete_file_handler (linux_event_pipe[0]);
6296
6297 close (linux_event_pipe[0]);
6298 close (linux_event_pipe[1]);
6299 linux_event_pipe[0] = -1;
6300 linux_event_pipe[1] = -1;
6301 }
6302
6303 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6304 }
6305
6306 return previous;
6307 }
6308
6309 static int
6310 linux_start_non_stop (int nonstop)
6311 {
6312 /* Register or unregister from event-loop accordingly. */
6313 linux_async (nonstop);
6314
6315 if (target_is_async_p () != (nonstop != 0))
6316 return -1;
6317
6318 return 0;
6319 }
6320
6321 static int
6322 linux_supports_multi_process (void)
6323 {
6324 return 1;
6325 }
6326
6327 /* Check if fork events are supported. */
6328
6329 static int
6330 linux_supports_fork_events (void)
6331 {
6332 return linux_supports_tracefork ();
6333 }
6334
6335 /* Check if vfork events are supported. */
6336
6337 static int
6338 linux_supports_vfork_events (void)
6339 {
6340 return linux_supports_tracefork ();
6341 }
6342
6343 /* Check if exec events are supported. */
6344
6345 static int
6346 linux_supports_exec_events (void)
6347 {
6348 return linux_supports_traceexec ();
6349 }
6350
6351 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6352 ptrace flags for all inferiors. This is in case the new GDB connection
6353 doesn't support the same set of events that the previous one did. */
6354
6355 static void
6356 linux_handle_new_gdb_connection (void)
6357 {
6358 /* Request that all the lwps reset their ptrace options. */
6359 for_each_thread ([] (thread_info *thread)
6360 {
6361 struct lwp_info *lwp = get_thread_lwp (thread);
6362
6363 if (!lwp->stopped)
6364 {
6365 /* Stop the lwp so we can modify its ptrace options. */
6366 lwp->must_set_ptrace_flags = 1;
6367 linux_stop_lwp (lwp);
6368 }
6369 else
6370 {
6371 /* Already stopped; go ahead and set the ptrace options. */
6372 struct process_info *proc = find_process_pid (pid_of (thread));
6373 int options = linux_low_ptrace_options (proc->attached);
6374
6375 linux_enable_event_reporting (lwpid_of (thread), options);
6376 lwp->must_set_ptrace_flags = 0;
6377 }
6378 });
6379 }
6380
6381 static int
6382 linux_supports_disable_randomization (void)
6383 {
6384 #ifdef HAVE_PERSONALITY
6385 return 1;
6386 #else
6387 return 0;
6388 #endif
6389 }
6390
6391 static int
6392 linux_supports_agent (void)
6393 {
6394 return 1;
6395 }
6396
6397 static int
6398 linux_supports_range_stepping (void)
6399 {
6400 if (can_software_single_step ())
6401 return 1;
6402 if (*the_low_target.supports_range_stepping == NULL)
6403 return 0;
6404
6405 return (*the_low_target.supports_range_stepping) ();
6406 }
6407
6408 /* Enumerate spufs IDs for process PID. */
6409 static int
6410 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6411 {
6412 int pos = 0;
6413 int written = 0;
6414 char path[128];
6415 DIR *dir;
6416 struct dirent *entry;
6417
6418 sprintf (path, "/proc/%ld/fd", pid);
6419 dir = opendir (path);
6420 if (!dir)
6421 return -1;
6422
6423 rewinddir (dir);
6424 while ((entry = readdir (dir)) != NULL)
6425 {
6426 struct stat st;
6427 struct statfs stfs;
6428 int fd;
6429
6430 fd = atoi (entry->d_name);
6431 if (!fd)
6432 continue;
6433
6434 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6435 if (stat (path, &st) != 0)
6436 continue;
6437 if (!S_ISDIR (st.st_mode))
6438 continue;
6439
6440 if (statfs (path, &stfs) != 0)
6441 continue;
6442 if (stfs.f_type != SPUFS_MAGIC)
6443 continue;
6444
6445 if (pos >= offset && pos + 4 <= offset + len)
6446 {
6447 *(unsigned int *)(buf + pos - offset) = fd;
6448 written += 4;
6449 }
6450 pos += 4;
6451 }
6452
6453 closedir (dir);
6454 return written;
6455 }
6456
6457 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6458 object type, using the /proc file system. */
6459 static int
6460 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6461 unsigned const char *writebuf,
6462 CORE_ADDR offset, int len)
6463 {
6464 long pid = lwpid_of (current_thread);
6465 char buf[128];
6466 int fd = 0;
6467 int ret = 0;
6468
6469 if (!writebuf && !readbuf)
6470 return -1;
6471
6472 if (!*annex)
6473 {
6474 if (!readbuf)
6475 return -1;
6476 else
6477 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6478 }
6479
6480 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6481 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6482 if (fd <= 0)
6483 return -1;
6484
6485 if (offset != 0
