]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Remove usage of find_inferior in linux_detach
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int
1245 last_thread_of_process_p (int pid)
1246 {
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265 }
1266
1267 /* Kill LWP. */
1268
1269 static void
1270 linux_kill_one_lwp (struct lwp_info *lwp)
1271 {
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309 }
1310
1311 /* Kill LWP and wait for it to die. */
1312
1313 static void
1314 kill_wait_lwp (struct lwp_info *lwp)
1315 {
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352 }
1353
1354 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357 static void
1358 kill_one_lwp_callback (thread_info *thread, int pid)
1359 {
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376 }
1377
1378 static int
1379 linux_kill (int pid)
1380 {
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416 }
1417
1418 /* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422 static int
1423 get_detach_signal (struct thread_info *thread)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496 }
1497
1498 /* Detach from LWP. */
1499
1500 static void
1501 linux_detach_one_lwp (struct lwp_info *lwp)
1502 {
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582 }
1583
1584 /* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587 static void
1588 linux_detach_lwp_callback (thread_info *thread)
1589 {
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598 }
1599
1600 static int
1601 linux_detach (int pid)
1602 {
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621 #ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623 #endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642 }
1643
1644 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646 static int
1647 delete_lwp_callback (thread_info *thread, void *proc)
1648 {
1649 struct lwp_info *lwp = get_thread_lwp (thread);
1650 struct process_info *process = (struct process_info *) proc;
1651
1652 if (pid_of (thread) == pid_of (process))
1653 delete_lwp (lwp);
1654
1655 return 0;
1656 }
1657
1658 static void
1659 linux_mourn (struct process_info *process)
1660 {
1661 struct process_info_private *priv;
1662
1663 #ifdef USE_THREAD_DB
1664 thread_db_mourn (process);
1665 #endif
1666
1667 find_inferior (&all_threads, delete_lwp_callback, process);
1668
1669 /* Freeing all private data. */
1670 priv = process->priv;
1671 if (the_low_target.delete_process != NULL)
1672 the_low_target.delete_process (priv->arch_private);
1673 else
1674 gdb_assert (priv->arch_private == NULL);
1675 free (priv);
1676 process->priv = NULL;
1677
1678 remove_process (process);
1679 }
1680
1681 static void
1682 linux_join (int pid)
1683 {
1684 int status, ret;
1685
1686 do {
1687 ret = my_waitpid (pid, &status, 0);
1688 if (WIFEXITED (status) || WIFSIGNALED (status))
1689 break;
1690 } while (ret != -1 || errno != ECHILD);
1691 }
1692
1693 /* Return nonzero if the given thread is still alive. */
1694 static int
1695 linux_thread_alive (ptid_t ptid)
1696 {
1697 struct lwp_info *lwp = find_lwp_pid (ptid);
1698
1699 /* We assume we always know if a thread exits. If a whole process
1700 exited but we still haven't been able to report it to GDB, we'll
1701 hold on to the last lwp of the dead process. */
1702 if (lwp != NULL)
1703 return !lwp_is_marked_dead (lwp);
1704 else
1705 return 0;
1706 }
1707
1708 /* Return 1 if this lwp still has an interesting status pending. If
1709 not (e.g., it had stopped for a breakpoint that is gone), return
1710 false. */
1711
1712 static int
1713 thread_still_has_status_pending_p (struct thread_info *thread)
1714 {
1715 struct lwp_info *lp = get_thread_lwp (thread);
1716
1717 if (!lp->status_pending_p)
1718 return 0;
1719
1720 if (thread->last_resume_kind != resume_stop
1721 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1722 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1723 {
1724 struct thread_info *saved_thread;
1725 CORE_ADDR pc;
1726 int discard = 0;
1727
1728 gdb_assert (lp->last_status != 0);
1729
1730 pc = get_pc (lp);
1731
1732 saved_thread = current_thread;
1733 current_thread = thread;
1734
1735 if (pc != lp->stop_pc)
1736 {
1737 if (debug_threads)
1738 debug_printf ("PC of %ld changed\n",
1739 lwpid_of (thread));
1740 discard = 1;
1741 }
1742
1743 #if !USE_SIGTRAP_SIGINFO
1744 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1745 && !(*the_low_target.breakpoint_at) (pc))
1746 {
1747 if (debug_threads)
1748 debug_printf ("previous SW breakpoint of %ld gone\n",
1749 lwpid_of (thread));
1750 discard = 1;
1751 }
1752 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1753 && !hardware_breakpoint_inserted_here (pc))
1754 {
1755 if (debug_threads)
1756 debug_printf ("previous HW breakpoint of %ld gone\n",
1757 lwpid_of (thread));
1758 discard = 1;
1759 }
1760 #endif
1761
1762 current_thread = saved_thread;
1763
1764 if (discard)
1765 {
1766 if (debug_threads)
1767 debug_printf ("discarding pending breakpoint status\n");
1768 lp->status_pending_p = 0;
1769 return 0;
1770 }
1771 }
1772
1773 return 1;
1774 }
1775
1776 /* Returns true if LWP is resumed from the client's perspective. */
1777
1778 static int
1779 lwp_resumed (struct lwp_info *lwp)
1780 {
1781 struct thread_info *thread = get_lwp_thread (lwp);
1782
1783 if (thread->last_resume_kind != resume_stop)
1784 return 1;
1785
1786 /* Did gdb send us a `vCont;t', but we haven't reported the
1787 corresponding stop to gdb yet? If so, the thread is still
1788 resumed/running from gdb's perspective. */
1789 if (thread->last_resume_kind == resume_stop
1790 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1791 return 1;
1792
1793 return 0;
1794 }
1795
1796 /* Return true if this lwp has an interesting status pending. */
1797 static bool
1798 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1799 {
1800 struct lwp_info *lp = get_thread_lwp (thread);
1801
1802 /* Check if we're only interested in events from a specific process
1803 or a specific LWP. */
1804 if (!thread->id.matches (ptid))
1805 return 0;
1806
1807 if (!lwp_resumed (lp))
1808 return 0;
1809
1810 if (lp->status_pending_p
1811 && !thread_still_has_status_pending_p (thread))
1812 {
1813 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1814 return 0;
1815 }
1816
1817 return lp->status_pending_p;
1818 }
1819
1820 static int
1821 same_lwp (thread_info *thread, void *data)
1822 {
1823 ptid_t ptid = *(ptid_t *) data;
1824 int lwp;
1825
1826 if (ptid_get_lwp (ptid) != 0)
1827 lwp = ptid_get_lwp (ptid);
1828 else
1829 lwp = ptid_get_pid (ptid);
1830
1831 if (thread->id.lwp () == lwp)
1832 return 1;
1833
1834 return 0;
1835 }
1836
1837 struct lwp_info *
1838 find_lwp_pid (ptid_t ptid)
1839 {
1840 thread_info *thread = find_inferior (&all_threads, same_lwp, &ptid);
1841
1842 if (thread == NULL)
1843 return NULL;
1844
1845 return get_thread_lwp (thread);
1846 }
1847
1848 /* Return the number of known LWPs in the tgid given by PID. */
1849
1850 static int
1851 num_lwps (int pid)
1852 {
1853 int count = 0;
1854
1855 for_each_thread (pid, [&] (thread_info *thread)
1856 {
1857 count++;
1858 });
1859
1860 return count;
1861 }
1862
1863 /* See nat/linux-nat.h. */
1864
1865 struct lwp_info *
1866 iterate_over_lwps (ptid_t filter,
1867 iterate_over_lwps_ftype callback,
1868 void *data)
1869 {
1870 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1871 {
1872 lwp_info *lwp = get_thread_lwp (thread);
1873
1874 return callback (lwp, data);
1875 });
1876
1877 if (thread == NULL)
1878 return NULL;
1879
1880 return get_thread_lwp (thread);
1881 }
1882
1883 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1884 their exits until all other threads in the group have exited. */
1885
1886 static void
1887 check_zombie_leaders (void)
1888 {
1889 for_each_process ([] (process_info *proc) {
1890 pid_t leader_pid = pid_of (proc);
1891 struct lwp_info *leader_lp;
1892
1893 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1894
1895 if (debug_threads)
1896 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1897 "num_lwps=%d, zombie=%d\n",
1898 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1899 linux_proc_pid_is_zombie (leader_pid));
1900
1901 if (leader_lp != NULL && !leader_lp->stopped
1902 /* Check if there are other threads in the group, as we may
1903 have raced with the inferior simply exiting. */
1904 && !last_thread_of_process_p (leader_pid)
1905 && linux_proc_pid_is_zombie (leader_pid))
1906 {
1907 /* A leader zombie can mean one of two things:
1908
1909 - It exited, and there's an exit status pending
1910 available, or only the leader exited (not the whole
1911 program). In the latter case, we can't waitpid the
1912 leader's exit status until all other threads are gone.
1913
1914 - There are 3 or more threads in the group, and a thread
1915 other than the leader exec'd. On an exec, the Linux
1916 kernel destroys all other threads (except the execing
1917 one) in the thread group, and resets the execing thread's
1918 tid to the tgid. No exit notification is sent for the
1919 execing thread -- from the ptracer's perspective, it
1920 appears as though the execing thread just vanishes.
1921 Until we reap all other threads except the leader and the
1922 execing thread, the leader will be zombie, and the
1923 execing thread will be in `D (disc sleep)'. As soon as
1924 all other threads are reaped, the execing thread changes
1925 it's tid to the tgid, and the previous (zombie) leader
1926 vanishes, giving place to the "new" leader. We could try
1927 distinguishing the exit and exec cases, by waiting once
1928 more, and seeing if something comes out, but it doesn't
1929 sound useful. The previous leader _does_ go away, and
1930 we'll re-add the new one once we see the exec event
1931 (which is just the same as what would happen if the
1932 previous leader did exit voluntarily before some other
1933 thread execs). */
1934
1935 if (debug_threads)
1936 debug_printf ("CZL: Thread group leader %d zombie "
1937 "(it exited, or another thread execd).\n",
1938 leader_pid);
1939
1940 delete_lwp (leader_lp);
1941 }
1942 });
1943 }
1944
1945 /* Callback for `find_inferior'. Returns the first LWP that is not
1946 stopped. ARG is a PTID filter. */
1947
1948 static int
1949 not_stopped_callback (thread_info *thread, void *arg)
1950 {
1951 struct lwp_info *lwp;
1952 ptid_t filter = *(ptid_t *) arg;
1953
1954 if (!ptid_match (ptid_of (thread), filter))
1955 return 0;
1956
1957 lwp = get_thread_lwp (thread);
1958 if (!lwp->stopped)
1959 return 1;
1960
1961 return 0;
1962 }
1963
1964 /* Increment LWP's suspend count. */
1965
1966 static void
1967 lwp_suspended_inc (struct lwp_info *lwp)
1968 {
1969 lwp->suspended++;
1970
1971 if (debug_threads && lwp->suspended > 4)
1972 {
1973 struct thread_info *thread = get_lwp_thread (lwp);
1974
1975 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1976 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1977 }
1978 }
1979
1980 /* Decrement LWP's suspend count. */
1981
1982 static void
1983 lwp_suspended_decr (struct lwp_info *lwp)
1984 {
1985 lwp->suspended--;
1986
1987 if (lwp->suspended < 0)
1988 {
1989 struct thread_info *thread = get_lwp_thread (lwp);
1990
1991 internal_error (__FILE__, __LINE__,
1992 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1993 lwp->suspended);
1994 }
1995 }
1996
1997 /* This function should only be called if the LWP got a SIGTRAP.
1998
1999 Handle any tracepoint steps or hits. Return true if a tracepoint
2000 event was handled, 0 otherwise. */
2001
2002 static int
2003 handle_tracepoints (struct lwp_info *lwp)
2004 {
2005 struct thread_info *tinfo = get_lwp_thread (lwp);
2006 int tpoint_related_event = 0;
2007
2008 gdb_assert (lwp->suspended == 0);
2009
2010 /* If this tracepoint hit causes a tracing stop, we'll immediately
2011 uninsert tracepoints. To do this, we temporarily pause all
2012 threads, unpatch away, and then unpause threads. We need to make
2013 sure the unpausing doesn't resume LWP too. */
2014 lwp_suspended_inc (lwp);
2015
2016 /* And we need to be sure that any all-threads-stopping doesn't try
2017 to move threads out of the jump pads, as it could deadlock the
2018 inferior (LWP could be in the jump pad, maybe even holding the
2019 lock.) */
2020
2021 /* Do any necessary step collect actions. */
2022 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2023
2024 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2025
2026 /* See if we just hit a tracepoint and do its main collect
2027 actions. */
2028 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2029
2030 lwp_suspended_decr (lwp);
2031
2032 gdb_assert (lwp->suspended == 0);
2033 gdb_assert (!stabilizing_threads
2034 || (lwp->collecting_fast_tracepoint
2035 != fast_tpoint_collect_result::not_collecting));
2036
2037 if (tpoint_related_event)
2038 {
2039 if (debug_threads)
2040 debug_printf ("got a tracepoint event\n");
2041 return 1;
2042 }
2043
2044 return 0;
2045 }
2046
2047 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2048 collection status. */
2049
2050 static fast_tpoint_collect_result
2051 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2052 struct fast_tpoint_collect_status *status)
2053 {
2054 CORE_ADDR thread_area;
2055 struct thread_info *thread = get_lwp_thread (lwp);
2056
2057 if (the_low_target.get_thread_area == NULL)
2058 return fast_tpoint_collect_result::not_collecting;
2059
2060 /* Get the thread area address. This is used to recognize which
2061 thread is which when tracing with the in-process agent library.
2062 We don't read anything from the address, and treat it as opaque;
2063 it's the address itself that we assume is unique per-thread. */
2064 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2065 return fast_tpoint_collect_result::not_collecting;
2066
2067 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2068 }
2069
2070 /* The reason we resume in the caller, is because we want to be able
2071 to pass lwp->status_pending as WSTAT, and we need to clear
2072 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2073 refuses to resume. */
2074
2075 static int
2076 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2077 {
2078 struct thread_info *saved_thread;
2079
2080 saved_thread = current_thread;
2081 current_thread = get_lwp_thread (lwp);
2082
2083 if ((wstat == NULL
2084 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2085 && supports_fast_tracepoints ()
2086 && agent_loaded_p ())
2087 {
2088 struct fast_tpoint_collect_status status;
2089
2090 if (debug_threads)
2091 debug_printf ("Checking whether LWP %ld needs to move out of the "
2092 "jump pad.\n",
2093 lwpid_of (current_thread));
2094
2095 fast_tpoint_collect_result r
2096 = linux_fast_tracepoint_collecting (lwp, &status);
2097
2098 if (wstat == NULL
2099 || (WSTOPSIG (*wstat) != SIGILL
2100 && WSTOPSIG (*wstat) != SIGFPE
2101 && WSTOPSIG (*wstat) != SIGSEGV
2102 && WSTOPSIG (*wstat) != SIGBUS))
2103 {
2104 lwp->collecting_fast_tracepoint = r;
2105
2106 if (r != fast_tpoint_collect_result::not_collecting)
2107 {
2108 if (r == fast_tpoint_collect_result::before_insn
2109 && lwp->exit_jump_pad_bkpt == NULL)
2110 {
2111 /* Haven't executed the original instruction yet.
2112 Set breakpoint there, and wait till it's hit,
2113 then single-step until exiting the jump pad. */
2114 lwp->exit_jump_pad_bkpt
2115 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2116 }
2117
2118 if (debug_threads)
2119 debug_printf ("Checking whether LWP %ld needs to move out of "
2120 "the jump pad...it does\n",
2121 lwpid_of (current_thread));
2122 current_thread = saved_thread;
2123
2124 return 1;
2125 }
2126 }
2127 else
2128 {
2129 /* If we get a synchronous signal while collecting, *and*
2130 while executing the (relocated) original instruction,
2131 reset the PC to point at the tpoint address, before
2132 reporting to GDB. Otherwise, it's an IPA lib bug: just
2133 report the signal to GDB, and pray for the best. */
2134
2135 lwp->collecting_fast_tracepoint
2136 = fast_tpoint_collect_result::not_collecting;
2137
2138 if (r != fast_tpoint_collect_result::not_collecting
2139 && (status.adjusted_insn_addr <= lwp->stop_pc
2140 && lwp->stop_pc < status.adjusted_insn_addr_end))
2141 {
2142 siginfo_t info;
2143 struct regcache *regcache;
2144
2145 /* The si_addr on a few signals references the address
2146 of the faulting instruction. Adjust that as
2147 well. */
2148 if ((WSTOPSIG (*wstat) == SIGILL
2149 || WSTOPSIG (*wstat) == SIGFPE
2150 || WSTOPSIG (*wstat) == SIGBUS
2151 || WSTOPSIG (*wstat) == SIGSEGV)
2152 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2153 (PTRACE_TYPE_ARG3) 0, &info) == 0
2154 /* Final check just to make sure we don't clobber
2155 the siginfo of non-kernel-sent signals. */
2156 && (uintptr_t) info.si_addr == lwp->stop_pc)
2157 {
2158 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2159 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2160 (PTRACE_TYPE_ARG3) 0, &info);
2161 }
2162
2163 regcache = get_thread_regcache (current_thread, 1);
2164 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2165 lwp->stop_pc = status.tpoint_addr;
2166
2167 /* Cancel any fast tracepoint lock this thread was
2168 holding. */
2169 force_unlock_trace_buffer ();
2170 }
2171
2172 if (lwp->exit_jump_pad_bkpt != NULL)
2173 {
2174 if (debug_threads)
2175 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2176 "stopping all threads momentarily.\n");
2177
2178 stop_all_lwps (1, lwp);
2179
2180 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2181 lwp->exit_jump_pad_bkpt = NULL;
2182
2183 unstop_all_lwps (1, lwp);
2184
2185 gdb_assert (lwp->suspended >= 0);
2186 }
2187 }
2188 }
2189
2190 if (debug_threads)
2191 debug_printf ("Checking whether LWP %ld needs to move out of the "
2192 "jump pad...no\n",
2193 lwpid_of (current_thread));
2194
2195 current_thread = saved_thread;
2196 return 0;
2197 }
2198
2199 /* Enqueue one signal in the "signals to report later when out of the
2200 jump pad" list. */
2201
2202 static void
2203 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2204 {
2205 struct pending_signals *p_sig;
2206 struct thread_info *thread = get_lwp_thread (lwp);
2207
2208 if (debug_threads)
2209 debug_printf ("Deferring signal %d for LWP %ld.\n",
2210 WSTOPSIG (*wstat), lwpid_of (thread));
2211
2212 if (debug_threads)
2213 {
2214 struct pending_signals *sig;
2215
2216 for (sig = lwp->pending_signals_to_report;
2217 sig != NULL;
2218 sig = sig->prev)
2219 debug_printf (" Already queued %d\n",
2220 sig->signal);
2221
2222 debug_printf (" (no more currently queued signals)\n");
2223 }
2224
2225 /* Don't enqueue non-RT signals if they are already in the deferred
2226 queue. (SIGSTOP being the easiest signal to see ending up here
2227 twice) */
2228 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2229 {
2230 struct pending_signals *sig;
2231
2232 for (sig = lwp->pending_signals_to_report;
2233 sig != NULL;
2234 sig = sig->prev)
2235 {
2236 if (sig->signal == WSTOPSIG (*wstat))
2237 {
2238 if (debug_threads)
2239 debug_printf ("Not requeuing already queued non-RT signal %d"
2240 " for LWP %ld\n",
2241 sig->signal,
2242 lwpid_of (thread));
2243 return;
2244 }
2245 }
2246 }
2247
2248 p_sig = XCNEW (struct pending_signals);
2249 p_sig->prev = lwp->pending_signals_to_report;
2250 p_sig->signal = WSTOPSIG (*wstat);
2251
2252 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2253 &p_sig->info);
2254
2255 lwp->pending_signals_to_report = p_sig;
2256 }
2257
2258 /* Dequeue one signal from the "signals to report later when out of
2259 the jump pad" list. */
2260
2261 static int
2262 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2263 {
2264 struct thread_info *thread = get_lwp_thread (lwp);
2265
2266 if (lwp->pending_signals_to_report != NULL)
2267 {
2268 struct pending_signals **p_sig;
2269
2270 p_sig = &lwp->pending_signals_to_report;
2271 while ((*p_sig)->prev != NULL)
2272 p_sig = &(*p_sig)->prev;
2273
2274 *wstat = W_STOPCODE ((*p_sig)->signal);
2275 if ((*p_sig)->info.si_signo != 0)
2276 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2277 &(*p_sig)->info);
2278 free (*p_sig);
2279 *p_sig = NULL;
2280
2281 if (debug_threads)
2282 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2283 WSTOPSIG (*wstat), lwpid_of (thread));
2284
2285 if (debug_threads)
2286 {
2287 struct pending_signals *sig;
2288
2289 for (sig = lwp->pending_signals_to_report;
2290 sig != NULL;
2291 sig = sig->prev)
2292 debug_printf (" Still queued %d\n",
2293 sig->signal);
2294
2295 debug_printf (" (no more queued signals)\n");
2296 }
2297
2298 return 1;
2299 }
2300
2301 return 0;
2302 }
2303
2304 /* Fetch the possibly triggered data watchpoint info and store it in
2305 CHILD.
2306
2307 On some archs, like x86, that use debug registers to set
2308 watchpoints, it's possible that the way to know which watched
2309 address trapped, is to check the register that is used to select
2310 which address to watch. Problem is, between setting the watchpoint
2311 and reading back which data address trapped, the user may change
2312 the set of watchpoints, and, as a consequence, GDB changes the
2313 debug registers in the inferior. To avoid reading back a stale
2314 stopped-data-address when that happens, we cache in LP the fact
2315 that a watchpoint trapped, and the corresponding data address, as
2316 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2317 registers meanwhile, we have the cached data we can rely on. */
2318
2319 static int
2320 check_stopped_by_watchpoint (struct lwp_info *child)
2321 {
2322 if (the_low_target.stopped_by_watchpoint != NULL)
2323 {
2324 struct thread_info *saved_thread;
2325
2326 saved_thread = current_thread;
2327 current_thread = get_lwp_thread (child);
2328
2329 if (the_low_target.stopped_by_watchpoint ())
2330 {
2331 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2332
2333 if (the_low_target.stopped_data_address != NULL)
2334 child->stopped_data_address
2335 = the_low_target.stopped_data_address ();
2336 else
2337 child->stopped_data_address = 0;
2338 }
2339
2340 current_thread = saved_thread;
2341 }
2342
2343 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2344 }
2345
2346 /* Return the ptrace options that we want to try to enable. */
2347
2348 static int
2349 linux_low_ptrace_options (int attached)
2350 {
2351 int options = 0;
2352
2353 if (!attached)
2354 options |= PTRACE_O_EXITKILL;
2355
2356 if (report_fork_events)
2357 options |= PTRACE_O_TRACEFORK;
2358
2359 if (report_vfork_events)
2360 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2361
2362 if (report_exec_events)
2363 options |= PTRACE_O_TRACEEXEC;
2364
2365 options |= PTRACE_O_TRACESYSGOOD;
2366
2367 return options;
2368 }
2369
2370 /* Do low-level handling of the event, and check if we should go on
2371 and pass it to caller code. Return the affected lwp if we are, or
2372 NULL otherwise. */
2373
2374 static struct lwp_info *
2375 linux_low_filter_event (int lwpid, int wstat)
2376 {
2377 struct lwp_info *child;
2378 struct thread_info *thread;
2379 int have_stop_pc = 0;
2380
2381 child = find_lwp_pid (pid_to_ptid (lwpid));
2382
2383 /* Check for stop events reported by a process we didn't already
2384 know about - anything not already in our LWP list.
