]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Set signal to 0 after enqueue_pending_signal
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #ifndef ELFMAG0
51 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
52 then ELFMAG0 will have been defined. If it didn't get included by
53 gdb_proc_service.h then including it will likely introduce a duplicate
54 definition of elf_fpregset_t. */
55 #include <elf.h>
56 #endif
57 #include "nat/linux-namespaces.h"
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 /* Some targets did not define these ptrace constants from the start,
75 so gdbserver defines them locally here. In the future, these may
76 be removed after they are added to asm/ptrace.h. */
77 #if !(defined(PT_TEXT_ADDR) \
78 || defined(PT_DATA_ADDR) \
79 || defined(PT_TEXT_END_ADDR))
80 #if defined(__mcoldfire__)
81 /* These are still undefined in 3.10 kernels. */
82 #define PT_TEXT_ADDR 49*4
83 #define PT_DATA_ADDR 50*4
84 #define PT_TEXT_END_ADDR 51*4
85 /* BFIN already defines these since at least 2.6.32 kernels. */
86 #elif defined(BFIN)
87 #define PT_TEXT_ADDR 220
88 #define PT_TEXT_END_ADDR 224
89 #define PT_DATA_ADDR 228
90 /* These are still undefined in 3.10 kernels. */
91 #elif defined(__TMS320C6X__)
92 #define PT_TEXT_ADDR (0x10000*4)
93 #define PT_DATA_ADDR (0x10004*4)
94 #define PT_TEXT_END_ADDR (0x10008*4)
95 #endif
96 #endif
97
98 #ifdef HAVE_LINUX_BTRACE
99 # include "nat/linux-btrace.h"
100 # include "btrace-common.h"
101 #endif
102
103 #ifndef HAVE_ELF32_AUXV_T
104 /* Copied from glibc's elf.h. */
105 typedef struct
106 {
107 uint32_t a_type; /* Entry type */
108 union
109 {
110 uint32_t a_val; /* Integer value */
111 /* We use to have pointer elements added here. We cannot do that,
112 though, since it does not work when using 32-bit definitions
113 on 64-bit platforms and vice versa. */
114 } a_un;
115 } Elf32_auxv_t;
116 #endif
117
118 #ifndef HAVE_ELF64_AUXV_T
119 /* Copied from glibc's elf.h. */
120 typedef struct
121 {
122 uint64_t a_type; /* Entry type */
123 union
124 {
125 uint64_t a_val; /* Integer value */
126 /* We use to have pointer elements added here. We cannot do that,
127 though, since it does not work when using 32-bit definitions
128 on 64-bit platforms and vice versa. */
129 } a_un;
130 } Elf64_auxv_t;
131 #endif
132
133 /* Does the current host support PTRACE_GETREGSET? */
134 int have_ptrace_getregset = -1;
135
136 /* LWP accessors. */
137
138 /* See nat/linux-nat.h. */
139
140 ptid_t
141 ptid_of_lwp (struct lwp_info *lwp)
142 {
143 return ptid_of (get_lwp_thread (lwp));
144 }
145
146 /* See nat/linux-nat.h. */
147
148 void
149 lwp_set_arch_private_info (struct lwp_info *lwp,
150 struct arch_lwp_info *info)
151 {
152 lwp->arch_private = info;
153 }
154
155 /* See nat/linux-nat.h. */
156
157 struct arch_lwp_info *
158 lwp_arch_private_info (struct lwp_info *lwp)
159 {
160 return lwp->arch_private;
161 }
162
163 /* See nat/linux-nat.h. */
164
165 int
166 lwp_is_stopped (struct lwp_info *lwp)
167 {
168 return lwp->stopped;
169 }
170
171 /* See nat/linux-nat.h. */
172
173 enum target_stop_reason
174 lwp_stop_reason (struct lwp_info *lwp)
175 {
176 return lwp->stop_reason;
177 }
178
179 /* A list of all unknown processes which receive stop signals. Some
180 other process will presumably claim each of these as forked
181 children momentarily. */
182
183 struct simple_pid_list
184 {
185 /* The process ID. */
186 int pid;
187
188 /* The status as reported by waitpid. */
189 int status;
190
191 /* Next in chain. */
192 struct simple_pid_list *next;
193 };
194 struct simple_pid_list *stopped_pids;
195
196 /* Trivial list manipulation functions to keep track of a list of new
197 stopped processes. */
198
199 static void
200 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
201 {
202 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
203
204 new_pid->pid = pid;
205 new_pid->status = status;
206 new_pid->next = *listp;
207 *listp = new_pid;
208 }
209
210 static int
211 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
212 {
213 struct simple_pid_list **p;
214
215 for (p = listp; *p != NULL; p = &(*p)->next)
216 if ((*p)->pid == pid)
217 {
218 struct simple_pid_list *next = (*p)->next;
219
220 *statusp = (*p)->status;
221 xfree (*p);
222 *p = next;
223 return 1;
224 }
225 return 0;
226 }
227
228 enum stopping_threads_kind
229 {
230 /* Not stopping threads presently. */
231 NOT_STOPPING_THREADS,
232
233 /* Stopping threads. */
234 STOPPING_THREADS,
235
236 /* Stopping and suspending threads. */
237 STOPPING_AND_SUSPENDING_THREADS
238 };
239
240 /* This is set while stop_all_lwps is in effect. */
241 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
242
243 /* FIXME make into a target method? */
244 int using_threads = 1;
245
246 /* True if we're presently stabilizing threads (moving them out of
247 jump pads). */
248 static int stabilizing_threads;
249
250 static void linux_resume_one_lwp (struct lwp_info *lwp,
251 int step, int signal, siginfo_t *info);
252 static void linux_resume (struct thread_resume *resume_info, size_t n);
253 static void stop_all_lwps (int suspend, struct lwp_info *except);
254 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
255 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
256 int *wstat, int options);
257 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
258 static struct lwp_info *add_lwp (ptid_t ptid);
259 static void linux_mourn (struct process_info *process);
260 static int linux_stopped_by_watchpoint (void);
261 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
262 static int lwp_is_marked_dead (struct lwp_info *lwp);
263 static void proceed_all_lwps (void);
264 static int finish_step_over (struct lwp_info *lwp);
265 static int kill_lwp (unsigned long lwpid, int signo);
266 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
267 static void complete_ongoing_step_over (void);
268 static int linux_low_ptrace_options (int attached);
269
270 /* When the event-loop is doing a step-over, this points at the thread
271 being stepped. */
272 ptid_t step_over_bkpt;
273
274 /* True if the low target can hardware single-step. */
275
276 static int
277 can_hardware_single_step (void)
278 {
279 if (the_low_target.supports_hardware_single_step != NULL)
280 return the_low_target.supports_hardware_single_step ();
281 else
282 return 0;
283 }
284
285 /* True if the low target can software single-step. Such targets
286 implement the GET_NEXT_PCS callback. */
287
288 static int
289 can_software_single_step (void)
290 {
291 return (the_low_target.get_next_pcs != NULL);
292 }
293
294 /* True if the low target supports memory breakpoints. If so, we'll
295 have a GET_PC implementation. */
296
297 static int
298 supports_breakpoints (void)
299 {
300 return (the_low_target.get_pc != NULL);
301 }
302
303 /* Returns true if this target can support fast tracepoints. This
304 does not mean that the in-process agent has been loaded in the
305 inferior. */
306
307 static int
308 supports_fast_tracepoints (void)
309 {
310 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338 static void wait_for_sigstop (void);
339
340 /* Return non-zero if HEADER is a 64-bit ELF file. */
341
342 static int
343 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
344 {
345 if (header->e_ident[EI_MAG0] == ELFMAG0
346 && header->e_ident[EI_MAG1] == ELFMAG1
347 && header->e_ident[EI_MAG2] == ELFMAG2
348 && header->e_ident[EI_MAG3] == ELFMAG3)
349 {
350 *machine = header->e_machine;
351 return header->e_ident[EI_CLASS] == ELFCLASS64;
352
353 }
354 *machine = EM_NONE;
355 return -1;
356 }
357
358 /* Return non-zero if FILE is a 64-bit ELF file,
359 zero if the file is not a 64-bit ELF file,
360 and -1 if the file is not accessible or doesn't exist. */
361
362 static int
363 elf_64_file_p (const char *file, unsigned int *machine)
364 {
365 Elf64_Ehdr header;
366 int fd;
367
368 fd = open (file, O_RDONLY);
369 if (fd < 0)
370 return -1;
371
372 if (read (fd, &header, sizeof (header)) != sizeof (header))
373 {
374 close (fd);
375 return 0;
376 }
377 close (fd);
378
379 return elf_64_header_p (&header, machine);
380 }
381
382 /* Accepts an integer PID; Returns true if the executable PID is
383 running is a 64-bit ELF file.. */
384
385 int
386 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
387 {
388 char file[PATH_MAX];
389
390 sprintf (file, "/proc/%d/exe", pid);
391 return elf_64_file_p (file, machine);
392 }
393
394 static void
395 delete_lwp (struct lwp_info *lwp)
396 {
397 struct thread_info *thr = get_lwp_thread (lwp);
398
399 if (debug_threads)
400 debug_printf ("deleting %ld\n", lwpid_of (thr));
401
402 remove_thread (thr);
403 free (lwp->arch_private);
404 free (lwp);
405 }
406
407 /* Add a process to the common process list, and set its private
408 data. */
409
410 static struct process_info *
411 linux_add_process (int pid, int attached)
412 {
413 struct process_info *proc;
414
415 proc = add_process (pid, attached);
416 proc->priv = XCNEW (struct process_info_private);
417
418 if (the_low_target.new_process != NULL)
419 proc->priv->arch_private = the_low_target.new_process ();
420
421 return proc;
422 }
423
424 static CORE_ADDR get_pc (struct lwp_info *lwp);
425
426 /* Call the target arch_setup function on the current thread. */
427
428 static void
429 linux_arch_setup (void)
430 {
431 the_low_target.arch_setup ();
432 }
433
434 /* Call the target arch_setup function on THREAD. */
435
436 static void
437 linux_arch_setup_thread (struct thread_info *thread)
438 {
439 struct thread_info *saved_thread;
440
441 saved_thread = current_thread;
442 current_thread = thread;
443
444 linux_arch_setup ();
445
446 current_thread = saved_thread;
447 }
448
449 /* Handle a GNU/Linux extended wait response. If we see a clone,
450 fork, or vfork event, we need to add the new LWP to our list
451 (and return 0 so as not to report the trap to higher layers).
452 If we see an exec event, we will modify ORIG_EVENT_LWP to point
453 to a new LWP representing the new program. */
454
455 static int
456 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
457 {
458 struct lwp_info *event_lwp = *orig_event_lwp;
459 int event = linux_ptrace_get_extended_event (wstat);
460 struct thread_info *event_thr = get_lwp_thread (event_lwp);
461 struct lwp_info *new_lwp;
462
463 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
464
465 /* All extended events we currently use are mid-syscall. Only
466 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
467 you have to be using PTRACE_SEIZE to get that. */
468 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
469
470 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
471 || (event == PTRACE_EVENT_CLONE))
472 {
473 ptid_t ptid;
474 unsigned long new_pid;
475 int ret, status;
476
477 /* Get the pid of the new lwp. */
478 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
479 &new_pid);
480
481 /* If we haven't already seen the new PID stop, wait for it now. */
482 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
483 {
484 /* The new child has a pending SIGSTOP. We can't affect it until it
485 hits the SIGSTOP, but we're already attached. */
486
487 ret = my_waitpid (new_pid, &status, __WALL);
488
489 if (ret == -1)
490 perror_with_name ("waiting for new child");
491 else if (ret != new_pid)
492 warning ("wait returned unexpected PID %d", ret);
493 else if (!WIFSTOPPED (status))
494 warning ("wait returned unexpected status 0x%x", status);
495 }
496
497 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
498 {
499 struct process_info *parent_proc;
500 struct process_info *child_proc;
501 struct lwp_info *child_lwp;
502 struct thread_info *child_thr;
503 struct target_desc *tdesc;
504
505 ptid = ptid_build (new_pid, new_pid, 0);
506
507 if (debug_threads)
508 {
509 debug_printf ("HEW: Got fork event from LWP %ld, "
510 "new child is %d\n",
511 ptid_get_lwp (ptid_of (event_thr)),
512 ptid_get_pid (ptid));
513 }
514
515 /* Add the new process to the tables and clone the breakpoint
516 lists of the parent. We need to do this even if the new process
517 will be detached, since we will need the process object and the
518 breakpoints to remove any breakpoints from memory when we
519 detach, and the client side will access registers. */
520 child_proc = linux_add_process (new_pid, 0);
521 gdb_assert (child_proc != NULL);
522 child_lwp = add_lwp (ptid);
523 gdb_assert (child_lwp != NULL);
524 child_lwp->stopped = 1;
525 child_lwp->must_set_ptrace_flags = 1;
526 child_lwp->status_pending_p = 0;
527 child_thr = get_lwp_thread (child_lwp);
528 child_thr->last_resume_kind = resume_stop;
529 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
530
531 /* If we're suspending all threads, leave this one suspended
532 too. If the fork/clone parent is stepping over a breakpoint,
533 all other threads have been suspended already. Leave the
534 child suspended too. */
535 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
536 || event_lwp->bp_reinsert != 0)
537 {
538 if (debug_threads)
539 debug_printf ("HEW: leaving child suspended\n");
540 child_lwp->suspended = 1;
541 }
542
543 parent_proc = get_thread_process (event_thr);
544 child_proc->attached = parent_proc->attached;
545 clone_all_breakpoints (&child_proc->breakpoints,
546 &child_proc->raw_breakpoints,
547 parent_proc->breakpoints);
548
549 tdesc = XNEW (struct target_desc);
550 copy_target_description (tdesc, parent_proc->tdesc);
551 child_proc->tdesc = tdesc;
552
553 /* Clone arch-specific process data. */
554 if (the_low_target.new_fork != NULL)
555 the_low_target.new_fork (parent_proc, child_proc);
556
557 /* Save fork info in the parent thread. */
558 if (event == PTRACE_EVENT_FORK)
559 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
560 else if (event == PTRACE_EVENT_VFORK)
561 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
562
563 event_lwp->waitstatus.value.related_pid = ptid;
564
565 /* The status_pending field contains bits denoting the
566 extended event, so when the pending event is handled,
567 the handler will look at lwp->waitstatus. */
568 event_lwp->status_pending_p = 1;
569 event_lwp->status_pending = wstat;
570
571 /* Report the event. */
572 return 0;
573 }
574
575 if (debug_threads)
576 debug_printf ("HEW: Got clone event "
577 "from LWP %ld, new child is LWP %ld\n",
578 lwpid_of (event_thr), new_pid);
579
580 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
581 new_lwp = add_lwp (ptid);
582
583 /* Either we're going to immediately resume the new thread
584 or leave it stopped. linux_resume_one_lwp is a nop if it
585 thinks the thread is currently running, so set this first
586 before calling linux_resume_one_lwp. */
587 new_lwp->stopped = 1;
588
589 /* If we're suspending all threads, leave this one suspended
590 too. If the fork/clone parent is stepping over a breakpoint,
591 all other threads have been suspended already. Leave the
592 child suspended too. */
593 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
594 || event_lwp->bp_reinsert != 0)
595 new_lwp->suspended = 1;
596
597 /* Normally we will get the pending SIGSTOP. But in some cases
598 we might get another signal delivered to the group first.
599 If we do get another signal, be sure not to lose it. */
600 if (WSTOPSIG (status) != SIGSTOP)
601 {
602 new_lwp->stop_expected = 1;
603 new_lwp->status_pending_p = 1;
604 new_lwp->status_pending = status;
605 }
606 else if (report_thread_events)
607 {
608 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
609 new_lwp->status_pending_p = 1;
610 new_lwp->status_pending = status;
611 }
612
613 /* Don't report the event. */
614 return 1;
615 }
616 else if (event == PTRACE_EVENT_VFORK_DONE)
617 {
618 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
619
620 /* Report the event. */
621 return 0;
622 }
623 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
624 {
625 struct process_info *proc;
626 VEC (int) *syscalls_to_catch;
627 ptid_t event_ptid;
628 pid_t event_pid;
629
630 if (debug_threads)
631 {
632 debug_printf ("HEW: Got exec event from LWP %ld\n",
633 lwpid_of (event_thr));
634 }
635
636 /* Get the event ptid. */
637 event_ptid = ptid_of (event_thr);
638 event_pid = ptid_get_pid (event_ptid);
639
640 /* Save the syscall list from the execing process. */
641 proc = get_thread_process (event_thr);
642 syscalls_to_catch = proc->syscalls_to_catch;
643 proc->syscalls_to_catch = NULL;
644
645 /* Delete the execing process and all its threads. */
646 linux_mourn (proc);
647 current_thread = NULL;
648
649 /* Create a new process/lwp/thread. */
650 proc = linux_add_process (event_pid, 0);
651 event_lwp = add_lwp (event_ptid);
652 event_thr = get_lwp_thread (event_lwp);
653 gdb_assert (current_thread == event_thr);
654 linux_arch_setup_thread (event_thr);
655
656 /* Set the event status. */
657 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
658 event_lwp->waitstatus.value.execd_pathname
659 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
660
661 /* Mark the exec status as pending. */
662 event_lwp->stopped = 1;
663 event_lwp->status_pending_p = 1;
664 event_lwp->status_pending = wstat;
665 event_thr->last_resume_kind = resume_continue;
666 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
667
668 /* Update syscall state in the new lwp, effectively mid-syscall too. */
669 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
670
671 /* Restore the list to catch. Don't rely on the client, which is free
672 to avoid sending a new list when the architecture doesn't change.