6486 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6487 {
6488 close (fd);
6489 return 0;
6490 }
6491
6492 if (writebuf)
6493 ret = write (fd, writebuf, (size_t) len);
6494 else
6495 ret = read (fd, readbuf, (size_t) len);
6496
6497 close (fd);
6498 return ret;
6499 }
6500
6501 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6502 struct target_loadseg
6503 {
6504 /* Core address to which the segment is mapped. */
6505 Elf32_Addr addr;
6506 /* VMA recorded in the program header. */
6507 Elf32_Addr p_vaddr;
6508 /* Size of this segment in memory. */
6509 Elf32_Word p_memsz;
6510 };
6511
6512 # if defined PT_GETDSBT
6513 struct target_loadmap
6514 {
6515 /* Protocol version number, must be zero. */
6516 Elf32_Word version;
6517 /* Pointer to the DSBT table, its size, and the DSBT index. */
6518 unsigned *dsbt_table;
6519 unsigned dsbt_size, dsbt_index;
6520 /* Number of segments in this map. */
6521 Elf32_Word nsegs;
6522 /* The actual memory map. */
6523 struct target_loadseg segs[/*nsegs*/];
6524 };
6525 # define LINUX_LOADMAP PT_GETDSBT
6526 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6527 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6528 # else
6529 struct target_loadmap
6530 {
6531 /* Protocol version number, must be zero. */
6532 Elf32_Half version;
6533 /* Number of segments in this map. */
6534 Elf32_Half nsegs;
6535 /* The actual memory map. */
6536 struct target_loadseg segs[/*nsegs*/];
6537 };
6538 # define LINUX_LOADMAP PTRACE_GETFDPIC
6539 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6540 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6541 # endif
6542
6543 static int
6544 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6545 unsigned char *myaddr, unsigned int len)
6546 {
6547 int pid = lwpid_of (current_thread);
6548 int addr = -1;
6549 struct target_loadmap *data = NULL;
6550 unsigned int actual_length, copy_length;
6551
6552 if (strcmp (annex, "exec") == 0)
6553 addr = (int) LINUX_LOADMAP_EXEC;
6554 else if (strcmp (annex, "interp") == 0)
6555 addr = (int) LINUX_LOADMAP_INTERP;
6556 else
6557 return -1;
6558
6559 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6560 return -1;
6561
6562 if (data == NULL)
6563 return -1;
6564
6565 actual_length = sizeof (struct target_loadmap)
6566 + sizeof (struct target_loadseg) * data->nsegs;
6567
6568 if (offset < 0 || offset > actual_length)
6569 return -1;
6570
6571 copy_length = actual_length - offset < len ? actual_length - offset : len;
6572 memcpy (myaddr, (char *) data + offset, copy_length);
6573 return copy_length;
6574 }
6575 #else
6576 # define linux_read_loadmap NULL
6577 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6578
6579 static void
6580 linux_process_qsupported (char **features, int count)
6581 {
6582 if (the_low_target.process_qsupported != NULL)
6583 the_low_target.process_qsupported (features, count);
6584 }
6585
6586 static int
6587 linux_supports_catch_syscall (void)
6588 {
6589 return (the_low_target.get_syscall_trapinfo != NULL
6590 && linux_supports_tracesysgood ());
6591 }
6592
6593 static int
6594 linux_get_ipa_tdesc_idx (void)
6595 {
6596 if (the_low_target.get_ipa_tdesc_idx == NULL)
6597 return 0;
6598
6599 return (*the_low_target.get_ipa_tdesc_idx) ();
6600 }
6601
6602 static int
6603 linux_supports_tracepoints (void)
6604 {
6605 if (*the_low_target.supports_tracepoints == NULL)
6606 return 0;
6607
6608 return (*the_low_target.supports_tracepoints) ();
6609 }
6610
6611 static CORE_ADDR
6612 linux_read_pc (struct regcache *regcache)
6613 {
6614 if (the_low_target.get_pc == NULL)
6615 return 0;
6616
6617 return (*the_low_target.get_pc) (regcache);
6618 }
6619
6620 static void
6621 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6622 {
6623 gdb_assert (the_low_target.set_pc != NULL);
6624
6625 (*the_low_target.set_pc) (regcache, pc);
6626 }
6627
6628 static int
6629 linux_thread_stopped (struct thread_info *thread)
6630 {
6631 return get_thread_lwp (thread)->stopped;
6632 }
6633
6634 /* This exposes stop-all-threads functionality to other modules. */
6635
6636 static void
6637 linux_pause_all (int freeze)
6638 {
6639 stop_all_lwps (freeze, NULL);
6640 }
6641
6642 /* This exposes unstop-all-threads functionality to other gdbserver
6643 modules. */
6644
6645 static void
6646 linux_unpause_all (int unfreeze)
6647 {
6648 unstop_all_lwps (unfreeze, NULL);
6649 }
6650