2385
2386 If we're expecting to receive stopped processes after
2387 fork, vfork, and clone events, then we'll just add the
2388 new one to our list and go back to waiting for the event
2389 to be reported - the stopped process might be returned
2390 from waitpid before or after the event is.
2391
2392 But note the case of a non-leader thread exec'ing after the
2393 leader having exited, and gone from our lists (because
2394 check_zombie_leaders deleted it). The non-leader thread
2395 changes its tid to the tgid. */
2396
2397 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2398 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2399 {
2400 ptid_t child_ptid;
2401
2402 /* A multi-thread exec after we had seen the leader exiting. */
2403 if (debug_threads)
2404 {
2405 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2406 "after exec.\n", lwpid);
2407 }
2408
2409 child_ptid = ptid_build (lwpid, lwpid, 0);
2410 child = add_lwp (child_ptid);
2411 child->stopped = 1;
2412 current_thread = child->thread;
2413 }
2414
2415 /* If we didn't find a process, one of two things presumably happened:
2416 - A process we started and then detached from has exited. Ignore it.
2417 - A process we are controlling has forked and the new child's stop
2418 was reported to us by the kernel. Save its PID. */
2419 if (child == NULL && WIFSTOPPED (wstat))
2420 {
2421 add_to_pid_list (&stopped_pids, lwpid, wstat);
2422 return NULL;
2423 }
2424 else if (child == NULL)
2425 return NULL;
2426
2427 thread = get_lwp_thread (child);
2428
2429 child->stopped = 1;
2430
2431 child->last_status = wstat;
2432
2433 /* Check if the thread has exited. */
2434 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2435 {
2436 if (debug_threads)
2437 debug_printf ("LLFE: %d exited.\n", lwpid);
2438
2439 if (finish_step_over (child))
2440 {
2441 /* Unsuspend all other LWPs, and set them back running again. */
2442 unsuspend_all_lwps (child);
2443 }
2444
2445 /* If there is at least one more LWP, then the exit signal was
2446 not the end of the debugged application and should be
2447 ignored, unless GDB wants to hear about thread exits. */
2448 if (report_thread_events
2449 || last_thread_of_process_p (pid_of (thread)))
2450 {
2451 /* Since events are serialized to GDB core, and we can't
2452 report this one right now. Leave the status pending for
2453 the next time we're able to report it. */
2454 mark_lwp_dead (child, wstat);
2455 return child;
2456 }
2457 else
2458 {
2459 delete_lwp (child);
2460 return NULL;
2461 }
2462 }
2463
2464 gdb_assert (WIFSTOPPED (wstat));
2465
2466 if (WIFSTOPPED (wstat))
2467 {
2468 struct process_info *proc;
2469
2470 /* Architecture-specific setup after inferior is running. */
2471 proc = find_process_pid (pid_of (thread));
2472 if (proc->tdesc == NULL)
2473 {
2474 if (proc->attached)
2475 {
2476 /* This needs to happen after we have attached to the
2477 inferior and it is stopped for the first time, but
2478 before we access any inferior registers. */
2479 linux_arch_setup_thread (thread);
2480 }
2481 else
2482 {
2483 /* The process is started, but GDBserver will do
2484 architecture-specific setup after the program stops at
2485 the first instruction. */
2486 child->status_pending_p = 1;
2487 child->status_pending = wstat;
2488 return child;
2489 }
2490 }
2491 }
2492
2493 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2494 {
2495 struct process_info *proc = find_process_pid (pid_of (thread));
2496 int options = linux_low_ptrace_options (proc->attached);
2497
2498 linux_enable_event_reporting (lwpid, options);
2499 child->must_set_ptrace_flags = 0;
2500 }
2501
2502 /* Always update syscall_state, even if it will be filtered later. */
2503 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2504 {
2505 child->syscall_state
2506 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2507 ? TARGET_WAITKIND_SYSCALL_RETURN
2508 : TARGET_WAITKIND_SYSCALL_ENTRY);
2509 }
2510 else
2511 {
2512 /* Almost all other ptrace-stops are known to be outside of system
2513 calls, with further exceptions in handle_extended_wait. */
2514 child->syscall_state = TARGET_WAITKIND_IGNORE;
2515 }
2516
2517 /* Be careful to not overwrite stop_pc until save_stop_reason is
2518 called. */
2519 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2520 && linux_is_extended_waitstatus (wstat))
2521 {
2522 child->stop_pc = get_pc (child);
2523 if (handle_extended_wait (&child, wstat))
2524 {
2525 /* The event has been handled, so just return without
2526 reporting it. */
2527 return NULL;
2528 }
2529 }
2530
2531 if (linux_wstatus_maybe_breakpoint (wstat))
2532 {
2533 if (save_stop_reason (child))
2534 have_stop_pc = 1;
2535 }
2536
2537 if (!have_stop_pc)
2538 child->stop_pc = get_pc (child);
2539
2540 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2541 && child->stop_expected)
2542 {
2543 if (debug_threads)
2544 debug_printf ("Expected stop.\n");
2545 child->stop_expected = 0;
2546
2547 if (thread->last_resume_kind == resume_stop)
2548 {
2549 /* We want to report the stop to the core. Treat the
2550 SIGSTOP as a normal event. */
2551 if (debug_threads)
2552 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2553 target_pid_to_str (ptid_of (thread)));
2554 }
2555 else if (stopping_threads != NOT_STOPPING_THREADS)
2556 {
2557 /* Stopping threads. We don't want this SIGSTOP to end up
2558 pending. */
2559 if (debug_threads)
2560 debug_printf ("LLW: SIGSTOP caught for %s "
2561 "while stopping threads.\n",
2562 target_pid_to_str (ptid_of (thread)));
2563 return NULL;
2564 }
2565 else
2566 {
2567 /* This is a delayed SIGSTOP. Filter out the event. */
2568 if (debug_threads)
2569 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2570 child->stepping ? "step" : "continue",
2571 target_pid_to_str (ptid_of (thread)));
2572
2573 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2574 return NULL;
2575 }
2576 }
2577
2578 child->status_pending_p = 1;
2579 child->status_pending = wstat;
2580 return child;
2581 }
2582
2583 /* Return true if THREAD is doing hardware single step. */
2584
2585 static int
2586 maybe_hw_step (struct thread_info *thread)
2587 {
2588 if (can_hardware_single_step ())
2589 return 1;
2590 else
2591 {
2592 /* GDBserver must insert single-step breakpoint for software
2593 single step. */
2594 gdb_assert (has_single_step_breakpoints (thread));
2595 return 0;
2596 }
2597 }
2598
2599 /* Resume LWPs that are currently stopped without any pending status
2600 to report, but are resumed from the core's perspective. */
2601
2602 static void
2603 resume_stopped_resumed_lwps (thread_info *thread)
2604 {
2605 struct lwp_info *lp = get_thread_lwp (thread);
2606
2607 if (lp->stopped
2608 && !lp->suspended
2609 && !lp->status_pending_p
2610 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2611 {
2612 int step = 0;
2613
2614 if (thread->last_resume_kind == resume_step)
2615 step = maybe_hw_step (thread);
2616
2617 if (debug_threads)
2618 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2619 target_pid_to_str (ptid_of (thread)),
2620 paddress (lp->stop_pc),
2621 step);
2622
2623 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2624 }
2625 }
2626
2627 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2628 match FILTER_PTID (leaving others pending). The PTIDs can be:
2629 minus_one_ptid, to specify any child; a pid PTID, specifying all
2630 lwps of a thread group; or a PTID representing a single lwp. Store
2631 the stop status through the status pointer WSTAT. OPTIONS is
2632 passed to the waitpid call. Return 0 if no event was found and
2633 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2634 was found. Return the PID of the stopped child otherwise. */
2635
2636 static int
2637 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2638 int *wstatp, int options)
2639 {
2640 struct thread_info *event_thread;
2641 struct lwp_info *event_child, *requested_child;
2642 sigset_t block_mask, prev_mask;
2643
2644 retry:
2645 /* N.B. event_thread points to the thread_info struct that contains
2646 event_child. Keep them in sync. */
2647 event_thread = NULL;
2648 event_child = NULL;
2649 requested_child = NULL;
2650
2651 /* Check for a lwp with a pending status. */
2652
2653 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2654 {
2655 event_thread = find_thread_in_random ([&] (thread_info *thread)
2656 {
2657 return status_pending_p_callback (thread, filter_ptid);
2658 });
2659
2660 if (event_thread != NULL)
2661 event_child = get_thread_lwp (event_thread);
2662 if (debug_threads && event_thread)
2663 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2664 }
2665 else if (!ptid_equal (filter_ptid, null_ptid))
2666 {
2667 requested_child = find_lwp_pid (filter_ptid);
2668
2669 if (stopping_threads == NOT_STOPPING_THREADS
2670 && requested_child->status_pending_p
2671 && (requested_child->collecting_fast_tracepoint
2672 != fast_tpoint_collect_result::not_collecting))
2673 {
2674 enqueue_one_deferred_signal (requested_child,
2675 &requested_child->status_pending);
2676 requested_child->status_pending_p = 0;
2677 requested_child->status_pending = 0;
2678 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2679 }
2680
2681 if (requested_child->suspended
2682 && requested_child->status_pending_p)
2683 {
2684 internal_error (__FILE__, __LINE__,
2685 "requesting an event out of a"
2686 " suspended child?");
2687 }
2688
2689 if (requested_child->status_pending_p)
2690 {
2691 event_child = requested_child;
2692 event_thread = get_lwp_thread (event_child);
2693 }
2694 }
2695
2696 if (event_child != NULL)
2697 {
2698 if (debug_threads)
2699 debug_printf ("Got an event from pending child %ld (%04x)\n",
2700 lwpid_of (event_thread), event_child->status_pending);
2701 *wstatp = event_child->status_pending;
2702 event_child->status_pending_p = 0;
2703 event_child->status_pending = 0;
2704 current_thread = event_thread;
2705 return lwpid_of (event_thread);
2706 }
2707
2708 /* But if we don't find a pending event, we'll have to wait.
2709
2710 We only enter this loop if no process has a pending wait status.
2711 Thus any action taken in response to a wait status inside this
2712 loop is responding as soon as we detect the status, not after any
2713 pending events. */
2714
2715 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2716 all signals while here. */
2717 sigfillset (&block_mask);
2718 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2719
2720 /* Always pull all events out of the kernel. We'll randomly select
2721 an event LWP out of all that have events, to prevent
2722 starvation. */
2723 while (event_child == NULL)
2724 {
2725 pid_t ret = 0;
2726
2727 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2728 quirks:
2729
2730 - If the thread group leader exits while other threads in the
2731 thread group still exist, waitpid(TGID, ...) hangs. That
2732 waitpid won't return an exit status until the other threads
2733 in the group are reaped.
2734
2735 - When a non-leader thread execs, that thread just vanishes
2736 without reporting an exit (so we'd hang if we waited for it
2737 explicitly in that case). The exec event is reported to
2738 the TGID pid. */
2739 errno = 0;
2740 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2741
2742 if (debug_threads)
2743 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2744 ret, errno ? strerror (errno) : "ERRNO-OK");
2745
2746 if (ret > 0)
2747 {
2748 if (debug_threads)
2749 {
2750 debug_printf ("LLW: waitpid %ld received %s\n",
2751 (long) ret, status_to_str (*wstatp));
2752 }
2753
2754 /* Filter all events. IOW, leave all events pending. We'll
2755 randomly select an event LWP out of all that have events
2756 below. */
2757 linux_low_filter_event (ret, *wstatp);
2758 /* Retry until nothing comes out of waitpid. A single
2759 SIGCHLD can indicate more than one child stopped. */
2760 continue;
2761 }
2762
2763 /* Now that we've pulled all events out of the kernel, resume
2764 LWPs that don't have an interesting event to report. */
2765 if (stopping_threads == NOT_STOPPING_THREADS)
2766 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2767
2768 /* ... and find an LWP with a status to report to the core, if
2769 any. */
2770 event_thread = find_thread_in_random ([&] (thread_info *thread)
2771 {
2772 return status_pending_p_callback (thread, filter_ptid);
2773 });
2774
2775 if (event_thread != NULL)
2776 {
2777 event_child = get_thread_lwp (event_thread);
2778 *wstatp = event_child->status_pending;
2779 event_child->status_pending_p = 0;
2780 event_child->status_pending = 0;
2781 break;
2782 }
2783
2784 /* Check for zombie thread group leaders. Those can't be reaped
2785 until all other threads in the thread group are. */
2786 check_zombie_leaders ();
2787
2788 /* If there are no resumed children left in the set of LWPs we
2789 want to wait for, bail. We can't just block in
2790 waitpid/sigsuspend, because lwps might have been left stopped
2791 in trace-stop state, and we'd be stuck forever waiting for
2792 their status to change (which would only happen if we resumed
2793 them). Even if WNOHANG is set, this return code is preferred
2794 over 0 (below), as it is more detailed. */
2795 if ((find_inferior (&all_threads,
2796 not_stopped_callback,
2797 &wait_ptid) == NULL))
2798 {
2799 if (debug_threads)
2800 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2801 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2802 return -1;
2803 }
2804
2805 /* No interesting event to report to the caller. */
2806 if ((options & WNOHANG))
2807 {
2808 if (debug_threads)
2809 debug_printf ("WNOHANG set, no event found\n");
2810
2811 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2812 return 0;
2813 }
2814
2815 /* Block until we get an event reported with SIGCHLD. */
2816 if (debug_threads)
2817 debug_printf ("sigsuspend'ing\n");
2818
2819 sigsuspend (&prev_mask);
2820 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2821 goto retry;
2822 }
2823
2824 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2825
2826 current_thread = event_thread;
2827
2828 return lwpid_of (event_thread);
2829 }
2830
2831 /* Wait for an event from child(ren) PTID. PTIDs can be:
2832 minus_one_ptid, to specify any child; a pid PTID, specifying all
2833 lwps of a thread group; or a PTID representing a single lwp. Store
2834 the stop status through the status pointer WSTAT. OPTIONS is
2835 passed to the waitpid call. Return 0 if no event was found and
2836 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2837 was found. Return the PID of the stopped child otherwise. */
2838
2839 static int
2840 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2841 {
2842 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2843 }
2844
2845 /* Count the LWP's that have had events. */
2846
2847 static int
2848 count_events_callback (thread_info *thread, void *data)
2849 {
2850 struct lwp_info *lp = get_thread_lwp (thread);
2851 int *count = (int *) data;
2852
2853 gdb_assert (count != NULL);
2854
2855 /* Count only resumed LWPs that have an event pending. */
2856 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2857 && lp->status_pending_p)
2858 (*count)++;
2859
2860 return 0;
2861 }
2862
2863 /* Select the LWP (if any) that is currently being single-stepped. */
2864
2865 static int
2866 select_singlestep_lwp_callback (thread_info *thread, void *data)
2867 {
2868 struct lwp_info *lp = get_thread_lwp (thread);
2869
2870 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2871 && thread->last_resume_kind == resume_step
2872 && lp->status_pending_p)
2873 return 1;
2874 else
2875 return 0;
2876 }
2877
2878 /* Select the Nth LWP that has had an event. */
2879
2880 static int
2881 select_event_lwp_callback (thread_info *thread, void *data)
2882 {
2883 struct lwp_info *lp = get_thread_lwp (thread);
2884 int *selector = (int *) data;
2885
2886 gdb_assert (selector != NULL);
2887
2888 /* Select only resumed LWPs that have an event pending. */
2889 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2890 && lp->status_pending_p)
2891 if ((*selector)-- == 0)
2892 return 1;
2893
2894 return 0;
2895 }
2896
2897 /* Select one LWP out of those that have events pending. */
2898
2899 static void
2900 select_event_lwp (struct lwp_info **orig_lp)
2901 {
2902 int num_events = 0;
2903 int random_selector;
2904 struct thread_info *event_thread = NULL;
2905
2906 /* In all-stop, give preference to the LWP that is being
2907 single-stepped. There will be at most one, and it's the LWP that
2908 the core is most interested in. If we didn't do this, then we'd
2909 have to handle pending step SIGTRAPs somehow in case the core
2910 later continues the previously-stepped thread, otherwise we'd
2911 report the pending SIGTRAP, and the core, not having stepped the
2912 thread, wouldn't understand what the trap was for, and therefore
2913 would report it to the user as a random signal. */
2914 if (!non_stop)
2915 {
2916 event_thread
2917 = (struct thread_info *) find_inferior (&all_threads,
2918 select_singlestep_lwp_callback,
2919 NULL);
2920 if (event_thread != NULL)
2921 {
2922 if (debug_threads)
2923 debug_printf ("SEL: Select single-step %s\n",
2924 target_pid_to_str (ptid_of (event_thread)));
2925 }
2926 }
2927 if (event_thread == NULL)
2928 {
2929 /* No single-stepping LWP. Select one at random, out of those
2930 which have had events. */
2931
2932 /* First see how many events we have. */
2933 find_inferior (&all_threads, count_events_callback, &num_events);
2934 gdb_assert (num_events > 0);
2935
2936 /* Now randomly pick a LWP out of those that have had
2937 events. */
2938 random_selector = (int)
2939 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2940
2941 if (debug_threads && num_events > 1)
2942 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2943 num_events, random_selector);
2944
2945 event_thread
2946 = (struct thread_info *) find_inferior (&all_threads,
2947 select_event_lwp_callback,
2948 &random_selector);
2949 }
2950
2951 if (event_thread != NULL)
2952 {
2953 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2954
2955 /* Switch the event LWP. */
2956 *orig_lp = event_lp;
2957 }
2958 }
2959
2960 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2961 NULL. */
2962
2963 static void
2964 unsuspend_all_lwps (struct lwp_info *except)
2965 {
2966 for_each_thread ([&] (thread_info *thread)
2967 {
2968 lwp_info *lwp = get_thread_lwp (thread);
2969
2970 if (lwp != except)
2971 lwp_suspended_decr (lwp);
2972 });
2973 }
2974
2975 static void move_out_of_jump_pad_callback (thread_info *thread);
2976 static bool stuck_in_jump_pad_callback (thread_info *thread);
2977 static int lwp_running (thread_info *thread, void *data);
2978 static ptid_t linux_wait_1 (ptid_t ptid,
2979 struct target_waitstatus *ourstatus,
2980 int target_options);
2981
2982 /* Stabilize threads (move out of jump pads).
2983
2984 If a thread is midway collecting a fast tracepoint, we need to
2985 finish the collection and move it out of the jump pad before
2986 reporting the signal.
2987
2988 This avoids recursion while collecting (when a signal arrives
2989 midway, and the signal handler itself collects), which would trash
2990 the trace buffer. In case the user set a breakpoint in a signal
2991 handler, this avoids the backtrace showing the jump pad, etc..
2992 Most importantly, there are certain things we can't do safely if
2993 threads are stopped in a jump pad (or in its callee's). For
2994 example:
2995
2996 - starting a new trace run. A thread still collecting the
2997 previous run, could trash the trace buffer when resumed. The trace
2998 buffer control structures would have been reset but the thread had
2999 no way to tell. The thread could even midway memcpy'ing to the
3000 buffer, which would mean that when resumed, it would clobber the
3001 trace buffer that had been set for a new run.