673 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
674 proc->syscalls_to_catch = syscalls_to_catch;
675
676 /* Report the event. */
677 *orig_event_lwp = event_lwp;
678 return 0;
679 }
680
681 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
682 }
683
684 /* Return the PC as read from the regcache of LWP, without any
685 adjustment. */
686
687 static CORE_ADDR
688 get_pc (struct lwp_info *lwp)
689 {
690 struct thread_info *saved_thread;
691 struct regcache *regcache;
692 CORE_ADDR pc;
693
694 if (the_low_target.get_pc == NULL)
695 return 0;
696
697 saved_thread = current_thread;
698 current_thread = get_lwp_thread (lwp);
699
700 regcache = get_thread_regcache (current_thread, 1);
701 pc = (*the_low_target.get_pc) (regcache);
702
703 if (debug_threads)
704 debug_printf ("pc is 0x%lx\n", (long) pc);
705
706 current_thread = saved_thread;
707 return pc;
708 }
709
710 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
711 Fill *SYSNO with the syscall nr trapped. Fill *SYSRET with the
712 return code. */
713
714 static void
715 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno, int *sysret)
716 {
717 struct thread_info *saved_thread;
718 struct regcache *regcache;
719
720 if (the_low_target.get_syscall_trapinfo == NULL)
721 {
722 /* If we cannot get the syscall trapinfo, report an unknown
723 system call number and -ENOSYS return value. */
724 *sysno = UNKNOWN_SYSCALL;
725 *sysret = -ENOSYS;
726 return;
727 }
728
729 saved_thread = current_thread;
730 current_thread = get_lwp_thread (lwp);
731
732 regcache = get_thread_regcache (current_thread, 1);
733 (*the_low_target.get_syscall_trapinfo) (regcache, sysno, sysret);
734
735 if (debug_threads)
736 {
737 debug_printf ("get_syscall_trapinfo sysno %d sysret %d\n",
738 *sysno, *sysret);
739 }
740
741 current_thread = saved_thread;
742 }
743
744 static int check_stopped_by_watchpoint (struct lwp_info *child);
745
746 /* Called when the LWP stopped for a signal/trap. If it stopped for a
747 trap check what caused it (breakpoint, watchpoint, trace, etc.),
748 and save the result in the LWP's stop_reason field. If it stopped
749 for a breakpoint, decrement the PC if necessary on the lwp's
750 architecture. Returns true if we now have the LWP's stop PC. */
751
752 static int
753 save_stop_reason (struct lwp_info *lwp)
754 {
755 CORE_ADDR pc;
756 CORE_ADDR sw_breakpoint_pc;
757 struct thread_info *saved_thread;
758 #if USE_SIGTRAP_SIGINFO
759 siginfo_t siginfo;
760 #endif
761
762 if (the_low_target.get_pc == NULL)
763 return 0;
764
765 pc = get_pc (lwp);
766 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
767
768 /* breakpoint_at reads from the current thread. */
769 saved_thread = current_thread;
770 current_thread = get_lwp_thread (lwp);
771
772 #if USE_SIGTRAP_SIGINFO
773 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
774 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
775 {
776 if (siginfo.si_signo == SIGTRAP)
777 {
778 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
779 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
780 {
781 /* The si_code is ambiguous on this arch -- check debug
782 registers. */
783 if (!check_stopped_by_watchpoint (lwp))
784 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
785 }
786 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
787 {
788 /* If we determine the LWP stopped for a SW breakpoint,
789 trust it. Particularly don't check watchpoint
790 registers, because at least on s390, we'd find
791 stopped-by-watchpoint as long as there's a watchpoint
792 set. */
793 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
794 }
795 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
796 {
797 /* This can indicate either a hardware breakpoint or
798 hardware watchpoint. Check debug registers. */
799 if (!check_stopped_by_watchpoint (lwp))
800 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
801 }
802 else if (siginfo.si_code == TRAP_TRACE)
803 {
804 /* We may have single stepped an instruction that
805 triggered a watchpoint. In that case, on some
806 architectures (such as x86), instead of TRAP_HWBKPT,
807 si_code indicates TRAP_TRACE, and we need to check
808 the debug registers separately. */
809 if (!check_stopped_by_watchpoint (lwp))
810 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
811 }
812 }
813 }
814 #else
815 /* We may have just stepped a breakpoint instruction. E.g., in
816 non-stop mode, GDB first tells the thread A to step a range, and
817 then the user inserts a breakpoint inside the range. In that
818 case we need to report the breakpoint PC. */
819 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
820 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
821 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
822
823 if (hardware_breakpoint_inserted_here (pc))
824 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
825
826 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
827 check_stopped_by_watchpoint (lwp);
828 #endif
829
830 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
831 {
832 if (debug_threads)
833 {
834 struct thread_info *thr = get_lwp_thread (lwp);
835
836 debug_printf ("CSBB: %s stopped by software breakpoint\n",
837 target_pid_to_str (ptid_of (thr)));
838 }
839
840 /* Back up the PC if necessary. */
841 if (pc != sw_breakpoint_pc)
842 {
843 struct regcache *regcache
844 = get_thread_regcache (current_thread, 1);
845 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
846 }
847
848 /* Update this so we record the correct stop PC below. */
849 pc = sw_breakpoint_pc;
850 }
851 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
852 {
853 if (debug_threads)
854 {
855 struct thread_info *thr = get_lwp_thread (lwp);
856
857 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
858 target_pid_to_str (ptid_of (thr)));
859 }
860 }
861 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
862 {
863 if (debug_threads)
864 {
865 struct thread_info *thr = get_lwp_thread (lwp);
866
867 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
868 target_pid_to_str (ptid_of (thr)));
869 }
870 }
871 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
872 {
873 if (debug_threads)
874 {
875 struct thread_info *thr = get_lwp_thread (lwp);
876
877 debug_printf ("CSBB: %s stopped by trace\n",
878 target_pid_to_str (ptid_of (thr)));
879 }
880 }
881
882 lwp->stop_pc = pc;
883 current_thread = saved_thread;
884 return 1;
885 }
886
887 static struct lwp_info *
888 add_lwp (ptid_t ptid)
889 {
890 struct lwp_info *lwp;
891
892 lwp = XCNEW (struct lwp_info);
893
894 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
895
896 if (the_low_target.new_thread != NULL)
897 the_low_target.new_thread (lwp);
898
899 lwp->thread = add_thread (ptid, lwp);
900
901 return lwp;
902 }
903
904 /* Start an inferior process and returns its pid.
905 ALLARGS is a vector of program-name and args. */
906
907 static int
908 linux_create_inferior (char *program, char **allargs)
909 {
910 struct lwp_info *new_lwp;
911 int pid;
912 ptid_t ptid;
913 struct cleanup *restore_personality
914 = maybe_disable_address_space_randomization (disable_randomization);
915
916 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
917 pid = vfork ();
918 #else
919 pid = fork ();
920 #endif
921 if (pid < 0)
922 perror_with_name ("fork");
923
924 if (pid == 0)
925 {
926 close_most_fds ();
927 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
928
929 setpgid (0, 0);
930
931 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
932 stdout to stderr so that inferior i/o doesn't corrupt the connection.
933 Also, redirect stdin to /dev/null. */
934 if (remote_connection_is_stdio ())
935 {
936 close (0);
937 open ("/dev/null", O_RDONLY);
938 dup2 (2, 1);
939 if (write (2, "stdin/stdout redirected\n",
940 sizeof ("stdin/stdout redirected\n") - 1) < 0)
941 {
942 /* Errors ignored. */;
943 }
944 }
945
946 execv (program, allargs);
947 if (errno == ENOENT)
948 execvp (program, allargs);
949
950 fprintf (stderr, "Cannot exec %s: %s.\n", program,
951 strerror (errno));
952 fflush (stderr);
953 _exit (0177);
954 }
955
956 do_cleanups (restore_personality);
957
958 linux_add_process (pid, 0);
959
960 ptid = ptid_build (pid, pid, 0);
961 new_lwp = add_lwp (ptid);
962 new_lwp->must_set_ptrace_flags = 1;
963
964 return pid;
965 }
966
967 /* Implement the post_create_inferior target_ops method. */
968
969 static void
970 linux_post_create_inferior (void)
971 {
972 struct lwp_info *lwp = get_thread_lwp (current_thread);
973
974 linux_arch_setup ();
975
976 if (lwp->must_set_ptrace_flags)
977 {
978 struct process_info *proc = current_process ();
979 int options = linux_low_ptrace_options (proc->attached);
980
981 linux_enable_event_reporting (lwpid_of (current_thread), options);
982 lwp->must_set_ptrace_flags = 0;
983 }
984 }
985
986 /* Attach to an inferior process. Returns 0 on success, ERRNO on
987 error. */
988
989 int
990 linux_attach_lwp (ptid_t ptid)
991 {
992 struct lwp_info *new_lwp;
993 int lwpid = ptid_get_lwp (ptid);
994
995 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
996 != 0)
997 return errno;
998
999 new_lwp = add_lwp (ptid);
1000
1001 /* We need to wait for SIGSTOP before being able to make the next
1002 ptrace call on this LWP. */
1003 new_lwp->must_set_ptrace_flags = 1;
1004
1005 if (linux_proc_pid_is_stopped (lwpid))
1006 {
1007 if (debug_threads)
1008 debug_printf ("Attached to a stopped process\n");
1009
1010 /* The process is definitely stopped. It is in a job control
1011 stop, unless the kernel predates the TASK_STOPPED /
1012 TASK_TRACED distinction, in which case it might be in a
1013 ptrace stop. Make sure it is in a ptrace stop; from there we
1014 can kill it, signal it, et cetera.
1015
1016 First make sure there is a pending SIGSTOP. Since we are
1017 already attached, the process can not transition from stopped
1018 to running without a PTRACE_CONT; so we know this signal will
1019 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1020 probably already in the queue (unless this kernel is old
1021 enough to use TASK_STOPPED for ptrace stops); but since
1022 SIGSTOP is not an RT signal, it can only be queued once. */
1023 kill_lwp (lwpid, SIGSTOP);
1024
1025 /* Finally, resume the stopped process. This will deliver the
1026 SIGSTOP (or a higher priority signal, just like normal
1027 PTRACE_ATTACH), which we'll catch later on. */
1028 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1029 }
1030
1031 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1032 brings it to a halt.
1033
1034 There are several cases to consider here:
1035
1036 1) gdbserver has already attached to the process and is being notified
1037 of a new thread that is being created.
1038 In this case we should ignore that SIGSTOP and resume the
1039 process. This is handled below by setting stop_expected = 1,
1040 and the fact that add_thread sets last_resume_kind ==
1041 resume_continue.
1042
1043 2) This is the first thread (the process thread), and we're attaching
1044 to it via attach_inferior.
1045 In this case we want the process thread to stop.
1046 This is handled by having linux_attach set last_resume_kind ==
1047 resume_stop after we return.
1048
1049 If the pid we are attaching to is also the tgid, we attach to and
1050 stop all the existing threads. Otherwise, we attach to pid and
1051 ignore any other threads in the same group as this pid.
1052
1053 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1054 existing threads.
1055 In this case we want the thread to stop.
1056 FIXME: This case is currently not properly handled.
1057 We should wait for the SIGSTOP but don't. Things work apparently
1058 because enough time passes between when we ptrace (ATTACH) and when
1059 gdb makes the next ptrace call on the thread.
1060
1061 On the other hand, if we are currently trying to stop all threads, we
1062 should treat the new thread as if we had sent it a SIGSTOP. This works
1063 because we are guaranteed that the add_lwp call above added us to the
1064 end of the list, and so the new thread has not yet reached
1065 wait_for_sigstop (but will). */
1066 new_lwp->stop_expected = 1;
1067
1068 return 0;
1069 }
1070
1071 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1072 already attached. Returns true if a new LWP is found, false
1073 otherwise. */
1074
1075 static int
1076 attach_proc_task_lwp_callback (ptid_t ptid)
1077 {
1078 /* Is this a new thread? */
1079 if (find_thread_ptid (ptid) == NULL)
1080 {
1081 int lwpid = ptid_get_lwp (ptid);
1082 int err;
1083
1084 if (debug_threads)
1085 debug_printf ("Found new lwp %d\n", lwpid);
1086
1087 err = linux_attach_lwp (ptid);
1088
1089 /* Be quiet if we simply raced with the thread exiting. EPERM
1090 is returned if the thread's task still exists, and is marked
1091 as exited or zombie, as well as other conditions, so in that
1092 case, confirm the status in /proc/PID/status. */
1093 if (err == ESRCH
1094 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1095 {
1096 if (debug_threads)
1097 {
1098 debug_printf ("Cannot attach to lwp %d: "
1099 "thread is gone (%d: %s)\n",
1100 lwpid, err, strerror (err));
1101 }
1102 }
1103 else if (err != 0)
1104 {
1105 warning (_("Cannot attach to lwp %d: %s"),
1106 lwpid,
1107 linux_ptrace_attach_fail_reason_string (ptid, err));
1108 }
1109
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 static void async_file_mark (void);
1116
1117 /* Attach to PID. If PID is the tgid, attach to it and all
1118 of its threads. */
1119
1120 static int
1121 linux_attach (unsigned long pid)
1122 {
1123 struct process_info *proc;
1124 struct thread_info *initial_thread;
1125 ptid_t ptid = ptid_build (pid, pid, 0);
1126 int err;
1127
1128 /* Attach to PID. We will check for other threads
1129 soon. */
1130 err = linux_attach_lwp (ptid);
1131 if (err != 0)
1132 error ("Cannot attach to process %ld: %s",
1133 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1134
1135 proc = linux_add_process (pid, 1);
1136
1137 /* Don't ignore the initial SIGSTOP if we just attached to this
1138 process. It will be collected by wait shortly. */
1139 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1140 initial_thread->last_resume_kind = resume_stop;
1141
1142 /* We must attach to every LWP. If /proc is mounted, use that to
1143 find them now. On the one hand, the inferior may be using raw
1144 clone instead of using pthreads. On the other hand, even if it
1145 is using pthreads, GDB may not be connected yet (thread_db needs
1146 to do symbol lookups, through qSymbol). Also, thread_db walks
1147 structures in the inferior's address space to find the list of
1148 threads/LWPs, and those structures may well be corrupted. Note
1149 that once thread_db is loaded, we'll still use it to list threads
1150 and associate pthread info with each LWP. */
1151 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1152
1153 /* GDB will shortly read the xml target description for this
1154 process, to figure out the process' architecture. But the target
1155 description is only filled in when the first process/thread in
1156 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1157 that now, otherwise, if GDB is fast enough, it could read the
1158 target description _before_ that initial stop. */
1159 if (non_stop)
1160 {
1161 struct lwp_info *lwp;
1162 int wstat, lwpid;
1163 ptid_t pid_ptid = pid_to_ptid (pid);
1164
1165 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1166 &wstat, __WALL);
1167 gdb_assert (lwpid > 0);
1168
1169 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1170
1171 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1172 {
1173 lwp->status_pending_p = 1;
1174 lwp->status_pending = wstat;
1175 }
1176
1177 initial_thread->last_resume_kind = resume_continue;
1178
1179 async_file_mark ();
1180
1181 gdb_assert (proc->tdesc != NULL);
1182 }
1183
1184 return 0;
1185 }
1186
1187 struct counter
1188 {
1189 int pid;
1190 int count;
1191 };
1192
1193 static int
1194 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1195 {
1196 struct counter *counter = (struct counter *) args;
1197
1198 if (ptid_get_pid (entry->id) == counter->pid)
1199 {
1200 if (++counter->count > 1)
1201 return 1;
1202 }
1203
1204 return 0;
1205 }
1206
1207 static int
1208 last_thread_of_process_p (int pid)
1209 {
1210 struct counter counter = { pid , 0 };
1211
1212 return (find_inferior (&all_threads,
1213 second_thread_of_pid_p, &counter) == NULL);
1214 }
1215
1216 /* Kill LWP. */
1217
1218 static void
1219 linux_kill_one_lwp (struct lwp_info *lwp)
1220 {
1221 struct thread_info *thr = get_lwp_thread (lwp);
1222 int pid = lwpid_of (thr);
1223
1224 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1225 there is no signal context, and ptrace(PTRACE_KILL) (or
1226 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1227 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1228 alternative is to kill with SIGKILL. We only need one SIGKILL
1229 per process, not one for each thread. But since we still support
1230 support debugging programs using raw clone without CLONE_THREAD,
1231 we send one for each thread. For years, we used PTRACE_KILL
1232 only, so we're being a bit paranoid about some old kernels where
1233 PTRACE_KILL might work better (dubious if there are any such, but
1234 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1235 second, and so we're fine everywhere. */
1236
1237 errno = 0;
1238 kill_lwp (pid, SIGKILL);
1239 if (debug_threads)
1240 {
1241 int save_errno = errno;
1242
1243 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1244 target_pid_to_str (ptid_of (thr)),
1245 save_errno ? strerror (save_errno) : "OK");
1246 }
1247
1248 errno = 0;
1249 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1250 if (debug_threads)
1251 {
1252 int save_errno = errno;
1253
1254 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1255 target_pid_to_str (ptid_of (thr)),
1256 save_errno ? strerror (save_errno) : "OK");
1257 }
1258 }
1259
1260 /* Kill LWP and wait for it to die. */
1261
1262 static void
1263 kill_wait_lwp (struct lwp_info *lwp)
1264 {
1265 struct thread_info *thr = get_lwp_thread (lwp);
1266 int pid = ptid_get_pid (ptid_of (thr));
1267 int lwpid = ptid_get_lwp (ptid_of (thr));
1268 int wstat;
1269 int res;
1270
1271 if (debug_threads)
1272 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1273
1274 do
1275 {
1276 linux_kill_one_lwp (lwp);
1277
1278 /* Make sure it died. Notes:
1279
1280 - The loop is most likely unnecessary.
1281
1282 - We don't use linux_wait_for_event as that could delete lwps
1283 while we're iterating over them. We're not interested in
1284 any pending status at this point, only in making sure all
1285 wait status on the kernel side are collected until the
1286 process is reaped.
1287
1288 - We don't use __WALL here as the __WALL emulation relies on
1289 SIGCHLD, and killing a stopped process doesn't generate
1290 one, nor an exit status.
1291 */
1292 res = my_waitpid (lwpid, &wstat, 0);
1293 if (res == -1 && errno == ECHILD)
1294 res = my_waitpid (lwpid, &wstat, __WCLONE);
1295 } while (res > 0 && WIFSTOPPED (wstat));
1296
1297 /* Even if it was stopped, the child may have already disappeared.