6651 static int
6652 linux_prepare_to_access_memory (void)
6653 {
6654 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6655 running LWP. */
6656 if (non_stop)
6657 linux_pause_all (1);
6658 return 0;
6659 }
6660
6661 static void
6662 linux_done_accessing_memory (void)
6663 {
6664 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6665 running LWP. */
6666 if (non_stop)
6667 linux_unpause_all (1);
6668 }
6669
6670 static int
6671 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6672 CORE_ADDR collector,
6673 CORE_ADDR lockaddr,
6674 ULONGEST orig_size,
6675 CORE_ADDR *jump_entry,
6676 CORE_ADDR *trampoline,
6677 ULONGEST *trampoline_size,
6678 unsigned char *jjump_pad_insn,
6679 ULONGEST *jjump_pad_insn_size,
6680 CORE_ADDR *adjusted_insn_addr,
6681 CORE_ADDR *adjusted_insn_addr_end,
6682 char *err)
6683 {
6684 return (*the_low_target.install_fast_tracepoint_jump_pad)
6685 (tpoint, tpaddr, collector, lockaddr, orig_size,
6686 jump_entry, trampoline, trampoline_size,
6687 jjump_pad_insn, jjump_pad_insn_size,
6688 adjusted_insn_addr, adjusted_insn_addr_end,
6689 err);
6690 }
6691
6692 static struct emit_ops *
6693 linux_emit_ops (void)
6694 {
6695 if (the_low_target.emit_ops != NULL)
6696 return (*the_low_target.emit_ops) ();
6697 else
6698 return NULL;
6699 }
6700
6701 static int
6702 linux_get_min_fast_tracepoint_insn_len (void)
6703 {
6704 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6705 }
6706
6707 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6708
6709 static int
6710 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6711 CORE_ADDR *phdr_memaddr, int *num_phdr)
6712 {
6713 char filename[PATH_MAX];
6714 int fd;
6715 const int auxv_size = is_elf64
6716 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6717 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6718
6719 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6720
6721 fd = open (filename, O_RDONLY);
6722 if (fd < 0)
6723 return 1;
6724
6725 *phdr_memaddr = 0;
6726 *num_phdr = 0;
6727 while (read (fd, buf, auxv_size) == auxv_size
6728 && (*phdr_memaddr == 0 || *num_phdr == 0))
6729 {
6730 if (is_elf64)
6731 {
6732 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6733
6734 switch (aux->a_type)
6735 {
6736 case AT_PHDR:
6737 *phdr_memaddr = aux->a_un.a_val;
6738 break;
6739 case AT_PHNUM:
6740 *num_phdr = aux->a_un.a_val;
6741 break;
6742 }
6743 }
6744 else
6745 {
6746 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6747
6748 switch (aux->a_type)
6749 {
6750 case AT_PHDR:
6751 *phdr_memaddr = aux->a_un.a_val;
6752 break;
6753 case AT_PHNUM:
6754 *num_phdr = aux->a_un.a_val;
6755 break;
6756 }
6757 }
6758 }
6759
6760 close (fd);
6761
6762 if (*phdr_memaddr == 0 || *num_phdr == 0)
6763 {
6764 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6765 "phdr_memaddr = %ld, phdr_num = %d",
6766 (long) *phdr_memaddr, *num_phdr);
6767 return 2;
6768 }
6769
6770 return 0;
6771 }
6772
6773 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6774
6775 static CORE_ADDR
6776 get_dynamic (const int pid, const int is_elf64)
6777 {
6778 CORE_ADDR phdr_memaddr, relocation;
6779 int num_phdr, i;
6780 unsigned char *phdr_buf;
6781 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6782
6783 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6784 return 0;
6785
6786 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6787 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6788
6789 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6790 return 0;
6791
6792 /* Compute relocation: it is expected to be 0 for "regular" executables,
6793 non-zero for PIE ones. */
6794 relocation = -1;
6795 for (i = 0; relocation == -1 && i < num_phdr; i++)
6796 if (is_elf64)
6797 {
6798 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6799
6800 if (p->p_type == PT_PHDR)
6801 relocation = phdr_memaddr - p->p_vaddr;
6802 }
6803 else
6804 {
6805 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6806
6807 if (p->p_type == PT_PHDR)
6808 relocation = phdr_memaddr - p->p_vaddr;
6809 }
6810
6811 if (relocation == -1)
6812 {
6813 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6814 any real world executables, including PIE executables, have always
6815 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6816 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6817 or present DT_DEBUG anyway (fpc binaries are statically linked).