3002
3003 - we can't rewrite/reuse the jump pads for new tracepoints
3004 safely. Say you do tstart while a thread is stopped midway while
3005 collecting. When the thread is later resumed, it finishes the
3006 collection, and returns to the jump pad, to execute the original
3007 instruction that was under the tracepoint jump at the time the
3008 older run had been started. If the jump pad had been rewritten
3009 since for something else in the new run, the thread would now
3010 execute the wrong / random instructions. */
3011
3012 static void
3013 linux_stabilize_threads (void)
3014 {
3015 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
3016
3017 if (thread_stuck != NULL)
3018 {
3019 if (debug_threads)
3020 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3021 lwpid_of (thread_stuck));
3022 return;
3023 }
3024
3025 thread_info *saved_thread = current_thread;
3026
3027 stabilizing_threads = 1;
3028
3029 /* Kick 'em all. */
3030 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3031
3032 /* Loop until all are stopped out of the jump pads. */
3033 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3034 {
3035 struct target_waitstatus ourstatus;
3036 struct lwp_info *lwp;
3037 int wstat;
3038
3039 /* Note that we go through the full wait even loop. While
3040 moving threads out of jump pad, we need to be able to step
3041 over internal breakpoints and such. */
3042 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3043
3044 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3045 {
3046 lwp = get_thread_lwp (current_thread);
3047
3048 /* Lock it. */
3049 lwp_suspended_inc (lwp);
3050
3051 if (ourstatus.value.sig != GDB_SIGNAL_0
3052 || current_thread->last_resume_kind == resume_stop)
3053 {
3054 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3055 enqueue_one_deferred_signal (lwp, &wstat);
3056 }
3057 }
3058 }
3059
3060 unsuspend_all_lwps (NULL);
3061
3062 stabilizing_threads = 0;
3063
3064 current_thread = saved_thread;
3065
3066 if (debug_threads)
3067 {
3068 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3069
3070 if (thread_stuck != NULL)
3071 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3072 lwpid_of (thread_stuck));
3073 }
3074 }
3075
3076 /* Convenience function that is called when the kernel reports an
3077 event that is not passed out to GDB. */
3078
3079 static ptid_t
3080 ignore_event (struct target_waitstatus *ourstatus)
3081 {
3082 /* If we got an event, there may still be others, as a single
3083 SIGCHLD can indicate more than one child stopped. This forces
3084 another target_wait call. */
3085 async_file_mark ();
3086
3087 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3088 return null_ptid;
3089 }
3090
3091 /* Convenience function that is called when the kernel reports an exit
3092 event. This decides whether to report the event to GDB as a
3093 process exit event, a thread exit event, or to suppress the
3094 event. */
3095
3096 static ptid_t
3097 filter_exit_event (struct lwp_info *event_child,
3098 struct target_waitstatus *ourstatus)
3099 {
3100 struct thread_info *thread = get_lwp_thread (event_child);
3101 ptid_t ptid = ptid_of (thread);
3102
3103 if (!last_thread_of_process_p (pid_of (thread)))
3104 {
3105 if (report_thread_events)
3106 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3107 else
3108 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3109
3110 delete_lwp (event_child);
3111 }
3112 return ptid;
3113 }
3114
3115 /* Returns 1 if GDB is interested in any event_child syscalls. */
3116
3117 static int
3118 gdb_catching_syscalls_p (struct lwp_info *event_child)
3119 {
3120 struct thread_info *thread = get_lwp_thread (event_child);
3121 struct process_info *proc = get_thread_process (thread);
3122
3123 return !proc->syscalls_to_catch.empty ();
3124 }
3125
3126 /* Returns 1 if GDB is interested in the event_child syscall.
3127 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3128
3129 static int
3130 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3131 {
3132 int sysno;
3133 struct thread_info *thread = get_lwp_thread (event_child);
3134 struct process_info *proc = get_thread_process (thread);
3135
3136 if (proc->syscalls_to_catch.empty ())
3137 return 0;
3138
3139 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3140 return 1;
3141
3142 get_syscall_trapinfo (event_child, &sysno);
3143
3144 for (int iter : proc->syscalls_to_catch)
3145 if (iter == sysno)
3146 return 1;
3147
3148 return 0;
3149 }
3150
3151 /* Wait for process, returns status. */
3152
3153 static ptid_t
3154 linux_wait_1 (ptid_t ptid,
3155 struct target_waitstatus *ourstatus, int target_options)
3156 {
3157 int w;
3158 struct lwp_info *event_child;
3159 int options;
3160 int pid;
3161 int step_over_finished;
3162 int bp_explains_trap;
3163 int maybe_internal_trap;
3164 int report_to_gdb;
3165 int trace_event;
3166 int in_step_range;
3167 int any_resumed;
3168
3169 if (debug_threads)
3170 {
3171 debug_enter ();
3172 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3173 }
3174
3175 /* Translate generic target options into linux options. */
3176 options = __WALL;
3177 if (target_options & TARGET_WNOHANG)
3178 options |= WNOHANG;
3179
3180 bp_explains_trap = 0;
3181 trace_event = 0;
3182 in_step_range = 0;
3183 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3184
3185 auto status_pending_p_any = [&] (thread_info *thread)
3186 {
3187 return status_pending_p_callback (thread, minus_one_ptid);
3188 };
3189
3190 /* Find a resumed LWP, if any. */
3191 if (find_thread (status_pending_p_any) != NULL)
3192 any_resumed = 1;
3193 else if ((find_inferior (&all_threads,
3194 not_stopped_callback,
3195 &minus_one_ptid) != NULL))
3196 any_resumed = 1;
3197 else
3198 any_resumed = 0;
3199
3200 if (ptid_equal (step_over_bkpt, null_ptid))
3201 pid = linux_wait_for_event (ptid, &w, options);
3202 else
3203 {
3204 if (debug_threads)
3205 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3206 target_pid_to_str (step_over_bkpt));
3207 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3208 }
3209
3210 if (pid == 0 || (pid == -1 && !any_resumed))
3211 {
3212 gdb_assert (target_options & TARGET_WNOHANG);
3213
3214 if (debug_threads)
3215 {
3216 debug_printf ("linux_wait_1 ret = null_ptid, "
3217 "TARGET_WAITKIND_IGNORE\n");
3218 debug_exit ();
3219 }
3220
3221 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3222 return null_ptid;
3223 }
3224 else if (pid == -1)
3225 {
3226 if (debug_threads)
3227 {
3228 debug_printf ("linux_wait_1 ret = null_ptid, "
3229 "TARGET_WAITKIND_NO_RESUMED\n");
3230 debug_exit ();
3231 }
3232
3233 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3234 return null_ptid;
3235 }
3236
3237 event_child = get_thread_lwp (current_thread);
3238
3239 /* linux_wait_for_event only returns an exit status for the last
3240 child of a process. Report it. */
3241 if (WIFEXITED (w) || WIFSIGNALED (w))
3242 {
3243 if (WIFEXITED (w))
3244 {
3245 ourstatus->kind = TARGET_WAITKIND_EXITED;
3246 ourstatus->value.integer = WEXITSTATUS (w);
3247
3248 if (debug_threads)
3249 {
3250 debug_printf ("linux_wait_1 ret = %s, exited with "
3251 "retcode %d\n",
3252 target_pid_to_str (ptid_of (current_thread)),
3253 WEXITSTATUS (w));
3254 debug_exit ();
3255 }
3256 }
3257 else
3258 {
3259 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3260 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3261
3262 if (debug_threads)
3263 {
3264 debug_printf ("linux_wait_1 ret = %s, terminated with "
3265 "signal %d\n",
3266 target_pid_to_str (ptid_of (current_thread)),
3267 WTERMSIG (w));
3268 debug_exit ();
3269 }
3270 }
3271
3272 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3273 return filter_exit_event (event_child, ourstatus);
3274
3275 return ptid_of (current_thread);
3276 }
3277
3278 /* If step-over executes a breakpoint instruction, in the case of a
3279 hardware single step it means a gdb/gdbserver breakpoint had been
3280 planted on top of a permanent breakpoint, in the case of a software
3281 single step it may just mean that gdbserver hit the reinsert breakpoint.
3282 The PC has been adjusted by save_stop_reason to point at
3283 the breakpoint address.
3284 So in the case of the hardware single step advance the PC manually
3285 past the breakpoint and in the case of software single step advance only
3286 if it's not the single_step_breakpoint we are hitting.
3287 This avoids that a program would keep trapping a permanent breakpoint
3288 forever. */
3289 if (!ptid_equal (step_over_bkpt, null_ptid)
3290 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3291 && (event_child->stepping
3292 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3293 {
3294 int increment_pc = 0;
3295 int breakpoint_kind = 0;
3296 CORE_ADDR stop_pc = event_child->stop_pc;
3297
3298 breakpoint_kind =
3299 the_target->breakpoint_kind_from_current_state (&stop_pc);
3300 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3301
3302 if (debug_threads)
3303 {
3304 debug_printf ("step-over for %s executed software breakpoint\n",
3305 target_pid_to_str (ptid_of (current_thread)));
3306 }
3307
3308 if (increment_pc != 0)
3309 {
3310 struct regcache *regcache
3311 = get_thread_regcache (current_thread, 1);
3312
3313 event_child->stop_pc += increment_pc;
3314 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3315
3316 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3317 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3318 }
3319 }
3320
3321 /* If this event was not handled before, and is not a SIGTRAP, we
3322 report it. SIGILL and SIGSEGV are also treated as traps in case
3323 a breakpoint is inserted at the current PC. If this target does
3324 not support internal breakpoints at all, we also report the
3325 SIGTRAP without further processing; it's of no concern to us. */
3326 maybe_internal_trap
3327 = (supports_breakpoints ()
3328 && (WSTOPSIG (w) == SIGTRAP
3329 || ((WSTOPSIG (w) == SIGILL
3330 || WSTOPSIG (w) == SIGSEGV)
3331 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3332
3333 if (maybe_internal_trap)
3334 {
3335 /* Handle anything that requires bookkeeping before deciding to
3336 report the event or continue waiting. */
3337
3338 /* First check if we can explain the SIGTRAP with an internal
3339 breakpoint, or if we should possibly report the event to GDB.
3340 Do this before anything that may remove or insert a
3341 breakpoint. */
3342 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3343
3344 /* We have a SIGTRAP, possibly a step-over dance has just
3345 finished. If so, tweak the state machine accordingly,
3346 reinsert breakpoints and delete any single-step
3347 breakpoints. */
3348 step_over_finished = finish_step_over (event_child);
3349
3350 /* Now invoke the callbacks of any internal breakpoints there. */
3351 check_breakpoints (event_child->stop_pc);
3352
3353 /* Handle tracepoint data collecting. This may overflow the
3354 trace buffer, and cause a tracing stop, removing
3355 breakpoints. */
3356 trace_event = handle_tracepoints (event_child);
3357
3358 if (bp_explains_trap)
3359 {
3360 if (debug_threads)
3361 debug_printf ("Hit a gdbserver breakpoint.\n");
3362 }
3363 }
3364 else
3365 {
3366 /* We have some other signal, possibly a step-over dance was in
3367 progress, and it should be cancelled too. */
3368 step_over_finished = finish_step_over (event_child);
3369 }
3370
3371 /* We have all the data we need. Either report the event to GDB, or
3372 resume threads and keep waiting for more. */
3373
3374 /* If we're collecting a fast tracepoint, finish the collection and
3375 move out of the jump pad before delivering a signal. See
3376 linux_stabilize_threads. */
3377
3378 if (WIFSTOPPED (w)
3379 && WSTOPSIG (w) != SIGTRAP
3380 && supports_fast_tracepoints ()
3381 && agent_loaded_p ())
3382 {
3383 if (debug_threads)
3384 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3385 "to defer or adjust it.\n",
3386 WSTOPSIG (w), lwpid_of (current_thread));
3387
3388 /* Allow debugging the jump pad itself. */
3389 if (current_thread->last_resume_kind != resume_step
3390 && maybe_move_out_of_jump_pad (event_child, &w))
3391 {
3392 enqueue_one_deferred_signal (event_child, &w);
3393
3394 if (debug_threads)
3395 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3396 WSTOPSIG (w), lwpid_of (current_thread));
3397
3398 linux_resume_one_lwp (event_child, 0, 0, NULL);
3399
3400 if (debug_threads)
3401 debug_exit ();
3402 return ignore_event (ourstatus);
3403 }
3404 }
3405
3406 if (event_child->collecting_fast_tracepoint
3407 != fast_tpoint_collect_result::not_collecting)
3408 {
3409 if (debug_threads)
3410 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3411 "Check if we're already there.\n",
3412 lwpid_of (current_thread),
3413 (int) event_child->collecting_fast_tracepoint);
3414
3415 trace_event = 1;
3416
3417 event_child->collecting_fast_tracepoint
3418 = linux_fast_tracepoint_collecting (event_child, NULL);
3419
3420 if (event_child->collecting_fast_tracepoint
3421 != fast_tpoint_collect_result::before_insn)
3422 {
3423 /* No longer need this breakpoint. */
3424 if (event_child->exit_jump_pad_bkpt != NULL)
3425 {
3426 if (debug_threads)
3427 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3428 "stopping all threads momentarily.\n");
3429
3430 /* Other running threads could hit this breakpoint.
3431 We don't handle moribund locations like GDB does,
3432 instead we always pause all threads when removing
3433 breakpoints, so that any step-over or
3434 decr_pc_after_break adjustment is always taken
3435 care of while the breakpoint is still
3436 inserted. */
3437 stop_all_lwps (1, event_child);
3438
3439 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3440 event_child->exit_jump_pad_bkpt = NULL;
3441
3442 unstop_all_lwps (1, event_child);
3443
3444 gdb_assert (event_child->suspended >= 0);
3445 }
3446 }
3447
3448 if (event_child->collecting_fast_tracepoint
3449 == fast_tpoint_collect_result::not_collecting)
3450 {
3451 if (debug_threads)
3452 debug_printf ("fast tracepoint finished "
3453 "collecting successfully.\n");
3454
3455 /* We may have a deferred signal to report. */
3456 if (dequeue_one_deferred_signal (event_child, &w))
3457 {
3458 if (debug_threads)
3459 debug_printf ("dequeued one signal.\n");
3460 }
3461 else
3462 {
3463 if (debug_threads)
3464 debug_printf ("no deferred signals.\n");
3465
3466 if (stabilizing_threads)
3467 {
3468 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3469 ourstatus->value.sig = GDB_SIGNAL_0;
3470
3471 if (debug_threads)
3472 {
3473 debug_printf ("linux_wait_1 ret = %s, stopped "
3474 "while stabilizing threads\n",
3475 target_pid_to_str (ptid_of (current_thread)));
3476 debug_exit ();
3477 }
3478
3479 return ptid_of (current_thread);
3480 }
3481 }
3482 }
3483 }
3484
3485 /* Check whether GDB would be interested in this event. */
3486
3487 /* Check if GDB is interested in this syscall. */
3488 if (WIFSTOPPED (w)
3489 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3490 && !gdb_catch_this_syscall_p (event_child))
3491 {
3492 if (debug_threads)
3493 {
3494 debug_printf ("Ignored syscall for LWP %ld.\n",
3495 lwpid_of (current_thread));
3496 }
3497
3498 linux_resume_one_lwp (event_child, event_child->stepping,
3499 0, NULL);
3500
3501 if (debug_threads)
3502 debug_exit ();
3503 return ignore_event (ourstatus);
3504 }
3505
3506 /* If GDB is not interested in this signal, don't stop other
3507 threads, and don't report it to GDB. Just resume the inferior
3508 right away. We do this for threading-related signals as well as
3509 any that GDB specifically requested we ignore. But never ignore
3510 SIGSTOP if we sent it ourselves, and do not ignore signals when
3511 stepping - they may require special handling to skip the signal
3512 handler. Also never ignore signals that could be caused by a
3513 breakpoint. */
3514 if (WIFSTOPPED (w)
3515 && current_thread->last_resume_kind != resume_step
3516 && (
3517 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3518 (current_process ()->priv->thread_db != NULL
3519 && (WSTOPSIG (w) == __SIGRTMIN
3520 || WSTOPSIG (w) == __SIGRTMIN + 1))
3521 ||
3522 #endif
3523 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3524 && !(WSTOPSIG (w) == SIGSTOP
3525 && current_thread->last_resume_kind == resume_stop)
3526 && !linux_wstatus_maybe_breakpoint (w))))
3527 {
3528 siginfo_t info, *info_p;
3529
3530 if (debug_threads)
3531 debug_printf ("Ignored signal %d for LWP %ld.\n",
3532 WSTOPSIG (w), lwpid_of (current_thread));
3533
3534 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3535 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3536 info_p = &info;
3537 else
3538 info_p = NULL;
3539
3540 if (step_over_finished)
3541 {
3542 /* We cancelled this thread's step-over above. We still
3543 need to unsuspend all other LWPs, and set them back
3544 running again while the signal handler runs. */
3545 unsuspend_all_lwps (event_child);
3546
3547 /* Enqueue the pending signal info so that proceed_all_lwps
3548 doesn't lose it. */
3549 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3550
3551 proceed_all_lwps ();
3552 }
3553 else
3554 {
3555 linux_resume_one_lwp (event_child, event_child->stepping,
3556 WSTOPSIG (w), info_p);
3557 }
3558
3559 if (debug_threads)
3560 debug_exit ();
3561
3562 return ignore_event (ourstatus);
3563 }
3564
3565 /* Note that all addresses are always "out of the step range" when
3566 there's no range to begin with. */
3567 in_step_range = lwp_in_step_range (event_child);
3568
3569 /* If GDB wanted this thread to single step, and the thread is out
3570 of the step range, we always want to report the SIGTRAP, and let
3571 GDB handle it. Watchpoints should always be reported. So should
3572 signals we can't explain. A SIGTRAP we can't explain could be a
3573 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3574 do, we're be able to handle GDB breakpoints on top of internal
3575 breakpoints, by handling the internal breakpoint and still
3576 reporting the event to GDB. If we don't, we're out of luck, GDB
3577 won't see the breakpoint hit. If we see a single-step event but
3578 the thread should be continuing, don't pass the trap to gdb.
3579 That indicates that we had previously finished a single-step but
3580 left the single-step pending -- see
3581 complete_ongoing_step_over. */
3582 report_to_gdb = (!maybe_internal_trap
3583 || (current_thread->last_resume_kind == resume_step
3584 && !in_step_range)
3585 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3586 || (!in_step_range
3587 && !bp_explains_trap
3588 && !trace_event
3589 && !step_over_finished
3590 && !(current_thread->last_resume_kind == resume_continue
3591 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3592 || (gdb_breakpoint_here (event_child->stop_pc)
3593 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3594 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3595 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3596
3597 run_breakpoint_commands (event_child->stop_pc);
3598
3599 /* We found no reason GDB would want us to stop. We either hit one
3600 of our own breakpoints, or finished an internal step GDB
3601 shouldn't know about. */
3602 if (!report_to_gdb)
3603 {
3604 if (debug_threads)
3605 {
3606 if (bp_explains_trap)
3607 debug_printf ("Hit a gdbserver breakpoint.\n");
3608 if (step_over_finished)
3609 debug_printf ("Step-over finished.\n");
3610 if (trace_event)
3611 debug_printf ("Tracepoint event.\n");
3612 if (lwp_in_step_range (event_child))
3613 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3614 paddress (event_child->stop_pc),
3615 paddress (event_child->step_range_start),
3616 paddress (event_child->step_range_end));
3617 }
3618
3619 /* We're not reporting this breakpoint to GDB, so apply the
3620 decr_pc_after_break adjustment to the inferior's regcache
3621 ourselves. */
3622
3623 if (the_low_target.set_pc != NULL)
3624 {
3625 struct regcache *regcache
3626 = get_thread_regcache (current_thread, 1);
3627 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3628 }
3629
3630 if (step_over_finished)
3631 {
3632 /* If we have finished stepping over a breakpoint, we've
3633 stopped and suspended all LWPs momentarily except the
3634 stepping one. This is where we resume them all again.