1298 E.g., if it was killed by SIGKILL. */
1299 if (res < 0 && errno != ECHILD)
1300 perror_with_name ("kill_wait_lwp");
1301 }
1302
1303 /* Callback for `find_inferior'. Kills an lwp of a given process,
1304 except the leader. */
1305
1306 static int
1307 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1308 {
1309 struct thread_info *thread = (struct thread_info *) entry;
1310 struct lwp_info *lwp = get_thread_lwp (thread);
1311 int pid = * (int *) args;
1312
1313 if (ptid_get_pid (entry->id) != pid)
1314 return 0;
1315
1316 /* We avoid killing the first thread here, because of a Linux kernel (at
1317 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1318 the children get a chance to be reaped, it will remain a zombie
1319 forever. */
1320
1321 if (lwpid_of (thread) == pid)
1322 {
1323 if (debug_threads)
1324 debug_printf ("lkop: is last of process %s\n",
1325 target_pid_to_str (entry->id));
1326 return 0;
1327 }
1328
1329 kill_wait_lwp (lwp);
1330 return 0;
1331 }
1332
1333 static int
1334 linux_kill (int pid)
1335 {
1336 struct process_info *process;
1337 struct lwp_info *lwp;
1338
1339 process = find_process_pid (pid);
1340 if (process == NULL)
1341 return -1;
1342
1343 /* If we're killing a running inferior, make sure it is stopped
1344 first, as PTRACE_KILL will not work otherwise. */
1345 stop_all_lwps (0, NULL);
1346
1347 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1348
1349 /* See the comment in linux_kill_one_lwp. We did not kill the first
1350 thread in the list, so do so now. */
1351 lwp = find_lwp_pid (pid_to_ptid (pid));
1352
1353 if (lwp == NULL)
1354 {
1355 if (debug_threads)
1356 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1357 pid);
1358 }
1359 else
1360 kill_wait_lwp (lwp);
1361
1362 the_target->mourn (process);
1363
1364 /* Since we presently can only stop all lwps of all processes, we
1365 need to unstop lwps of other processes. */
1366 unstop_all_lwps (0, NULL);
1367 return 0;
1368 }
1369
1370 /* Get pending signal of THREAD, for detaching purposes. This is the
1371 signal the thread last stopped for, which we need to deliver to the
1372 thread when detaching, otherwise, it'd be suppressed/lost. */
1373
1374 static int
1375 get_detach_signal (struct thread_info *thread)
1376 {
1377 enum gdb_signal signo = GDB_SIGNAL_0;
1378 int status;
1379 struct lwp_info *lp = get_thread_lwp (thread);
1380
1381 if (lp->status_pending_p)
1382 status = lp->status_pending;
1383 else
1384 {
1385 /* If the thread had been suspended by gdbserver, and it stopped
1386 cleanly, then it'll have stopped with SIGSTOP. But we don't
1387 want to deliver that SIGSTOP. */
1388 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1389 || thread->last_status.value.sig == GDB_SIGNAL_0)
1390 return 0;
1391
1392 /* Otherwise, we may need to deliver the signal we
1393 intercepted. */
1394 status = lp->last_status;
1395 }
1396
1397 if (!WIFSTOPPED (status))
1398 {
1399 if (debug_threads)
1400 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1401 target_pid_to_str (ptid_of (thread)));
1402 return 0;
1403 }
1404
1405 /* Extended wait statuses aren't real SIGTRAPs. */
1406 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1407 {
1408 if (debug_threads)
1409 debug_printf ("GPS: lwp %s had stopped with extended "
1410 "status: no pending signal\n",
1411 target_pid_to_str (ptid_of (thread)));
1412 return 0;
1413 }
1414
1415 signo = gdb_signal_from_host (WSTOPSIG (status));
1416
1417 if (program_signals_p && !program_signals[signo])
1418 {
1419 if (debug_threads)
1420 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1421 target_pid_to_str (ptid_of (thread)),
1422 gdb_signal_to_string (signo));
1423 return 0;
1424 }
1425 else if (!program_signals_p
1426 /* If we have no way to know which signals GDB does not
1427 want to have passed to the program, assume
1428 SIGTRAP/SIGINT, which is GDB's default. */
1429 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1430 {
1431 if (debug_threads)
1432 debug_printf ("GPS: lwp %s had signal %s, "
1433 "but we don't know if we should pass it. "
1434 "Default to not.\n",
1435 target_pid_to_str (ptid_of (thread)),
1436 gdb_signal_to_string (signo));
1437 return 0;
1438 }
1439 else
1440 {
1441 if (debug_threads)
1442 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1443 target_pid_to_str (ptid_of (thread)),
1444 gdb_signal_to_string (signo));
1445
1446 return WSTOPSIG (status);
1447 }
1448 }
1449
1450 static int
1451 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1452 {
1453 struct thread_info *thread = (struct thread_info *) entry;
1454 struct lwp_info *lwp = get_thread_lwp (thread);
1455 int pid = * (int *) args;
1456 int sig;
1457
1458 if (ptid_get_pid (entry->id) != pid)
1459 return 0;
1460
1461 /* If there is a pending SIGSTOP, get rid of it. */
1462 if (lwp->stop_expected)
1463 {
1464 if (debug_threads)
1465 debug_printf ("Sending SIGCONT to %s\n",
1466 target_pid_to_str (ptid_of (thread)));
1467
1468 kill_lwp (lwpid_of (thread), SIGCONT);
1469 lwp->stop_expected = 0;
1470 }
1471
1472 /* Flush any pending changes to the process's registers. */
1473 regcache_invalidate_thread (thread);
1474
1475 /* Pass on any pending signal for this thread. */
1476 sig = get_detach_signal (thread);
1477
1478 /* Finally, let it resume. */
1479 if (the_low_target.prepare_to_resume != NULL)
1480 the_low_target.prepare_to_resume (lwp);
1481 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1482 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1483 error (_("Can't detach %s: %s"),
1484 target_pid_to_str (ptid_of (thread)),
1485 strerror (errno));
1486
1487 delete_lwp (lwp);
1488 return 0;
1489 }
1490
1491 static int
1492 linux_detach (int pid)
1493 {
1494 struct process_info *process;
1495
1496 process = find_process_pid (pid);
1497 if (process == NULL)
1498 return -1;
1499
1500 /* As there's a step over already in progress, let it finish first,
1501 otherwise nesting a stabilize_threads operation on top gets real
1502 messy. */
1503 complete_ongoing_step_over ();
1504
1505 /* Stop all threads before detaching. First, ptrace requires that
1506 the thread is stopped to sucessfully detach. Second, thread_db
1507 may need to uninstall thread event breakpoints from memory, which
1508 only works with a stopped process anyway. */
1509 stop_all_lwps (0, NULL);
1510
1511 #ifdef USE_THREAD_DB
1512 thread_db_detach (process);
1513 #endif
1514
1515 /* Stabilize threads (move out of jump pads). */
1516 stabilize_threads ();
1517
1518 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1519
1520 the_target->mourn (process);
1521
1522 /* Since we presently can only stop all lwps of all processes, we
1523 need to unstop lwps of other processes. */
1524 unstop_all_lwps (0, NULL);
1525 return 0;
1526 }
1527
1528 /* Remove all LWPs that belong to process PROC from the lwp list. */
1529
1530 static int
1531 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1532 {
1533 struct thread_info *thread = (struct thread_info *) entry;
1534 struct lwp_info *lwp = get_thread_lwp (thread);
1535 struct process_info *process = (struct process_info *) proc;
1536
1537 if (pid_of (thread) == pid_of (process))
1538 delete_lwp (lwp);
1539
1540 return 0;
1541 }
1542
1543 static void
1544 linux_mourn (struct process_info *process)
1545 {
1546 struct process_info_private *priv;
1547
1548 #ifdef USE_THREAD_DB
1549 thread_db_mourn (process);
1550 #endif
1551
1552 find_inferior (&all_threads, delete_lwp_callback, process);
1553
1554 /* Freeing all private data. */
1555 priv = process->priv;
1556 free (priv->arch_private);
1557 free (priv);
1558 process->priv = NULL;
1559
1560 remove_process (process);
1561 }
1562
1563 static void
1564 linux_join (int pid)
1565 {
1566 int status, ret;
1567
1568 do {
1569 ret = my_waitpid (pid, &status, 0);
1570 if (WIFEXITED (status) || WIFSIGNALED (status))
1571 break;
1572 } while (ret != -1 || errno != ECHILD);
1573 }
1574
1575 /* Return nonzero if the given thread is still alive. */
1576 static int
1577 linux_thread_alive (ptid_t ptid)
1578 {
1579 struct lwp_info *lwp = find_lwp_pid (ptid);
1580
1581 /* We assume we always know if a thread exits. If a whole process
1582 exited but we still haven't been able to report it to GDB, we'll
1583 hold on to the last lwp of the dead process. */
1584 if (lwp != NULL)
1585 return !lwp_is_marked_dead (lwp);
1586 else
1587 return 0;
1588 }
1589
1590 /* Return 1 if this lwp still has an interesting status pending. If
1591 not (e.g., it had stopped for a breakpoint that is gone), return
1592 false. */
1593
1594 static int
1595 thread_still_has_status_pending_p (struct thread_info *thread)
1596 {
1597 struct lwp_info *lp = get_thread_lwp (thread);
1598
1599 if (!lp->status_pending_p)
1600 return 0;
1601
1602 if (thread->last_resume_kind != resume_stop
1603 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1604 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1605 {
1606 struct thread_info *saved_thread;
1607 CORE_ADDR pc;
1608 int discard = 0;
1609
1610 gdb_assert (lp->last_status != 0);
1611
1612 pc = get_pc (lp);
1613
1614 saved_thread = current_thread;
1615 current_thread = thread;
1616
1617 if (pc != lp->stop_pc)
1618 {
1619 if (debug_threads)
1620 debug_printf ("PC of %ld changed\n",
1621 lwpid_of (thread));
1622 discard = 1;
1623 }
1624
1625 #if !USE_SIGTRAP_SIGINFO
1626 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1627 && !(*the_low_target.breakpoint_at) (pc))
1628 {
1629 if (debug_threads)
1630 debug_printf ("previous SW breakpoint of %ld gone\n",
1631 lwpid_of (thread));
1632 discard = 1;
1633 }
1634 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1635 && !hardware_breakpoint_inserted_here (pc))
1636 {
1637 if (debug_threads)
1638 debug_printf ("previous HW breakpoint of %ld gone\n",
1639 lwpid_of (thread));
1640 discard = 1;
1641 }
1642 #endif
1643
1644 current_thread = saved_thread;
1645
1646 if (discard)
1647 {
1648 if (debug_threads)
1649 debug_printf ("discarding pending breakpoint status\n");
1650 lp->status_pending_p = 0;
1651 return 0;
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Returns true if LWP is resumed from the client's perspective. */
1659
1660 static int
1661 lwp_resumed (struct lwp_info *lwp)
1662 {
1663 struct thread_info *thread = get_lwp_thread (lwp);
1664
1665 if (thread->last_resume_kind != resume_stop)
1666 return 1;
1667
1668 /* Did gdb send us a `vCont;t', but we haven't reported the
1669 corresponding stop to gdb yet? If so, the thread is still
1670 resumed/running from gdb's perspective. */
1671 if (thread->last_resume_kind == resume_stop
1672 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1673 return 1;
1674
1675 return 0;
1676 }
1677
1678 /* Return 1 if this lwp has an interesting status pending. */
1679 static int
1680 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1681 {
1682 struct thread_info *thread = (struct thread_info *) entry;
1683 struct lwp_info *lp = get_thread_lwp (thread);
1684 ptid_t ptid = * (ptid_t *) arg;
1685
1686 /* Check if we're only interested in events from a specific process
1687 or a specific LWP. */
1688 if (!ptid_match (ptid_of (thread), ptid))
1689 return 0;
1690
1691 if (!lwp_resumed (lp))
1692 return 0;
1693
1694 if (lp->status_pending_p
1695 && !thread_still_has_status_pending_p (thread))
1696 {
1697 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1698 return 0;
1699 }
1700
1701 return lp->status_pending_p;
1702 }
1703
1704 static int
1705 same_lwp (struct inferior_list_entry *entry, void *data)
1706 {
1707 ptid_t ptid = *(ptid_t *) data;
1708 int lwp;
1709
1710 if (ptid_get_lwp (ptid) != 0)
1711 lwp = ptid_get_lwp (ptid);
1712 else
1713 lwp = ptid_get_pid (ptid);
1714
1715 if (ptid_get_lwp (entry->id) == lwp)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 struct lwp_info *
1722 find_lwp_pid (ptid_t ptid)
1723 {
1724 struct inferior_list_entry *thread
1725 = find_inferior (&all_threads, same_lwp, &ptid);
1726
1727 if (thread == NULL)
1728 return NULL;
1729
1730 return get_thread_lwp ((struct thread_info *) thread);
1731 }
1732
1733 /* Return the number of known LWPs in the tgid given by PID. */
1734
1735 static int
1736 num_lwps (int pid)
1737 {
1738 struct inferior_list_entry *inf, *tmp;
1739 int count = 0;
1740
1741 ALL_INFERIORS (&all_threads, inf, tmp)
1742 {
1743 if (ptid_get_pid (inf->id) == pid)
1744 count++;
1745 }
1746
1747 return count;
1748 }
1749
1750 /* The arguments passed to iterate_over_lwps. */
1751
1752 struct iterate_over_lwps_args
1753 {
1754 /* The FILTER argument passed to iterate_over_lwps. */
1755 ptid_t filter;
1756
1757 /* The CALLBACK argument passed to iterate_over_lwps. */
1758 iterate_over_lwps_ftype *callback;
1759
1760 /* The DATA argument passed to iterate_over_lwps. */
1761 void *data;
1762 };
1763
1764 /* Callback for find_inferior used by iterate_over_lwps to filter
1765 calls to the callback supplied to that function. Returning a
1766 nonzero value causes find_inferiors to stop iterating and return
1767 the current inferior_list_entry. Returning zero indicates that
1768 find_inferiors should continue iterating. */
1769
1770 static int
1771 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1772 {
1773 struct iterate_over_lwps_args *args
1774 = (struct iterate_over_lwps_args *) args_p;
1775
1776 if (ptid_match (entry->id, args->filter))
1777 {
1778 struct thread_info *thr = (struct thread_info *) entry;
1779 struct lwp_info *lwp = get_thread_lwp (thr);
1780
1781 return (*args->callback) (lwp, args->data);
1782 }
1783
1784 return 0;
1785 }
1786
1787 /* See nat/linux-nat.h. */
1788
1789 struct lwp_info *
1790 iterate_over_lwps (ptid_t filter,
1791 iterate_over_lwps_ftype callback,
1792 void *data)
1793 {
1794 struct iterate_over_lwps_args args = {filter, callback, data};
1795 struct inferior_list_entry *entry;
1796
1797 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1798 if (entry == NULL)
1799 return NULL;
1800
1801 return get_thread_lwp ((struct thread_info *) entry);
1802 }
1803
1804 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1805 their exits until all other threads in the group have exited. */
1806
1807 static void
1808 check_zombie_leaders (void)
1809 {
1810 struct process_info *proc, *tmp;
1811
1812 ALL_PROCESSES (proc, tmp)
1813 {
1814 pid_t leader_pid = pid_of (proc);
1815 struct lwp_info *leader_lp;
1816
1817 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1818
1819 if (debug_threads)
1820 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1821 "num_lwps=%d, zombie=%d\n",
1822 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1823 linux_proc_pid_is_zombie (leader_pid));
1824
1825 if (leader_lp != NULL && !leader_lp->stopped
1826 /* Check if there are other threads in the group, as we may
1827 have raced with the inferior simply exiting. */
1828 && !last_thread_of_process_p (leader_pid)
1829 && linux_proc_pid_is_zombie (leader_pid))
1830 {
1831 /* A leader zombie can mean one of two things:
1832
1833 - It exited, and there's an exit status pending
1834 available, or only the leader exited (not the whole
1835 program). In the latter case, we can't waitpid the
1836 leader's exit status until all other threads are gone.
1837
1838 - There are 3 or more threads in the group, and a thread
1839 other than the leader exec'd. On an exec, the Linux
1840 kernel destroys all other threads (except the execing
1841 one) in the thread group, and resets the execing thread's
1842 tid to the tgid. No exit notification is sent for the
1843 execing thread -- from the ptracer's perspective, it
1844 appears as though the execing thread just vanishes.
1845 Until we reap all other threads except the leader and the
1846 execing thread, the leader will be zombie, and the
1847 execing thread will be in `D (disc sleep)'. As soon as
1848 all other threads are reaped, the execing thread changes
1849 it's tid to the tgid, and the previous (zombie) leader
1850 vanishes, giving place to the "new" leader. We could try
1851 distinguishing the exit and exec cases, by waiting once
1852 more, and seeing if something comes out, but it doesn't
1853 sound useful. The previous leader _does_ go away, and
1854 we'll re-add the new one once we see the exec event
1855 (which is just the same as what would happen if the
1856 previous leader did exit voluntarily before some other
1857 thread execs). */
1858
1859 if (debug_threads)
1860 fprintf (stderr,
1861 "CZL: Thread group leader %d zombie "
1862 "(it exited, or another thread execd).\n",
1863 leader_pid);
1864
1865 delete_lwp (leader_lp);
1866 }
1867 }
1868 }
1869
1870 /* Callback for `find_inferior'. Returns the first LWP that is not
1871 stopped. ARG is a PTID filter. */
1872
1873 static int
1874 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1875 {
1876 struct thread_info *thr = (struct thread_info *) entry;
1877 struct lwp_info *lwp;
1878 ptid_t filter = *(ptid_t *) arg;
1879
1880 if (!ptid_match (ptid_of (thr), filter))
1881 return 0;
1882
1883 lwp = get_thread_lwp (thr);
1884 if (!lwp->stopped)
1885 return 1;
1886
1887 return 0;
1888 }
1889
1890 /* Increment LWP's suspend count. */
1891
1892 static void
1893 lwp_suspended_inc (struct lwp_info *lwp)
1894 {
1895 lwp->suspended++;
1896
1897 if (debug_threads && lwp->suspended > 4)
1898 {
1899 struct thread_info *thread = get_lwp_thread (lwp);
1900
1901 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1902 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1903 }
1904 }
1905
1906 /* Decrement LWP's suspend count. */
1907
1908 static void
1909 lwp_suspended_decr (struct lwp_info *lwp)
1910 {
1911 lwp->suspended--;
1912
1913 if (lwp->suspended < 0)
1914 {
1915 struct thread_info *thread = get_lwp_thread (lwp);
1916
1917 internal_error (__FILE__, __LINE__,
1918 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1919 lwp->suspended);
1920 }
1921 }
1922
1923 /* This function should only be called if the LWP got a SIGTRAP.
1924
1925 Handle any tracepoint steps or hits. Return true if a tracepoint
1926 event was handled, 0 otherwise. */
1927
1928 static int
1929 handle_tracepoints (struct lwp_info *lwp)
1930 {
1931 struct thread_info *tinfo = get_lwp_thread (lwp);
1932 int tpoint_related_event = 0;
1933
1934 gdb_assert (lwp->suspended == 0);
1935
1936 /* If this tracepoint hit causes a tracing stop, we'll immediately
1937 uninsert tracepoints. To do this, we temporarily pause all
1938 threads, unpatch away, and then unpause threads. We need to make
1939 sure the unpausing doesn't resume LWP too. */
1940 lwp_suspended_inc (lwp);
1941
1942 /* And we need to be sure that any all-threads-stopping doesn't try
1943 to move threads out of the jump pads, as it could deadlock the
1944 inferior (LWP could be in the jump pad, maybe even holding the
1945 lock.) */
1946
1947 /* Do any necessary step collect actions. */
1948 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1949
1950 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1951
1952 /* See if we just hit a tracepoint and do its main collect
1953 actions. */
1954 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1955
1956 lwp_suspended_decr (lwp);
1957
1958 gdb_assert (lwp->suspended == 0);
1959 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1960
1961 if (tpoint_related_event)
1962 {
1963 if (debug_threads)
1964 debug_printf ("got a tracepoint event\n");
1965 return 1;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* Convenience wrapper. Returns true if LWP is presently collecting a
1972 fast tracepoint. */
1973
1974 static int
1975 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1976 struct fast_tpoint_collect_status *status)
1977 {
1978 CORE_ADDR thread_area;
1979 struct thread_info *thread = get_lwp_thread (lwp);
1980
1981 if (the_low_target.get_thread_area == NULL)
1982 return 0;
1983
1984 /* Get the thread area address. This is used to recognize which
1985 thread is which when tracing with the in-process agent library.
1986 We don't read anything from the address, and treat it as opaque;
1987 it's the address itself that we assume is unique per-thread. */
1988 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1989 return 0;
1990
1991 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1992 }
1993
1994 /* The reason we resume in the caller, is because we want to be able
1995 to pass lwp->status_pending as WSTAT, and we need to clear
1996 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1997 refuses to resume. */
1998
1999 static int
2000 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2001 {
2002 struct thread_info *saved_thread;
2003
2004 saved_thread = current_thread;
2005 current_thread = get_lwp_thread (lwp);
2006
2007 if ((wstat == NULL
2008 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2009 && supports_fast_tracepoints ()
2010 && agent_loaded_p ())
2011 {
2012 struct fast_tpoint_collect_status status;
2013 int r;
2014
2015 if (debug_threads)
2016 debug_printf ("Checking whether LWP %ld needs to move out of the "
2017 "jump pad.\n",
2018 lwpid_of (current_thread));
2019
2020 r = linux_fast_tracepoint_collecting (lwp, &status);
2021
2022 if (wstat == NULL
2023 || (WSTOPSIG (*wstat) != SIGILL
2024 && WSTOPSIG (*wstat) != SIGFPE
2025 && WSTOPSIG (*wstat) != SIGSEGV
2026 && WSTOPSIG (*wstat) != SIGBUS))
2027 {
2028 lwp->collecting_fast_tracepoint = r;
2029
2030 if (r != 0)
2031 {
2032 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
2033 {
2034 /* Haven't executed the original instruction yet.