6818
6819 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6820
6821 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6822
6823 return 0;
6824 }
6825
6826 for (i = 0; i < num_phdr; i++)
6827 {
6828 if (is_elf64)
6829 {
6830 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6831
6832 if (p->p_type == PT_DYNAMIC)
6833 return p->p_vaddr + relocation;
6834 }
6835 else
6836 {
6837 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6838
6839 if (p->p_type == PT_DYNAMIC)
6840 return p->p_vaddr + relocation;
6841 }
6842 }
6843
6844 return 0;
6845 }
6846
6847 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6848 can be 0 if the inferior does not yet have the library list initialized.
6849 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6850 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6851
6852 static CORE_ADDR
6853 get_r_debug (const int pid, const int is_elf64)
6854 {
6855 CORE_ADDR dynamic_memaddr;
6856 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6857 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6858 CORE_ADDR map = -1;
6859
6860 dynamic_memaddr = get_dynamic (pid, is_elf64);
6861 if (dynamic_memaddr == 0)
6862 return map;
6863
6864 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6865 {
6866 if (is_elf64)
6867 {
6868 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6869 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6870 union
6871 {
6872 Elf64_Xword map;
6873 unsigned char buf[sizeof (Elf64_Xword)];
6874 }
6875 rld_map;
6876 #endif
6877 #ifdef DT_MIPS_RLD_MAP
6878 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6879 {
6880 if (linux_read_memory (dyn->d_un.d_val,
6881 rld_map.buf, sizeof (rld_map.buf)) == 0)
6882 return rld_map.map;
6883 else
6884 break;
6885 }
6886 #endif /* DT_MIPS_RLD_MAP */
6887 #ifdef DT_MIPS_RLD_MAP_REL
6888 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6889 {
6890 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6891 rld_map.buf, sizeof (rld_map.buf)) == 0)
6892 return rld_map.map;
6893 else
6894 break;
6895 }
6896 #endif /* DT_MIPS_RLD_MAP_REL */
6897
6898 if (dyn->d_tag == DT_DEBUG && map == -1)
6899 map = dyn->d_un.d_val;
6900
6901 if (dyn->d_tag == DT_NULL)
6902 break;
6903 }
6904 else
6905 {
6906 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6907 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6908 union
6909 {
6910 Elf32_Word map;
6911 unsigned char buf[sizeof (Elf32_Word)];
6912 }
6913 rld_map;
6914 #endif
6915 #ifdef DT_MIPS_RLD_MAP
6916 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6917 {
6918 if (linux_read_memory (dyn->d_un.d_val,
6919 rld_map.buf, sizeof (rld_map.buf)) == 0)
6920 return rld_map.map;
6921 else
6922 break;
6923 }
6924 #endif /* DT_MIPS_RLD_MAP */
6925 #ifdef DT_MIPS_RLD_MAP_REL
6926 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6927 {
6928 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6929 rld_map.buf, sizeof (rld_map.buf)) == 0)
6930 return rld_map.map;
6931 else
6932 break;
6933 }
6934 #endif /* DT_MIPS_RLD_MAP_REL */
6935
6936 if (dyn->d_tag == DT_DEBUG && map == -1)
6937 map = dyn->d_un.d_val;
6938
6939 if (dyn->d_tag == DT_NULL)
6940 break;
6941 }
6942
6943 dynamic_memaddr += dyn_size;
6944 }
6945
6946 return map;
6947 }
6948
6949 /* Read one pointer from MEMADDR in the inferior. */
6950
6951 static int
6952 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6953 {
6954 int ret;
6955
6956 /* Go through a union so this works on either big or little endian
6957 hosts, when the inferior's pointer size is smaller than the size
6958 of CORE_ADDR. It is assumed the inferior's endianness is the
6959 same of the superior's. */
6960 union
6961 {
6962 CORE_ADDR core_addr;
6963 unsigned int ui;
6964 unsigned char uc;
6965 } addr;
6966
6967 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6968 if (ret == 0)
6969 {
6970 if (ptr_size == sizeof (CORE_ADDR))
6971 *ptr = addr.core_addr;
6972 else if (ptr_size == sizeof (unsigned int))
6973 *ptr = addr.ui;
6974 else
6975 gdb_assert_not_reached ("unhandled pointer size");
6976 }
6977 return ret;
6978 }
6979
6980 struct link_map_offsets
6981 {
6982 /* Offset and size of r_debug.r_version. */
6983 int r_version_offset;
6984
6985 /* Offset and size of r_debug.r_map. */