3635 We're going to keep waiting, so use proceed, which
3636 handles stepping over the next breakpoint. */
3637 unsuspend_all_lwps (event_child);
3638 }
3639 else
3640 {
3641 /* Remove the single-step breakpoints if any. Note that
3642 there isn't single-step breakpoint if we finished stepping
3643 over. */
3644 if (can_software_single_step ()
3645 && has_single_step_breakpoints (current_thread))
3646 {
3647 stop_all_lwps (0, event_child);
3648 delete_single_step_breakpoints (current_thread);
3649 unstop_all_lwps (0, event_child);
3650 }
3651 }
3652
3653 if (debug_threads)
3654 debug_printf ("proceeding all threads.\n");
3655 proceed_all_lwps ();
3656
3657 if (debug_threads)
3658 debug_exit ();
3659
3660 return ignore_event (ourstatus);
3661 }
3662
3663 if (debug_threads)
3664 {
3665 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3666 {
3667 std::string str
3668 = target_waitstatus_to_string (&event_child->waitstatus);
3669
3670 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3671 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3672 }
3673 if (current_thread->last_resume_kind == resume_step)
3674 {
3675 if (event_child->step_range_start == event_child->step_range_end)
3676 debug_printf ("GDB wanted to single-step, reporting event.\n");
3677 else if (!lwp_in_step_range (event_child))
3678 debug_printf ("Out of step range, reporting event.\n");
3679 }
3680 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3681 debug_printf ("Stopped by watchpoint.\n");
3682 else if (gdb_breakpoint_here (event_child->stop_pc))
3683 debug_printf ("Stopped by GDB breakpoint.\n");
3684 if (debug_threads)
3685 debug_printf ("Hit a non-gdbserver trap event.\n");
3686 }
3687
3688 /* Alright, we're going to report a stop. */
3689
3690 /* Remove single-step breakpoints. */
3691 if (can_software_single_step ())
3692 {
3693 /* Remove single-step breakpoints or not. It it is true, stop all
3694 lwps, so that other threads won't hit the breakpoint in the
3695 staled memory. */
3696 int remove_single_step_breakpoints_p = 0;
3697
3698 if (non_stop)
3699 {
3700 remove_single_step_breakpoints_p
3701 = has_single_step_breakpoints (current_thread);
3702 }
3703 else
3704 {
3705 /* In all-stop, a stop reply cancels all previous resume
3706 requests. Delete all single-step breakpoints. */
3707
3708 find_thread ([&] (thread_info *thread) {
3709 if (has_single_step_breakpoints (thread))
3710 {
3711 remove_single_step_breakpoints_p = 1;
3712 return true;
3713 }
3714
3715 return false;
3716 });
3717 }
3718
3719 if (remove_single_step_breakpoints_p)
3720 {
3721 /* If we remove single-step breakpoints from memory, stop all lwps,
3722 so that other threads won't hit the breakpoint in the staled
3723 memory. */
3724 stop_all_lwps (0, event_child);
3725
3726 if (non_stop)
3727 {
3728 gdb_assert (has_single_step_breakpoints (current_thread));
3729 delete_single_step_breakpoints (current_thread);
3730 }
3731 else
3732 {
3733 for_each_thread ([] (thread_info *thread){
3734 if (has_single_step_breakpoints (thread))
3735 delete_single_step_breakpoints (thread);
3736 });
3737 }
3738
3739 unstop_all_lwps (0, event_child);
3740 }
3741 }
3742
3743 if (!stabilizing_threads)
3744 {
3745 /* In all-stop, stop all threads. */
3746 if (!non_stop)
3747 stop_all_lwps (0, NULL);
3748
3749 if (step_over_finished)
3750 {
3751 if (!non_stop)
3752 {
3753 /* If we were doing a step-over, all other threads but
3754 the stepping one had been paused in start_step_over,
3755 with their suspend counts incremented. We don't want
3756 to do a full unstop/unpause, because we're in
3757 all-stop mode (so we want threads stopped), but we
3758 still need to unsuspend the other threads, to
3759 decrement their `suspended' count back. */
3760 unsuspend_all_lwps (event_child);
3761 }
3762 else
3763 {
3764 /* If we just finished a step-over, then all threads had
3765 been momentarily paused. In all-stop, that's fine,
3766 we want threads stopped by now anyway. In non-stop,
3767 we need to re-resume threads that GDB wanted to be
3768 running. */
3769 unstop_all_lwps (1, event_child);
3770 }
3771 }
3772
3773 /* If we're not waiting for a specific LWP, choose an event LWP
3774 from among those that have had events. Giving equal priority
3775 to all LWPs that have had events helps prevent
3776 starvation. */
3777 if (ptid_equal (ptid, minus_one_ptid))
3778 {
3779 event_child->status_pending_p = 1;
3780 event_child->status_pending = w;
3781
3782 select_event_lwp (&event_child);
3783
3784 /* current_thread and event_child must stay in sync. */
3785 current_thread = get_lwp_thread (event_child);
3786
3787 event_child->status_pending_p = 0;
3788 w = event_child->status_pending;
3789 }
3790
3791
3792 /* Stabilize threads (move out of jump pads). */
3793 if (!non_stop)
3794 stabilize_threads ();
3795 }
3796 else
3797 {
3798 /* If we just finished a step-over, then all threads had been
3799 momentarily paused. In all-stop, that's fine, we want
3800 threads stopped by now anyway. In non-stop, we need to
3801 re-resume threads that GDB wanted to be running. */
3802 if (step_over_finished)
3803 unstop_all_lwps (1, event_child);
3804 }
3805
3806 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3807 {
3808 /* If the reported event is an exit, fork, vfork or exec, let
3809 GDB know. */
3810
3811 /* Break the unreported fork relationship chain. */
3812 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3813 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3814 {
3815 event_child->fork_relative->fork_relative = NULL;
3816 event_child->fork_relative = NULL;
3817 }
3818
3819 *ourstatus = event_child->waitstatus;
3820 /* Clear the event lwp's waitstatus since we handled it already. */
3821 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3822 }
3823 else
3824 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3825
3826 /* Now that we've selected our final event LWP, un-adjust its PC if
3827 it was a software breakpoint, and the client doesn't know we can
3828 adjust the breakpoint ourselves. */
3829 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3830 && !swbreak_feature)
3831 {
3832 int decr_pc = the_low_target.decr_pc_after_break;
3833
3834 if (decr_pc != 0)
3835 {
3836 struct regcache *regcache
3837 = get_thread_regcache (current_thread, 1);
3838 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3839 }
3840 }
3841
3842 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3843 {
3844 get_syscall_trapinfo (event_child,
3845 &ourstatus->value.syscall_number);
3846 ourstatus->kind = event_child->syscall_state;
3847 }
3848 else if (current_thread->last_resume_kind == resume_stop
3849 && WSTOPSIG (w) == SIGSTOP)
3850 {
3851 /* A thread that has been requested to stop by GDB with vCont;t,
3852 and it stopped cleanly, so report as SIG0. The use of
3853 SIGSTOP is an implementation detail. */
3854 ourstatus->value.sig = GDB_SIGNAL_0;
3855 }
3856 else if (current_thread->last_resume_kind == resume_stop
3857 && WSTOPSIG (w) != SIGSTOP)
3858 {
3859 /* A thread that has been requested to stop by GDB with vCont;t,
3860 but, it stopped for other reasons. */
3861 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3862 }
3863 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3864 {
3865 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3866 }
3867
3868 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3869
3870 if (debug_threads)
3871 {
3872 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3873 target_pid_to_str (ptid_of (current_thread)),
3874 ourstatus->kind, ourstatus->value.sig);
3875 debug_exit ();
3876 }
3877
3878 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3879 return filter_exit_event (event_child, ourstatus);
3880
3881 return ptid_of (current_thread);
3882 }
3883
3884 /* Get rid of any pending event in the pipe. */
3885 static void
3886 async_file_flush (void)
3887 {
3888 int ret;
3889 char buf;
3890
3891 do
3892 ret = read (linux_event_pipe[0], &buf, 1);
3893 while (ret >= 0 || (ret == -1 && errno == EINTR));
3894 }
3895
3896 /* Put something in the pipe, so the event loop wakes up. */
3897 static void
3898 async_file_mark (void)
3899 {
3900 int ret;
3901
3902 async_file_flush ();
3903
3904 do
3905 ret = write (linux_event_pipe[1], "+", 1);
3906 while (ret == 0 || (ret == -1 && errno == EINTR));
3907
3908 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3909 be awakened anyway. */
3910 }
3911
3912 static ptid_t
3913 linux_wait (ptid_t ptid,
3914 struct target_waitstatus *ourstatus, int target_options)
3915 {
3916 ptid_t event_ptid;
3917
3918 /* Flush the async file first. */
3919 if (target_is_async_p ())
3920 async_file_flush ();
3921
3922 do
3923 {
3924 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3925 }
3926 while ((target_options & TARGET_WNOHANG) == 0
3927 && ptid_equal (event_ptid, null_ptid)
3928 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3929
3930 /* If at least one stop was reported, there may be more. A single
3931 SIGCHLD can signal more than one child stop. */
3932 if (target_is_async_p ()
3933 && (target_options & TARGET_WNOHANG) != 0
3934 && !ptid_equal (event_ptid, null_ptid))
3935 async_file_mark ();
3936
3937 return event_ptid;
3938 }
3939
3940 /* Send a signal to an LWP. */
3941
3942 static int
3943 kill_lwp (unsigned long lwpid, int signo)
3944 {
3945 int ret;
3946
3947 errno = 0;
3948 ret = syscall (__NR_tkill, lwpid, signo);
3949 if (errno == ENOSYS)
3950 {
3951 /* If tkill fails, then we are not using nptl threads, a
3952 configuration we no longer support. */
3953 perror_with_name (("tkill"));
3954 }
3955 return ret;
3956 }
3957
3958 void
3959 linux_stop_lwp (struct lwp_info *lwp)
3960 {
3961 send_sigstop (lwp);
3962 }
3963
3964 static void
3965 send_sigstop (struct lwp_info *lwp)
3966 {
3967 int pid;
3968
3969 pid = lwpid_of (get_lwp_thread (lwp));
3970
3971 /* If we already have a pending stop signal for this process, don't
3972 send another. */
3973 if (lwp->stop_expected)
3974 {
3975 if (debug_threads)
3976 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3977
3978 return;
3979 }
3980
3981 if (debug_threads)
3982 debug_printf ("Sending sigstop to lwp %d\n", pid);
3983
3984 lwp->stop_expected = 1;
3985 kill_lwp (pid, SIGSTOP);
3986 }
3987
3988 static int
3989 send_sigstop_callback (thread_info *thread, void *except)
3990 {
3991 struct lwp_info *lwp = get_thread_lwp (thread);
3992
3993 /* Ignore EXCEPT. */
3994 if (lwp == except)
3995 return 0;
3996
3997 if (lwp->stopped)
3998 return 0;
3999
4000 send_sigstop (lwp);
4001 return 0;
4002 }
4003
4004 /* Increment the suspend count of an LWP, and stop it, if not stopped
4005 yet. */
4006 static int
4007 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
4008 {
4009 struct lwp_info *lwp = get_thread_lwp (thread);
4010
4011 /* Ignore EXCEPT. */
4012 if (lwp == except)
4013 return 0;
4014
4015 lwp_suspended_inc (lwp);
4016
4017 return send_sigstop_callback (thread, except);
4018 }
4019
4020 static void
4021 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4022 {
4023 /* Store the exit status for later. */
4024 lwp->status_pending_p = 1;
4025 lwp->status_pending = wstat;
4026
4027 /* Store in waitstatus as well, as there's nothing else to process
4028 for this event. */
4029 if (WIFEXITED (wstat))
4030 {
4031 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4032 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4033 }
4034 else if (WIFSIGNALED (wstat))
4035 {
4036 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4037 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4038 }
4039
4040 /* Prevent trying to stop it. */
4041 lwp->stopped = 1;
4042
4043 /* No further stops are expected from a dead lwp. */
4044 lwp->stop_expected = 0;
4045 }
4046
4047 /* Return true if LWP has exited already, and has a pending exit event
4048 to report to GDB. */
4049
4050 static int
4051 lwp_is_marked_dead (struct lwp_info *lwp)
4052 {
4053 return (lwp->status_pending_p
4054 && (WIFEXITED (lwp->status_pending)
4055 || WIFSIGNALED (lwp->status_pending)));
4056 }
4057
4058 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4059
4060 static void
4061 wait_for_sigstop (void)
4062 {
4063 struct thread_info *saved_thread;
4064 ptid_t saved_tid;
4065 int wstat;
4066 int ret;
4067
4068 saved_thread = current_thread;
4069 if (saved_thread != NULL)
4070 saved_tid = saved_thread->id;
4071 else
4072 saved_tid = null_ptid; /* avoid bogus unused warning */
4073
4074 if (debug_threads)
4075 debug_printf ("wait_for_sigstop: pulling events\n");
4076
4077 /* Passing NULL_PTID as filter indicates we want all events to be
4078 left pending. Eventually this returns when there are no
4079 unwaited-for children left. */
4080 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4081 &wstat, __WALL);
4082 gdb_assert (ret == -1);
4083
4084 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4085 current_thread = saved_thread;
4086 else
4087 {
4088 if (debug_threads)
4089 debug_printf ("Previously current thread died.\n");
4090
4091 /* We can't change the current inferior behind GDB's back,
4092 otherwise, a subsequent command may apply to the wrong
4093 process. */
4094 current_thread = NULL;
4095 }
4096 }
4097
4098 /* Returns true if THREAD is stopped in a jump pad, and we can't
4099 move it out, because we need to report the stop event to GDB. For
4100 example, if the user puts a breakpoint in the jump pad, it's
4101 because she wants to debug it. */
4102
4103 static bool
4104 stuck_in_jump_pad_callback (thread_info *thread)
4105 {
4106 struct lwp_info *lwp = get_thread_lwp (thread);
4107
4108 if (lwp->suspended != 0)
4109 {
4110 internal_error (__FILE__, __LINE__,
4111 "LWP %ld is suspended, suspended=%d\n",
4112 lwpid_of (thread), lwp->suspended);
4113 }
4114 gdb_assert (lwp->stopped);
4115
4116 /* Allow debugging the jump pad, gdb_collect, etc.. */
4117 return (supports_fast_tracepoints ()
4118 && agent_loaded_p ()
4119 && (gdb_breakpoint_here (lwp->stop_pc)
4120 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4121 || thread->last_resume_kind == resume_step)
4122 && (linux_fast_tracepoint_collecting (lwp, NULL)
4123 != fast_tpoint_collect_result::not_collecting));
4124 }
4125
4126 static void
4127 move_out_of_jump_pad_callback (thread_info *thread)
4128 {
4129 struct thread_info *saved_thread;
4130 struct lwp_info *lwp = get_thread_lwp (thread);
4131 int *wstat;
4132
4133 if (lwp->suspended != 0)
4134 {
4135 internal_error (__FILE__, __LINE__,
4136 "LWP %ld is suspended, suspended=%d\n",
4137 lwpid_of (thread), lwp->suspended);
4138 }
4139 gdb_assert (lwp->stopped);
4140
4141 /* For gdb_breakpoint_here. */
4142 saved_thread = current_thread;
4143 current_thread = thread;
4144
4145 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4146
4147 /* Allow debugging the jump pad, gdb_collect, etc. */
4148 if (!gdb_breakpoint_here (lwp->stop_pc)
4149 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4150 && thread->last_resume_kind != resume_step
4151 && maybe_move_out_of_jump_pad (lwp, wstat))
4152 {
4153 if (debug_threads)
4154 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4155 lwpid_of (thread));
4156
4157 if (wstat)
4158 {
4159 lwp->status_pending_p = 0;
4160 enqueue_one_deferred_signal (lwp, wstat);
4161
4162 if (debug_threads)
4163 debug_printf ("Signal %d for LWP %ld deferred "
4164 "(in jump pad)\n",
4165 WSTOPSIG (*wstat), lwpid_of (thread));
4166 }
4167
4168 linux_resume_one_lwp (lwp, 0, 0, NULL);
4169 }
4170 else
4171 lwp_suspended_inc (lwp);
4172
4173 current_thread = saved_thread;
4174 }
4175
4176 static int
4177 lwp_running (thread_info *thread, void *data)
4178 {
4179 struct lwp_info *lwp = get_thread_lwp (thread);
4180
4181 if (lwp_is_marked_dead (lwp))
4182 return 0;
4183 if (lwp->stopped)
4184 return 0;
4185 return 1;
4186 }
4187
4188 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4189 If SUSPEND, then also increase the suspend count of every LWP,
4190 except EXCEPT. */
4191
4192 static void
4193 stop_all_lwps (int suspend, struct lwp_info *except)
4194 {
4195 /* Should not be called recursively. */
4196 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4197
4198 if (debug_threads)
4199 {
4200 debug_enter ();
4201 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4202 suspend ? "stop-and-suspend" : "stop",
4203 except != NULL
4204 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4205 : "none");
4206 }
4207
4208 stopping_threads = (suspend
4209 ? STOPPING_AND_SUSPENDING_THREADS
4210 : STOPPING_THREADS);
4211
4212 if (suspend)
4213 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4214 else
4215 find_inferior (&all_threads, send_sigstop_callback, except);
4216 wait_for_sigstop ();
4217 stopping_threads = NOT_STOPPING_THREADS;
4218
4219 if (debug_threads)
4220 {
4221 debug_printf ("stop_all_lwps done, setting stopping_threads "
4222 "back to !stopping\n");
4223 debug_exit ();
4224 }
4225 }
4226
4227 /* Enqueue one signal in the chain of signals which need to be
4228 delivered to this process on next resume. */
4229
4230 static void
4231 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4232 {
4233 struct pending_signals *p_sig = XNEW (struct pending_signals);
4234
4235 p_sig->prev = lwp->pending_signals;
4236 p_sig->signal = signal;
4237 if (info == NULL)
4238 memset (&p_sig->info, 0, sizeof (siginfo_t));
4239 else
4240 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4241 lwp->pending_signals = p_sig;
4242 }
4243
4244 /* Install breakpoints for software single stepping. */
4245
4246 static void
4247 install_software_single_step_breakpoints (struct lwp_info *lwp)
4248 {
4249 struct thread_info *thread = get_lwp_thread (lwp);
4250 struct regcache *regcache = get_thread_regcache (thread, 1);
4251 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4252
4253 current_thread = thread;
4254 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4255
4256 for (CORE_ADDR pc : next_pcs)
4257 set_single_step_breakpoint (pc, current_ptid);
4258
4259 do_cleanups (old_chain);
4260 }
4261
4262 /* Single step via hardware or software single step.
4263 Return 1 if hardware single stepping, 0 if software single stepping
4264 or can't single step. */
4265
4266 static int
4267 single_step (struct lwp_info* lwp)
4268 {
4269 int step = 0;
4270
4271 if (can_hardware_single_step ())
4272 {
4273 step = 1;
4274 }
4275 else if (can_software_single_step ())
4276 {
4277 install_software_single_step_breakpoints (lwp);
4278 step = 0;
4279 }
4280 else
4281 {
4282 if (debug_threads)
4283 debug_printf ("stepping is not implemented on this target");
4284 }
4285
4286 return step;
4287 }
4288
4289 /* The signal can be delivered to the inferior if we are not trying to
4290 finish a fast tracepoint collect. Since signal can be delivered in
4291 the step-over, the program may go to signal handler and trap again
4292 after return from the signal handler. We can live with the spurious
4293 double traps. */
4294
4295 static int
4296 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4297 {
4298 return (lwp->collecting_fast_tracepoint
4299 == fast_tpoint_collect_result::not_collecting);
4300 }
4301
4302 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4303 SIGNAL is nonzero, give it that signal. */
4304
4305 static void
4306 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4307 int step, int signal, siginfo_t *info)
4308 {
4309 struct thread_info *thread = get_lwp_thread (lwp);
4310 struct thread_info *saved_thread;
4311 int ptrace_request;
4312 struct process_info *proc = get_thread_process (thread);
4313
4314 /* Note that target description may not be initialised
4315 (proc->tdesc == NULL) at this point because the program hasn't
4316 stopped at the first instruction yet. It means GDBserver skips
4317 the extra traps from the wrapper program (see option --wrapper).
4318 Code in this function that requires register access should be
4319 guarded by proc->tdesc == NULL or something else. */
4320
4321 if (lwp->stopped == 0)
4322 return;
4323
4324 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4325
4326 fast_tpoint_collect_result fast_tp_collecting
4327 = lwp->collecting_fast_tracepoint;
4328
4329 gdb_assert (!stabilizing_threads
4330 || (fast_tp_collecting
4331 != fast_tpoint_collect_result::not_collecting));
4332
4333 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4334 user used the "jump" command, or "set $pc = foo"). */
4335 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4336 {
4337 /* Collecting 'while-stepping' actions doesn't make sense
4338 anymore. */
4339 release_while_stepping_state_list (thread);
4340 }
4341
4342 /* If we have pending signals or status, and a new signal, enqueue the
4343 signal. Also enqueue the signal if it can't be delivered to the
4344 inferior right now. */
4345 if (signal != 0
4346 && (lwp->status_pending_p
4347 || lwp->pending_signals != NULL
4348 || !lwp_signal_can_be_delivered (lwp)))
4349 {
4350 enqueue_pending_signal (lwp, signal, info);
4351
4352 /* Postpone any pending signal. It was enqueued above. */
4353 signal = 0;
4354 }
4355
4356 if (lwp->status_pending_p)
4357 {
4358 if (debug_threads)
4359 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4360 " has pending status\n",
4361 lwpid_of (thread), step ? "step" : "continue",
4362 lwp->stop_expected ? "expected" : "not expected");
4363 return;
4364 }
4365
4366 saved_thread = current_thread;
4367 current_thread = thread;
4368
4369 /* This bit needs some thinking about. If we get a signal that
4370 we must report while a single-step reinsert is still pending,
4371 we often end up resuming the thread. It might be better to
4372 (ew) allow a stack of pending events; then we could be sure that
4373 the reinsert happened right away and not lose any signals.
4374
4375 Making this stack would also shrink the window in which breakpoints are
4376 uninserted (see comment in linux_wait_for_lwp) but not enough for
4377 complete correctness, so it won't solve that problem. It may be
4378 worthwhile just to solve this one, however. */
4379 if (lwp->bp_reinsert != 0)
4380 {
4381 if (debug_threads)
4382 debug_printf (" pending reinsert at 0x%s\n",
4383 paddress (lwp->bp_reinsert));
4384
4385 if (can_hardware_single_step ())
4386 {
4387 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4388 {
4389 if (step == 0)
4390 warning ("BAD - reinserting but not stepping.");
4391 if (lwp->suspended)
4392 warning ("BAD - reinserting and suspended(%d).",
4393 lwp->suspended);
4394 }
4395 }
4396
4397 step = maybe_hw_step (thread);
4398 }
4399
4400 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4401 {
4402 if (debug_threads)
4403 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4404 " (exit-jump-pad-bkpt)\n",
4405 lwpid_of (thread));
4406 }
4407 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4408 {
4409 if (debug_threads)
4410 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4411 " single-stepping\n",
4412 lwpid_of (thread));
4413
4414 if (can_hardware_single_step ())
4415 step = 1;
4416 else
4417 {
4418 internal_error (__FILE__, __LINE__,
4419 "moving out of jump pad single-stepping"
4420 " not implemented on this target");
4421 }
4422 }
4423
4424 /* If we have while-stepping actions in this thread set it stepping.
4425 If we have a signal to deliver, it may or may not be set to
4426 SIG_IGN, we don't know. Assume so, and allow collecting
4427 while-stepping into a signal handler. A possible smart thing to
4428 do would be to set an internal breakpoint at the signal return
4429 address, continue, and carry on catching this while-stepping
4430 action only when that breakpoint is hit. A future
4431 enhancement. */
4432 if (thread->while_stepping != NULL)
4433 {
4434 if (debug_threads)
4435 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4436 lwpid_of (thread));
4437
4438 step = single_step (lwp);
4439 }
4440
4441 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4442 {
4443 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4444
4445 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4446
4447 if (debug_threads)
4448 {
4449 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4450 (long) lwp->stop_pc);
4451 }
4452 }
4453
4454 /* If we have pending signals, consume one if it can be delivered to
4455 the inferior. */
4456 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4457 {
4458 struct pending_signals **p_sig;
4459
4460 p_sig = &lwp->pending_signals;
4461 while ((*p_sig)->prev != NULL)
4462 p_sig = &(*p_sig)->prev;
4463
4464 signal = (*p_sig)->signal;
4465 if ((*p_sig)->info.si_signo != 0)
4466 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4467 &(*p_sig)->info);
4468
4469 free (*p_sig);
4470 *p_sig = NULL;
4471 }
4472
4473 if (debug_threads)
4474 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4475 lwpid_of (thread), step ? "step" : "continue", signal,
4476 lwp->stop_expected ? "expected" : "not expected");
4477
4478 if (the_low_target.prepare_to_resume != NULL)
4479 the_low_target.prepare_to_resume (lwp);
4480
4481 regcache_invalidate_thread (thread);
4482 errno = 0;
4483 lwp->stepping = step;
4484 if (step)
4485 ptrace_request = PTRACE_SINGLESTEP;
4486 else if (gdb_catching_syscalls_p (lwp))
4487 ptrace_request = PTRACE_SYSCALL;
4488 else
4489 ptrace_request = PTRACE_CONT;
4490 ptrace (ptrace_request,
4491 lwpid_of (thread),
4492 (PTRACE_TYPE_ARG3) 0,
4493 /* Coerce to a uintptr_t first to avoid potential gcc warning
4494 of coercing an 8 byte integer to a 4 byte pointer. */
4495 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4496
4497 current_thread = saved_thread;
4498 if (errno)
4499 perror_with_name ("resuming thread");
4500
4501 /* Successfully resumed. Clear state that no longer makes sense,
4502 and mark the LWP as running. Must not do this before resuming
4503 otherwise if that fails other code will be confused. E.g., we'd
4504 later try to stop the LWP and hang forever waiting for a stop
4505 status. Note that we must not throw after this is cleared,
4506 otherwise handle_zombie_lwp_error would get confused. */
4507 lwp->stopped = 0;
4508 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4509 }
4510
4511 /* Called when we try to resume a stopped LWP and that errors out. If
4512 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4513 or about to become), discard the error, clear any pending status
4514 the LWP may have, and return true (we'll collect the exit status
4515 soon enough). Otherwise, return false. */
4516
4517 static int
4518 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4519 {
4520 struct thread_info *thread = get_lwp_thread (lp);
4521
4522 /* If we get an error after resuming the LWP successfully, we'd
4523 confuse !T state for the LWP being gone. */
4524 gdb_assert (lp->stopped);
4525
4526 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4527 because even if ptrace failed with ESRCH, the tracee may be "not
4528 yet fully dead", but already refusing ptrace requests. In that
4529 case the tracee has 'R (Running)' state for a little bit
4530 (observed in Linux 3.18). See also the note on ESRCH in the
4531 ptrace(2) man page. Instead, check whether the LWP has any state
4532 other than ptrace-stopped. */
4533
4534 /* Don't assume anything if /proc/PID/status can't be read. */
4535 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4536 {
4537 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4538 lp->status_pending_p = 0;
4539 return 1;
4540 }
4541 return 0;
4542 }
4543
4544 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4545 disappears while we try to resume it. */
4546
4547 static void
4548 linux_resume_one_lwp (struct lwp_info *lwp,
4549 int step, int signal, siginfo_t *info)
4550 {
4551 TRY
4552 {
4553 linux_resume_one_lwp_throw (lwp, step, signal, info);
4554 }
4555 CATCH (ex, RETURN_MASK_ERROR)
4556 {
4557 if (!check_ptrace_stopped_lwp_gone (lwp))
4558 throw_exception (ex);
4559 }
4560 END_CATCH
4561 }
4562
4563 /* This function is called once per thread via for_each_thread.