2035 Set breakpoint there, and wait till it's hit,
2036 then single-step until exiting the jump pad. */
2037 lwp->exit_jump_pad_bkpt
2038 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2039 }
2040
2041 if (debug_threads)
2042 debug_printf ("Checking whether LWP %ld needs to move out of "
2043 "the jump pad...it does\n",
2044 lwpid_of (current_thread));
2045 current_thread = saved_thread;
2046
2047 return 1;
2048 }
2049 }
2050 else
2051 {
2052 /* If we get a synchronous signal while collecting, *and*
2053 while executing the (relocated) original instruction,
2054 reset the PC to point at the tpoint address, before
2055 reporting to GDB. Otherwise, it's an IPA lib bug: just
2056 report the signal to GDB, and pray for the best. */
2057
2058 lwp->collecting_fast_tracepoint = 0;
2059
2060 if (r != 0
2061 && (status.adjusted_insn_addr <= lwp->stop_pc
2062 && lwp->stop_pc < status.adjusted_insn_addr_end))
2063 {
2064 siginfo_t info;
2065 struct regcache *regcache;
2066
2067 /* The si_addr on a few signals references the address
2068 of the faulting instruction. Adjust that as
2069 well. */
2070 if ((WSTOPSIG (*wstat) == SIGILL
2071 || WSTOPSIG (*wstat) == SIGFPE
2072 || WSTOPSIG (*wstat) == SIGBUS
2073 || WSTOPSIG (*wstat) == SIGSEGV)
2074 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2075 (PTRACE_TYPE_ARG3) 0, &info) == 0
2076 /* Final check just to make sure we don't clobber
2077 the siginfo of non-kernel-sent signals. */
2078 && (uintptr_t) info.si_addr == lwp->stop_pc)
2079 {
2080 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2081 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2082 (PTRACE_TYPE_ARG3) 0, &info);
2083 }
2084
2085 regcache = get_thread_regcache (current_thread, 1);
2086 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2087 lwp->stop_pc = status.tpoint_addr;
2088
2089 /* Cancel any fast tracepoint lock this thread was
2090 holding. */
2091 force_unlock_trace_buffer ();
2092 }
2093
2094 if (lwp->exit_jump_pad_bkpt != NULL)
2095 {
2096 if (debug_threads)
2097 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2098 "stopping all threads momentarily.\n");
2099
2100 stop_all_lwps (1, lwp);
2101
2102 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2103 lwp->exit_jump_pad_bkpt = NULL;
2104
2105 unstop_all_lwps (1, lwp);
2106
2107 gdb_assert (lwp->suspended >= 0);
2108 }
2109 }
2110 }
2111
2112 if (debug_threads)
2113 debug_printf ("Checking whether LWP %ld needs to move out of the "
2114 "jump pad...no\n",
2115 lwpid_of (current_thread));
2116
2117 current_thread = saved_thread;
2118 return 0;
2119 }
2120
2121 /* Enqueue one signal in the "signals to report later when out of the
2122 jump pad" list. */
2123
2124 static void
2125 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2126 {
2127 struct pending_signals *p_sig;
2128 struct thread_info *thread = get_lwp_thread (lwp);
2129
2130 if (debug_threads)
2131 debug_printf ("Deferring signal %d for LWP %ld.\n",
2132 WSTOPSIG (*wstat), lwpid_of (thread));
2133
2134 if (debug_threads)
2135 {
2136 struct pending_signals *sig;
2137
2138 for (sig = lwp->pending_signals_to_report;
2139 sig != NULL;
2140 sig = sig->prev)
2141 debug_printf (" Already queued %d\n",
2142 sig->signal);
2143
2144 debug_printf (" (no more currently queued signals)\n");
2145 }
2146
2147 /* Don't enqueue non-RT signals if they are already in the deferred
2148 queue. (SIGSTOP being the easiest signal to see ending up here
2149 twice) */
2150 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2151 {
2152 struct pending_signals *sig;
2153
2154 for (sig = lwp->pending_signals_to_report;
2155 sig != NULL;
2156 sig = sig->prev)
2157 {
2158 if (sig->signal == WSTOPSIG (*wstat))
2159 {
2160 if (debug_threads)
2161 debug_printf ("Not requeuing already queued non-RT signal %d"
2162 " for LWP %ld\n",
2163 sig->signal,
2164 lwpid_of (thread));
2165 return;
2166 }
2167 }
2168 }
2169
2170 p_sig = XCNEW (struct pending_signals);
2171 p_sig->prev = lwp->pending_signals_to_report;
2172 p_sig->signal = WSTOPSIG (*wstat);
2173
2174 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2175 &p_sig->info);
2176
2177 lwp->pending_signals_to_report = p_sig;
2178 }
2179
2180 /* Dequeue one signal from the "signals to report later when out of
2181 the jump pad" list. */
2182
2183 static int
2184 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2185 {
2186 struct thread_info *thread = get_lwp_thread (lwp);
2187
2188 if (lwp->pending_signals_to_report != NULL)
2189 {
2190 struct pending_signals **p_sig;
2191
2192 p_sig = &lwp->pending_signals_to_report;
2193 while ((*p_sig)->prev != NULL)
2194 p_sig = &(*p_sig)->prev;
2195
2196 *wstat = W_STOPCODE ((*p_sig)->signal);
2197 if ((*p_sig)->info.si_signo != 0)
2198 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2199 &(*p_sig)->info);
2200 free (*p_sig);
2201 *p_sig = NULL;
2202
2203 if (debug_threads)
2204 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2205 WSTOPSIG (*wstat), lwpid_of (thread));
2206
2207 if (debug_threads)
2208 {
2209 struct pending_signals *sig;
2210
2211 for (sig = lwp->pending_signals_to_report;
2212 sig != NULL;
2213 sig = sig->prev)
2214 debug_printf (" Still queued %d\n",
2215 sig->signal);
2216
2217 debug_printf (" (no more queued signals)\n");
2218 }
2219
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 /* Fetch the possibly triggered data watchpoint info and store it in
2227 CHILD.
2228
2229 On some archs, like x86, that use debug registers to set
2230 watchpoints, it's possible that the way to know which watched
2231 address trapped, is to check the register that is used to select
2232 which address to watch. Problem is, between setting the watchpoint
2233 and reading back which data address trapped, the user may change
2234 the set of watchpoints, and, as a consequence, GDB changes the
2235 debug registers in the inferior. To avoid reading back a stale
2236 stopped-data-address when that happens, we cache in LP the fact
2237 that a watchpoint trapped, and the corresponding data address, as
2238 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2239 registers meanwhile, we have the cached data we can rely on. */
2240
2241 static int
2242 check_stopped_by_watchpoint (struct lwp_info *child)
2243 {
2244 if (the_low_target.stopped_by_watchpoint != NULL)
2245 {
2246 struct thread_info *saved_thread;
2247
2248 saved_thread = current_thread;
2249 current_thread = get_lwp_thread (child);
2250
2251 if (the_low_target.stopped_by_watchpoint ())
2252 {
2253 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2254
2255 if (the_low_target.stopped_data_address != NULL)
2256 child->stopped_data_address
2257 = the_low_target.stopped_data_address ();
2258 else
2259 child->stopped_data_address = 0;
2260 }
2261
2262 current_thread = saved_thread;
2263 }
2264
2265 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2266 }
2267
2268 /* Return the ptrace options that we want to try to enable. */
2269
2270 static int
2271 linux_low_ptrace_options (int attached)
2272 {
2273 int options = 0;
2274
2275 if (!attached)
2276 options |= PTRACE_O_EXITKILL;
2277
2278 if (report_fork_events)
2279 options |= PTRACE_O_TRACEFORK;
2280
2281 if (report_vfork_events)
2282 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2283
2284 if (report_exec_events)
2285 options |= PTRACE_O_TRACEEXEC;
2286
2287 options |= PTRACE_O_TRACESYSGOOD;
2288
2289 return options;
2290 }
2291
2292 /* Do low-level handling of the event, and check if we should go on
2293 and pass it to caller code. Return the affected lwp if we are, or
2294 NULL otherwise. */
2295
2296 static struct lwp_info *
2297 linux_low_filter_event (int lwpid, int wstat)
2298 {
2299 struct lwp_info *child;
2300 struct thread_info *thread;
2301 int have_stop_pc = 0;
2302
2303 child = find_lwp_pid (pid_to_ptid (lwpid));
2304
2305 /* Check for stop events reported by a process we didn't already
2306 know about - anything not already in our LWP list.
2307
2308 If we're expecting to receive stopped processes after
2309 fork, vfork, and clone events, then we'll just add the
2310 new one to our list and go back to waiting for the event
2311 to be reported - the stopped process might be returned
2312 from waitpid before or after the event is.
2313
2314 But note the case of a non-leader thread exec'ing after the
2315 leader having exited, and gone from our lists (because
2316 check_zombie_leaders deleted it). The non-leader thread
2317 changes its tid to the tgid. */
2318
2319 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2320 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2321 {
2322 ptid_t child_ptid;
2323
2324 /* A multi-thread exec after we had seen the leader exiting. */
2325 if (debug_threads)
2326 {
2327 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2328 "after exec.\n", lwpid);
2329 }
2330
2331 child_ptid = ptid_build (lwpid, lwpid, 0);
2332 child = add_lwp (child_ptid);
2333 child->stopped = 1;
2334 current_thread = child->thread;
2335 }
2336
2337 /* If we didn't find a process, one of two things presumably happened:
2338 - A process we started and then detached from has exited. Ignore it.
2339 - A process we are controlling has forked and the new child's stop
2340 was reported to us by the kernel. Save its PID. */
2341 if (child == NULL && WIFSTOPPED (wstat))
2342 {
2343 add_to_pid_list (&stopped_pids, lwpid, wstat);
2344 return NULL;
2345 }
2346 else if (child == NULL)
2347 return NULL;
2348
2349 thread = get_lwp_thread (child);
2350
2351 child->stopped = 1;
2352
2353 child->last_status = wstat;
2354
2355 /* Check if the thread has exited. */
2356 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2357 {
2358 if (debug_threads)
2359 debug_printf ("LLFE: %d exited.\n", lwpid);
2360 /* If there is at least one more LWP, then the exit signal was
2361 not the end of the debugged application and should be
2362 ignored, unless GDB wants to hear about thread exits. */
2363 if (report_thread_events
2364 || last_thread_of_process_p (pid_of (thread)))
2365 {
2366 /* Since events are serialized to GDB core, and we can't
2367 report this one right now. Leave the status pending for
2368 the next time we're able to report it. */
2369 mark_lwp_dead (child, wstat);
2370 return child;
2371 }
2372 else
2373 {
2374 delete_lwp (child);
2375 return NULL;
2376 }
2377 }
2378
2379 gdb_assert (WIFSTOPPED (wstat));
2380
2381 if (WIFSTOPPED (wstat))
2382 {
2383 struct process_info *proc;
2384
2385 /* Architecture-specific setup after inferior is running. */
2386 proc = find_process_pid (pid_of (thread));
2387 if (proc->tdesc == NULL)
2388 {
2389 if (proc->attached)
2390 {
2391 /* This needs to happen after we have attached to the
2392 inferior and it is stopped for the first time, but
2393 before we access any inferior registers. */
2394 linux_arch_setup_thread (thread);
2395 }
2396 else
2397 {
2398 /* The process is started, but GDBserver will do
2399 architecture-specific setup after the program stops at
2400 the first instruction. */
2401 child->status_pending_p = 1;
2402 child->status_pending = wstat;
2403 return child;
2404 }
2405 }
2406 }
2407
2408 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2409 {
2410 struct process_info *proc = find_process_pid (pid_of (thread));
2411 int options = linux_low_ptrace_options (proc->attached);
2412
2413 linux_enable_event_reporting (lwpid, options);
2414 child->must_set_ptrace_flags = 0;
2415 }
2416
2417 /* Always update syscall_state, even if it will be filtered later. */
2418 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2419 {
2420 child->syscall_state
2421 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2422 ? TARGET_WAITKIND_SYSCALL_RETURN
2423 : TARGET_WAITKIND_SYSCALL_ENTRY);
2424 }
2425 else
2426 {
2427 /* Almost all other ptrace-stops are known to be outside of system
2428 calls, with further exceptions in handle_extended_wait. */
2429 child->syscall_state = TARGET_WAITKIND_IGNORE;
2430 }
2431
2432 /* Be careful to not overwrite stop_pc until save_stop_reason is
2433 called. */
2434 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2435 && linux_is_extended_waitstatus (wstat))
2436 {
2437 child->stop_pc = get_pc (child);
2438 if (handle_extended_wait (&child, wstat))
2439 {
2440 /* The event has been handled, so just return without
2441 reporting it. */
2442 return NULL;
2443 }
2444 }
2445
2446 if (linux_wstatus_maybe_breakpoint (wstat))
2447 {
2448 if (save_stop_reason (child))
2449 have_stop_pc = 1;
2450 }
2451
2452 if (!have_stop_pc)
2453 child->stop_pc = get_pc (child);
2454
2455 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2456 && child->stop_expected)
2457 {
2458 if (debug_threads)
2459 debug_printf ("Expected stop.\n");
2460 child->stop_expected = 0;
2461
2462 if (thread->last_resume_kind == resume_stop)
2463 {
2464 /* We want to report the stop to the core. Treat the
2465 SIGSTOP as a normal event. */
2466 if (debug_threads)
2467 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2468 target_pid_to_str (ptid_of (thread)));
2469 }
2470 else if (stopping_threads != NOT_STOPPING_THREADS)
2471 {
2472 /* Stopping threads. We don't want this SIGSTOP to end up
2473 pending. */
2474 if (debug_threads)
2475 debug_printf ("LLW: SIGSTOP caught for %s "
2476 "while stopping threads.\n",
2477 target_pid_to_str (ptid_of (thread)));
2478 return NULL;
2479 }
2480 else
2481 {
2482 /* This is a delayed SIGSTOP. Filter out the event. */
2483 if (debug_threads)
2484 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2485 child->stepping ? "step" : "continue",
2486 target_pid_to_str (ptid_of (thread)));
2487
2488 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2489 return NULL;
2490 }
2491 }
2492
2493 child->status_pending_p = 1;
2494 child->status_pending = wstat;
2495 return child;
2496 }
2497
2498 /* Resume LWPs that are currently stopped without any pending status
2499 to report, but are resumed from the core's perspective. */
2500
2501 static void
2502 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2503 {
2504 struct thread_info *thread = (struct thread_info *) entry;
2505 struct lwp_info *lp = get_thread_lwp (thread);
2506
2507 if (lp->stopped
2508 && !lp->suspended
2509 && !lp->status_pending_p
2510 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2511 {
2512 int step = thread->last_resume_kind == resume_step;
2513
2514 if (debug_threads)
2515 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2516 target_pid_to_str (ptid_of (thread)),
2517 paddress (lp->stop_pc),
2518 step);
2519
2520 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2521 }
2522 }
2523
2524 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2525 match FILTER_PTID (leaving others pending). The PTIDs can be:
2526 minus_one_ptid, to specify any child; a pid PTID, specifying all
2527 lwps of a thread group; or a PTID representing a single lwp. Store
2528 the stop status through the status pointer WSTAT. OPTIONS is
2529 passed to the waitpid call. Return 0 if no event was found and
2530 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2531 was found. Return the PID of the stopped child otherwise. */
2532
2533 static int
2534 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2535 int *wstatp, int options)
2536 {
2537 struct thread_info *event_thread;
2538 struct lwp_info *event_child, *requested_child;
2539 sigset_t block_mask, prev_mask;
2540
2541 retry:
2542 /* N.B. event_thread points to the thread_info struct that contains
2543 event_child. Keep them in sync. */
2544 event_thread = NULL;
2545 event_child = NULL;
2546 requested_child = NULL;
2547
2548 /* Check for a lwp with a pending status. */
2549
2550 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2551 {
2552 event_thread = (struct thread_info *)
2553 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2554 if (event_thread != NULL)
2555 event_child = get_thread_lwp (event_thread);
2556 if (debug_threads && event_thread)
2557 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2558 }
2559 else if (!ptid_equal (filter_ptid, null_ptid))
2560 {
2561 requested_child = find_lwp_pid (filter_ptid);
2562
2563 if (stopping_threads == NOT_STOPPING_THREADS
2564 && requested_child->status_pending_p
2565 && requested_child->collecting_fast_tracepoint)
2566 {
2567 enqueue_one_deferred_signal (requested_child,
2568 &requested_child->status_pending);
2569 requested_child->status_pending_p = 0;
2570 requested_child->status_pending = 0;
2571 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2572 }
2573
2574 if (requested_child->suspended
2575 && requested_child->status_pending_p)
2576 {
2577 internal_error (__FILE__, __LINE__,
2578 "requesting an event out of a"
2579 " suspended child?");
2580 }
2581
2582 if (requested_child->status_pending_p)
2583 {
2584 event_child = requested_child;
2585 event_thread = get_lwp_thread (event_child);
2586 }
2587 }
2588
2589 if (event_child != NULL)
2590 {
2591 if (debug_threads)
2592 debug_printf ("Got an event from pending child %ld (%04x)\n",
2593 lwpid_of (event_thread), event_child->status_pending);
2594 *wstatp = event_child->status_pending;
2595 event_child->status_pending_p = 0;
2596 event_child->status_pending = 0;
2597 current_thread = event_thread;
2598 return lwpid_of (event_thread);
2599 }
2600
2601 /* But if we don't find a pending event, we'll have to wait.
2602
2603 We only enter this loop if no process has a pending wait status.
2604 Thus any action taken in response to a wait status inside this
2605 loop is responding as soon as we detect the status, not after any
2606 pending events. */
2607
2608 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2609 all signals while here. */
2610 sigfillset (&block_mask);
2611 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2612
2613 /* Always pull all events out of the kernel. We'll randomly select
2614 an event LWP out of all that have events, to prevent
2615 starvation. */
2616 while (event_child == NULL)
2617 {
2618 pid_t ret = 0;
2619
2620 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2621 quirks:
2622
2623 - If the thread group leader exits while other threads in the
2624 thread group still exist, waitpid(TGID, ...) hangs. That
2625 waitpid won't return an exit status until the other threads
2626 in the group are reaped.
2627
2628 - When a non-leader thread execs, that thread just vanishes
2629 without reporting an exit (so we'd hang if we waited for it
2630 explicitly in that case). The exec event is reported to
2631 the TGID pid. */
2632 errno = 0;
2633 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2634
2635 if (debug_threads)
2636 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2637 ret, errno ? strerror (errno) : "ERRNO-OK");
2638
2639 if (ret > 0)
2640 {
2641 if (debug_threads)
2642 {
2643 debug_printf ("LLW: waitpid %ld received %s\n",
2644 (long) ret, status_to_str (*wstatp));
2645 }
2646
2647 /* Filter all events. IOW, leave all events pending. We'll
2648 randomly select an event LWP out of all that have events
2649 below. */
2650 linux_low_filter_event (ret, *wstatp);
2651 /* Retry until nothing comes out of waitpid. A single
2652 SIGCHLD can indicate more than one child stopped. */
2653 continue;
2654 }
2655
2656 /* Now that we've pulled all events out of the kernel, resume
2657 LWPs that don't have an interesting event to report. */
2658 if (stopping_threads == NOT_STOPPING_THREADS)
2659 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2660
2661 /* ... and find an LWP with a status to report to the core, if
2662 any. */
2663 event_thread = (struct thread_info *)
2664 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2665 if (event_thread != NULL)
2666 {
2667 event_child = get_thread_lwp (event_thread);
2668 *wstatp = event_child->status_pending;
2669 event_child->status_pending_p = 0;
2670 event_child->status_pending = 0;
2671 break;
2672 }
2673
2674 /* Check for zombie thread group leaders. Those can't be reaped
2675 until all other threads in the thread group are. */
2676 check_zombie_leaders ();
2677
2678 /* If there are no resumed children left in the set of LWPs we
2679 want to wait for, bail. We can't just block in
2680 waitpid/sigsuspend, because lwps might have been left stopped
2681 in trace-stop state, and we'd be stuck forever waiting for
2682 their status to change (which would only happen if we resumed
2683 them). Even if WNOHANG is set, this return code is preferred
2684 over 0 (below), as it is more detailed. */
2685 if ((find_inferior (&all_threads,
2686 not_stopped_callback,
2687 &wait_ptid) == NULL))
2688 {
2689 if (debug_threads)
2690 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2691 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2692 return -1;
2693 }
2694
2695 /* No interesting event to report to the caller. */
2696 if ((options & WNOHANG))
2697 {
2698 if (debug_threads)
2699 debug_printf ("WNOHANG set, no event found\n");
2700
2701 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2702 return 0;
2703 }
2704
2705 /* Block until we get an event reported with SIGCHLD. */
2706 if (debug_threads)
2707 debug_printf ("sigsuspend'ing\n");
2708
2709 sigsuspend (&prev_mask);
2710 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2711 goto retry;
2712 }
2713
2714 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2715
2716 current_thread = event_thread;
2717
2718 return lwpid_of (event_thread);
2719 }
2720
2721 /* Wait for an event from child(ren) PTID. PTIDs can be:
2722 minus_one_ptid, to specify any child; a pid PTID, specifying all
2723 lwps of a thread group; or a PTID representing a single lwp. Store
2724 the stop status through the status pointer WSTAT. OPTIONS is
2725 passed to the waitpid call. Return 0 if no event was found and
2726 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2727 was found. Return the PID of the stopped child otherwise. */
2728
2729 static int
2730 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2731 {
2732 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2733 }
2734
2735 /* Count the LWP's that have had events. */
2736
2737 static int
2738 count_events_callback (struct inferior_list_entry *entry, void *data)
2739 {
2740 struct thread_info *thread = (struct thread_info *) entry;
2741 struct lwp_info *lp = get_thread_lwp (thread);
2742 int *count = (int *) data;
2743
2744 gdb_assert (count != NULL);
2745
2746 /* Count only resumed LWPs that have an event pending. */
2747 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2748 && lp->status_pending_p)
2749 (*count)++;
2750
2751 return 0;
2752 }
2753
2754 /* Select the LWP (if any) that is currently being single-stepped. */
2755
2756 static int
2757 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2758 {
2759 struct thread_info *thread = (struct thread_info *) entry;
2760 struct lwp_info *lp = get_thread_lwp (thread);
2761
2762 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2763 && thread->last_resume_kind == resume_step
2764 && lp->status_pending_p)
2765 return 1;
2766 else
2767 return 0;
2768 }
2769
2770 /* Select the Nth LWP that has had an event. */
2771
2772 static int
2773 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2774 {
2775 struct thread_info *thread = (struct thread_info *) entry;
2776 struct lwp_info *lp = get_thread_lwp (thread);
2777 int *selector = (int *) data;
2778
2779 gdb_assert (selector != NULL);
2780
2781 /* Select only resumed LWPs that have an event pending. */
2782 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2783 && lp->status_pending_p)
2784 if ((*selector)-- == 0)
2785 return 1;
2786
2787 return 0;
2788 }
2789
2790 /* Select one LWP out of those that have events pending. */
2791
2792 static void
2793 select_event_lwp (struct lwp_info **orig_lp)
2794 {
2795 int num_events = 0;
2796 int random_selector;
2797 struct thread_info *event_thread = NULL;
2798
2799 /* In all-stop, give preference to the LWP that is being
2800 single-stepped. There will be at most one, and it's the LWP that
2801 the core is most interested in. If we didn't do this, then we'd
2802 have to handle pending step SIGTRAPs somehow in case the core
2803 later continues the previously-stepped thread, otherwise we'd
2804 report the pending SIGTRAP, and the core, not having stepped the
2805 thread, wouldn't understand what the trap was for, and therefore
2806 would report it to the user as a random signal. */
2807 if (!non_stop)
2808 {
2809 event_thread
2810 = (struct thread_info *) find_inferior (&all_threads,
2811 select_singlestep_lwp_callback,
2812 NULL);
2813 if (event_thread != NULL)
2814 {
2815 if (debug_threads)
2816 debug_printf ("SEL: Select single-step %s\n",
2817 target_pid_to_str (ptid_of (event_thread)));
2818 }
2819 }
2820 if (event_thread == NULL)
2821 {
2822 /* No single-stepping LWP. Select one at random, out of those
2823 which have had events. */
2824
2825 /* First see how many events we have. */
2826 find_inferior (&all_threads, count_events_callback, &num_events);
2827 gdb_assert (num_events > 0);
2828
2829 /* Now randomly pick a LWP out of those that have had
2830 events. */
2831 random_selector = (int)
2832 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2833
2834 if (debug_threads && num_events > 1)
2835 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2836 num_events, random_selector);
2837
2838 event_thread
2839 = (struct thread_info *) find_inferior (&all_threads,
2840 select_event_lwp_callback,
2841 &random_selector);
2842 }
2843
2844 if (event_thread != NULL)
2845 {
2846 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2847
2848 /* Switch the event LWP. */
2849 *orig_lp = event_lp;
2850 }
2851 }
2852
2853 /* Decrement the suspend count of an LWP. */
2854
2855 static int
2856 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2857 {
2858 struct thread_info *thread = (struct thread_info *) entry;
2859 struct lwp_info *lwp = get_thread_lwp (thread);
2860
2861 /* Ignore EXCEPT. */
2862 if (lwp == except)
2863 return 0;
2864
2865 lwp_suspended_decr (lwp);
2866 return 0;
2867 }
2868
2869 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2870 NULL. */
2871
2872 static void
2873 unsuspend_all_lwps (struct lwp_info *except)
2874 {
2875 find_inferior (&all_threads, unsuspend_one_lwp, except);
2876 }
2877
2878 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2879 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2880 void *data);
2881 static int lwp_running (struct inferior_list_entry *entry, void *data);
2882 static ptid_t linux_wait_1 (ptid_t ptid,
2883 struct target_waitstatus *ourstatus,
2884 int target_options);
2885
2886 /* Stabilize threads (move out of jump pads).