6986 int r_map_offset;
6987
6988 /* Offset to l_addr field in struct link_map. */
6989 int l_addr_offset;
6990
6991 /* Offset to l_name field in struct link_map. */
6992 int l_name_offset;
6993
6994 /* Offset to l_ld field in struct link_map. */
6995 int l_ld_offset;
6996
6997 /* Offset to l_next field in struct link_map. */
6998 int l_next_offset;
6999
7000 /* Offset to l_prev field in struct link_map. */
7001 int l_prev_offset;
7002 };
7003
7004 /* Construct qXfer:libraries-svr4:read reply. */
7005
7006 static int
7007 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7008 unsigned const char *writebuf,
7009 CORE_ADDR offset, int len)
7010 {
7011 char *document;
7012 unsigned document_len;
7013 struct process_info_private *const priv = current_process ()->priv;
7014 char filename[PATH_MAX];
7015 int pid, is_elf64;
7016
7017 static const struct link_map_offsets lmo_32bit_offsets =
7018 {
7019 0, /* r_version offset. */
7020 4, /* r_debug.r_map offset. */
7021 0, /* l_addr offset in link_map. */
7022 4, /* l_name offset in link_map. */
7023 8, /* l_ld offset in link_map. */
7024 12, /* l_next offset in link_map. */
7025 16 /* l_prev offset in link_map. */
7026 };
7027
7028 static const struct link_map_offsets lmo_64bit_offsets =
7029 {
7030 0, /* r_version offset. */
7031 8, /* r_debug.r_map offset. */
7032 0, /* l_addr offset in link_map. */
7033 8, /* l_name offset in link_map. */
7034 16, /* l_ld offset in link_map. */
7035 24, /* l_next offset in link_map. */
7036 32 /* l_prev offset in link_map. */
7037 };
7038 const struct link_map_offsets *lmo;
7039 unsigned int machine;
7040 int ptr_size;
7041 CORE_ADDR lm_addr = 0, lm_prev = 0;
7042 int allocated = 1024;
7043 char *p;
7044 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7045 int header_done = 0;
7046
7047 if (writebuf != NULL)
7048 return -2;
7049 if (readbuf == NULL)
7050 return -1;
7051
7052 pid = lwpid_of (current_thread);
7053 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7054 is_elf64 = elf_64_file_p (filename, &machine);
7055 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7056 ptr_size = is_elf64 ? 8 : 4;
7057
7058 while (annex[0] != '\0')
7059 {
7060 const char *sep;
7061 CORE_ADDR *addrp;
7062 int len;
7063
7064 sep = strchr (annex, '=');
7065 if (sep == NULL)
7066 break;
7067
7068 len = sep - annex;
7069 if (len == 5 && startswith (annex, "start"))
7070 addrp = &lm_addr;
7071 else if (len == 4 && startswith (annex, "prev"))
7072 addrp = &lm_prev;
7073 else
7074 {
7075 annex = strchr (sep, ';');
7076 if (annex == NULL)
7077 break;
7078 annex++;
7079 continue;
7080 }
7081
7082 annex = decode_address_to_semicolon (addrp, sep + 1);
7083 }
7084
7085 if (lm_addr == 0)
7086 {
7087 int r_version = 0;
7088
7089 if (priv->r_debug == 0)
7090 priv->r_debug = get_r_debug (pid, is_elf64);
7091
7092 /* We failed to find DT_DEBUG. Such situation will not change
7093 for this inferior - do not retry it. Report it to GDB as
7094 E01, see for the reasons at the GDB solib-svr4.c side. */
7095 if (priv->r_debug == (CORE_ADDR) -1)
7096 return -1;
7097
7098 if (priv->r_debug != 0)
7099 {
7100 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7101 (unsigned char *) &r_version,
7102 sizeof (r_version)) != 0
7103 || r_version != 1)
7104 {
7105 warning ("unexpected r_debug version %d", r_version);
7106 }
7107 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7108 &lm_addr, ptr_size) != 0)
7109 {
7110 warning ("unable to read r_map from 0x%lx",
7111 (long) priv->r_debug + lmo->r_map_offset);
7112 }
7113 }
7114 }
7115
7116 document = (char *) xmalloc (allocated);
7117 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7118 p = document + strlen (document);
7119
7120 while (lm_addr
7121 && read_one_ptr (lm_addr + lmo->l_name_offset,
7122 &l_name, ptr_size) == 0
7123 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7124 &l_addr, ptr_size) == 0
7125 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7126 &l_ld, ptr_size) == 0
7127 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7128 &l_prev, ptr_size) == 0
7129 && read_one_ptr (lm_addr + lmo->l_next_offset,
7130 &l_next, ptr_size) == 0)
7131 {
7132 unsigned char libname[PATH_MAX];
7133
7134 if (lm_prev != l_prev)