4564 We look up which resume request applies to THREAD and mark it with a
4565 pointer to the appropriate resume request.
4566
4567 This algorithm is O(threads * resume elements), but resume elements
4568 is small (and will remain small at least until GDB supports thread
4569 suspension). */
4570
4571 static void
4572 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4573 {
4574 struct lwp_info *lwp = get_thread_lwp (thread);
4575
4576 for (int ndx = 0; ndx < n; ndx++)
4577 {
4578 ptid_t ptid = resume[ndx].thread;
4579 if (ptid_equal (ptid, minus_one_ptid)
4580 || ptid == thread->id
4581 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4582 of PID'. */
4583 || (ptid_get_pid (ptid) == pid_of (thread)
4584 && (ptid_is_pid (ptid)
4585 || ptid_get_lwp (ptid) == -1)))
4586 {
4587 if (resume[ndx].kind == resume_stop
4588 && thread->last_resume_kind == resume_stop)
4589 {
4590 if (debug_threads)
4591 debug_printf ("already %s LWP %ld at GDB's request\n",
4592 (thread->last_status.kind
4593 == TARGET_WAITKIND_STOPPED)
4594 ? "stopped"
4595 : "stopping",
4596 lwpid_of (thread));
4597
4598 continue;
4599 }
4600
4601 /* Ignore (wildcard) resume requests for already-resumed
4602 threads. */
4603 if (resume[ndx].kind != resume_stop
4604 && thread->last_resume_kind != resume_stop)
4605 {
4606 if (debug_threads)
4607 debug_printf ("already %s LWP %ld at GDB's request\n",
4608 (thread->last_resume_kind
4609 == resume_step)
4610 ? "stepping"
4611 : "continuing",
4612 lwpid_of (thread));
4613 continue;
4614 }
4615
4616 /* Don't let wildcard resumes resume fork children that GDB
4617 does not yet know are new fork children. */
4618 if (lwp->fork_relative != NULL)
4619 {
4620 struct lwp_info *rel = lwp->fork_relative;
4621
4622 if (rel->status_pending_p
4623 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4624 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4625 {
4626 if (debug_threads)
4627 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4628 lwpid_of (thread));
4629 continue;
4630 }
4631 }
4632
4633 /* If the thread has a pending event that has already been
4634 reported to GDBserver core, but GDB has not pulled the
4635 event out of the vStopped queue yet, likewise, ignore the
4636 (wildcard) resume request. */
4637 if (in_queued_stop_replies (thread->id))
4638 {
4639 if (debug_threads)
4640 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4641 lwpid_of (thread));
4642 continue;
4643 }
4644
4645 lwp->resume = &resume[ndx];
4646 thread->last_resume_kind = lwp->resume->kind;
4647
4648 lwp->step_range_start = lwp->resume->step_range_start;
4649 lwp->step_range_end = lwp->resume->step_range_end;
4650
4651 /* If we had a deferred signal to report, dequeue one now.
4652 This can happen if LWP gets more than one signal while
4653 trying to get out of a jump pad. */
4654 if (lwp->stopped
4655 && !lwp->status_pending_p
4656 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4657 {
4658 lwp->status_pending_p = 1;
4659
4660 if (debug_threads)
4661 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4662 "leaving status pending.\n",
4663 WSTOPSIG (lwp->status_pending),
4664 lwpid_of (thread));
4665 }
4666
4667 return;
4668 }
4669 }
4670
4671 /* No resume action for this thread. */
4672 lwp->resume = NULL;
4673 }
4674
4675 /* find_inferior callback for linux_resume.
4676 Set *FLAG_P if this lwp has an interesting status pending. */
4677
4678 static bool
4679 resume_status_pending_p (thread_info *thread)
4680 {
4681 struct lwp_info *lwp = get_thread_lwp (thread);
4682
4683 /* LWPs which will not be resumed are not interesting, because
4684 we might not wait for them next time through linux_wait. */
4685 if (lwp->resume == NULL)
4686 return false;
4687
4688 return thread_still_has_status_pending_p (thread);
4689 }
4690
4691 /* Return 1 if this lwp that GDB wants running is stopped at an
4692 internal breakpoint that we need to step over. It assumes that any
4693 required STOP_PC adjustment has already been propagated to the
4694 inferior's regcache. */
4695
4696 static bool
4697 need_step_over_p (thread_info *thread)
4698 {
4699 struct lwp_info *lwp = get_thread_lwp (thread);
4700 struct thread_info *saved_thread;
4701 CORE_ADDR pc;
4702 struct process_info *proc = get_thread_process (thread);
4703
4704 /* GDBserver is skipping the extra traps from the wrapper program,
4705 don't have to do step over. */
4706 if (proc->tdesc == NULL)
4707 return false;
4708
4709 /* LWPs which will not be resumed are not interesting, because we
4710 might not wait for them next time through linux_wait. */
4711
4712 if (!lwp->stopped)
4713 {
4714 if (debug_threads)
4715 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4716 lwpid_of (thread));
4717 return false;
4718 }
4719
4720 if (thread->last_resume_kind == resume_stop)
4721 {
4722 if (debug_threads)
4723 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4724 " stopped\n",
4725 lwpid_of (thread));
4726 return false;
4727 }
4728
4729 gdb_assert (lwp->suspended >= 0);
4730
4731 if (lwp->suspended)
4732 {
4733 if (debug_threads)
4734 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4735 lwpid_of (thread));
4736 return false;
4737 }
4738
4739 if (lwp->status_pending_p)
4740 {
4741 if (debug_threads)
4742 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4743 " status.\n",
4744 lwpid_of (thread));
4745 return false;
4746 }
4747
4748 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4749 or we have. */
4750 pc = get_pc (lwp);
4751
4752 /* If the PC has changed since we stopped, then don't do anything,
4753 and let the breakpoint/tracepoint be hit. This happens if, for
4754 instance, GDB handled the decr_pc_after_break subtraction itself,
4755 GDB is OOL stepping this thread, or the user has issued a "jump"
4756 command, or poked thread's registers herself. */
4757 if (pc != lwp->stop_pc)
4758 {
4759 if (debug_threads)
4760 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4761 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4762 lwpid_of (thread),
4763 paddress (lwp->stop_pc), paddress (pc));
4764 return false;
4765 }
4766
4767 /* On software single step target, resume the inferior with signal
4768 rather than stepping over. */
4769 if (can_software_single_step ()
4770 && lwp->pending_signals != NULL
4771 && lwp_signal_can_be_delivered (lwp))
4772 {
4773 if (debug_threads)
4774 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4775 " signals.\n",
4776 lwpid_of (thread));
4777
4778 return false;
4779 }
4780
4781 saved_thread = current_thread;
4782 current_thread = thread;
4783
4784 /* We can only step over breakpoints we know about. */
4785 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4786 {
4787 /* Don't step over a breakpoint that GDB expects to hit
4788 though. If the condition is being evaluated on the target's side
4789 and it evaluate to false, step over this breakpoint as well. */
4790 if (gdb_breakpoint_here (pc)
4791 && gdb_condition_true_at_breakpoint (pc)
4792 && gdb_no_commands_at_breakpoint (pc))
4793 {
4794 if (debug_threads)
4795 debug_printf ("Need step over [LWP %ld]? yes, but found"
4796 " GDB breakpoint at 0x%s; skipping step over\n",
4797 lwpid_of (thread), paddress (pc));
4798
4799 current_thread = saved_thread;
4800 return false;
4801 }
4802 else
4803 {
4804 if (debug_threads)
4805 debug_printf ("Need step over [LWP %ld]? yes, "
4806 "found breakpoint at 0x%s\n",
4807 lwpid_of (thread), paddress (pc));
4808
4809 /* We've found an lwp that needs stepping over --- return 1 so
4810 that find_inferior stops looking. */
4811 current_thread = saved_thread;
4812
4813 return true;
4814 }
4815 }
4816
4817 current_thread = saved_thread;
4818
4819 if (debug_threads)
4820 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4821 " at 0x%s\n",
4822 lwpid_of (thread), paddress (pc));
4823
4824 return false;
4825 }
4826
4827 /* Start a step-over operation on LWP. When LWP stopped at a
4828 breakpoint, to make progress, we need to remove the breakpoint out
4829 of the way. If we let other threads run while we do that, they may
4830 pass by the breakpoint location and miss hitting it. To avoid
4831 that, a step-over momentarily stops all threads while LWP is
4832 single-stepped by either hardware or software while the breakpoint
4833 is temporarily uninserted from the inferior. When the single-step
4834 finishes, we reinsert the breakpoint, and let all threads that are
4835 supposed to be running, run again. */
4836
4837 static int
4838 start_step_over (struct lwp_info *lwp)
4839 {
4840 struct thread_info *thread = get_lwp_thread (lwp);
4841 struct thread_info *saved_thread;
4842 CORE_ADDR pc;
4843 int step;
4844
4845 if (debug_threads)
4846 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4847 lwpid_of (thread));
4848
4849 stop_all_lwps (1, lwp);
4850
4851 if (lwp->suspended != 0)
4852 {
4853 internal_error (__FILE__, __LINE__,
4854 "LWP %ld suspended=%d\n", lwpid_of (thread),
4855 lwp->suspended);
4856 }
4857
4858 if (debug_threads)
4859 debug_printf ("Done stopping all threads for step-over.\n");
4860
4861 /* Note, we should always reach here with an already adjusted PC,
4862 either by GDB (if we're resuming due to GDB's request), or by our
4863 caller, if we just finished handling an internal breakpoint GDB
4864 shouldn't care about. */
4865 pc = get_pc (lwp);
4866
4867 saved_thread = current_thread;
4868 current_thread = thread;
4869
4870 lwp->bp_reinsert = pc;
4871 uninsert_breakpoints_at (pc);
4872 uninsert_fast_tracepoint_jumps_at (pc);
4873
4874 step = single_step (lwp);
4875
4876 current_thread = saved_thread;
4877
4878 linux_resume_one_lwp (lwp, step, 0, NULL);
4879
4880 /* Require next event from this LWP. */
4881 step_over_bkpt = thread->id;
4882 return 1;
4883 }
4884
4885 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4886 start_step_over, if still there, and delete any single-step
4887 breakpoints we've set, on non hardware single-step targets. */
4888
4889 static int
4890 finish_step_over (struct lwp_info *lwp)
4891 {
4892 if (lwp->bp_reinsert != 0)
4893 {
4894 struct thread_info *saved_thread = current_thread;
4895
4896 if (debug_threads)
4897 debug_printf ("Finished step over.\n");
4898
4899 current_thread = get_lwp_thread (lwp);
4900
4901 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4902 may be no breakpoint to reinsert there by now. */
4903 reinsert_breakpoints_at (lwp->bp_reinsert);
4904 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4905
4906 lwp->bp_reinsert = 0;
4907
4908 /* Delete any single-step breakpoints. No longer needed. We
4909 don't have to worry about other threads hitting this trap,
4910 and later not being able to explain it, because we were
4911 stepping over a breakpoint, and we hold all threads but
4912 LWP stopped while doing that. */
4913 if (!can_hardware_single_step ())
4914 {
4915 gdb_assert (has_single_step_breakpoints (current_thread));
4916 delete_single_step_breakpoints (current_thread);
4917 }
4918
4919 step_over_bkpt = null_ptid;
4920 current_thread = saved_thread;
4921 return 1;
4922 }
4923 else
4924 return 0;
4925 }
4926
4927 /* If there's a step over in progress, wait until all threads stop
4928 (that is, until the stepping thread finishes its step), and
4929 unsuspend all lwps. The stepping thread ends with its status
4930 pending, which is processed later when we get back to processing
4931 events. */
4932
4933 static void
4934 complete_ongoing_step_over (void)
4935 {
4936 if (!ptid_equal (step_over_bkpt, null_ptid))
4937 {
4938 struct lwp_info *lwp;
4939 int wstat;
4940 int ret;
4941
4942 if (debug_threads)
4943 debug_printf ("detach: step over in progress, finish it first\n");
4944
4945 /* Passing NULL_PTID as filter indicates we want all events to
4946 be left pending. Eventually this returns when there are no
4947 unwaited-for children left. */
4948 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4949 &wstat, __WALL);
4950 gdb_assert (ret == -1);
4951
4952 lwp = find_lwp_pid (step_over_bkpt);
4953 if (lwp != NULL)
4954 finish_step_over (lwp);
4955 step_over_bkpt = null_ptid;
4956 unsuspend_all_lwps (lwp);
4957 }
4958 }
4959
4960 /* This function is called once per thread. We check the thread's resume
4961 request, which will tell us whether to resume, step, or leave the thread
4962 stopped; and what signal, if any, it should be sent.
4963
4964 For threads which we aren't explicitly told otherwise, we preserve
4965 the stepping flag; this is used for stepping over gdbserver-placed
4966 breakpoints.
4967
4968 If pending_flags was set in any thread, we queue any needed
4969 signals, since we won't actually resume. We already have a pending
4970 event to report, so we don't need to preserve any step requests;
4971 they should be re-issued if necessary. */
4972
4973 static int
4974 linux_resume_one_thread (thread_info *thread, void *arg)
4975 {
4976 struct lwp_info *lwp = get_thread_lwp (thread);
4977 int leave_all_stopped = * (int *) arg;
4978 int leave_pending;
4979
4980 if (lwp->resume == NULL)
4981 return 0;
4982
4983 if (lwp->resume->kind == resume_stop)
4984 {
4985 if (debug_threads)
4986 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4987
4988 if (!lwp->stopped)
4989 {
4990 if (debug_threads)
4991 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4992
4993 /* Stop the thread, and wait for the event asynchronously,
4994 through the event loop. */
4995 send_sigstop (lwp);
4996 }
4997 else
4998 {
4999 if (debug_threads)
5000 debug_printf ("already stopped LWP %ld\n",
5001 lwpid_of (thread));
5002
5003 /* The LWP may have been stopped in an internal event that
5004 was not meant to be notified back to GDB (e.g., gdbserver
5005 breakpoint), so we should be reporting a stop event in
5006 this case too. */
5007
5008 /* If the thread already has a pending SIGSTOP, this is a
5009 no-op. Otherwise, something later will presumably resume
5010 the thread and this will cause it to cancel any pending
5011 operation, due to last_resume_kind == resume_stop. If
5012 the thread already has a pending status to report, we
5013 will still report it the next time we wait - see
5014 status_pending_p_callback. */
5015
5016 /* If we already have a pending signal to report, then
5017 there's no need to queue a SIGSTOP, as this means we're
5018 midway through moving the LWP out of the jumppad, and we
5019 will report the pending signal as soon as that is
5020 finished. */
5021 if (lwp->pending_signals_to_report == NULL)
5022 send_sigstop (lwp);
5023 }
5024
5025 /* For stop requests, we're done. */
5026 lwp->resume = NULL;
5027 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5028 return 0;
5029 }
5030
5031 /* If this thread which is about to be resumed has a pending status,
5032 then don't resume it - we can just report the pending status.
5033 Likewise if it is suspended, because e.g., another thread is
5034 stepping past a breakpoint. Make sure to queue any signals that
5035 would otherwise be sent. In all-stop mode, we do this decision
5036 based on if *any* thread has a pending status. If there's a
5037 thread that needs the step-over-breakpoint dance, then don't
5038 resume any other thread but that particular one. */
5039 leave_pending = (lwp->suspended
5040 || lwp->status_pending_p
5041 || leave_all_stopped);
5042
5043 /* If we have a new signal, enqueue the signal. */
5044 if (lwp->resume->sig != 0)
5045 {
5046 siginfo_t info, *info_p;
5047
5048 /* If this is the same signal we were previously stopped by,
5049 make sure to queue its siginfo. */
5050 if (WIFSTOPPED (lwp->last_status)
5051 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5052 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5053 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5054 info_p = &info;
5055 else
5056 info_p = NULL;
5057
5058 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5059 }
5060
5061 if (!leave_pending)
5062 {
5063 if (debug_threads)
5064 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5065
5066 proceed_one_lwp (thread, NULL);
5067 }
5068 else
5069 {
5070 if (debug_threads)
5071 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5072 }
5073
5074 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5075 lwp->resume = NULL;
5076 return 0;
5077 }
5078
5079 static void
5080 linux_resume (struct thread_resume *resume_info, size_t n)
5081 {
5082 struct thread_info *need_step_over = NULL;
5083 int leave_all_stopped;
5084
5085 if (debug_threads)
5086 {
5087 debug_enter ();
5088 debug_printf ("linux_resume:\n");
5089 }
5090
5091 for_each_thread ([&] (thread_info *thread)
5092 {
5093 linux_set_resume_request (thread, resume_info, n);
5094 });
5095
5096 /* If there is a thread which would otherwise be resumed, which has
5097 a pending status, then don't resume any threads - we can just
5098 report the pending status. Make sure to queue any signals that
5099 would otherwise be sent. In non-stop mode, we'll apply this
5100 logic to each thread individually. We consume all pending events
5101 before considering to start a step-over (in all-stop). */
5102 bool any_pending = false;
5103 if (!non_stop)
5104 any_pending = find_thread (resume_status_pending_p) != NULL;
5105
5106 /* If there is a thread which would otherwise be resumed, which is
5107 stopped at a breakpoint that needs stepping over, then don't
5108 resume any threads - have it step over the breakpoint with all
5109 other threads stopped, then resume all threads again. Make sure
5110 to queue any signals that would otherwise be delivered or
5111 queued. */
5112 if (!any_pending && supports_breakpoints ())
5113 need_step_over = find_thread (need_step_over_p);
5114
5115 leave_all_stopped = (need_step_over != NULL || any_pending);
5116
5117 if (debug_threads)
5118 {
5119 if (need_step_over != NULL)
5120 debug_printf ("Not resuming all, need step over\n");
5121 else if (any_pending)
5122 debug_printf ("Not resuming, all-stop and found "
5123 "an LWP with pending status\n");
5124 else
5125 debug_printf ("Resuming, no pending status or step over needed\n");
5126 }
5127
5128 /* Even if we're leaving threads stopped, queue all signals we'd
5129 otherwise deliver. */
5130 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5131
5132 if (need_step_over)
5133 start_step_over (get_thread_lwp (need_step_over));
5134
5135 if (debug_threads)
5136 {
5137 debug_printf ("linux_resume done\n");
5138 debug_exit ();
5139 }
5140
5141 /* We may have events that were pending that can/should be sent to
5142 the client now. Trigger a linux_wait call. */
5143 if (target_is_async_p ())
5144 async_file_mark ();
5145 }
5146
5147 /* This function is called once per thread. We check the thread's
5148 last resume request, which will tell us whether to resume, step, or
5149 leave the thread stopped. Any signal the client requested to be
5150 delivered has already been enqueued at this point.