2887
2888 If a thread is midway collecting a fast tracepoint, we need to
2889 finish the collection and move it out of the jump pad before
2890 reporting the signal.
2891
2892 This avoids recursion while collecting (when a signal arrives
2893 midway, and the signal handler itself collects), which would trash
2894 the trace buffer. In case the user set a breakpoint in a signal
2895 handler, this avoids the backtrace showing the jump pad, etc..
2896 Most importantly, there are certain things we can't do safely if
2897 threads are stopped in a jump pad (or in its callee's). For
2898 example:
2899
2900 - starting a new trace run. A thread still collecting the
2901 previous run, could trash the trace buffer when resumed. The trace
2902 buffer control structures would have been reset but the thread had
2903 no way to tell. The thread could even midway memcpy'ing to the
2904 buffer, which would mean that when resumed, it would clobber the
2905 trace buffer that had been set for a new run.
2906
2907 - we can't rewrite/reuse the jump pads for new tracepoints
2908 safely. Say you do tstart while a thread is stopped midway while
2909 collecting. When the thread is later resumed, it finishes the
2910 collection, and returns to the jump pad, to execute the original
2911 instruction that was under the tracepoint jump at the time the
2912 older run had been started. If the jump pad had been rewritten
2913 since for something else in the new run, the thread would now
2914 execute the wrong / random instructions. */
2915
2916 static void
2917 linux_stabilize_threads (void)
2918 {
2919 struct thread_info *saved_thread;
2920 struct thread_info *thread_stuck;
2921
2922 thread_stuck
2923 = (struct thread_info *) find_inferior (&all_threads,
2924 stuck_in_jump_pad_callback,
2925 NULL);
2926 if (thread_stuck != NULL)
2927 {
2928 if (debug_threads)
2929 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2930 lwpid_of (thread_stuck));
2931 return;
2932 }
2933
2934 saved_thread = current_thread;
2935
2936 stabilizing_threads = 1;
2937
2938 /* Kick 'em all. */
2939 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2940
2941 /* Loop until all are stopped out of the jump pads. */
2942 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2943 {
2944 struct target_waitstatus ourstatus;
2945 struct lwp_info *lwp;
2946 int wstat;
2947
2948 /* Note that we go through the full wait even loop. While
2949 moving threads out of jump pad, we need to be able to step
2950 over internal breakpoints and such. */
2951 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2952
2953 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2954 {
2955 lwp = get_thread_lwp (current_thread);
2956
2957 /* Lock it. */
2958 lwp_suspended_inc (lwp);
2959
2960 if (ourstatus.value.sig != GDB_SIGNAL_0
2961 || current_thread->last_resume_kind == resume_stop)
2962 {
2963 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2964 enqueue_one_deferred_signal (lwp, &wstat);
2965 }
2966 }
2967 }
2968
2969 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2970
2971 stabilizing_threads = 0;
2972
2973 current_thread = saved_thread;
2974
2975 if (debug_threads)
2976 {
2977 thread_stuck
2978 = (struct thread_info *) find_inferior (&all_threads,
2979 stuck_in_jump_pad_callback,
2980 NULL);
2981 if (thread_stuck != NULL)
2982 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2983 lwpid_of (thread_stuck));
2984 }
2985 }
2986
2987 /* Convenience function that is called when the kernel reports an
2988 event that is not passed out to GDB. */
2989
2990 static ptid_t
2991 ignore_event (struct target_waitstatus *ourstatus)
2992 {
2993 /* If we got an event, there may still be others, as a single
2994 SIGCHLD can indicate more than one child stopped. This forces
2995 another target_wait call. */
2996 async_file_mark ();
2997
2998 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2999 return null_ptid;
3000 }
3001
3002 /* Convenience function that is called when the kernel reports an exit
3003 event. This decides whether to report the event to GDB as a
3004 process exit event, a thread exit event, or to suppress the
3005 event. */
3006
3007 static ptid_t
3008 filter_exit_event (struct lwp_info *event_child,
3009 struct target_waitstatus *ourstatus)
3010 {
3011 struct thread_info *thread = get_lwp_thread (event_child);
3012 ptid_t ptid = ptid_of (thread);
3013
3014 if (!last_thread_of_process_p (pid_of (thread)))
3015 {
3016 if (report_thread_events)
3017 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3018 else
3019 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3020
3021 delete_lwp (event_child);
3022 }
3023 return ptid;
3024 }
3025
3026 /* Returns 1 if GDB is interested in any event_child syscalls. */
3027
3028 static int
3029 gdb_catching_syscalls_p (struct lwp_info *event_child)
3030 {
3031 struct thread_info *thread = get_lwp_thread (event_child);
3032 struct process_info *proc = get_thread_process (thread);
3033
3034 return !VEC_empty (int, proc->syscalls_to_catch);
3035 }
3036
3037 /* Returns 1 if GDB is interested in the event_child syscall.
3038 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3039
3040 static int
3041 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3042 {
3043 int i, iter;
3044 int sysno, sysret;
3045 struct thread_info *thread = get_lwp_thread (event_child);
3046 struct process_info *proc = get_thread_process (thread);
3047
3048 if (VEC_empty (int, proc->syscalls_to_catch))
3049 return 0;
3050
3051 if (VEC_index (int, proc->syscalls_to_catch, 0) == ANY_SYSCALL)
3052 return 1;
3053
3054 get_syscall_trapinfo (event_child, &sysno, &sysret);
3055 for (i = 0;
3056 VEC_iterate (int, proc->syscalls_to_catch, i, iter);
3057 i++)
3058 if (iter == sysno)
3059 return 1;
3060
3061 return 0;
3062 }
3063
3064 /* Wait for process, returns status. */
3065
3066 static ptid_t
3067 linux_wait_1 (ptid_t ptid,
3068 struct target_waitstatus *ourstatus, int target_options)
3069 {
3070 int w;
3071 struct lwp_info *event_child;
3072 int options;
3073 int pid;
3074 int step_over_finished;
3075 int bp_explains_trap;
3076 int maybe_internal_trap;
3077 int report_to_gdb;
3078 int trace_event;
3079 int in_step_range;
3080 int any_resumed;
3081
3082 if (debug_threads)
3083 {
3084 debug_enter ();
3085 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3086 }
3087
3088 /* Translate generic target options into linux options. */
3089 options = __WALL;
3090 if (target_options & TARGET_WNOHANG)
3091 options |= WNOHANG;
3092
3093 bp_explains_trap = 0;
3094 trace_event = 0;
3095 in_step_range = 0;
3096 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3097
3098 /* Find a resumed LWP, if any. */
3099 if (find_inferior (&all_threads,
3100 status_pending_p_callback,
3101 &minus_one_ptid) != NULL)
3102 any_resumed = 1;
3103 else if ((find_inferior (&all_threads,
3104 not_stopped_callback,
3105 &minus_one_ptid) != NULL))
3106 any_resumed = 1;
3107 else
3108 any_resumed = 0;
3109
3110 if (ptid_equal (step_over_bkpt, null_ptid))
3111 pid = linux_wait_for_event (ptid, &w, options);
3112 else
3113 {
3114 if (debug_threads)
3115 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3116 target_pid_to_str (step_over_bkpt));
3117 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3118 }
3119
3120 if (pid == 0 || (pid == -1 && !any_resumed))
3121 {
3122 gdb_assert (target_options & TARGET_WNOHANG);
3123
3124 if (debug_threads)
3125 {
3126 debug_printf ("linux_wait_1 ret = null_ptid, "
3127 "TARGET_WAITKIND_IGNORE\n");
3128 debug_exit ();
3129 }
3130
3131 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3132 return null_ptid;
3133 }
3134 else if (pid == -1)
3135 {
3136 if (debug_threads)
3137 {
3138 debug_printf ("linux_wait_1 ret = null_ptid, "
3139 "TARGET_WAITKIND_NO_RESUMED\n");
3140 debug_exit ();
3141 }
3142
3143 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3144 return null_ptid;
3145 }
3146
3147 event_child = get_thread_lwp (current_thread);
3148
3149 /* linux_wait_for_event only returns an exit status for the last
3150 child of a process. Report it. */
3151 if (WIFEXITED (w) || WIFSIGNALED (w))
3152 {
3153 if (WIFEXITED (w))
3154 {
3155 ourstatus->kind = TARGET_WAITKIND_EXITED;
3156 ourstatus->value.integer = WEXITSTATUS (w);
3157
3158 if (debug_threads)
3159 {
3160 debug_printf ("linux_wait_1 ret = %s, exited with "
3161 "retcode %d\n",
3162 target_pid_to_str (ptid_of (current_thread)),
3163 WEXITSTATUS (w));
3164 debug_exit ();
3165 }
3166 }
3167 else
3168 {
3169 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3170 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3171
3172 if (debug_threads)
3173 {
3174 debug_printf ("linux_wait_1 ret = %s, terminated with "
3175 "signal %d\n",
3176 target_pid_to_str (ptid_of (current_thread)),
3177 WTERMSIG (w));
3178 debug_exit ();
3179 }
3180 }
3181
3182 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3183 return filter_exit_event (event_child, ourstatus);
3184
3185 return ptid_of (current_thread);
3186 }
3187
3188 /* If step-over executes a breakpoint instruction, in the case of a
3189 hardware single step it means a gdb/gdbserver breakpoint had been
3190 planted on top of a permanent breakpoint, in the case of a software
3191 single step it may just mean that gdbserver hit the reinsert breakpoint.
3192 The PC has been adjusted by save_stop_reason to point at
3193 the breakpoint address.
3194 So in the case of the hardware single step advance the PC manually
3195 past the breakpoint and in the case of software single step advance only
3196 if it's not the reinsert_breakpoint we are hitting.
3197 This avoids that a program would keep trapping a permanent breakpoint
3198 forever. */
3199 if (!ptid_equal (step_over_bkpt, null_ptid)
3200 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3201 && (event_child->stepping
3202 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3203 {
3204 int increment_pc = 0;
3205 int breakpoint_kind = 0;
3206 CORE_ADDR stop_pc = event_child->stop_pc;
3207
3208 breakpoint_kind =
3209 the_target->breakpoint_kind_from_current_state (&stop_pc);
3210 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3211
3212 if (debug_threads)
3213 {
3214 debug_printf ("step-over for %s executed software breakpoint\n",
3215 target_pid_to_str (ptid_of (current_thread)));
3216 }
3217
3218 if (increment_pc != 0)
3219 {
3220 struct regcache *regcache
3221 = get_thread_regcache (current_thread, 1);
3222
3223 event_child->stop_pc += increment_pc;
3224 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3225
3226 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3227 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3228 }
3229 }
3230
3231 /* If this event was not handled before, and is not a SIGTRAP, we
3232 report it. SIGILL and SIGSEGV are also treated as traps in case
3233 a breakpoint is inserted at the current PC. If this target does
3234 not support internal breakpoints at all, we also report the
3235 SIGTRAP without further processing; it's of no concern to us. */
3236 maybe_internal_trap
3237 = (supports_breakpoints ()
3238 && (WSTOPSIG (w) == SIGTRAP
3239 || ((WSTOPSIG (w) == SIGILL
3240 || WSTOPSIG (w) == SIGSEGV)
3241 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3242
3243 if (maybe_internal_trap)
3244 {
3245 /* Handle anything that requires bookkeeping before deciding to
3246 report the event or continue waiting. */
3247
3248 /* First check if we can explain the SIGTRAP with an internal
3249 breakpoint, or if we should possibly report the event to GDB.
3250 Do this before anything that may remove or insert a
3251 breakpoint. */
3252 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3253
3254 /* We have a SIGTRAP, possibly a step-over dance has just
3255 finished. If so, tweak the state machine accordingly,
3256 reinsert breakpoints and delete any reinsert (software
3257 single-step) breakpoints. */
3258 step_over_finished = finish_step_over (event_child);
3259
3260 /* Now invoke the callbacks of any internal breakpoints there. */
3261 check_breakpoints (event_child->stop_pc);
3262
3263 /* Handle tracepoint data collecting. This may overflow the
3264 trace buffer, and cause a tracing stop, removing
3265 breakpoints. */
3266 trace_event = handle_tracepoints (event_child);
3267
3268 if (bp_explains_trap)
3269 {
3270 /* If we stepped or ran into an internal breakpoint, we've
3271 already handled it. So next time we resume (from this
3272 PC), we should step over it. */
3273 if (debug_threads)
3274 debug_printf ("Hit a gdbserver breakpoint.\n");
3275
3276 if (breakpoint_here (event_child->stop_pc))
3277 event_child->need_step_over = 1;
3278 }
3279 }
3280 else
3281 {
3282 /* We have some other signal, possibly a step-over dance was in
3283 progress, and it should be cancelled too. */
3284 step_over_finished = finish_step_over (event_child);
3285 }
3286
3287 /* We have all the data we need. Either report the event to GDB, or
3288 resume threads and keep waiting for more. */
3289
3290 /* If we're collecting a fast tracepoint, finish the collection and
3291 move out of the jump pad before delivering a signal. See
3292 linux_stabilize_threads. */
3293
3294 if (WIFSTOPPED (w)
3295 && WSTOPSIG (w) != SIGTRAP
3296 && supports_fast_tracepoints ()
3297 && agent_loaded_p ())
3298 {
3299 if (debug_threads)
3300 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3301 "to defer or adjust it.\n",
3302 WSTOPSIG (w), lwpid_of (current_thread));
3303
3304 /* Allow debugging the jump pad itself. */
3305 if (current_thread->last_resume_kind != resume_step
3306 && maybe_move_out_of_jump_pad (event_child, &w))
3307 {
3308 enqueue_one_deferred_signal (event_child, &w);
3309
3310 if (debug_threads)
3311 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3312 WSTOPSIG (w), lwpid_of (current_thread));
3313
3314 linux_resume_one_lwp (event_child, 0, 0, NULL);
3315
3316 return ignore_event (ourstatus);
3317 }
3318 }
3319
3320 if (event_child->collecting_fast_tracepoint)
3321 {
3322 if (debug_threads)
3323 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3324 "Check if we're already there.\n",
3325 lwpid_of (current_thread),
3326 event_child->collecting_fast_tracepoint);
3327
3328 trace_event = 1;
3329
3330 event_child->collecting_fast_tracepoint
3331 = linux_fast_tracepoint_collecting (event_child, NULL);
3332
3333 if (event_child->collecting_fast_tracepoint != 1)
3334 {
3335 /* No longer need this breakpoint. */
3336 if (event_child->exit_jump_pad_bkpt != NULL)
3337 {
3338 if (debug_threads)
3339 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3340 "stopping all threads momentarily.\n");
3341
3342 /* Other running threads could hit this breakpoint.
3343 We don't handle moribund locations like GDB does,
3344 instead we always pause all threads when removing
3345 breakpoints, so that any step-over or
3346 decr_pc_after_break adjustment is always taken
3347 care of while the breakpoint is still
3348 inserted. */
3349 stop_all_lwps (1, event_child);
3350
3351 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3352 event_child->exit_jump_pad_bkpt = NULL;
3353
3354 unstop_all_lwps (1, event_child);
3355
3356 gdb_assert (event_child->suspended >= 0);
3357 }
3358 }
3359
3360 if (event_child->collecting_fast_tracepoint == 0)
3361 {
3362 if (debug_threads)
3363 debug_printf ("fast tracepoint finished "
3364 "collecting successfully.\n");
3365
3366 /* We may have a deferred signal to report. */
3367 if (dequeue_one_deferred_signal (event_child, &w))
3368 {
3369 if (debug_threads)
3370 debug_printf ("dequeued one signal.\n");
3371 }
3372 else
3373 {
3374 if (debug_threads)
3375 debug_printf ("no deferred signals.\n");
3376
3377 if (stabilizing_threads)
3378 {
3379 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3380 ourstatus->value.sig = GDB_SIGNAL_0;
3381
3382 if (debug_threads)
3383 {
3384 debug_printf ("linux_wait_1 ret = %s, stopped "
3385 "while stabilizing threads\n",
3386 target_pid_to_str (ptid_of (current_thread)));
3387 debug_exit ();
3388 }
3389
3390 return ptid_of (current_thread);
3391 }
3392 }
3393 }
3394 }
3395
3396 /* Check whether GDB would be interested in this event. */
3397
3398 /* Check if GDB is interested in this syscall. */
3399 if (WIFSTOPPED (w)
3400 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3401 && !gdb_catch_this_syscall_p (event_child))
3402 {
3403 if (debug_threads)
3404 {
3405 debug_printf ("Ignored syscall for LWP %ld.\n",
3406 lwpid_of (current_thread));
3407 }
3408
3409 linux_resume_one_lwp (event_child, event_child->stepping,
3410 0, NULL);
3411 return ignore_event (ourstatus);
3412 }
3413
3414 /* If GDB is not interested in this signal, don't stop other
3415 threads, and don't report it to GDB. Just resume the inferior
3416 right away. We do this for threading-related signals as well as
3417 any that GDB specifically requested we ignore. But never ignore
3418 SIGSTOP if we sent it ourselves, and do not ignore signals when
3419 stepping - they may require special handling to skip the signal
3420 handler. Also never ignore signals that could be caused by a
3421 breakpoint. */
3422 if (WIFSTOPPED (w)
3423 && current_thread->last_resume_kind != resume_step
3424 && (
3425 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3426 (current_process ()->priv->thread_db != NULL
3427 && (WSTOPSIG (w) == __SIGRTMIN
3428 || WSTOPSIG (w) == __SIGRTMIN + 1))
3429 ||
3430 #endif
3431 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3432 && !(WSTOPSIG (w) == SIGSTOP
3433 && current_thread->last_resume_kind == resume_stop)
3434 && !linux_wstatus_maybe_breakpoint (w))))
3435 {
3436 siginfo_t info, *info_p;
3437
3438 if (debug_threads)
3439 debug_printf ("Ignored signal %d for LWP %ld.\n",
3440 WSTOPSIG (w), lwpid_of (current_thread));
3441
3442 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3443 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3444 info_p = &info;
3445 else
3446 info_p = NULL;
3447
3448 if (step_over_finished)
3449 {
3450 /* We cancelled this thread's step-over above. We still
3451 need to unsuspend all other LWPs, and set them back
3452 running again while the signal handler runs. */
3453 unsuspend_all_lwps (event_child);
3454
3455 /* Enqueue the pending signal info so that proceed_all_lwps
3456 doesn't lose it. */
3457 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3458
3459 proceed_all_lwps ();
3460 }
3461 else
3462 {
3463 linux_resume_one_lwp (event_child, event_child->stepping,
3464 WSTOPSIG (w), info_p);
3465 }
3466 return ignore_event (ourstatus);
3467 }
3468
3469 /* Note that all addresses are always "out of the step range" when
3470 there's no range to begin with. */
3471 in_step_range = lwp_in_step_range (event_child);
3472
3473 /* If GDB wanted this thread to single step, and the thread is out
3474 of the step range, we always want to report the SIGTRAP, and let
3475 GDB handle it. Watchpoints should always be reported. So should
3476 signals we can't explain. A SIGTRAP we can't explain could be a
3477 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3478 do, we're be able to handle GDB breakpoints on top of internal
3479 breakpoints, by handling the internal breakpoint and still
3480 reporting the event to GDB. If we don't, we're out of luck, GDB
3481 won't see the breakpoint hit. If we see a single-step event but
3482 the thread should be continuing, don't pass the trap to gdb.