7135 {
7136 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7137 (long) lm_prev, (long) l_prev);
7138 break;
7139 }
7140
7141 /* Ignore the first entry even if it has valid name as the first entry
7142 corresponds to the main executable. The first entry should not be
7143 skipped if the dynamic loader was loaded late by a static executable
7144 (see solib-svr4.c parameter ignore_first). But in such case the main
7145 executable does not have PT_DYNAMIC present and this function already
7146 exited above due to failed get_r_debug. */
7147 if (lm_prev == 0)
7148 {
7149 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7150 p = p + strlen (p);
7151 }
7152 else
7153 {
7154 /* Not checking for error because reading may stop before
7155 we've got PATH_MAX worth of characters. */
7156 libname[0] = '\0';
7157 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7158 libname[sizeof (libname) - 1] = '\0';
7159 if (libname[0] != '\0')
7160 {
7161 /* 6x the size for xml_escape_text below. */
7162 size_t len = 6 * strlen ((char *) libname);
7163
7164 if (!header_done)
7165 {
7166 /* Terminate `<library-list-svr4'. */
7167 *p++ = '>';
7168 header_done = 1;
7169 }
7170
7171 while (allocated < p - document + len + 200)
7172 {
7173 /* Expand to guarantee sufficient storage. */
7174 uintptr_t document_len = p - document;
7175
7176 document = (char *) xrealloc (document, 2 * allocated);
7177 allocated *= 2;
7178 p = document + document_len;
7179 }
7180
7181 std::string name = xml_escape_text ((char *) libname);
7182 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7183 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7184 name.c_str (), (unsigned long) lm_addr,
7185 (unsigned long) l_addr, (unsigned long) l_ld);
7186 }
7187 }
7188
7189 lm_prev = lm_addr;
7190 lm_addr = l_next;
7191 }
7192
7193 if (!header_done)
7194 {
7195 /* Empty list; terminate `<library-list-svr4'. */
7196 strcpy (p, "/>");
7197 }
7198 else
7199 strcpy (p, "</library-list-svr4>");
7200
7201 document_len = strlen (document);
7202 if (offset < document_len)
7203 document_len -= offset;
7204 else
7205 document_len = 0;
7206 if (len > document_len)
7207 len = document_len;
7208
7209 memcpy (readbuf, document + offset, len);
7210 xfree (document);
7211
7212 return len;
7213 }
7214
7215 #ifdef HAVE_LINUX_BTRACE
7216
7217 /* See to_disable_btrace target method. */
7218
7219 static int
7220 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7221 {
7222 enum btrace_error err;
7223
7224 err = linux_disable_btrace (tinfo);
7225 return (err == BTRACE_ERR_NONE ? 0 : -1);
7226 }
7227
7228 /* Encode an Intel Processor Trace configuration. */
7229
7230 static void
7231 linux_low_encode_pt_config (struct buffer *buffer,
7232 const struct btrace_data_pt_config *config)
7233 {
7234 buffer_grow_str (buffer, "<pt-config>\n");
7235
7236 switch (config->cpu.vendor)
7237 {
7238 case CV_INTEL:
7239 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7240 "model=\"%u\" stepping=\"%u\"/>\n",
7241 config->cpu.family, config->cpu.model,
7242 config->cpu.stepping);
7243 break;
7244
7245 default:
7246 break;
7247 }
7248
7249 buffer_grow_str (buffer, "</pt-config>\n");
7250 }
7251
7252 /* Encode a raw buffer. */
7253
7254 static void
7255 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7256 unsigned int size)
7257 {
7258 if (size == 0)
7259 return;
7260
7261 /* We use hex encoding - see common/rsp-low.h. */
7262 buffer_grow_str (buffer, "<raw>\n");
7263
7264 while (size-- > 0)
7265 {
7266 char elem[2];
7267
7268 elem[0] = tohex ((*data >> 4) & 0xf);
7269 elem[1] = tohex (*data++ & 0xf);
7270
7271 buffer_grow (buffer, elem, 2);
7272 }
7273
7274 buffer_grow_str (buffer, "</raw>\n");
7275 }
7276
7277 /* See to_read_btrace target method. */
7278
7279 static int
7280 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7281 enum btrace_read_type type)
7282 {
7283 struct btrace_data btrace;
7284 struct btrace_block *block;
7285 enum btrace_error err;
7286 int i;
7287
7288 btrace_data_init (&btrace);
7289
7290 err = linux_read_btrace (&btrace, tinfo, type);
7291 if (err != BTRACE_ERR_NONE)
7292 {
7293 if (err == BTRACE_ERR_OVERFLOW)
7294 buffer_grow_str0 (buffer, "E.Overflow.");
7295 else