5151
5152 If any thread that GDB wants running is stopped at an internal
5153 breakpoint that needs stepping over, we start a step-over operation
5154 on that particular thread, and leave all others stopped. */
5155
5156 static int
5157 proceed_one_lwp (thread_info *thread, void *except)
5158 {
5159 struct lwp_info *lwp = get_thread_lwp (thread);
5160 int step;
5161
5162 if (lwp == except)
5163 return 0;
5164
5165 if (debug_threads)
5166 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5167
5168 if (!lwp->stopped)
5169 {
5170 if (debug_threads)
5171 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5172 return 0;
5173 }
5174
5175 if (thread->last_resume_kind == resume_stop
5176 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5177 {
5178 if (debug_threads)
5179 debug_printf (" client wants LWP to remain %ld stopped\n",
5180 lwpid_of (thread));
5181 return 0;
5182 }
5183
5184 if (lwp->status_pending_p)
5185 {
5186 if (debug_threads)
5187 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5188 lwpid_of (thread));
5189 return 0;
5190 }
5191
5192 gdb_assert (lwp->suspended >= 0);
5193
5194 if (lwp->suspended)
5195 {
5196 if (debug_threads)
5197 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5198 return 0;
5199 }
5200
5201 if (thread->last_resume_kind == resume_stop
5202 && lwp->pending_signals_to_report == NULL
5203 && (lwp->collecting_fast_tracepoint
5204 == fast_tpoint_collect_result::not_collecting))
5205 {
5206 /* We haven't reported this LWP as stopped yet (otherwise, the
5207 last_status.kind check above would catch it, and we wouldn't
5208 reach here. This LWP may have been momentarily paused by a
5209 stop_all_lwps call while handling for example, another LWP's
5210 step-over. In that case, the pending expected SIGSTOP signal
5211 that was queued at vCont;t handling time will have already
5212 been consumed by wait_for_sigstop, and so we need to requeue
5213 another one here. Note that if the LWP already has a SIGSTOP
5214 pending, this is a no-op. */
5215
5216 if (debug_threads)
5217 debug_printf ("Client wants LWP %ld to stop. "
5218 "Making sure it has a SIGSTOP pending\n",
5219 lwpid_of (thread));
5220
5221 send_sigstop (lwp);
5222 }
5223
5224 if (thread->last_resume_kind == resume_step)
5225 {
5226 if (debug_threads)
5227 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5228 lwpid_of (thread));
5229
5230 /* If resume_step is requested by GDB, install single-step
5231 breakpoints when the thread is about to be actually resumed if
5232 the single-step breakpoints weren't removed. */
5233 if (can_software_single_step ()
5234 && !has_single_step_breakpoints (thread))
5235 install_software_single_step_breakpoints (lwp);
5236
5237 step = maybe_hw_step (thread);
5238 }
5239 else if (lwp->bp_reinsert != 0)
5240 {
5241 if (debug_threads)
5242 debug_printf (" stepping LWP %ld, reinsert set\n",
5243 lwpid_of (thread));
5244
5245 step = maybe_hw_step (thread);
5246 }
5247 else
5248 step = 0;
5249
5250 linux_resume_one_lwp (lwp, step, 0, NULL);
5251 return 0;
5252 }
5253
5254 static int
5255 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5256 {
5257 struct lwp_info *lwp = get_thread_lwp (thread);
5258
5259 if (lwp == except)
5260 return 0;
5261
5262 lwp_suspended_decr (lwp);
5263
5264 return proceed_one_lwp (thread, except);
5265 }
5266
5267 /* When we finish a step-over, set threads running again. If there's
5268 another thread that may need a step-over, now's the time to start
5269 it. Eventually, we'll move all threads past their breakpoints. */
5270
5271 static void
5272 proceed_all_lwps (void)
5273 {
5274 struct thread_info *need_step_over;
5275
5276 /* If there is a thread which would otherwise be resumed, which is
5277 stopped at a breakpoint that needs stepping over, then don't
5278 resume any threads - have it step over the breakpoint with all
5279 other threads stopped, then resume all threads again. */
5280
5281 if (supports_breakpoints ())
5282 {
5283 need_step_over = find_thread (need_step_over_p);
5284
5285 if (need_step_over != NULL)
5286 {
5287 if (debug_threads)
5288 debug_printf ("proceed_all_lwps: found "
5289 "thread %ld needing a step-over\n",
5290 lwpid_of (need_step_over));
5291
5292 start_step_over (get_thread_lwp (need_step_over));
5293 return;
5294 }
5295 }
5296
5297 if (debug_threads)
5298 debug_printf ("Proceeding, no step-over needed\n");
5299
5300 find_inferior (&all_threads, proceed_one_lwp, NULL);
5301 }
5302
5303 /* Stopped LWPs that the client wanted to be running, that don't have
5304 pending statuses, are set to run again, except for EXCEPT, if not
5305 NULL. This undoes a stop_all_lwps call. */
5306
5307 static void
5308 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5309 {
5310 if (debug_threads)
5311 {
5312 debug_enter ();
5313 if (except)
5314 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5315 lwpid_of (get_lwp_thread (except)));
5316 else
5317 debug_printf ("unstopping all lwps\n");
5318 }
5319
5320 if (unsuspend)
5321 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5322 else
5323 find_inferior (&all_threads, proceed_one_lwp, except);
5324
5325 if (debug_threads)
5326 {
5327 debug_printf ("unstop_all_lwps done\n");
5328 debug_exit ();
5329 }
5330 }
5331
5332
5333 #ifdef HAVE_LINUX_REGSETS
5334
5335 #define use_linux_regsets 1
5336
5337 /* Returns true if REGSET has been disabled. */
5338
5339 static int
5340 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5341 {
5342 return (info->disabled_regsets != NULL
5343 && info->disabled_regsets[regset - info->regsets]);
5344 }
5345
5346 /* Disable REGSET. */
5347
5348 static void
5349 disable_regset (struct regsets_info *info, struct regset_info *regset)
5350 {
5351 int dr_offset;
5352
5353 dr_offset = regset - info->regsets;
5354 if (info->disabled_regsets == NULL)
5355 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5356 info->disabled_regsets[dr_offset] = 1;
5357 }
5358
5359 static int
5360 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5361 struct regcache *regcache)
5362 {
5363 struct regset_info *regset;
5364 int saw_general_regs = 0;
5365 int pid;
5366 struct iovec iov;
5367
5368 pid = lwpid_of (current_thread);
5369 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5370 {
5371 void *buf, *data;
5372 int nt_type, res;
5373
5374 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5375 continue;
5376
5377 buf = xmalloc (regset->size);
5378
5379 nt_type = regset->nt_type;
5380 if (nt_type)
5381 {
5382 iov.iov_base = buf;
5383 iov.iov_len = regset->size;
5384 data = (void *) &iov;
5385 }
5386 else
5387 data = buf;
5388
5389 #ifndef __sparc__
5390 res = ptrace (regset->get_request, pid,
5391 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5392 #else
5393 res = ptrace (regset->get_request, pid, data, nt_type);
5394 #endif
5395 if (res < 0)
5396 {
5397 if (errno == EIO)
5398 {
5399 /* If we get EIO on a regset, do not try it again for
5400 this process mode. */
5401 disable_regset (regsets_info, regset);
5402 }
5403 else if (errno == ENODATA)
5404 {
5405 /* ENODATA may be returned if the regset is currently
5406 not "active". This can happen in normal operation,
5407 so suppress the warning in this case. */
5408 }
5409 else if (errno == ESRCH)
5410 {
5411 /* At this point, ESRCH should mean the process is
5412 already gone, in which case we simply ignore attempts
5413 to read its registers. */
5414 }
5415 else
5416 {
5417 char s[256];
5418 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5419 pid);
5420 perror (s);
5421 }
5422 }
5423 else
5424 {
5425 if (regset->type == GENERAL_REGS)
5426 saw_general_regs = 1;
5427 regset->store_function (regcache, buf);
5428 }
5429 free (buf);
5430 }
5431 if (saw_general_regs)
5432 return 0;
5433 else
5434 return 1;
5435 }
5436
5437 static int
5438 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5439 struct regcache *regcache)
5440 {
5441 struct regset_info *regset;
5442 int saw_general_regs = 0;
5443 int pid;
5444 struct iovec iov;
5445
5446 pid = lwpid_of (current_thread);
5447 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5448 {
5449 void *buf, *data;
5450 int nt_type, res;
5451
5452 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5453 || regset->fill_function == NULL)
5454 continue;
5455
5456 buf = xmalloc (regset->size);
5457
5458 /* First fill the buffer with the current register set contents,
5459 in case there are any items in the kernel's regset that are
5460 not in gdbserver's regcache. */
5461
5462 nt_type = regset->nt_type;
5463 if (nt_type)
5464 {
5465 iov.iov_base = buf;
5466 iov.iov_len = regset->size;
5467 data = (void *) &iov;
5468 }
5469 else
5470 data = buf;
5471
5472 #ifndef __sparc__
5473 res = ptrace (regset->get_request, pid,
5474 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5475 #else
5476 res = ptrace (regset->get_request, pid, data, nt_type);
5477 #endif
5478
5479 if (res == 0)
5480 {
5481 /* Then overlay our cached registers on that. */
5482 regset->fill_function (regcache, buf);
5483
5484 /* Only now do we write the register set. */
5485 #ifndef __sparc__
5486 res = ptrace (regset->set_request, pid,
5487 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5488 #else
5489 res = ptrace (regset->set_request, pid, data, nt_type);
5490 #endif
5491 }
5492
5493 if (res < 0)
5494 {
5495 if (errno == EIO)
5496 {
5497 /* If we get EIO on a regset, do not try it again for
5498 this process mode. */
5499 disable_regset (regsets_info, regset);
5500 }
5501 else if (errno == ESRCH)
5502 {
5503 /* At this point, ESRCH should mean the process is
5504 already gone, in which case we simply ignore attempts
5505 to change its registers. See also the related
5506 comment in linux_resume_one_lwp. */
5507 free (buf);
5508 return 0;
5509 }
5510 else
5511 {
5512 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5513 }
5514 }
5515 else if (regset->type == GENERAL_REGS)
5516 saw_general_regs = 1;
5517 free (buf);
5518 }
5519 if (saw_general_regs)
5520 return 0;
5521 else
5522 return 1;
5523 }
5524
5525 #else /* !HAVE_LINUX_REGSETS */
5526
5527 #define use_linux_regsets 0
5528 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5529 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5530
5531 #endif
5532
5533 /* Return 1 if register REGNO is supported by one of the regset ptrace
5534 calls or 0 if it has to be transferred individually. */
5535
5536 static int
5537 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5538 {
5539 unsigned char mask = 1 << (regno % 8);
5540 size_t index = regno / 8;
5541
5542 return (use_linux_regsets
5543 && (regs_info->regset_bitmap == NULL
5544 || (regs_info->regset_bitmap[index] & mask) != 0));
5545 }
5546
5547 #ifdef HAVE_LINUX_USRREGS
5548
5549 static int
5550 register_addr (const struct usrregs_info *usrregs, int regnum)
5551 {
5552 int addr;
5553
5554 if (regnum < 0 || regnum >= usrregs->num_regs)
5555 error ("Invalid register number %d.", regnum);
5556
5557 addr = usrregs->regmap[regnum];
5558
5559 return addr;
5560 }
5561
5562 /* Fetch one register. */
5563 static void
5564 fetch_register (const struct usrregs_info *usrregs,
5565 struct regcache *regcache, int regno)
5566 {
5567 CORE_ADDR regaddr;
5568 int i, size;
5569 char *buf;
5570 int pid;
5571
5572 if (regno >= usrregs->num_regs)
5573 return;
5574 if ((*the_low_target.cannot_fetch_register) (regno))
5575 return;
5576
5577 regaddr = register_addr (usrregs, regno);
5578 if (regaddr == -1)
5579 return;
5580
5581 size = ((register_size (regcache->tdesc, regno)
5582 + sizeof (PTRACE_XFER_TYPE) - 1)
5583 & -sizeof (PTRACE_XFER_TYPE));
5584 buf = (char *) alloca (size);
5585
5586 pid = lwpid_of (current_thread);
5587 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5588 {
5589 errno = 0;
5590 *(PTRACE_XFER_TYPE *) (buf + i) =
5591 ptrace (PTRACE_PEEKUSER, pid,
5592 /* Coerce to a uintptr_t first to avoid potential gcc warning
5593 of coercing an 8 byte integer to a 4 byte pointer. */
5594 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5595 regaddr += sizeof (PTRACE_XFER_TYPE);
5596 if (errno != 0)
5597 error ("reading register %d: %s", regno, strerror (errno));
5598 }
5599
5600 if (the_low_target.supply_ptrace_register)
5601 the_low_target.supply_ptrace_register (regcache, regno, buf);
5602 else
5603 supply_register (regcache, regno, buf);
5604 }
5605
5606 /* Store one register. */
5607 static void
5608 store_register (const struct usrregs_info *usrregs,
5609 struct regcache *regcache, int regno)
5610 {
5611 CORE_ADDR regaddr;
5612 int i, size;
5613 char *buf;
5614 int pid;
5615
5616 if (regno >= usrregs->num_regs)
5617 return;
5618 if ((*the_low_target.cannot_store_register) (regno))
5619 return;
5620
5621 regaddr = register_addr (usrregs, regno);
5622 if (regaddr == -1)
5623 return;
5624
5625 size = ((register_size (regcache->tdesc, regno)
5626 + sizeof (PTRACE_XFER_TYPE) - 1)
5627 & -sizeof (PTRACE_XFER_TYPE));
5628 buf = (char *) alloca (size);
5629 memset (buf, 0, size);
5630
5631 if (the_low_target.collect_ptrace_register)
5632 the_low_target.collect_ptrace_register (regcache, regno, buf);
5633 else
5634 collect_register (regcache, regno, buf);
5635
5636 pid = lwpid_of (current_thread);
5637 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5638 {
5639 errno = 0;
5640 ptrace (PTRACE_POKEUSER, pid,
5641 /* Coerce to a uintptr_t first to avoid potential gcc warning
5642 about coercing an 8 byte integer to a 4 byte pointer. */
5643 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5644 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5645 if (errno != 0)
5646 {
5647 /* At this point, ESRCH should mean the process is
5648 already gone, in which case we simply ignore attempts
5649 to change its registers. See also the related
5650 comment in linux_resume_one_lwp. */
5651 if (errno == ESRCH)
5652 return;
5653
5654 if ((*the_low_target.cannot_store_register) (regno) == 0)
5655 error ("writing register %d: %s", regno, strerror (errno));
5656 }
5657 regaddr += sizeof (PTRACE_XFER_TYPE);
5658 }
5659 }
5660
5661 /* Fetch all registers, or just one, from the child process.
5662 If REGNO is -1, do this for all registers, skipping any that are
5663 assumed to have been retrieved by regsets_fetch_inferior_registers,
5664 unless ALL is non-zero.
5665 Otherwise, REGNO specifies which register (so we can save time). */
5666 static void
5667 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5668 struct regcache *regcache, int regno, int all)
5669 {
5670 struct usrregs_info *usr = regs_info->usrregs;
5671
5672 if (regno == -1)
5673 {
5674 for (regno = 0; regno < usr->num_regs; regno++)
5675 if (all || !linux_register_in_regsets (regs_info, regno))
5676 fetch_register (usr, regcache, regno);
5677 }
5678 else
5679 fetch_register (usr, regcache, regno);
5680 }
5681
5682 /* Store our register values back into the inferior.
5683 If REGNO is -1, do this for all registers, skipping any that are
5684 assumed to have been saved by regsets_store_inferior_registers,
5685 unless ALL is non-zero.
5686 Otherwise, REGNO specifies which register (so we can save time). */
5687 static void
5688 usr_store_inferior_registers (const struct regs_info *regs_info,
5689 struct regcache *regcache, int regno, int all)
5690 {
5691 struct usrregs_info *usr = regs_info->usrregs;
5692
5693 if (regno == -1)
5694 {
5695 for (regno = 0; regno < usr->num_regs; regno++)
5696 if (all || !linux_register_in_regsets (regs_info, regno))
5697 store_register (usr, regcache, regno);
5698 }
5699 else
5700 store_register (usr, regcache, regno);
5701 }
5702
5703 #else /* !HAVE_LINUX_USRREGS */
5704
5705 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5706 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5707
5708 #endif
5709
5710
5711 static void
5712 linux_fetch_registers (struct regcache *regcache, int regno)
5713 {
5714 int use_regsets;
5715 int all = 0;
5716 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5717
5718 if (regno == -1)
5719 {
5720 if (the_low_target.fetch_register != NULL
5721 && regs_info->usrregs != NULL)
5722 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5723 (*the_low_target.fetch_register) (regcache, regno);
5724
5725 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5726 if (regs_info->usrregs != NULL)
5727 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5728 }
5729 else
5730 {
5731 if (the_low_target.fetch_register != NULL
5732 && (*the_low_target.fetch_register) (regcache, regno))
5733 return;
5734
5735 use_regsets = linux_register_in_regsets (regs_info, regno);
5736 if (use_regsets)
5737 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5738 regcache);
5739 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5740 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5741 }
5742 }
5743
5744 static void
5745 linux_store_registers (struct regcache *regcache, int regno)
5746 {
5747 int use_regsets;
5748 int all = 0;
5749 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5750
5751 if (regno == -1)
5752 {
5753 all = regsets_store_inferior_registers (regs_info->regsets_info,
5754 regcache);
5755 if (regs_info->usrregs != NULL)
5756 usr_store_inferior_registers (regs_info, regcache, regno, all);
5757 }
5758 else
5759 {
5760 use_regsets = linux_register_in_regsets (regs_info, regno);
5761 if (use_regsets)
5762 all = regsets_store_inferior_registers (regs_info->regsets_info,
5763 regcache);
5764 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5765 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5766 }
5767 }
5768
5769
5770 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5771 to debugger memory starting at MYADDR. */
5772
5773 static int
5774 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5775 {
5776 int pid = lwpid_of (current_thread);
5777 PTRACE_XFER_TYPE *buffer;
5778 CORE_ADDR addr;
5779 int count;
5780 char filename[64];
5781 int i;
5782 int ret;
5783 int fd;
5784
5785 /* Try using /proc. Don't bother for one word. */
5786 if (len >= 3 * sizeof (long))
5787 {
5788 int bytes;
5789
5790 /* We could keep this file open and cache it - possibly one per
5791 thread. That requires some juggling, but is even faster. */
5792 sprintf (filename, "/proc/%d/mem", pid);
5793 fd = open (filename, O_RDONLY | O_LARGEFILE);
5794 if (fd == -1)
5795 goto no_proc;
5796
5797 /* If pread64 is available, use it. It's faster if the kernel
5798 supports it (only one syscall), and it's 64-bit safe even on
5799 32-bit platforms (for instance, SPARC debugging a SPARC64
5800 application). */
5801 #ifdef HAVE_PREAD64
5802 bytes = pread64 (fd, myaddr, len, memaddr);
5803 #else
5804 bytes = -1;
5805 if (lseek (fd, memaddr, SEEK_SET) != -1)
5806 bytes = read (fd, myaddr, len);
5807 #endif
5808
5809 close (fd);
5810 if (bytes == len)
5811 return 0;
5812
5813 /* Some data was read, we'll try to get the rest with ptrace. */
5814 if (bytes > 0)
5815 {
5816 memaddr += bytes;
5817 myaddr += bytes;
5818 len -= bytes;
5819 }
5820 }
5821
5822 no_proc:
5823 /* Round starting address down to longword boundary. */
5824 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5825 /* Round ending address up; get number of longwords that makes. */
5826 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5827 / sizeof (PTRACE_XFER_TYPE));
5828 /* Allocate buffer of that many longwords. */
5829 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5830
5831 /* Read all the longwords */
5832 errno = 0;
5833 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5834 {
5835 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5836 about coercing an 8 byte integer to a 4 byte pointer. */
5837 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5838 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5839 (PTRACE_TYPE_ARG4) 0);
5840 if (errno)
5841 break;
5842 }
5843 ret = errno;
5844
5845 /* Copy appropriate bytes out of the buffer. */
5846 if (i > 0)
5847 {
5848 i *= sizeof (PTRACE_XFER_TYPE);
5849 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5850 memcpy (myaddr,
5851 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5852 i < len ? i : len);
5853 }
5854
5855 return ret;
5856 }
5857
5858 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5859 memory at MEMADDR. On failure (cannot write to the inferior)
5860 returns the value of errno. Always succeeds if LEN is zero. */
5861
5862 static int
5863 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5864 {
5865 int i;
5866 /* Round starting address down to longword boundary. */
5867 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5868 /* Round ending address up; get number of longwords that makes. */
5869 int count
5870 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5871 / sizeof (PTRACE_XFER_TYPE);
5872
5873 /* Allocate buffer of that many longwords. */
5874 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5875
5876 int pid = lwpid_of (current_thread);
5877
5878 if (len == 0)
5879 {
5880 /* Zero length write always succeeds. */
5881 return 0;
5882 }
5883
5884 if (debug_threads)
5885 {
5886 /* Dump up to four bytes. */
5887 char str[4 * 2 + 1];
5888 char *p = str;
5889 int dump = len < 4 ? len : 4;
5890
5891 for (i = 0; i < dump; i++)
5892 {
5893 sprintf (p, "%02x", myaddr[i]);
5894 p += 2;
5895 }
5896 *p = '\0';
5897
5898 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5899 str, (long) memaddr, pid);
5900 }
5901
5902 /* Fill start and end extra bytes of buffer with existing memory data. */
5903
5904 errno = 0;
5905 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5906 about coercing an 8 byte integer to a 4 byte pointer. */
5907 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5908 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5909 (PTRACE_TYPE_ARG4) 0);
5910 if (errno)
5911 return errno;
5912
5913 if (count > 1)
5914 {
5915 errno = 0;
5916 buffer[count - 1]
5917 = ptrace (PTRACE_PEEKTEXT, pid,
5918 /* Coerce to a uintptr_t first to avoid potential gcc warning
5919 about coercing an 8 byte integer to a 4 byte pointer. */
5920 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5921 * sizeof (PTRACE_XFER_TYPE)),
5922 (PTRACE_TYPE_ARG4) 0);
5923 if (errno)
5924 return errno;
5925 }
5926
5927 /* Copy data to be written over corresponding part of buffer. */
5928
5929 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5930 myaddr, len);
5931
5932 /* Write the entire buffer. */
5933
5934 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5935 {
5936 errno = 0;
5937 ptrace (PTRACE_POKETEXT, pid,
5938 /* Coerce to a uintptr_t first to avoid potential gcc warning
5939 about coercing an 8 byte integer to a 4 byte pointer. */
5940 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5941 (PTRACE_TYPE_ARG4) buffer[i]);
5942 if (errno)
5943 return errno;
5944 }
5945
5946 return 0;
5947 }
5948
5949 static void
5950 linux_look_up_symbols (void)
5951 {
5952 #ifdef USE_THREAD_DB
5953 struct process_info *proc = current_process ();
5954
5955 if (proc->priv->thread_db != NULL)
5956 return;
5957
5958 thread_db_init ();
5959 #endif
5960 }
5961
5962 static void
5963 linux_request_interrupt (void)
5964 {
5965 /* Send a SIGINT to the process group. This acts just like the user
5966 typed a ^C on the controlling terminal. */
5967 kill (-signal_pid, SIGINT);
5968 }
5969
5970 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5971 to debugger memory starting at MYADDR. */
5972
5973 static int
5974 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5975 {
5976 char filename[PATH_MAX];
5977 int fd, n;
5978 int pid = lwpid_of (current_thread);
5979
5980 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5981
5982 fd = open (filename, O_RDONLY);
5983 if (fd < 0)
5984 return -1;
5985
5986 if (offset != (CORE_ADDR) 0
5987 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5988 n = -1;
5989 else
5990 n = read (fd, myaddr, len);
5991
5992 close (fd);
5993
5994 return n;
5995 }
5996
5997 /* These breakpoint and watchpoint related wrapper functions simply
5998 pass on the function call if the target has registered a
5999 corresponding function. */
6000
6001 static int
6002 linux_supports_z_point_type (char z_type)
6003 {
6004 return (the_low_target.supports_z_point_type != NULL
6005 && the_low_target.supports_z_point_type (z_type));
6006 }
6007
6008 static int
6009 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6010 int size, struct raw_breakpoint *bp)
6011 {
6012 if (type == raw_bkpt_type_sw)
6013 return insert_memory_breakpoint (bp);
6014 else if (the_low_target.insert_point != NULL)
6015 return the_low_target.insert_point (type, addr, size, bp);
6016 else
6017 /* Unsupported (see target.h). */
6018 return 1;
6019 }
6020
6021 static int
6022 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6023 int size, struct raw_breakpoint *bp)
6024 {
6025 if (type == raw_bkpt_type_sw)
6026 return remove_memory_breakpoint (bp);
6027 else if (the_low_target.remove_point != NULL)
6028 return the_low_target.remove_point (type, addr, size, bp);
6029 else
6030 /* Unsupported (see target.h). */
6031 return 1;
6032 }
6033
6034 /* Implement the to_stopped_by_sw_breakpoint target_ops
6035 method. */
6036
6037 static int
6038 linux_stopped_by_sw_breakpoint (void)
6039 {
6040 struct lwp_info *lwp = get_thread_lwp (current_thread);
6041
6042 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6043 }
6044
6045 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6046 method. */
6047
6048 static int
6049 linux_supports_stopped_by_sw_breakpoint (void)
6050 {
6051 return USE_SIGTRAP_SIGINFO;
6052 }
6053
6054 /* Implement the to_stopped_by_hw_breakpoint target_ops
6055 method. */
6056
6057 static int
6058 linux_stopped_by_hw_breakpoint (void)
6059 {
6060 struct lwp_info *lwp = get_thread_lwp (current_thread);
6061
6062 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6063 }
6064
6065 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6066 method. */
6067
6068 static int
6069 linux_supports_stopped_by_hw_breakpoint (void)
6070 {
6071 return USE_SIGTRAP_SIGINFO;
6072 }
6073
6074 /* Implement the supports_hardware_single_step target_ops method. */
6075
6076 static int
6077 linux_supports_hardware_single_step (void)
6078 {
6079 return can_hardware_single_step ();
6080 }
6081
6082 static int
6083 linux_supports_software_single_step (void)
6084 {
6085 return can_software_single_step ();
6086 }
6087
6088 static int
6089 linux_stopped_by_watchpoint (void)
6090 {
6091 struct lwp_info *lwp = get_thread_lwp (current_thread);
6092
6093 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6094 }
6095
6096 static CORE_ADDR
6097 linux_stopped_data_address (void)
6098 {
6099 struct lwp_info *lwp = get_thread_lwp (current_thread);
6100
6101 return lwp->stopped_data_address;
6102 }
6103
6104 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6105 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6106 && defined(PT_TEXT_END_ADDR)
6107
6108 /* This is only used for targets that define PT_TEXT_ADDR,
6109 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6110 the target has different ways of acquiring this information, like
6111 loadmaps. */
6112
6113 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6114 to tell gdb about. */
6115
6116 static int
6117 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6118 {
6119 unsigned long text, text_end, data;
6120 int pid = lwpid_of (current_thread);
6121
6122 errno = 0;
6123
6124 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6125 (PTRACE_TYPE_ARG4) 0);
6126 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6127 (PTRACE_TYPE_ARG4) 0);
6128 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6129 (PTRACE_TYPE_ARG4) 0);
6130
6131 if (errno == 0)
6132 {
6133 /* Both text and data offsets produced at compile-time (and so
6134 used by gdb) are relative to the beginning of the program,
6135 with the data segment immediately following the text segment.