3483 That indicates that we had previously finished a single-step but
3484 left the single-step pending -- see
3485 complete_ongoing_step_over. */
3486 report_to_gdb = (!maybe_internal_trap
3487 || (current_thread->last_resume_kind == resume_step
3488 && !in_step_range)
3489 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3490 || (!in_step_range
3491 && !bp_explains_trap
3492 && !trace_event
3493 && !step_over_finished
3494 && !(current_thread->last_resume_kind == resume_continue
3495 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3496 || (gdb_breakpoint_here (event_child->stop_pc)
3497 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3498 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3499 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3500
3501 run_breakpoint_commands (event_child->stop_pc);
3502
3503 /* We found no reason GDB would want us to stop. We either hit one
3504 of our own breakpoints, or finished an internal step GDB
3505 shouldn't know about. */
3506 if (!report_to_gdb)
3507 {
3508 if (debug_threads)
3509 {
3510 if (bp_explains_trap)
3511 debug_printf ("Hit a gdbserver breakpoint.\n");
3512 if (step_over_finished)
3513 debug_printf ("Step-over finished.\n");
3514 if (trace_event)
3515 debug_printf ("Tracepoint event.\n");
3516 if (lwp_in_step_range (event_child))
3517 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3518 paddress (event_child->stop_pc),
3519 paddress (event_child->step_range_start),
3520 paddress (event_child->step_range_end));
3521 }
3522
3523 /* We're not reporting this breakpoint to GDB, so apply the
3524 decr_pc_after_break adjustment to the inferior's regcache
3525 ourselves. */
3526
3527 if (the_low_target.set_pc != NULL)
3528 {
3529 struct regcache *regcache
3530 = get_thread_regcache (current_thread, 1);
3531 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3532 }
3533
3534 /* We may have finished stepping over a breakpoint. If so,
3535 we've stopped and suspended all LWPs momentarily except the
3536 stepping one. This is where we resume them all again. We're
3537 going to keep waiting, so use proceed, which handles stepping
3538 over the next breakpoint. */
3539 if (debug_threads)
3540 debug_printf ("proceeding all threads.\n");
3541
3542 if (step_over_finished)
3543 unsuspend_all_lwps (event_child);
3544
3545 proceed_all_lwps ();
3546 return ignore_event (ourstatus);
3547 }
3548
3549 if (debug_threads)
3550 {
3551 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3552 {
3553 char *str;
3554
3555 str = target_waitstatus_to_string (&event_child->waitstatus);
3556 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3557 lwpid_of (get_lwp_thread (event_child)), str);
3558 xfree (str);
3559 }
3560 if (current_thread->last_resume_kind == resume_step)
3561 {
3562 if (event_child->step_range_start == event_child->step_range_end)
3563 debug_printf ("GDB wanted to single-step, reporting event.\n");
3564 else if (!lwp_in_step_range (event_child))
3565 debug_printf ("Out of step range, reporting event.\n");
3566 }
3567 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3568 debug_printf ("Stopped by watchpoint.\n");
3569 else if (gdb_breakpoint_here (event_child->stop_pc))
3570 debug_printf ("Stopped by GDB breakpoint.\n");
3571 if (debug_threads)
3572 debug_printf ("Hit a non-gdbserver trap event.\n");
3573 }
3574
3575 /* Alright, we're going to report a stop. */
3576
3577 if (!stabilizing_threads)
3578 {
3579 /* In all-stop, stop all threads. */
3580 if (!non_stop)
3581 stop_all_lwps (0, NULL);
3582
3583 /* If we're not waiting for a specific LWP, choose an event LWP
3584 from among those that have had events. Giving equal priority
3585 to all LWPs that have had events helps prevent
3586 starvation. */
3587 if (ptid_equal (ptid, minus_one_ptid))
3588 {
3589 event_child->status_pending_p = 1;
3590 event_child->status_pending = w;
3591
3592 select_event_lwp (&event_child);
3593
3594 /* current_thread and event_child must stay in sync. */
3595 current_thread = get_lwp_thread (event_child);
3596
3597 event_child->status_pending_p = 0;
3598 w = event_child->status_pending;
3599 }
3600
3601 if (step_over_finished)
3602 {
3603 if (!non_stop)
3604 {
3605 /* If we were doing a step-over, all other threads but
3606 the stepping one had been paused in start_step_over,
3607 with their suspend counts incremented. We don't want
3608 to do a full unstop/unpause, because we're in
3609 all-stop mode (so we want threads stopped), but we
3610 still need to unsuspend the other threads, to
3611 decrement their `suspended' count back. */
3612 unsuspend_all_lwps (event_child);
3613 }
3614 else
3615 {
3616 /* If we just finished a step-over, then all threads had
3617 been momentarily paused. In all-stop, that's fine,
3618 we want threads stopped by now anyway. In non-stop,
3619 we need to re-resume threads that GDB wanted to be
3620 running. */
3621 unstop_all_lwps (1, event_child);
3622 }
3623 }
3624
3625 /* Stabilize threads (move out of jump pads). */
3626 if (!non_stop)
3627 stabilize_threads ();
3628 }
3629 else
3630 {
3631 /* If we just finished a step-over, then all threads had been
3632 momentarily paused. In all-stop, that's fine, we want
3633 threads stopped by now anyway. In non-stop, we need to
3634 re-resume threads that GDB wanted to be running. */
3635 if (step_over_finished)
3636 unstop_all_lwps (1, event_child);
3637 }
3638
3639 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3640 {
3641 /* If the reported event is an exit, fork, vfork or exec, let
3642 GDB know. */
3643 *ourstatus = event_child->waitstatus;
3644 /* Clear the event lwp's waitstatus since we handled it already. */
3645 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3646 }
3647 else
3648 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3649
3650 /* Now that we've selected our final event LWP, un-adjust its PC if
3651 it was a software breakpoint, and the client doesn't know we can
3652 adjust the breakpoint ourselves. */
3653 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3654 && !swbreak_feature)
3655 {
3656 int decr_pc = the_low_target.decr_pc_after_break;
3657
3658 if (decr_pc != 0)
3659 {
3660 struct regcache *regcache
3661 = get_thread_regcache (current_thread, 1);
3662 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3663 }
3664 }
3665
3666 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3667 {
3668 int sysret;
3669
3670 get_syscall_trapinfo (event_child,
3671 &ourstatus->value.syscall_number, &sysret);
3672 ourstatus->kind = event_child->syscall_state;
3673 }
3674 else if (current_thread->last_resume_kind == resume_stop
3675 && WSTOPSIG (w) == SIGSTOP)
3676 {
3677 /* A thread that has been requested to stop by GDB with vCont;t,
3678 and it stopped cleanly, so report as SIG0. The use of
3679 SIGSTOP is an implementation detail. */
3680 ourstatus->value.sig = GDB_SIGNAL_0;
3681 }
3682 else if (current_thread->last_resume_kind == resume_stop
3683 && WSTOPSIG (w) != SIGSTOP)
3684 {
3685 /* A thread that has been requested to stop by GDB with vCont;t,
3686 but, it stopped for other reasons. */
3687 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3688 }
3689 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3690 {
3691 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3692 }
3693
3694 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3695
3696 if (debug_threads)
3697 {
3698 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3699 target_pid_to_str (ptid_of (current_thread)),
3700 ourstatus->kind, ourstatus->value.sig);
3701 debug_exit ();
3702 }
3703
3704 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3705 return filter_exit_event (event_child, ourstatus);
3706
3707 return ptid_of (current_thread);
3708 }
3709
3710 /* Get rid of any pending event in the pipe. */
3711 static void
3712 async_file_flush (void)
3713 {
3714 int ret;
3715 char buf;
3716
3717 do
3718 ret = read (linux_event_pipe[0], &buf, 1);
3719 while (ret >= 0 || (ret == -1 && errno == EINTR));
3720 }
3721
3722 /* Put something in the pipe, so the event loop wakes up. */
3723 static void
3724 async_file_mark (void)
3725 {
3726 int ret;
3727
3728 async_file_flush ();
3729
3730 do
3731 ret = write (linux_event_pipe[1], "+", 1);
3732 while (ret == 0 || (ret == -1 && errno == EINTR));
3733
3734 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3735 be awakened anyway. */
3736 }
3737
3738 static ptid_t
3739 linux_wait (ptid_t ptid,
3740 struct target_waitstatus *ourstatus, int target_options)
3741 {
3742 ptid_t event_ptid;
3743
3744 /* Flush the async file first. */
3745 if (target_is_async_p ())
3746 async_file_flush ();
3747
3748 do
3749 {
3750 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3751 }
3752 while ((target_options & TARGET_WNOHANG) == 0
3753 && ptid_equal (event_ptid, null_ptid)
3754 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3755
3756 /* If at least one stop was reported, there may be more. A single
3757 SIGCHLD can signal more than one child stop. */
3758 if (target_is_async_p ()
3759 && (target_options & TARGET_WNOHANG) != 0
3760 && !ptid_equal (event_ptid, null_ptid))
3761 async_file_mark ();
3762
3763 return event_ptid;
3764 }
3765
3766 /* Send a signal to an LWP. */
3767
3768 static int
3769 kill_lwp (unsigned long lwpid, int signo)
3770 {
3771 int ret;
3772
3773 errno = 0;
3774 ret = syscall (__NR_tkill, lwpid, signo);
3775 if (errno == ENOSYS)
3776 {
3777 /* If tkill fails, then we are not using nptl threads, a
3778 configuration we no longer support. */
3779 perror_with_name (("tkill"));
3780 }
3781 return ret;
3782 }
3783
3784 void
3785 linux_stop_lwp (struct lwp_info *lwp)
3786 {
3787 send_sigstop (lwp);
3788 }
3789
3790 static void
3791 send_sigstop (struct lwp_info *lwp)
3792 {
3793 int pid;
3794
3795 pid = lwpid_of (get_lwp_thread (lwp));
3796
3797 /* If we already have a pending stop signal for this process, don't
3798 send another. */
3799 if (lwp->stop_expected)
3800 {
3801 if (debug_threads)
3802 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3803
3804 return;
3805 }
3806
3807 if (debug_threads)
3808 debug_printf ("Sending sigstop to lwp %d\n", pid);
3809
3810 lwp->stop_expected = 1;
3811 kill_lwp (pid, SIGSTOP);
3812 }
3813
3814 static int
3815 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3816 {
3817 struct thread_info *thread = (struct thread_info *) entry;
3818 struct lwp_info *lwp = get_thread_lwp (thread);
3819
3820 /* Ignore EXCEPT. */
3821 if (lwp == except)
3822 return 0;
3823
3824 if (lwp->stopped)
3825 return 0;
3826
3827 send_sigstop (lwp);
3828 return 0;
3829 }
3830
3831 /* Increment the suspend count of an LWP, and stop it, if not stopped
3832 yet. */
3833 static int
3834 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3835 void *except)
3836 {
3837 struct thread_info *thread = (struct thread_info *) entry;
3838 struct lwp_info *lwp = get_thread_lwp (thread);
3839
3840 /* Ignore EXCEPT. */
3841 if (lwp == except)
3842 return 0;
3843
3844 lwp_suspended_inc (lwp);
3845
3846 return send_sigstop_callback (entry, except);
3847 }
3848
3849 static void
3850 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3851 {
3852 /* Store the exit status for later. */
3853 lwp->status_pending_p = 1;
3854 lwp->status_pending = wstat;
3855
3856 /* Store in waitstatus as well, as there's nothing else to process
3857 for this event. */
3858 if (WIFEXITED (wstat))
3859 {
3860 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3861 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3862 }
3863 else if (WIFSIGNALED (wstat))
3864 {
3865 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3866 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3867 }
3868
3869 /* Prevent trying to stop it. */
3870 lwp->stopped = 1;
3871
3872 /* No further stops are expected from a dead lwp. */
3873 lwp->stop_expected = 0;
3874 }
3875
3876 /* Return true if LWP has exited already, and has a pending exit event
3877 to report to GDB. */
3878
3879 static int
3880 lwp_is_marked_dead (struct lwp_info *lwp)
3881 {
3882 return (lwp->status_pending_p
3883 && (WIFEXITED (lwp->status_pending)
3884 || WIFSIGNALED (lwp->status_pending)));
3885 }
3886
3887 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3888
3889 static void
3890 wait_for_sigstop (void)
3891 {
3892 struct thread_info *saved_thread;
3893 ptid_t saved_tid;
3894 int wstat;
3895 int ret;
3896
3897 saved_thread = current_thread;
3898 if (saved_thread != NULL)
3899 saved_tid = saved_thread->entry.id;
3900 else
3901 saved_tid = null_ptid; /* avoid bogus unused warning */
3902
3903 if (debug_threads)
3904 debug_printf ("wait_for_sigstop: pulling events\n");
3905
3906 /* Passing NULL_PTID as filter indicates we want all events to be
3907 left pending. Eventually this returns when there are no
3908 unwaited-for children left. */
3909 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3910 &wstat, __WALL);
3911 gdb_assert (ret == -1);
3912
3913 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3914 current_thread = saved_thread;
3915 else
3916 {
3917 if (debug_threads)
3918 debug_printf ("Previously current thread died.\n");
3919
3920 /* We can't change the current inferior behind GDB's back,
3921 otherwise, a subsequent command may apply to the wrong
3922 process. */
3923 current_thread = NULL;
3924 }
3925 }
3926
3927 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3928 move it out, because we need to report the stop event to GDB. For
3929 example, if the user puts a breakpoint in the jump pad, it's
3930 because she wants to debug it. */
3931
3932 static int
3933 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3934 {
3935 struct thread_info *thread = (struct thread_info *) entry;
3936 struct lwp_info *lwp = get_thread_lwp (thread);
3937
3938 if (lwp->suspended != 0)
3939 {
3940 internal_error (__FILE__, __LINE__,
3941 "LWP %ld is suspended, suspended=%d\n",
3942 lwpid_of (thread), lwp->suspended);
3943 }
3944 gdb_assert (lwp->stopped);
3945
3946 /* Allow debugging the jump pad, gdb_collect, etc.. */
3947 return (supports_fast_tracepoints ()
3948 && agent_loaded_p ()
3949 && (gdb_breakpoint_here (lwp->stop_pc)
3950 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3951 || thread->last_resume_kind == resume_step)
3952 && linux_fast_tracepoint_collecting (lwp, NULL));
3953 }
3954
3955 static void
3956 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3957 {
3958 struct thread_info *thread = (struct thread_info *) entry;
3959 struct thread_info *saved_thread;
3960 struct lwp_info *lwp = get_thread_lwp (thread);
3961 int *wstat;
3962
3963 if (lwp->suspended != 0)
3964 {
3965 internal_error (__FILE__, __LINE__,
3966 "LWP %ld is suspended, suspended=%d\n",
3967 lwpid_of (thread), lwp->suspended);
3968 }
3969 gdb_assert (lwp->stopped);
3970
3971 /* For gdb_breakpoint_here. */
3972 saved_thread = current_thread;
3973 current_thread = thread;
3974
3975 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3976
3977 /* Allow debugging the jump pad, gdb_collect, etc. */
3978 if (!gdb_breakpoint_here (lwp->stop_pc)
3979 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3980 && thread->last_resume_kind != resume_step
3981 && maybe_move_out_of_jump_pad (lwp, wstat))
3982 {
3983 if (debug_threads)
3984 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3985 lwpid_of (thread));
3986
3987 if (wstat)
3988 {
3989 lwp->status_pending_p = 0;
3990 enqueue_one_deferred_signal (lwp, wstat);
3991
3992 if (debug_threads)
3993 debug_printf ("Signal %d for LWP %ld deferred "
3994 "(in jump pad)\n",
3995 WSTOPSIG (*wstat), lwpid_of (thread));
3996 }
3997
3998 linux_resume_one_lwp (lwp, 0, 0, NULL);
3999 }
4000 else
4001 lwp_suspended_inc (lwp);
4002
4003 current_thread = saved_thread;
4004 }
4005
4006 static int
4007 lwp_running (struct inferior_list_entry *entry, void *data)
4008 {
4009 struct thread_info *thread = (struct thread_info *) entry;
4010 struct lwp_info *lwp = get_thread_lwp (thread);
4011
4012 if (lwp_is_marked_dead (lwp))
4013 return 0;
4014 if (lwp->stopped)
4015 return 0;
4016 return 1;
4017 }
4018
4019 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4020 If SUSPEND, then also increase the suspend count of every LWP,
4021 except EXCEPT. */
4022
4023 static void
4024 stop_all_lwps (int suspend, struct lwp_info *except)
4025 {
4026 /* Should not be called recursively. */
4027 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4028
4029 if (debug_threads)
4030 {
4031 debug_enter ();
4032 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4033 suspend ? "stop-and-suspend" : "stop",
4034 except != NULL
4035 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4036 : "none");
4037 }
4038
4039 stopping_threads = (suspend
4040 ? STOPPING_AND_SUSPENDING_THREADS
4041 : STOPPING_THREADS);
4042
4043 if (suspend)
4044 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4045 else
4046 find_inferior (&all_threads, send_sigstop_callback, except);
4047 wait_for_sigstop ();
4048 stopping_threads = NOT_STOPPING_THREADS;
4049
4050 if (debug_threads)
4051 {
4052 debug_printf ("stop_all_lwps done, setting stopping_threads "
4053 "back to !stopping\n");
4054 debug_exit ();
4055 }
4056 }
4057
4058 /* Enqueue one signal in the chain of signals which need to be
4059 delivered to this process on next resume. */
4060
4061 static void
4062 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4063 {
4064 struct pending_signals *p_sig = XNEW (struct pending_signals);
4065
4066 p_sig->prev = lwp->pending_signals;
4067 p_sig->signal = signal;
4068 if (info == NULL)
4069 memset (&p_sig->info, 0, sizeof (siginfo_t));
4070 else
4071 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4072 lwp->pending_signals = p_sig;
4073 }
4074
4075 /* Install breakpoints for software single stepping. */
4076
4077 static void
4078 install_software_single_step_breakpoints (struct lwp_info *lwp)
4079 {
4080 int i;
4081 CORE_ADDR pc;
4082 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4083 VEC (CORE_ADDR) *next_pcs = NULL;
4084 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
4085
4086 next_pcs = (*the_low_target.get_next_pcs) (regcache);
4087
4088 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); ++i)
4089 set_reinsert_breakpoint (pc);
4090
4091 do_cleanups (old_chain);
4092 }
4093
4094 /* Single step via hardware or software single step.