7296 buffer_grow_str0 (buffer, "E.Generic Error.");
7297
7298 goto err;
7299 }
7300
7301 switch (btrace.format)
7302 {
7303 case BTRACE_FORMAT_NONE:
7304 buffer_grow_str0 (buffer, "E.No Trace.");
7305 goto err;
7306
7307 case BTRACE_FORMAT_BTS:
7308 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7309 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7310
7311 for (i = 0;
7312 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7313 i++)
7314 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7315 paddress (block->begin), paddress (block->end));
7316
7317 buffer_grow_str0 (buffer, "</btrace>\n");
7318 break;
7319
7320 case BTRACE_FORMAT_PT:
7321 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7322 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7323 buffer_grow_str (buffer, "<pt>\n");
7324
7325 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7326
7327 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7328 btrace.variant.pt.size);
7329
7330 buffer_grow_str (buffer, "</pt>\n");
7331 buffer_grow_str0 (buffer, "</btrace>\n");
7332 break;
7333
7334 default:
7335 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7336 goto err;
7337 }
7338
7339 btrace_data_fini (&btrace);
7340 return 0;
7341
7342 err:
7343 btrace_data_fini (&btrace);
7344 return -1;
7345 }
7346
7347 /* See to_btrace_conf target method. */
7348
7349 static int
7350 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7351 struct buffer *buffer)
7352 {
7353 const struct btrace_config *conf;
7354
7355 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7356 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7357
7358 conf = linux_btrace_conf (tinfo);
7359 if (conf != NULL)
7360 {
7361 switch (conf->format)
7362 {
7363 case BTRACE_FORMAT_NONE:
7364 break;
7365
7366 case BTRACE_FORMAT_BTS:
7367 buffer_xml_printf (buffer, "<bts");
7368 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7369 buffer_xml_printf (buffer, " />\n");
7370 break;
7371
7372 case BTRACE_FORMAT_PT:
7373 buffer_xml_printf (buffer, "<pt");
7374 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7375 buffer_xml_printf (buffer, "/>\n");
7376 break;
7377 }
7378 }
7379
7380 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7381 return 0;
7382 }
7383 #endif /* HAVE_LINUX_BTRACE */
7384
7385 /* See nat/linux-nat.h. */
7386
7387 ptid_t
7388 current_lwp_ptid (void)
7389 {
7390 return ptid_of (current_thread);
7391 }
7392
7393 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7394
7395 static int
7396 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7397 {
7398 if (the_low_target.breakpoint_kind_from_pc != NULL)
7399 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7400 else
7401 return default_breakpoint_kind_from_pc (pcptr);
7402 }
7403
7404 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7405
7406 static const gdb_byte *
7407 linux_sw_breakpoint_from_kind (int kind, int *size)
7408 {
7409 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7410
7411 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7412 }
7413
7414 /* Implementation of the target_ops method
7415 "breakpoint_kind_from_current_state". */
7416
7417 static int
7418 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7419 {
7420 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7421 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7422 else
7423 return linux_breakpoint_kind_from_pc (pcptr);
7424 }
7425
7426 /* Default implementation of linux_target_ops method "set_pc" for
7427 32-bit pc register which is literally named "pc". */
7428
7429 void
7430 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7431 {
7432 uint32_t newpc = pc;
7433
7434 supply_register_by_name (regcache, "pc", &newpc);
7435 }
7436
7437 /* Default implementation of linux_target_ops method "get_pc" for
7438 32-bit pc register which is literally named "pc". */
7439
7440 CORE_ADDR
7441 linux_get_pc_32bit (struct regcache *regcache)
7442 {
7443 uint32_t pc;
7444
7445 collect_register_by_name (regcache, "pc", &pc);
7446 if (debug_threads)
7447 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7448 return pc;
7449 }
7450
7451 /* Default implementation of linux_target_ops method "set_pc" for
7452 64-bit pc register which is literally named "pc". */