6136 However, the actual runtime layout in memory may put the data
6137 somewhere else, so when we send gdb a data base-address, we
6138 use the real data base address and subtract the compile-time
6139 data base-address from it (which is just the length of the
6140 text segment). BSS immediately follows data in both
6141 cases. */
6142 *text_p = text;
6143 *data_p = data - (text_end - text);
6144
6145 return 1;
6146 }
6147 return 0;
6148 }
6149 #endif
6150
6151 static int
6152 linux_qxfer_osdata (const char *annex,
6153 unsigned char *readbuf, unsigned const char *writebuf,
6154 CORE_ADDR offset, int len)
6155 {
6156 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6157 }
6158
6159 /* Convert a native/host siginfo object, into/from the siginfo in the
6160 layout of the inferiors' architecture. */
6161
6162 static void
6163 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6164 {
6165 int done = 0;
6166
6167 if (the_low_target.siginfo_fixup != NULL)
6168 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6169
6170 /* If there was no callback, or the callback didn't do anything,
6171 then just do a straight memcpy. */
6172 if (!done)
6173 {
6174 if (direction == 1)
6175 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6176 else
6177 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6178 }
6179 }
6180
6181 static int
6182 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6183 unsigned const char *writebuf, CORE_ADDR offset, int len)
6184 {
6185 int pid;
6186 siginfo_t siginfo;
6187 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6188
6189 if (current_thread == NULL)
6190 return -1;
6191
6192 pid = lwpid_of (current_thread);
6193
6194 if (debug_threads)
6195 debug_printf ("%s siginfo for lwp %d.\n",
6196 readbuf != NULL ? "Reading" : "Writing",
6197 pid);
6198
6199 if (offset >= sizeof (siginfo))
6200 return -1;
6201
6202 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6203 return -1;
6204
6205 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6206 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6207 inferior with a 64-bit GDBSERVER should look the same as debugging it
6208 with a 32-bit GDBSERVER, we need to convert it. */
6209 siginfo_fixup (&siginfo, inf_siginfo, 0);
6210
6211 if (offset + len > sizeof (siginfo))
6212 len = sizeof (siginfo) - offset;
6213
6214 if (readbuf != NULL)
6215 memcpy (readbuf, inf_siginfo + offset, len);
6216 else
6217 {
6218 memcpy (inf_siginfo + offset, writebuf, len);
6219
6220 /* Convert back to ptrace layout before flushing it out. */
6221 siginfo_fixup (&siginfo, inf_siginfo, 1);
6222
6223 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6224 return -1;
6225 }
6226
6227 return len;
6228 }
6229
6230 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6231 so we notice when children change state; as the handler for the
6232 sigsuspend in my_waitpid. */
6233
6234 static void
6235 sigchld_handler (int signo)
6236 {
6237 int old_errno = errno;
6238
6239 if (debug_threads)
6240 {
6241 do
6242 {
6243 /* fprintf is not async-signal-safe, so call write
6244 directly. */
6245 if (write (2, "sigchld_handler\n",
6246 sizeof ("sigchld_handler\n") - 1) < 0)
6247 break; /* just ignore */
6248 } while (0);
6249 }
6250
6251 if (target_is_async_p ())
6252 async_file_mark (); /* trigger a linux_wait */
6253
6254 errno = old_errno;
6255 }
6256
6257 static int
6258 linux_supports_non_stop (void)
6259 {
6260 return 1;
6261 }
6262
6263 static int
6264 linux_async (int enable)
6265 {
6266 int previous = target_is_async_p ();
6267
6268 if (debug_threads)
6269 debug_printf ("linux_async (%d), previous=%d\n",
6270 enable, previous);
6271
6272 if (previous != enable)
6273 {
6274 sigset_t mask;
6275 sigemptyset (&mask);
6276 sigaddset (&mask, SIGCHLD);
6277
6278 sigprocmask (SIG_BLOCK, &mask, NULL);
6279
6280 if (enable)
6281 {
6282 if (pipe (linux_event_pipe) == -1)
6283 {
6284 linux_event_pipe[0] = -1;
6285 linux_event_pipe[1] = -1;
6286 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6287
6288 warning ("creating event pipe failed.");
6289 return previous;
6290 }
6291
6292 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6293 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6294
6295 /* Register the event loop handler. */
6296 add_file_handler (linux_event_pipe[0],
6297 handle_target_event, NULL);
6298
6299 /* Always trigger a linux_wait. */
6300 async_file_mark ();
6301 }
6302 else
6303 {
6304 delete_file_handler (linux_event_pipe[0]);
6305
6306 close (linux_event_pipe[0]);
6307 close (linux_event_pipe[1]);
6308 linux_event_pipe[0] = -1;
6309 linux_event_pipe[1] = -1;
6310 }
6311
6312 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6313 }
6314
6315 return previous;
6316 }
6317
6318 static int
6319 linux_start_non_stop (int nonstop)
6320 {
6321 /* Register or unregister from event-loop accordingly. */
6322 linux_async (nonstop);
6323
6324 if (target_is_async_p () != (nonstop != 0))
6325 return -1;
6326
6327 return 0;
6328 }
6329
6330 static int
6331 linux_supports_multi_process (void)
6332 {
6333 return 1;
6334 }
6335
6336 /* Check if fork events are supported. */
6337
6338 static int
6339 linux_supports_fork_events (void)
6340 {
6341 return linux_supports_tracefork ();
6342 }
6343
6344 /* Check if vfork events are supported. */
6345
6346 static int
6347 linux_supports_vfork_events (void)
6348 {
6349 return linux_supports_tracefork ();
6350 }
6351
6352 /* Check if exec events are supported. */
6353
6354 static int
6355 linux_supports_exec_events (void)
6356 {
6357 return linux_supports_traceexec ();
6358 }
6359
6360 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6361 ptrace flags for all inferiors. This is in case the new GDB connection
6362 doesn't support the same set of events that the previous one did. */
6363
6364 static void
6365 linux_handle_new_gdb_connection (void)
6366 {
6367 /* Request that all the lwps reset their ptrace options. */
6368 for_each_thread ([] (thread_info *thread)
6369 {
6370 struct lwp_info *lwp = get_thread_lwp (thread);
6371
6372 if (!lwp->stopped)
6373 {
6374 /* Stop the lwp so we can modify its ptrace options. */
6375 lwp->must_set_ptrace_flags = 1;
6376 linux_stop_lwp (lwp);
6377 }
6378 else
6379 {
6380 /* Already stopped; go ahead and set the ptrace options. */
6381 struct process_info *proc = find_process_pid (pid_of (thread));
6382 int options = linux_low_ptrace_options (proc->attached);
6383
6384 linux_enable_event_reporting (lwpid_of (thread), options);
6385 lwp->must_set_ptrace_flags = 0;
6386 }
6387 });
6388 }
6389
6390 static int
6391 linux_supports_disable_randomization (void)
6392 {
6393 #ifdef HAVE_PERSONALITY
6394 return 1;
6395 #else
6396 return 0;
6397 #endif
6398 }
6399
6400 static int
6401 linux_supports_agent (void)
6402 {
6403 return 1;
6404 }
6405
6406 static int
6407 linux_supports_range_stepping (void)
6408 {
6409 if (can_software_single_step ())
6410 return 1;
6411 if (*the_low_target.supports_range_stepping == NULL)
6412 return 0;
6413
6414 return (*the_low_target.supports_range_stepping) ();
6415 }
6416
6417 /* Enumerate spufs IDs for process PID. */
6418 static int
6419 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6420 {
6421 int pos = 0;
6422 int written = 0;
6423 char path[128];
6424 DIR *dir;
6425 struct dirent *entry;
6426
6427 sprintf (path, "/proc/%ld/fd", pid);
6428 dir = opendir (path);
6429 if (!dir)
6430 return -1;
6431
6432 rewinddir (dir);
6433 while ((entry = readdir (dir)) != NULL)
6434 {
6435 struct stat st;
6436 struct statfs stfs;
6437 int fd;
6438
6439 fd = atoi (entry->d_name);
6440 if (!fd)
6441 continue;
6442
6443 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6444 if (stat (path, &st) != 0)
6445 continue;
6446 if (!S_ISDIR (st.st_mode))
6447 continue;
6448
6449 if (statfs (path, &stfs) != 0)
6450 continue;
6451 if (stfs.f_type != SPUFS_MAGIC)
6452 continue;
6453
6454 if (pos >= offset && pos + 4 <= offset + len)
6455 {
6456 *(unsigned int *)(buf + pos - offset) = fd;
6457 written += 4;
6458 }
6459 pos += 4;
6460 }
6461
6462 closedir (dir);
6463 return written;
6464 }
6465
6466 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6467 object type, using the /proc file system. */
6468 static int
6469 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6470 unsigned const char *writebuf,
6471 CORE_ADDR offset, int len)
6472 {
6473 long pid = lwpid_of (current_thread);
6474 char buf[128];
6475 int fd = 0;
6476 int ret = 0;
6477
6478 if (!writebuf && !readbuf)
6479 return -1;
6480
6481 if (!*annex)
6482 {
6483 if (!readbuf)
6484 return -1;
6485 else
6486 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6487 }
6488
6489 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6490 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6491 if (fd <= 0)
6492 return -1;
6493
6494 if (offset != 0
6495 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6496 {
6497 close (fd);
6498 return 0;
6499 }
6500
6501 if (writebuf)
6502 ret = write (fd, writebuf, (size_t) len);
6503 else
6504 ret = read (fd, readbuf, (size_t) len);
6505
6506 close (fd);
6507 return ret;
6508 }
6509
6510 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6511 struct target_loadseg
6512 {
6513 /* Core address to which the segment is mapped. */
6514 Elf32_Addr addr;
6515 /* VMA recorded in the program header. */
6516 Elf32_Addr p_vaddr;
6517 /* Size of this segment in memory. */
6518 Elf32_Word p_memsz;
6519 };
6520
6521 # if defined PT_GETDSBT
6522 struct target_loadmap
6523 {
6524 /* Protocol version number, must be zero. */
6525 Elf32_Word version;
6526 /* Pointer to the DSBT table, its size, and the DSBT index. */
6527 unsigned *dsbt_table;
6528 unsigned dsbt_size, dsbt_index;
6529 /* Number of segments in this map. */
6530 Elf32_Word nsegs;
6531 /* The actual memory map. */
6532 struct target_loadseg segs[/*nsegs*/];
6533 };
6534 # define LINUX_LOADMAP PT_GETDSBT
6535 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6536 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6537 # else
6538 struct target_loadmap
6539 {
6540 /* Protocol version number, must be zero. */
6541 Elf32_Half version;
6542 /* Number of segments in this map. */
6543 Elf32_Half nsegs;
6544 /* The actual memory map. */
6545 struct target_loadseg segs[/*nsegs*/];
6546 };
6547 # define LINUX_LOADMAP PTRACE_GETFDPIC
6548 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6549 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6550 # endif
6551
6552 static int
6553 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6554 unsigned char *myaddr, unsigned int len)
6555 {
6556 int pid = lwpid_of (current_thread);
6557 int addr = -1;
6558 struct target_loadmap *data = NULL;
6559 unsigned int actual_length, copy_length;
6560
6561 if (strcmp (annex, "exec") == 0)
6562 addr = (int) LINUX_LOADMAP_EXEC;
6563 else if (strcmp (annex, "interp") == 0)
6564 addr = (int) LINUX_LOADMAP_INTERP;
6565 else
6566 return -1;
6567
6568 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6569 return -1;
6570
6571 if (data == NULL)
6572 return -1;
6573
6574 actual_length = sizeof (struct target_loadmap)
6575 + sizeof (struct target_loadseg) * data->nsegs;
6576
6577 if (offset < 0 || offset > actual_length)
6578 return -1;
6579
6580 copy_length = actual_length - offset < len ? actual_length - offset : len;
6581 memcpy (myaddr, (char *) data + offset, copy_length);
6582 return copy_length;
6583 }
6584 #else
6585 # define linux_read_loadmap NULL
6586 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6587
6588 static void
6589 linux_process_qsupported (char **features, int count)
6590 {
6591 if (the_low_target.process_qsupported != NULL)
6592 the_low_target.process_qsupported (features, count);
6593 }
6594
6595 static int
6596 linux_supports_catch_syscall (void)
6597 {
6598 return (the_low_target.get_syscall_trapinfo != NULL
6599 && linux_supports_tracesysgood ());
6600 }
6601
6602 static int
6603 linux_get_ipa_tdesc_idx (void)
6604 {
6605 if (the_low_target.get_ipa_tdesc_idx == NULL)
6606 return 0;
6607
6608 return (*the_low_target.get_ipa_tdesc_idx) ();
6609 }
6610
6611 static int
6612 linux_supports_tracepoints (void)
6613 {
6614 if (*the_low_target.supports_tracepoints == NULL)
6615 return 0;
6616
6617 return (*the_low_target.supports_tracepoints) ();
6618 }
6619
6620 static CORE_ADDR
6621 linux_read_pc (struct regcache *regcache)
6622 {
6623 if (the_low_target.get_pc == NULL)
6624 return 0;
6625
6626 return (*the_low_target.get_pc) (regcache);
6627 }
6628
6629 static void
6630 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6631 {
6632 gdb_assert (the_low_target.set_pc != NULL);
6633
6634 (*the_low_target.set_pc) (regcache, pc);
6635 }
6636
6637 static int
6638 linux_thread_stopped (struct thread_info *thread)
6639 {
6640 return get_thread_lwp (thread)->stopped;
6641 }
6642
6643 /* This exposes stop-all-threads functionality to other modules. */
6644
6645 static void
6646 linux_pause_all (int freeze)
6647 {
6648 stop_all_lwps (freeze, NULL);
6649 }
6650
6651 /* This exposes unstop-all-threads functionality to other gdbserver
6652 modules. */
6653
6654 static void
6655 linux_unpause_all (int unfreeze)
6656 {
6657 unstop_all_lwps (unfreeze, NULL);
6658 }
6659
6660 static int
6661 linux_prepare_to_access_memory (void)
6662 {
6663 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6664 running LWP. */
6665 if (non_stop)
6666 linux_pause_all (1);
6667 return 0;
6668 }
6669
6670 static void
6671 linux_done_accessing_memory (void)
6672 {
6673 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6674 running LWP. */
6675 if (non_stop)
6676 linux_unpause_all (1);
6677 }
6678
6679 static int
6680 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6681 CORE_ADDR collector,
6682 CORE_ADDR lockaddr,
6683 ULONGEST orig_size,
6684 CORE_ADDR *jump_entry,
6685 CORE_ADDR *trampoline,
6686 ULONGEST *trampoline_size,
6687 unsigned char *jjump_pad_insn,
6688 ULONGEST *jjump_pad_insn_size,
6689 CORE_ADDR *adjusted_insn_addr,
6690 CORE_ADDR *adjusted_insn_addr_end,
6691 char *err)
6692 {
6693 return (*the_low_target.install_fast_tracepoint_jump_pad)
6694 (tpoint, tpaddr, collector, lockaddr, orig_size,
6695 jump_entry, trampoline, trampoline_size,
6696 jjump_pad_insn, jjump_pad_insn_size,
6697 adjusted_insn_addr, adjusted_insn_addr_end,
6698 err);
6699 }
6700
6701 static struct emit_ops *
6702 linux_emit_ops (void)
6703 {
6704 if (the_low_target.emit_ops != NULL)
6705 return (*the_low_target.emit_ops) ();
6706 else
6707 return NULL;
6708 }
6709
6710 static int
6711 linux_get_min_fast_tracepoint_insn_len (void)
6712 {
6713 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6714 }
6715
6716 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6717
6718 static int
6719 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6720 CORE_ADDR *phdr_memaddr, int *num_phdr)
6721 {
6722 char filename[PATH_MAX];
6723 int fd;
6724 const int auxv_size = is_elf64
6725 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6726 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6727
6728 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6729
6730 fd = open (filename, O_RDONLY);
6731 if (fd < 0)
6732 return 1;
6733
6734 *phdr_memaddr = 0;
6735 *num_phdr = 0;
6736 while (read (fd, buf, auxv_size) == auxv_size
6737 && (*phdr_memaddr == 0 || *num_phdr == 0))
6738 {
6739 if (is_elf64)
6740 {
6741 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6742
6743 switch (aux->a_type)
6744 {
6745 case AT_PHDR:
6746 *phdr_memaddr = aux->a_un.a_val;
6747 break;
6748 case AT_PHNUM:
6749 *num_phdr = aux->a_un.a_val;
6750 break;
6751 }
6752 }
6753 else
6754 {
6755 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6756
6757 switch (aux->a_type)
6758 {
6759 case AT_PHDR:
6760 *phdr_memaddr = aux->a_un.a_val;
6761 break;
6762 case AT_PHNUM:
6763 *num_phdr = aux->a_un.a_val;
6764 break;
6765 }
6766 }
6767 }
6768
6769 close (fd);
6770
6771 if (*phdr_memaddr == 0 || *num_phdr == 0)
6772 {
6773 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6774 "phdr_memaddr = %ld, phdr_num = %d",
6775 (long) *phdr_memaddr, *num_phdr);
6776 return 2;
6777 }
6778
6779 return 0;
6780 }
6781
6782 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6783
6784 static CORE_ADDR
6785 get_dynamic (const int pid, const int is_elf64)
6786 {
6787 CORE_ADDR phdr_memaddr, relocation;
6788 int num_phdr, i;
6789 unsigned char *phdr_buf;
6790 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6791
6792 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6793 return 0;
6794
6795 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6796 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6797
6798 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6799 return 0;
6800
6801 /* Compute relocation: it is expected to be 0 for "regular" executables,
6802 non-zero for PIE ones. */
6803 relocation = -1;
6804 for (i = 0; relocation == -1 && i < num_phdr; i++)
6805 if (is_elf64)
6806 {
6807 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6808
6809 if (p->p_type == PT_PHDR)
6810 relocation = phdr_memaddr - p->p_vaddr;
6811 }
6812 else
6813 {
6814 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6815
6816 if (p->p_type == PT_PHDR)
6817 relocation = phdr_memaddr - p->p_vaddr;
6818 }
6819
6820 if (relocation == -1)
6821 {
6822 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6823 any real world executables, including PIE executables, have always
6824 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6825 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6826 or present DT_DEBUG anyway (fpc binaries are statically linked).