4095 Return 1 if hardware single stepping, 0 if software single stepping
4096 or can't single step. */
4097
4098 static int
4099 single_step (struct lwp_info* lwp)
4100 {
4101 int step = 0;
4102
4103 if (can_hardware_single_step ())
4104 {
4105 step = 1;
4106 }
4107 else if (can_software_single_step ())
4108 {
4109 install_software_single_step_breakpoints (lwp);
4110 step = 0;
4111 }
4112 else
4113 {
4114 if (debug_threads)
4115 debug_printf ("stepping is not implemented on this target");
4116 }
4117
4118 return step;
4119 }
4120
4121 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4122 SIGNAL is nonzero, give it that signal. */
4123
4124 static void
4125 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4126 int step, int signal, siginfo_t *info)
4127 {
4128 struct thread_info *thread = get_lwp_thread (lwp);
4129 struct thread_info *saved_thread;
4130 int fast_tp_collecting;
4131 int ptrace_request;
4132 struct process_info *proc = get_thread_process (thread);
4133
4134 /* Note that target description may not be initialised
4135 (proc->tdesc == NULL) at this point because the program hasn't
4136 stopped at the first instruction yet. It means GDBserver skips
4137 the extra traps from the wrapper program (see option --wrapper).
4138 Code in this function that requires register access should be
4139 guarded by proc->tdesc == NULL or something else. */
4140
4141 if (lwp->stopped == 0)
4142 return;
4143
4144 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4145
4146 fast_tp_collecting = lwp->collecting_fast_tracepoint;
4147
4148 gdb_assert (!stabilizing_threads || fast_tp_collecting);
4149
4150 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4151 user used the "jump" command, or "set $pc = foo"). */
4152 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4153 {
4154 /* Collecting 'while-stepping' actions doesn't make sense
4155 anymore. */
4156 release_while_stepping_state_list (thread);
4157 }
4158
4159 /* If we have pending signals or status, and a new signal, enqueue the
4160 signal. Also enqueue the signal if we are waiting to reinsert a
4161 breakpoint; it will be picked up again below. */
4162 if (signal != 0
4163 && (lwp->status_pending_p
4164 || lwp->pending_signals != NULL
4165 || lwp->bp_reinsert != 0
4166 || fast_tp_collecting))
4167 {
4168 enqueue_pending_signal (lwp, signal, info);
4169
4170 /* Postpone any pending signal. It was enqueued above. */
4171 signal = 0;
4172 }
4173
4174 if (lwp->status_pending_p)
4175 {
4176 if (debug_threads)
4177 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4178 " has pending status\n",
4179 lwpid_of (thread), step ? "step" : "continue",
4180 lwp->stop_expected ? "expected" : "not expected");
4181 return;
4182 }
4183
4184 saved_thread = current_thread;
4185 current_thread = thread;
4186
4187 /* This bit needs some thinking about. If we get a signal that
4188 we must report while a single-step reinsert is still pending,
4189 we often end up resuming the thread. It might be better to
4190 (ew) allow a stack of pending events; then we could be sure that
4191 the reinsert happened right away and not lose any signals.
4192
4193 Making this stack would also shrink the window in which breakpoints are
4194 uninserted (see comment in linux_wait_for_lwp) but not enough for
4195 complete correctness, so it won't solve that problem. It may be
4196 worthwhile just to solve this one, however. */
4197 if (lwp->bp_reinsert != 0)
4198 {
4199 if (debug_threads)
4200 debug_printf (" pending reinsert at 0x%s\n",
4201 paddress (lwp->bp_reinsert));
4202
4203 if (can_hardware_single_step ())
4204 {
4205 if (fast_tp_collecting == 0)
4206 {
4207 if (step == 0)
4208 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4209 if (lwp->suspended)
4210 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4211 lwp->suspended);
4212 }
4213
4214 step = 1;
4215 }
4216 }
4217
4218 if (fast_tp_collecting == 1)
4219 {
4220 if (debug_threads)
4221 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4222 " (exit-jump-pad-bkpt)\n",
4223 lwpid_of (thread));
4224 }
4225 else if (fast_tp_collecting == 2)
4226 {
4227 if (debug_threads)
4228 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4229 " single-stepping\n",
4230 lwpid_of (thread));
4231
4232 if (can_hardware_single_step ())
4233 step = 1;
4234 else
4235 {
4236 internal_error (__FILE__, __LINE__,
4237 "moving out of jump pad single-stepping"
4238 " not implemented on this target");
4239 }
4240 }
4241
4242 /* If we have while-stepping actions in this thread set it stepping.
4243 If we have a signal to deliver, it may or may not be set to
4244 SIG_IGN, we don't know. Assume so, and allow collecting
4245 while-stepping into a signal handler. A possible smart thing to
4246 do would be to set an internal breakpoint at the signal return
4247 address, continue, and carry on catching this while-stepping
4248 action only when that breakpoint is hit. A future
4249 enhancement. */
4250 if (thread->while_stepping != NULL)
4251 {
4252 if (debug_threads)
4253 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4254 lwpid_of (thread));
4255
4256 step = single_step (lwp);
4257 }
4258
4259 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4260 {
4261 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4262
4263 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4264
4265 if (debug_threads)
4266 {
4267 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4268 (long) lwp->stop_pc);
4269 }
4270 }
4271
4272 /* If we have pending signals, consume one unless we are trying to
4273 reinsert a breakpoint or we're trying to finish a fast tracepoint
4274 collect. */
4275 if (lwp->pending_signals != NULL
4276 && lwp->bp_reinsert == 0
4277 && fast_tp_collecting == 0)
4278 {
4279 struct pending_signals **p_sig;
4280
4281 p_sig = &lwp->pending_signals;
4282 while ((*p_sig)->prev != NULL)
4283 p_sig = &(*p_sig)->prev;
4284
4285 signal = (*p_sig)->signal;
4286 if ((*p_sig)->info.si_signo != 0)
4287 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4288 &(*p_sig)->info);
4289
4290 free (*p_sig);
4291 *p_sig = NULL;
4292 }
4293
4294 if (debug_threads)
4295 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4296 lwpid_of (thread), step ? "step" : "continue", signal,
4297 lwp->stop_expected ? "expected" : "not expected");
4298
4299 if (the_low_target.prepare_to_resume != NULL)
4300 the_low_target.prepare_to_resume (lwp);
4301
4302 regcache_invalidate_thread (thread);
4303 errno = 0;
4304 lwp->stepping = step;
4305 if (step)
4306 ptrace_request = PTRACE_SINGLESTEP;
4307 else if (gdb_catching_syscalls_p (lwp))
4308 ptrace_request = PTRACE_SYSCALL;
4309 else
4310 ptrace_request = PTRACE_CONT;
4311 ptrace (ptrace_request,
4312 lwpid_of (thread),
4313 (PTRACE_TYPE_ARG3) 0,
4314 /* Coerce to a uintptr_t first to avoid potential gcc warning
4315 of coercing an 8 byte integer to a 4 byte pointer. */
4316 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4317
4318 current_thread = saved_thread;
4319 if (errno)
4320 perror_with_name ("resuming thread");
4321
4322 /* Successfully resumed. Clear state that no longer makes sense,
4323 and mark the LWP as running. Must not do this before resuming
4324 otherwise if that fails other code will be confused. E.g., we'd
4325 later try to stop the LWP and hang forever waiting for a stop
4326 status. Note that we must not throw after this is cleared,
4327 otherwise handle_zombie_lwp_error would get confused. */
4328 lwp->stopped = 0;
4329 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4330 }
4331
4332 /* Called when we try to resume a stopped LWP and that errors out. If
4333 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4334 or about to become), discard the error, clear any pending status
4335 the LWP may have, and return true (we'll collect the exit status
4336 soon enough). Otherwise, return false. */
4337
4338 static int
4339 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4340 {
4341 struct thread_info *thread = get_lwp_thread (lp);
4342
4343 /* If we get an error after resuming the LWP successfully, we'd
4344 confuse !T state for the LWP being gone. */
4345 gdb_assert (lp->stopped);
4346
4347 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4348 because even if ptrace failed with ESRCH, the tracee may be "not
4349 yet fully dead", but already refusing ptrace requests. In that
4350 case the tracee has 'R (Running)' state for a little bit
4351 (observed in Linux 3.18). See also the note on ESRCH in the
4352 ptrace(2) man page. Instead, check whether the LWP has any state
4353 other than ptrace-stopped. */
4354
4355 /* Don't assume anything if /proc/PID/status can't be read. */
4356 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4357 {
4358 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4359 lp->status_pending_p = 0;
4360 return 1;
4361 }
4362 return 0;
4363 }
4364
4365 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4366 disappears while we try to resume it. */
4367
4368 static void
4369 linux_resume_one_lwp (struct lwp_info *lwp,
4370 int step, int signal, siginfo_t *info)
4371 {
4372 TRY
4373 {
4374 linux_resume_one_lwp_throw (lwp, step, signal, info);
4375 }
4376 CATCH (ex, RETURN_MASK_ERROR)
4377 {
4378 if (!check_ptrace_stopped_lwp_gone (lwp))
4379 throw_exception (ex);
4380 }
4381 END_CATCH
4382 }
4383
4384 struct thread_resume_array
4385 {
4386 struct thread_resume *resume;
4387 size_t n;
4388 };
4389
4390 /* This function is called once per thread via find_inferior.
4391 ARG is a pointer to a thread_resume_array struct.
4392 We look up the thread specified by ENTRY in ARG, and mark the thread
4393 with a pointer to the appropriate resume request.
4394
4395 This algorithm is O(threads * resume elements), but resume elements
4396 is small (and will remain small at least until GDB supports thread
4397 suspension). */
4398
4399 static int
4400 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4401 {
4402 struct thread_info *thread = (struct thread_info *) entry;
4403 struct lwp_info *lwp = get_thread_lwp (thread);
4404 int ndx;
4405 struct thread_resume_array *r;
4406
4407 r = (struct thread_resume_array *) arg;
4408
4409 for (ndx = 0; ndx < r->n; ndx++)
4410 {
4411 ptid_t ptid = r->resume[ndx].thread;
4412 if (ptid_equal (ptid, minus_one_ptid)
4413 || ptid_equal (ptid, entry->id)
4414 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4415 of PID'. */
4416 || (ptid_get_pid (ptid) == pid_of (thread)
4417 && (ptid_is_pid (ptid)
4418 || ptid_get_lwp (ptid) == -1)))
4419 {
4420 if (r->resume[ndx].kind == resume_stop
4421 && thread->last_resume_kind == resume_stop)
4422 {
4423 if (debug_threads)
4424 debug_printf ("already %s LWP %ld at GDB's request\n",
4425 (thread->last_status.kind
4426 == TARGET_WAITKIND_STOPPED)
4427 ? "stopped"
4428 : "stopping",
4429 lwpid_of (thread));
4430
4431 continue;
4432 }
4433
4434 lwp->resume = &r->resume[ndx];
4435 thread->last_resume_kind = lwp->resume->kind;
4436
4437 lwp->step_range_start = lwp->resume->step_range_start;
4438 lwp->step_range_end = lwp->resume->step_range_end;
4439
4440 /* If we had a deferred signal to report, dequeue one now.
4441 This can happen if LWP gets more than one signal while
4442 trying to get out of a jump pad. */
4443 if (lwp->stopped
4444 && !lwp->status_pending_p
4445 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4446 {
4447 lwp->status_pending_p = 1;
4448
4449 if (debug_threads)
4450 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4451 "leaving status pending.\n",
4452 WSTOPSIG (lwp->status_pending),
4453 lwpid_of (thread));
4454 }
4455
4456 return 0;
4457 }
4458 }
4459
4460 /* No resume action for this thread. */
4461 lwp->resume = NULL;
4462
4463 return 0;
4464 }
4465
4466 /* find_inferior callback for linux_resume.
4467 Set *FLAG_P if this lwp has an interesting status pending. */
4468
4469 static int
4470 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4471 {
4472 struct thread_info *thread = (struct thread_info *) entry;
4473 struct lwp_info *lwp = get_thread_lwp (thread);
4474
4475 /* LWPs which will not be resumed are not interesting, because
4476 we might not wait for them next time through linux_wait. */
4477 if (lwp->resume == NULL)
4478 return 0;
4479
4480 if (thread_still_has_status_pending_p (thread))
4481 * (int *) flag_p = 1;
4482
4483 return 0;
4484 }
4485
4486 /* Return 1 if this lwp that GDB wants running is stopped at an
4487 internal breakpoint that we need to step over. It assumes that any
4488 required STOP_PC adjustment has already been propagated to the
4489 inferior's regcache. */
4490
4491 static int
4492 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4493 {
4494 struct thread_info *thread = (struct thread_info *) entry;
4495 struct lwp_info *lwp = get_thread_lwp (thread);
4496 struct thread_info *saved_thread;
4497 CORE_ADDR pc;
4498 struct process_info *proc = get_thread_process (thread);
4499
4500 /* GDBserver is skipping the extra traps from the wrapper program,
4501 don't have to do step over. */
4502 if (proc->tdesc == NULL)
4503 return 0;
4504
4505 /* LWPs which will not be resumed are not interesting, because we
4506 might not wait for them next time through linux_wait. */
4507
4508 if (!lwp->stopped)
4509 {
4510 if (debug_threads)
4511 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4512 lwpid_of (thread));
4513 return 0;
4514 }
4515
4516 if (thread->last_resume_kind == resume_stop)
4517 {
4518 if (debug_threads)
4519 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4520 " stopped\n",
4521 lwpid_of (thread));
4522 return 0;
4523 }
4524
4525 gdb_assert (lwp->suspended >= 0);
4526
4527 if (lwp->suspended)
4528 {
4529 if (debug_threads)
4530 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4531 lwpid_of (thread));
4532 return 0;
4533 }
4534
4535 if (!lwp->need_step_over)
4536 {
4537 if (debug_threads)
4538 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4539 }
4540
4541 if (lwp->status_pending_p)
4542 {
4543 if (debug_threads)
4544 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4545 " status.\n",
4546 lwpid_of (thread));
4547 return 0;
4548 }
4549
4550 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4551 or we have. */
4552 pc = get_pc (lwp);
4553
4554 /* If the PC has changed since we stopped, then don't do anything,
4555 and let the breakpoint/tracepoint be hit. This happens if, for
4556 instance, GDB handled the decr_pc_after_break subtraction itself,
4557 GDB is OOL stepping this thread, or the user has issued a "jump"
4558 command, or poked thread's registers herself. */
4559 if (pc != lwp->stop_pc)
4560 {
4561 if (debug_threads)
4562 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4563 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4564 lwpid_of (thread),
4565 paddress (lwp->stop_pc), paddress (pc));
4566
4567 lwp->need_step_over = 0;
4568 return 0;
4569 }
4570
4571 saved_thread = current_thread;
4572 current_thread = thread;
4573
4574 /* We can only step over breakpoints we know about. */
4575 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4576 {
4577 /* Don't step over a breakpoint that GDB expects to hit
4578 though. If the condition is being evaluated on the target's side
4579 and it evaluate to false, step over this breakpoint as well. */
4580 if (gdb_breakpoint_here (pc)
4581 && gdb_condition_true_at_breakpoint (pc)
4582 && gdb_no_commands_at_breakpoint (pc))
4583 {
4584 if (debug_threads)
4585 debug_printf ("Need step over [LWP %ld]? yes, but found"
4586 " GDB breakpoint at 0x%s; skipping step over\n",
4587 lwpid_of (thread), paddress (pc));
4588
4589 current_thread = saved_thread;
4590 return 0;
4591 }
4592 else
4593 {
4594 if (debug_threads)
4595 debug_printf ("Need step over [LWP %ld]? yes, "
4596 "found breakpoint at 0x%s\n",
4597 lwpid_of (thread), paddress (pc));
4598
4599 /* We've found an lwp that needs stepping over --- return 1 so
4600 that find_inferior stops looking. */
4601 current_thread = saved_thread;
4602
4603 /* If the step over is cancelled, this is set again. */
4604 lwp->need_step_over = 0;
4605 return 1;
4606 }
4607 }
4608
4609 current_thread = saved_thread;
4610
4611 if (debug_threads)
4612 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4613 " at 0x%s\n",
4614 lwpid_of (thread), paddress (pc));
4615
4616 return 0;
4617 }
4618
4619 /* Start a step-over operation on LWP. When LWP stopped at a
4620 breakpoint, to make progress, we need to remove the breakpoint out
4621 of the way. If we let other threads run while we do that, they may
4622 pass by the breakpoint location and miss hitting it. To avoid
4623 that, a step-over momentarily stops all threads while LWP is
4624 single-stepped by either hardware or software while the breakpoint
4625 is temporarily uninserted from the inferior. When the single-step
4626 finishes, we reinsert the breakpoint, and let all threads that are
4627 supposed to be running, run again. */
4628
4629 static int
4630 start_step_over (struct lwp_info *lwp)
4631 {
4632 struct thread_info *thread = get_lwp_thread (lwp);
4633 struct thread_info *saved_thread;
4634 CORE_ADDR pc;
4635 int step;
4636
4637 if (debug_threads)
4638 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4639 lwpid_of (thread));
4640
4641 stop_all_lwps (1, lwp);
4642
4643 if (lwp->suspended != 0)
4644 {
4645 internal_error (__FILE__, __LINE__,
4646 "LWP %ld suspended=%d\n", lwpid_of (thread),
4647 lwp->suspended);
4648 }
4649
4650 if (debug_threads)
4651 debug_printf ("Done stopping all threads for step-over.\n");
4652
4653 /* Note, we should always reach here with an already adjusted PC,
4654 either by GDB (if we're resuming due to GDB's request), or by our
4655 caller, if we just finished handling an internal breakpoint GDB
4656 shouldn't care about. */
4657 pc = get_pc (lwp);
4658
4659 saved_thread = current_thread;
4660 current_thread = thread;
4661
4662 lwp->bp_reinsert = pc;
4663 uninsert_breakpoints_at (pc);
4664 uninsert_fast_tracepoint_jumps_at (pc);
4665
4666 step = single_step (lwp);
4667
4668 current_thread = saved_thread;
4669
4670 linux_resume_one_lwp (lwp, step, 0, NULL);
4671
4672 /* Require next event from this LWP. */
4673 step_over_bkpt = thread->entry.id;
4674 return 1;
4675 }
4676
4677 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4678 start_step_over, if still there, and delete any reinsert
4679 breakpoints we've set, on non hardware single-step targets. */
4680
4681 static int
4682 finish_step_over (struct lwp_info *lwp)
4683 {
4684 if (lwp->bp_reinsert != 0)
4685 {
4686 if (debug_threads)
4687 debug_printf ("Finished step over.\n");
4688
4689 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4690 may be no breakpoint to reinsert there by now. */
4691 reinsert_breakpoints_at (lwp->bp_reinsert);
4692 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4693
4694 lwp->bp_reinsert = 0;
4695
4696 /* Delete any software-single-step reinsert breakpoints. No
4697 longer needed. We don't have to worry about other threads
4698 hitting this trap, and later not being able to explain it,
4699 because we were stepping over a breakpoint, and we hold all
4700 threads but LWP stopped while doing that. */
4701 if (!can_hardware_single_step ())
4702 delete_reinsert_breakpoints ();
4703
4704 step_over_bkpt = null_ptid;
4705 return 1;
4706 }
4707 else
4708 return 0;
4709 }
4710
4711 /* If there's a step over in progress, wait until all threads stop
4712 (that is, until the stepping thread finishes its step), and
4713 unsuspend all lwps. The stepping thread ends with its status
4714 pending, which is processed later when we get back to processing
4715 events. */
4716
4717 static void
4718 complete_ongoing_step_over (void)
4719 {
4720 if (!ptid_equal (step_over_bkpt, null_ptid))
4721 {
4722 struct lwp_info *lwp;
4723 int wstat;
4724 int ret;
4725
4726 if (debug_threads)
4727 debug_printf ("detach: step over in progress, finish it first\n");
4728
4729 /* Passing NULL_PTID as filter indicates we want all events to
4730 be left pending. Eventually this returns when there are no
4731 unwaited-for children left. */
4732 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4733 &wstat, __WALL);
4734 gdb_assert (ret == -1);
4735
4736 lwp = find_lwp_pid (step_over_bkpt);
4737 if (lwp != NULL)
4738 finish_step_over (lwp);
4739 step_over_bkpt = null_ptid;
4740 unsuspend_all_lwps (lwp);
4741 }
4742 }
4743
4744 /* This function is called once per thread. We check the thread's resume
4745 request, which will tell us whether to resume, step, or leave the thread
4746 stopped; and what signal, if any, it should be sent.