7453
7454 void
7455 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7456 {
7457 uint64_t newpc = pc;
7458
7459 supply_register_by_name (regcache, "pc", &newpc);
7460 }
7461
7462 /* Default implementation of linux_target_ops method "get_pc" for
7463 64-bit pc register which is literally named "pc". */
7464
7465 CORE_ADDR
7466 linux_get_pc_64bit (struct regcache *regcache)
7467 {
7468 uint64_t pc;
7469
7470 collect_register_by_name (regcache, "pc", &pc);
7471 if (debug_threads)
7472 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7473 return pc;
7474 }
7475
7476
7477 static struct target_ops linux_target_ops = {
7478 linux_create_inferior,
7479 linux_post_create_inferior,
7480 linux_attach,
7481 linux_kill,
7482 linux_detach,
7483 linux_mourn,
7484 linux_join,
7485 linux_thread_alive,
7486 linux_resume,
7487 linux_wait,
7488 linux_fetch_registers,
7489 linux_store_registers,
7490 linux_prepare_to_access_memory,
7491 linux_done_accessing_memory,
7492 linux_read_memory,
7493 linux_write_memory,
7494 linux_look_up_symbols,
7495 linux_request_interrupt,
7496 linux_read_auxv,
7497 linux_supports_z_point_type,
7498 linux_insert_point,
7499 linux_remove_point,
7500 linux_stopped_by_sw_breakpoint,
7501 linux_supports_stopped_by_sw_breakpoint,
7502 linux_stopped_by_hw_breakpoint,
7503 linux_supports_stopped_by_hw_breakpoint,
7504 linux_supports_hardware_single_step,
7505 linux_stopped_by_watchpoint,
7506 linux_stopped_data_address,
7507 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7508 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7509 && defined(PT_TEXT_END_ADDR)
7510 linux_read_offsets,
7511 #else
7512 NULL,
7513 #endif
7514 #ifdef USE_THREAD_DB
7515 thread_db_get_tls_address,
7516 #else
7517 NULL,
7518 #endif
7519 linux_qxfer_spu,
7520 hostio_last_error_from_errno,
7521 linux_qxfer_osdata,
7522 linux_xfer_siginfo,
7523 linux_supports_non_stop,
7524 linux_async,
7525 linux_start_non_stop,
7526 linux_supports_multi_process,
7527 linux_supports_fork_events,
7528 linux_supports_vfork_events,
7529 linux_supports_exec_events,
7530 linux_handle_new_gdb_connection,
7531 #ifdef USE_THREAD_DB
7532 thread_db_handle_monitor_command,
7533 #else
7534 NULL,
7535 #endif
7536 linux_common_core_of_thread,
7537 linux_read_loadmap,
7538 linux_process_qsupported,
7539 linux_supports_tracepoints,
7540 linux_read_pc,
7541 linux_write_pc,
7542 linux_thread_stopped,
7543 NULL,
7544 linux_pause_all,
7545 linux_unpause_all,
7546 linux_stabilize_threads,
7547 linux_install_fast_tracepoint_jump_pad,
7548 linux_emit_ops,
7549 linux_supports_disable_randomization,
7550 linux_get_min_fast_tracepoint_insn_len,
7551 linux_qxfer_libraries_svr4,
7552 linux_supports_agent,
7553 #ifdef HAVE_LINUX_BTRACE
7554 linux_supports_btrace,
7555 linux_enable_btrace,
7556 linux_low_disable_btrace,
7557 linux_low_read_btrace,
7558 linux_low_btrace_conf,
7559 #else
7560 NULL,
7561 NULL,
7562 NULL,
7563 NULL,
7564 NULL,
7565 #endif
7566 linux_supports_range_stepping,
7567 linux_proc_pid_to_exec_file,
7568 linux_mntns_open_cloexec,
7569 linux_mntns_unlink,
7570 linux_mntns_readlink,
7571 linux_breakpoint_kind_from_pc,
7572 linux_sw_breakpoint_from_kind,
7573 linux_proc_tid_get_name,
7574 linux_breakpoint_kind_from_current_state,
7575 linux_supports_software_single_step,
7576 linux_supports_catch_syscall,
7577 linux_get_ipa_tdesc_idx,
7578 #if USE_THREAD_DB
7579 thread_db_thread_handle,
7580 #else
7581 NULL,
7582 #endif
7583 };
7584
7585 #ifdef HAVE_LINUX_REGSETS
7586 void
7587 initialize_regsets_info (struct regsets_info *info)
7588 {
7589 for (info->num_regsets = 0;
7590 info->regsets[info->num_regsets].size >= 0;
7591 info->num_regsets++)
7592 ;
7593 }
7594 #endif
7595
7596 void
7597 initialize_low (void)
7598 {
7599 struct sigaction sigchld_action;
7600
7601 memset (&sigchld_action, 0, sizeof (sigchld_action));
7602 set_target_ops (&linux_target_ops);
7603
7604 linux_ptrace_init_warnings ();
7605
7606 sigchld_action.sa_handler = sigchld_handler;
7607 sigemptyset (&sigchld_action.sa_mask);
7608 sigchld_action.sa_flags = SA_RESTART;
7609 sigaction (SIGCHLD, &sigchld_action, NULL);
7610
7611 initialize_low_arch ();
7612
7613 linux_check_ptrace_features ();
7614 }