6827
6828 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6829
6830 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6831
6832 return 0;
6833 }
6834
6835 for (i = 0; i < num_phdr; i++)
6836 {
6837 if (is_elf64)
6838 {
6839 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6840
6841 if (p->p_type == PT_DYNAMIC)
6842 return p->p_vaddr + relocation;
6843 }
6844 else
6845 {
6846 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6847
6848 if (p->p_type == PT_DYNAMIC)
6849 return p->p_vaddr + relocation;
6850 }
6851 }
6852
6853 return 0;
6854 }
6855
6856 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6857 can be 0 if the inferior does not yet have the library list initialized.
6858 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6859 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6860
6861 static CORE_ADDR
6862 get_r_debug (const int pid, const int is_elf64)
6863 {
6864 CORE_ADDR dynamic_memaddr;
6865 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6866 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6867 CORE_ADDR map = -1;
6868
6869 dynamic_memaddr = get_dynamic (pid, is_elf64);
6870 if (dynamic_memaddr == 0)
6871 return map;
6872
6873 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6874 {
6875 if (is_elf64)
6876 {
6877 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6878 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6879 union
6880 {
6881 Elf64_Xword map;
6882 unsigned char buf[sizeof (Elf64_Xword)];
6883 }
6884 rld_map;
6885 #endif
6886 #ifdef DT_MIPS_RLD_MAP
6887 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6888 {
6889 if (linux_read_memory (dyn->d_un.d_val,
6890 rld_map.buf, sizeof (rld_map.buf)) == 0)
6891 return rld_map.map;
6892 else
6893 break;
6894 }
6895 #endif /* DT_MIPS_RLD_MAP */
6896 #ifdef DT_MIPS_RLD_MAP_REL
6897 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6898 {
6899 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6900 rld_map.buf, sizeof (rld_map.buf)) == 0)
6901 return rld_map.map;
6902 else
6903 break;
6904 }
6905 #endif /* DT_MIPS_RLD_MAP_REL */
6906
6907 if (dyn->d_tag == DT_DEBUG && map == -1)
6908 map = dyn->d_un.d_val;
6909
6910 if (dyn->d_tag == DT_NULL)
6911 break;
6912 }
6913 else
6914 {
6915 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6916 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6917 union
6918 {
6919 Elf32_Word map;
6920 unsigned char buf[sizeof (Elf32_Word)];
6921 }
6922 rld_map;
6923 #endif
6924 #ifdef DT_MIPS_RLD_MAP
6925 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6926 {
6927 if (linux_read_memory (dyn->d_un.d_val,
6928 rld_map.buf, sizeof (rld_map.buf)) == 0)
6929 return rld_map.map;
6930 else
6931 break;
6932 }
6933 #endif /* DT_MIPS_RLD_MAP */
6934 #ifdef DT_MIPS_RLD_MAP_REL
6935 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6936 {
6937 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6938 rld_map.buf, sizeof (rld_map.buf)) == 0)
6939 return rld_map.map;
6940 else
6941 break;
6942 }
6943 #endif /* DT_MIPS_RLD_MAP_REL */
6944
6945 if (dyn->d_tag == DT_DEBUG && map == -1)
6946 map = dyn->d_un.d_val;
6947
6948 if (dyn->d_tag == DT_NULL)
6949 break;
6950 }
6951
6952 dynamic_memaddr += dyn_size;
6953 }
6954
6955 return map;
6956 }
6957
6958 /* Read one pointer from MEMADDR in the inferior. */
6959
6960 static int
6961 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6962 {
6963 int ret;
6964
6965 /* Go through a union so this works on either big or little endian
6966 hosts, when the inferior's pointer size is smaller than the size
6967 of CORE_ADDR. It is assumed the inferior's endianness is the
6968 same of the superior's. */
6969 union
6970 {
6971 CORE_ADDR core_addr;
6972 unsigned int ui;
6973 unsigned char uc;
6974 } addr;
6975
6976 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6977 if (ret == 0)
6978 {
6979 if (ptr_size == sizeof (CORE_ADDR))
6980 *ptr = addr.core_addr;
6981 else if (ptr_size == sizeof (unsigned int))
6982 *ptr = addr.ui;
6983 else
6984 gdb_assert_not_reached ("unhandled pointer size");
6985 }
6986 return ret;
6987 }
6988
6989 struct link_map_offsets
6990 {
6991 /* Offset and size of r_debug.r_version. */
6992 int r_version_offset;
6993
6994 /* Offset and size of r_debug.r_map. */
6995 int r_map_offset;
6996
6997 /* Offset to l_addr field in struct link_map. */
6998 int l_addr_offset;
6999
7000 /* Offset to l_name field in struct link_map. */
7001 int l_name_offset;
7002
7003 /* Offset to l_ld field in struct link_map. */
7004 int l_ld_offset;
7005
7006 /* Offset to l_next field in struct link_map. */
7007 int l_next_offset;
7008
7009 /* Offset to l_prev field in struct link_map. */
7010 int l_prev_offset;
7011 };
7012
7013 /* Construct qXfer:libraries-svr4:read reply. */
7014
7015 static int
7016 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7017 unsigned const char *writebuf,
7018 CORE_ADDR offset, int len)
7019 {
7020 char *document;
7021 unsigned document_len;
7022 struct process_info_private *const priv = current_process ()->priv;
7023 char filename[PATH_MAX];
7024 int pid, is_elf64;
7025
7026 static const struct link_map_offsets lmo_32bit_offsets =
7027 {
7028 0, /* r_version offset. */
7029 4, /* r_debug.r_map offset. */
7030 0, /* l_addr offset in link_map. */
7031 4, /* l_name offset in link_map. */
7032 8, /* l_ld offset in link_map. */
7033 12, /* l_next offset in link_map. */
7034 16 /* l_prev offset in link_map. */
7035 };
7036
7037 static const struct link_map_offsets lmo_64bit_offsets =
7038 {
7039 0, /* r_version offset. */
7040 8, /* r_debug.r_map offset. */
7041 0, /* l_addr offset in link_map. */
7042 8, /* l_name offset in link_map. */
7043 16, /* l_ld offset in link_map. */
7044 24, /* l_next offset in link_map. */
7045 32 /* l_prev offset in link_map. */
7046 };
7047 const struct link_map_offsets *lmo;
7048 unsigned int machine;
7049 int ptr_size;
7050 CORE_ADDR lm_addr = 0, lm_prev = 0;
7051 int allocated = 1024;
7052 char *p;
7053 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7054 int header_done = 0;
7055
7056 if (writebuf != NULL)
7057 return -2;
7058 if (readbuf == NULL)
7059 return -1;
7060
7061 pid = lwpid_of (current_thread);
7062 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7063 is_elf64 = elf_64_file_p (filename, &machine);
7064 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7065 ptr_size = is_elf64 ? 8 : 4;
7066
7067 while (annex[0] != '\0')
7068 {
7069 const char *sep;
7070 CORE_ADDR *addrp;
7071 int len;
7072
7073 sep = strchr (annex, '=');
7074 if (sep == NULL)
7075 break;
7076
7077 len = sep - annex;
7078 if (len == 5 && startswith (annex, "start"))
7079 addrp = &lm_addr;
7080 else if (len == 4 && startswith (annex, "prev"))
7081 addrp = &lm_prev;
7082 else
7083 {
7084 annex = strchr (sep, ';');
7085 if (annex == NULL)
7086 break;
7087 annex++;
7088 continue;
7089 }
7090
7091 annex = decode_address_to_semicolon (addrp, sep + 1);
7092 }
7093
7094 if (lm_addr == 0)
7095 {
7096 int r_version = 0;
7097
7098 if (priv->r_debug == 0)
7099 priv->r_debug = get_r_debug (pid, is_elf64);
7100
7101 /* We failed to find DT_DEBUG. Such situation will not change
7102 for this inferior - do not retry it. Report it to GDB as
7103 E01, see for the reasons at the GDB solib-svr4.c side. */
7104 if (priv->r_debug == (CORE_ADDR) -1)
7105 return -1;
7106
7107 if (priv->r_debug != 0)
7108 {
7109 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7110 (unsigned char *) &r_version,
7111 sizeof (r_version)) != 0
7112 || r_version != 1)
7113 {
7114 warning ("unexpected r_debug version %d", r_version);
7115 }
7116 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7117 &lm_addr, ptr_size) != 0)
7118 {
7119 warning ("unable to read r_map from 0x%lx",
7120 (long) priv->r_debug + lmo->r_map_offset);
7121 }
7122 }
7123 }
7124
7125 document = (char *) xmalloc (allocated);
7126 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7127 p = document + strlen (document);
7128
7129 while (lm_addr
7130 && read_one_ptr (lm_addr + lmo->l_name_offset,
7131 &l_name, ptr_size) == 0
7132 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7133 &l_addr, ptr_size) == 0
7134 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7135 &l_ld, ptr_size) == 0
7136 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7137 &l_prev, ptr_size) == 0
7138 && read_one_ptr (lm_addr + lmo->l_next_offset,
7139 &l_next, ptr_size) == 0)
7140 {
7141 unsigned char libname[PATH_MAX];
7142
7143 if (lm_prev != l_prev)
7144 {
7145 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7146 (long) lm_prev, (long) l_prev);
7147 break;
7148 }
7149
7150 /* Ignore the first entry even if it has valid name as the first entry
7151 corresponds to the main executable. The first entry should not be
7152 skipped if the dynamic loader was loaded late by a static executable
7153 (see solib-svr4.c parameter ignore_first). But in such case the main
7154 executable does not have PT_DYNAMIC present and this function already
7155 exited above due to failed get_r_debug. */
7156 if (lm_prev == 0)
7157 {
7158 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7159 p = p + strlen (p);
7160 }
7161 else
7162 {
7163 /* Not checking for error because reading may stop before
7164 we've got PATH_MAX worth of characters. */
7165 libname[0] = '\0';
7166 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7167 libname[sizeof (libname) - 1] = '\0';
7168 if (libname[0] != '\0')
7169 {
7170 /* 6x the size for xml_escape_text below. */
7171 size_t len = 6 * strlen ((char *) libname);
7172
7173 if (!header_done)
7174 {
7175 /* Terminate `<library-list-svr4'. */
7176 *p++ = '>';
7177 header_done = 1;
7178 }
7179
7180 while (allocated < p - document + len + 200)
7181 {
7182 /* Expand to guarantee sufficient storage. */
7183 uintptr_t document_len = p - document;
7184
7185 document = (char *) xrealloc (document, 2 * allocated);
7186 allocated *= 2;
7187 p = document + document_len;
7188 }
7189
7190 std::string name = xml_escape_text ((char *) libname);
7191 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7192 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7193 name.c_str (), (unsigned long) lm_addr,
7194 (unsigned long) l_addr, (unsigned long) l_ld);
7195 }
7196 }
7197
7198 lm_prev = lm_addr;
7199 lm_addr = l_next;
7200 }
7201
7202 if (!header_done)
7203 {
7204 /* Empty list; terminate `<library-list-svr4'. */
7205 strcpy (p, "/>");
7206 }
7207 else
7208 strcpy (p, "</library-list-svr4>");
7209
7210 document_len = strlen (document);
7211 if (offset < document_len)
7212 document_len -= offset;
7213 else
7214 document_len = 0;
7215 if (len > document_len)
7216 len = document_len;
7217
7218 memcpy (readbuf, document + offset, len);
7219 xfree (document);
7220
7221 return len;
7222 }
7223
7224 #ifdef HAVE_LINUX_BTRACE
7225
7226 /* See to_disable_btrace target method. */
7227
7228 static int
7229 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7230 {
7231 enum btrace_error err;
7232
7233 err = linux_disable_btrace (tinfo);
7234 return (err == BTRACE_ERR_NONE ? 0 : -1);
7235 }
7236
7237 /* Encode an Intel Processor Trace configuration. */
7238
7239 static void
7240 linux_low_encode_pt_config (struct buffer *buffer,
7241 const struct btrace_data_pt_config *config)
7242 {
7243 buffer_grow_str (buffer, "<pt-config>\n");
7244
7245 switch (config->cpu.vendor)
7246 {
7247 case CV_INTEL:
7248 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7249 "model=\"%u\" stepping=\"%u\"/>\n",
7250 config->cpu.family, config->cpu.model,
7251 config->cpu.stepping);
7252 break;
7253
7254 default:
7255 break;
7256 }
7257
7258 buffer_grow_str (buffer, "</pt-config>\n");
7259 }
7260
7261 /* Encode a raw buffer. */
7262
7263 static void
7264 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7265 unsigned int size)
7266 {
7267 if (size == 0)
7268 return;
7269
7270 /* We use hex encoding - see common/rsp-low.h. */
7271 buffer_grow_str (buffer, "<raw>\n");
7272
7273 while (size-- > 0)
7274 {
7275 char elem[2];
7276
7277 elem[0] = tohex ((*data >> 4) & 0xf);
7278 elem[1] = tohex (*data++ & 0xf);
7279
7280 buffer_grow (buffer, elem, 2);
7281 }
7282
7283 buffer_grow_str (buffer, "</raw>\n");
7284 }
7285
7286 /* See to_read_btrace target method. */
7287
7288 static int
7289 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7290 enum btrace_read_type type)
7291 {
7292 struct btrace_data btrace;
7293 struct btrace_block *block;
7294 enum btrace_error err;
7295 int i;
7296
7297 btrace_data_init (&btrace);
7298
7299 err = linux_read_btrace (&btrace, tinfo, type);
7300 if (err != BTRACE_ERR_NONE)
7301 {
7302 if (err == BTRACE_ERR_OVERFLOW)
7303 buffer_grow_str0 (buffer, "E.Overflow.");
7304 else
7305 buffer_grow_str0 (buffer, "E.Generic Error.");
7306
7307 goto err;
7308 }
7309
7310 switch (btrace.format)
7311 {
7312 case BTRACE_FORMAT_NONE:
7313 buffer_grow_str0 (buffer, "E.No Trace.");
7314 goto err;
7315
7316 case BTRACE_FORMAT_BTS:
7317 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7318 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7319
7320 for (i = 0;
7321 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7322 i++)
7323 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7324 paddress (block->begin), paddress (block->end));
7325
7326 buffer_grow_str0 (buffer, "</btrace>\n");
7327 break;
7328
7329 case BTRACE_FORMAT_PT:
7330 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7331 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7332 buffer_grow_str (buffer, "<pt>\n");
7333
7334 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7335
7336 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7337 btrace.variant.pt.size);
7338
7339 buffer_grow_str (buffer, "</pt>\n");
7340 buffer_grow_str0 (buffer, "</btrace>\n");
7341 break;
7342
7343 default:
7344 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7345 goto err;
7346 }
7347
7348 btrace_data_fini (&btrace);
7349 return 0;
7350
7351 err:
7352 btrace_data_fini (&btrace);
7353 return -1;
7354 }
7355
7356 /* See to_btrace_conf target method. */
7357
7358 static int
7359 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7360 struct buffer *buffer)
7361 {
7362 const struct btrace_config *conf;
7363
7364 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7365 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7366
7367 conf = linux_btrace_conf (tinfo);
7368 if (conf != NULL)
7369 {
7370 switch (conf->format)
7371 {
7372 case BTRACE_FORMAT_NONE:
7373 break;
7374
7375 case BTRACE_FORMAT_BTS:
7376 buffer_xml_printf (buffer, "<bts");
7377 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7378 buffer_xml_printf (buffer, " />\n");
7379 break;
7380
7381 case BTRACE_FORMAT_PT:
7382 buffer_xml_printf (buffer, "<pt");
7383 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7384 buffer_xml_printf (buffer, "/>\n");
7385 break;
7386 }
7387 }
7388
7389 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7390 return 0;
7391 }
7392 #endif /* HAVE_LINUX_BTRACE */
7393
7394 /* See nat/linux-nat.h. */
7395
7396 ptid_t
7397 current_lwp_ptid (void)
7398 {
7399 return ptid_of (current_thread);
7400 }
7401
7402 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7403
7404 static int
7405 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7406 {
7407 if (the_low_target.breakpoint_kind_from_pc != NULL)
7408 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7409 else
7410 return default_breakpoint_kind_from_pc (pcptr);
7411 }
7412
7413 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7414
7415 static const gdb_byte *
7416 linux_sw_breakpoint_from_kind (int kind, int *size)
7417 {
7418 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7419
7420 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7421 }
7422
7423 /* Implementation of the target_ops method
7424 "breakpoint_kind_from_current_state". */
7425
7426 static int
7427 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7428 {
7429 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7430 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7431 else
7432 return linux_breakpoint_kind_from_pc (pcptr);
7433 }
7434
7435 /* Default implementation of linux_target_ops method "set_pc" for
7436 32-bit pc register which is literally named "pc". */
7437
7438 void
7439 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7440 {
7441 uint32_t newpc = pc;
7442
7443 supply_register_by_name (regcache, "pc", &newpc);
7444 }
7445
7446 /* Default implementation of linux_target_ops method "get_pc" for
7447 32-bit pc register which is literally named "pc". */
7448
7449 CORE_ADDR
7450 linux_get_pc_32bit (struct regcache *regcache)
7451 {
7452 uint32_t pc;
7453
7454 collect_register_by_name (regcache, "pc", &pc);
7455 if (debug_threads)
7456 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7457 return pc;
7458 }
7459
7460 /* Default implementation of linux_target_ops method "set_pc" for
7461 64-bit pc register which is literally named "pc". */
7462
7463 void
7464 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7465 {
7466 uint64_t newpc = pc;
7467
7468 supply_register_by_name (regcache, "pc", &newpc);
7469 }
7470
7471 /* Default implementation of linux_target_ops method "get_pc" for
7472 64-bit pc register which is literally named "pc". */
7473
7474 CORE_ADDR
7475 linux_get_pc_64bit (struct regcache *regcache)
7476 {
7477 uint64_t pc;
7478
7479 collect_register_by_name (regcache, "pc", &pc);
7480 if (debug_threads)
7481 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7482 return pc;
7483 }
7484
7485
7486 static struct target_ops linux_target_ops = {
7487 linux_create_inferior,
7488 linux_post_create_inferior,
7489 linux_attach,
7490 linux_kill,
7491 linux_detach,
7492 linux_mourn,
7493 linux_join,
7494 linux_thread_alive,
7495 linux_resume,
7496 linux_wait,
7497 linux_fetch_registers,
7498 linux_store_registers,
7499 linux_prepare_to_access_memory,
7500 linux_done_accessing_memory,
7501 linux_read_memory,
7502 linux_write_memory,
7503 linux_look_up_symbols,
7504 linux_request_interrupt,
7505 linux_read_auxv,
7506 linux_supports_z_point_type,
7507 linux_insert_point,
7508 linux_remove_point,
7509 linux_stopped_by_sw_breakpoint,
7510 linux_supports_stopped_by_sw_breakpoint,
7511 linux_stopped_by_hw_breakpoint,
7512 linux_supports_stopped_by_hw_breakpoint,
7513 linux_supports_hardware_single_step,
7514 linux_stopped_by_watchpoint,
7515 linux_stopped_data_address,
7516 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7517 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7518 && defined(PT_TEXT_END_ADDR)
7519 linux_read_offsets,
7520 #else
7521 NULL,
7522 #endif
7523 #ifdef USE_THREAD_DB
7524 thread_db_get_tls_address,
7525 #else
7526 NULL,
7527 #endif
7528 linux_qxfer_spu,
7529 hostio_last_error_from_errno,
7530 linux_qxfer_osdata,
7531 linux_xfer_siginfo,
7532 linux_supports_non_stop,
7533 linux_async,
7534 linux_start_non_stop,
7535 linux_supports_multi_process,
7536 linux_supports_fork_events,
7537 linux_supports_vfork_events,
7538 linux_supports_exec_events,
7539 linux_handle_new_gdb_connection,
7540 #ifdef USE_THREAD_DB
7541 thread_db_handle_monitor_command,
7542 #else
7543 NULL,
7544 #endif
7545 linux_common_core_of_thread,
7546 linux_read_loadmap,
7547 linux_process_qsupported,
7548 linux_supports_tracepoints,
7549 linux_read_pc,
7550 linux_write_pc,
7551 linux_thread_stopped,
7552 NULL,
7553 linux_pause_all,
7554 linux_unpause_all,
7555 linux_stabilize_threads,
7556 linux_install_fast_tracepoint_jump_pad,
7557 linux_emit_ops,
7558 linux_supports_disable_randomization,
7559 linux_get_min_fast_tracepoint_insn_len,
7560 linux_qxfer_libraries_svr4,
7561 linux_supports_agent,
7562 #ifdef HAVE_LINUX_BTRACE
7563 linux_supports_btrace,
7564 linux_enable_btrace,
7565 linux_low_disable_btrace,
7566 linux_low_read_btrace,
7567 linux_low_btrace_conf,
7568 #else
7569 NULL,
7570 NULL,
7571 NULL,
7572 NULL,
7573 NULL,
7574 #endif
7575 linux_supports_range_stepping,
7576 linux_proc_pid_to_exec_file,
7577 linux_mntns_open_cloexec,
7578 linux_mntns_unlink,
7579 linux_mntns_readlink,
7580 linux_breakpoint_kind_from_pc,
7581 linux_sw_breakpoint_from_kind,
7582 linux_proc_tid_get_name,
7583 linux_breakpoint_kind_from_current_state,
7584 linux_supports_software_single_step,
7585 linux_supports_catch_syscall,
7586 linux_get_ipa_tdesc_idx,
7587 #if USE_THREAD_DB
7588 thread_db_thread_handle,
7589 #else
7590 NULL,
7591 #endif
7592 };
7593
7594 #ifdef HAVE_LINUX_REGSETS
7595 void
7596 initialize_regsets_info (struct regsets_info *info)
7597 {
7598 for (info->num_regsets = 0;
7599 info->regsets[info->num_regsets].size >= 0;
7600 info->num_regsets++)
7601 ;
7602 }
7603 #endif
7604
7605 void
7606 initialize_low (void)
7607 {
7608 struct sigaction sigchld_action;
7609
7610 memset (&sigchld_action, 0, sizeof (sigchld_action));
7611 set_target_ops (&linux_target_ops);
7612
7613 linux_ptrace_init_warnings ();
7614
7615 sigchld_action.sa_handler = sigchld_handler;
7616 sigemptyset (&sigchld_action.sa_mask);
7617 sigchld_action.sa_flags = SA_RESTART;
7618 sigaction (SIGCHLD, &sigchld_action, NULL);
7619
7620 initialize_low_arch ();
7621
7622 linux_check_ptrace_features ();
7623 }