4747
4748 For threads which we aren't explicitly told otherwise, we preserve
4749 the stepping flag; this is used for stepping over gdbserver-placed
4750 breakpoints.
4751
4752 If pending_flags was set in any thread, we queue any needed
4753 signals, since we won't actually resume. We already have a pending
4754 event to report, so we don't need to preserve any step requests;
4755 they should be re-issued if necessary. */
4756
4757 static int
4758 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4759 {
4760 struct thread_info *thread = (struct thread_info *) entry;
4761 struct lwp_info *lwp = get_thread_lwp (thread);
4762 int step;
4763 int leave_all_stopped = * (int *) arg;
4764 int leave_pending;
4765
4766 if (lwp->resume == NULL)
4767 return 0;
4768
4769 if (lwp->resume->kind == resume_stop)
4770 {
4771 if (debug_threads)
4772 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4773
4774 if (!lwp->stopped)
4775 {
4776 if (debug_threads)
4777 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4778
4779 /* Stop the thread, and wait for the event asynchronously,
4780 through the event loop. */
4781 send_sigstop (lwp);
4782 }
4783 else
4784 {
4785 if (debug_threads)
4786 debug_printf ("already stopped LWP %ld\n",
4787 lwpid_of (thread));
4788
4789 /* The LWP may have been stopped in an internal event that
4790 was not meant to be notified back to GDB (e.g., gdbserver
4791 breakpoint), so we should be reporting a stop event in
4792 this case too. */
4793
4794 /* If the thread already has a pending SIGSTOP, this is a
4795 no-op. Otherwise, something later will presumably resume
4796 the thread and this will cause it to cancel any pending
4797 operation, due to last_resume_kind == resume_stop. If
4798 the thread already has a pending status to report, we
4799 will still report it the next time we wait - see
4800 status_pending_p_callback. */
4801
4802 /* If we already have a pending signal to report, then
4803 there's no need to queue a SIGSTOP, as this means we're
4804 midway through moving the LWP out of the jumppad, and we
4805 will report the pending signal as soon as that is
4806 finished. */
4807 if (lwp->pending_signals_to_report == NULL)
4808 send_sigstop (lwp);
4809 }
4810
4811 /* For stop requests, we're done. */
4812 lwp->resume = NULL;
4813 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4814 return 0;
4815 }
4816
4817 /* If this thread which is about to be resumed has a pending status,
4818 then don't resume it - we can just report the pending status.
4819 Likewise if it is suspended, because e.g., another thread is
4820 stepping past a breakpoint. Make sure to queue any signals that
4821 would otherwise be sent. In all-stop mode, we do this decision
4822 based on if *any* thread has a pending status. If there's a
4823 thread that needs the step-over-breakpoint dance, then don't
4824 resume any other thread but that particular one. */
4825 leave_pending = (lwp->suspended
4826 || lwp->status_pending_p
4827 || leave_all_stopped);
4828
4829 if (!leave_pending)
4830 {
4831 if (debug_threads)
4832 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4833
4834 step = (lwp->resume->kind == resume_step);
4835 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4836 }
4837 else
4838 {
4839 if (debug_threads)
4840 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4841
4842 /* If we have a new signal, enqueue the signal. */
4843 if (lwp->resume->sig != 0)
4844 {
4845 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4846
4847 p_sig->prev = lwp->pending_signals;
4848 p_sig->signal = lwp->resume->sig;
4849
4850 /* If this is the same signal we were previously stopped by,
4851 make sure to queue its siginfo. We can ignore the return
4852 value of ptrace; if it fails, we'll skip
4853 PTRACE_SETSIGINFO. */
4854 if (WIFSTOPPED (lwp->last_status)
4855 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4856 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4857 &p_sig->info);
4858
4859 lwp->pending_signals = p_sig;
4860 }
4861 }
4862
4863 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4864 lwp->resume = NULL;
4865 return 0;
4866 }
4867
4868 static void
4869 linux_resume (struct thread_resume *resume_info, size_t n)
4870 {
4871 struct thread_resume_array array = { resume_info, n };
4872 struct thread_info *need_step_over = NULL;
4873 int any_pending;
4874 int leave_all_stopped;
4875
4876 if (debug_threads)
4877 {
4878 debug_enter ();
4879 debug_printf ("linux_resume:\n");
4880 }
4881
4882 find_inferior (&all_threads, linux_set_resume_request, &array);
4883
4884 /* If there is a thread which would otherwise be resumed, which has
4885 a pending status, then don't resume any threads - we can just
4886 report the pending status. Make sure to queue any signals that
4887 would otherwise be sent. In non-stop mode, we'll apply this
4888 logic to each thread individually. We consume all pending events
4889 before considering to start a step-over (in all-stop). */
4890 any_pending = 0;
4891 if (!non_stop)
4892 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4893
4894 /* If there is a thread which would otherwise be resumed, which is
4895 stopped at a breakpoint that needs stepping over, then don't
4896 resume any threads - have it step over the breakpoint with all
4897 other threads stopped, then resume all threads again. Make sure
4898 to queue any signals that would otherwise be delivered or
4899 queued. */
4900 if (!any_pending && supports_breakpoints ())
4901 need_step_over
4902 = (struct thread_info *) find_inferior (&all_threads,
4903 need_step_over_p, NULL);
4904
4905 leave_all_stopped = (need_step_over != NULL || any_pending);
4906
4907 if (debug_threads)
4908 {
4909 if (need_step_over != NULL)
4910 debug_printf ("Not resuming all, need step over\n");
4911 else if (any_pending)
4912 debug_printf ("Not resuming, all-stop and found "
4913 "an LWP with pending status\n");
4914 else
4915 debug_printf ("Resuming, no pending status or step over needed\n");
4916 }
4917
4918 /* Even if we're leaving threads stopped, queue all signals we'd
4919 otherwise deliver. */
4920 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4921
4922 if (need_step_over)
4923 start_step_over (get_thread_lwp (need_step_over));
4924
4925 if (debug_threads)
4926 {
4927 debug_printf ("linux_resume done\n");
4928 debug_exit ();
4929 }
4930
4931 /* We may have events that were pending that can/should be sent to
4932 the client now. Trigger a linux_wait call. */
4933 if (target_is_async_p ())
4934 async_file_mark ();
4935 }
4936
4937 /* This function is called once per thread. We check the thread's
4938 last resume request, which will tell us whether to resume, step, or
4939 leave the thread stopped. Any signal the client requested to be
4940 delivered has already been enqueued at this point.
4941
4942 If any thread that GDB wants running is stopped at an internal
4943 breakpoint that needs stepping over, we start a step-over operation
4944 on that particular thread, and leave all others stopped. */
4945
4946 static int
4947 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4948 {
4949 struct thread_info *thread = (struct thread_info *) entry;
4950 struct lwp_info *lwp = get_thread_lwp (thread);
4951 int step;
4952
4953 if (lwp == except)
4954 return 0;
4955
4956 if (debug_threads)
4957 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4958
4959 if (!lwp->stopped)
4960 {
4961 if (debug_threads)
4962 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4963 return 0;
4964 }
4965
4966 if (thread->last_resume_kind == resume_stop
4967 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4968 {
4969 if (debug_threads)
4970 debug_printf (" client wants LWP to remain %ld stopped\n",
4971 lwpid_of (thread));
4972 return 0;
4973 }
4974
4975 if (lwp->status_pending_p)
4976 {
4977 if (debug_threads)
4978 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4979 lwpid_of (thread));
4980 return 0;
4981 }
4982
4983 gdb_assert (lwp->suspended >= 0);
4984
4985 if (lwp->suspended)
4986 {
4987 if (debug_threads)
4988 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4989 return 0;
4990 }
4991
4992 if (thread->last_resume_kind == resume_stop
4993 && lwp->pending_signals_to_report == NULL
4994 && lwp->collecting_fast_tracepoint == 0)
4995 {
4996 /* We haven't reported this LWP as stopped yet (otherwise, the
4997 last_status.kind check above would catch it, and we wouldn't
4998 reach here. This LWP may have been momentarily paused by a
4999 stop_all_lwps call while handling for example, another LWP's
5000 step-over. In that case, the pending expected SIGSTOP signal
5001 that was queued at vCont;t handling time will have already
5002 been consumed by wait_for_sigstop, and so we need to requeue
5003 another one here. Note that if the LWP already has a SIGSTOP
5004 pending, this is a no-op. */
5005
5006 if (debug_threads)
5007 debug_printf ("Client wants LWP %ld to stop. "
5008 "Making sure it has a SIGSTOP pending\n",
5009 lwpid_of (thread));
5010
5011 send_sigstop (lwp);
5012 }
5013
5014 if (thread->last_resume_kind == resume_step)
5015 {
5016 if (debug_threads)
5017 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5018 lwpid_of (thread));
5019 step = 1;
5020 }
5021 else if (lwp->bp_reinsert != 0)
5022 {
5023 if (debug_threads)
5024 debug_printf (" stepping LWP %ld, reinsert set\n",
5025 lwpid_of (thread));
5026 step = 1;
5027 }
5028 else
5029 step = 0;
5030
5031 linux_resume_one_lwp (lwp, step, 0, NULL);
5032 return 0;
5033 }
5034
5035 static int
5036 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
5037 {
5038 struct thread_info *thread = (struct thread_info *) entry;
5039 struct lwp_info *lwp = get_thread_lwp (thread);
5040
5041 if (lwp == except)
5042 return 0;
5043
5044 lwp_suspended_decr (lwp);
5045
5046 return proceed_one_lwp (entry, except);
5047 }
5048
5049 /* When we finish a step-over, set threads running again. If there's
5050 another thread that may need a step-over, now's the time to start
5051 it. Eventually, we'll move all threads past their breakpoints. */
5052
5053 static void
5054 proceed_all_lwps (void)
5055 {
5056 struct thread_info *need_step_over;
5057
5058 /* If there is a thread which would otherwise be resumed, which is
5059 stopped at a breakpoint that needs stepping over, then don't
5060 resume any threads - have it step over the breakpoint with all
5061 other threads stopped, then resume all threads again. */
5062
5063 if (supports_breakpoints ())
5064 {
5065 need_step_over
5066 = (struct thread_info *) find_inferior (&all_threads,
5067 need_step_over_p, NULL);
5068
5069 if (need_step_over != NULL)
5070 {
5071 if (debug_threads)
5072 debug_printf ("proceed_all_lwps: found "
5073 "thread %ld needing a step-over\n",
5074 lwpid_of (need_step_over));
5075
5076 start_step_over (get_thread_lwp (need_step_over));
5077 return;
5078 }
5079 }
5080
5081 if (debug_threads)
5082 debug_printf ("Proceeding, no step-over needed\n");
5083
5084 find_inferior (&all_threads, proceed_one_lwp, NULL);
5085 }
5086
5087 /* Stopped LWPs that the client wanted to be running, that don't have
5088 pending statuses, are set to run again, except for EXCEPT, if not
5089 NULL. This undoes a stop_all_lwps call. */
5090
5091 static void
5092 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5093 {
5094 if (debug_threads)
5095 {
5096 debug_enter ();
5097 if (except)
5098 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5099 lwpid_of (get_lwp_thread (except)));
5100 else
5101 debug_printf ("unstopping all lwps\n");
5102 }
5103
5104 if (unsuspend)
5105 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5106 else
5107 find_inferior (&all_threads, proceed_one_lwp, except);
5108
5109 if (debug_threads)
5110 {
5111 debug_printf ("unstop_all_lwps done\n");
5112 debug_exit ();
5113 }
5114 }
5115
5116
5117 #ifdef HAVE_LINUX_REGSETS
5118
5119 #define use_linux_regsets 1
5120
5121 /* Returns true if REGSET has been disabled. */
5122
5123 static int
5124 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5125 {
5126 return (info->disabled_regsets != NULL
5127 && info->disabled_regsets[regset - info->regsets]);
5128 }
5129
5130 /* Disable REGSET. */
5131
5132 static void
5133 disable_regset (struct regsets_info *info, struct regset_info *regset)
5134 {
5135 int dr_offset;
5136
5137 dr_offset = regset - info->regsets;
5138 if (info->disabled_regsets == NULL)
5139 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5140 info->disabled_regsets[dr_offset] = 1;
5141 }
5142
5143 static int
5144 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5145 struct regcache *regcache)
5146 {
5147 struct regset_info *regset;
5148 int saw_general_regs = 0;
5149 int pid;
5150 struct iovec iov;
5151
5152 pid = lwpid_of (current_thread);
5153 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5154 {
5155 void *buf, *data;
5156 int nt_type, res;
5157
5158 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5159 continue;
5160
5161 buf = xmalloc (regset->size);
5162
5163 nt_type = regset->nt_type;
5164 if (nt_type)
5165 {
5166 iov.iov_base = buf;
5167 iov.iov_len = regset->size;
5168 data = (void *) &iov;
5169 }
5170 else
5171 data = buf;
5172
5173 #ifndef __sparc__
5174 res = ptrace (regset->get_request, pid,
5175 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5176 #else
5177 res = ptrace (regset->get_request, pid, data, nt_type);
5178 #endif
5179 if (res < 0)
5180 {
5181 if (errno == EIO)
5182 {
5183 /* If we get EIO on a regset, do not try it again for
5184 this process mode. */
5185 disable_regset (regsets_info, regset);
5186 }
5187 else if (errno == ENODATA)
5188 {
5189 /* ENODATA may be returned if the regset is currently
5190 not "active". This can happen in normal operation,
5191 so suppress the warning in this case. */
5192 }
5193 else
5194 {
5195 char s[256];
5196 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5197 pid);
5198 perror (s);
5199 }
5200 }
5201 else
5202 {
5203 if (regset->type == GENERAL_REGS)
5204 saw_general_regs = 1;
5205 regset->store_function (regcache, buf);
5206 }
5207 free (buf);
5208 }
5209 if (saw_general_regs)
5210 return 0;
5211 else
5212 return 1;
5213 }
5214
5215 static int
5216 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5217 struct regcache *regcache)
5218 {
5219 struct regset_info *regset;
5220 int saw_general_regs = 0;
5221 int pid;
5222 struct iovec iov;
5223
5224 pid = lwpid_of (current_thread);
5225 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5226 {
5227 void *buf, *data;
5228 int nt_type, res;
5229
5230 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5231 || regset->fill_function == NULL)
5232 continue;
5233
5234 buf = xmalloc (regset->size);
5235
5236 /* First fill the buffer with the current register set contents,
5237 in case there are any items in the kernel's regset that are
5238 not in gdbserver's regcache. */
5239
5240 nt_type = regset->nt_type;
5241 if (nt_type)
5242 {
5243 iov.iov_base = buf;
5244 iov.iov_len = regset->size;
5245 data = (void *) &iov;
5246 }
5247 else
5248 data = buf;
5249
5250 #ifndef __sparc__
5251 res = ptrace (regset->get_request, pid,
5252 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5253 #else
5254 res = ptrace (regset->get_request, pid, data, nt_type);
5255 #endif
5256
5257 if (res == 0)
5258 {
5259 /* Then overlay our cached registers on that. */
5260 regset->fill_function (regcache, buf);
5261
5262 /* Only now do we write the register set. */
5263 #ifndef __sparc__
5264 res = ptrace (regset->set_request, pid,
5265 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5266 #else
5267 res = ptrace (regset->set_request, pid, data, nt_type);
5268 #endif
5269 }
5270
5271 if (res < 0)
5272 {
5273 if (errno == EIO)
5274 {
5275 /* If we get EIO on a regset, do not try it again for
5276 this process mode. */
5277 disable_regset (regsets_info, regset);
5278 }
5279 else if (errno == ESRCH)
5280 {
5281 /* At this point, ESRCH should mean the process is
5282 already gone, in which case we simply ignore attempts
5283 to change its registers. See also the related
5284 comment in linux_resume_one_lwp. */
5285 free (buf);
5286 return 0;
5287 }
5288 else
5289 {
5290 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5291 }
5292 }
5293 else if (regset->type == GENERAL_REGS)
5294 saw_general_regs = 1;
5295 free (buf);
5296 }
5297 if (saw_general_regs)
5298 return 0;
5299 else
5300 return 1;
5301 }
5302
5303 #else /* !HAVE_LINUX_REGSETS */
5304
5305 #define use_linux_regsets 0
5306 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5307 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5308
5309 #endif
5310
5311 /* Return 1 if register REGNO is supported by one of the regset ptrace
5312 calls or 0 if it has to be transferred individually. */
5313
5314 static int
5315 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5316 {
5317 unsigned char mask = 1 << (regno % 8);
5318 size_t index = regno / 8;
5319
5320 return (use_linux_regsets
5321 && (regs_info->regset_bitmap == NULL
5322 || (regs_info->regset_bitmap[index] & mask) != 0));
5323 }
5324
5325 #ifdef HAVE_LINUX_USRREGS
5326
5327 static int
5328 register_addr (const struct usrregs_info *usrregs, int regnum)
5329 {
5330 int addr;
5331
5332 if (regnum < 0 || regnum >= usrregs->num_regs)
5333 error ("Invalid register number %d.", regnum);
5334
5335 addr = usrregs->regmap[regnum];
5336
5337 return addr;
5338 }
5339
5340 /* Fetch one register. */
5341 static void
5342 fetch_register (const struct usrregs_info *usrregs,
5343 struct regcache *regcache, int regno)
5344 {
5345 CORE_ADDR regaddr;
5346 int i, size;
5347 char *buf;
5348 int pid;
5349
5350 if (regno >= usrregs->num_regs)
5351 return;
5352 if ((*the_low_target.cannot_fetch_register) (regno))
5353 return;
5354
5355 regaddr = register_addr (usrregs, regno);
5356 if (regaddr == -1)
5357 return;
5358
5359 size = ((register_size (regcache->tdesc, regno)
5360 + sizeof (PTRACE_XFER_TYPE) - 1)
5361 & -sizeof (PTRACE_XFER_TYPE));
5362 buf = (char *) alloca (size);
5363
5364 pid = lwpid_of (current_thread);
5365 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5366 {
5367 errno = 0;
5368 *(PTRACE_XFER_TYPE *) (buf + i) =
5369 ptrace (PTRACE_PEEKUSER, pid,
5370 /* Coerce to a uintptr_t first to avoid potential gcc warning
5371 of coercing an 8 byte integer to a 4 byte pointer. */
5372 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5373 regaddr += sizeof (PTRACE_XFER_TYPE);
5374 if (errno != 0)
5375 error ("reading register %d: %s", regno, strerror (errno));
5376 }
5377
5378 if (the_low_target.supply_ptrace_register)
5379 the_low_target.supply_ptrace_register (regcache, regno, buf);
5380 else
5381 supply_register (regcache, regno, buf);
5382 }
5383
5384 /* Store one register. */
5385 static void
5386 store_register (const struct usrregs_info *usrregs,
5387 struct regcache *regcache, int regno)
5388 {
5389 CORE_ADDR regaddr;
5390 int i, size;
5391 char *buf;
5392 int pid;
5393
5394 if (regno >= usrregs->num_regs)
5395 return;
5396 if ((*the_low_target.cannot_store_register) (regno))
5397 return;
5398
5399 regaddr = register_addr (usrregs, regno);
5400 if (regaddr == -1)
5401 return;
5402
5403 size = ((register_size (regcache->tdesc, regno)
5404 + sizeof (PTRACE_XFER_TYPE) - 1)
5405 & -sizeof (PTRACE_XFER_TYPE));
5406 buf = (char *) alloca (size);
5407 memset (buf, 0, size);
5408
5409 if (the_low_target.collect_ptrace_register)
5410 the_low_target.collect_ptrace_register (regcache, regno, buf);
5411 else
5412 collect_register (regcache, regno, buf);
5413
5414 pid = lwpid_of (current_thread);
5415 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5416 {
5417 errno = 0;
5418 ptrace (PTRACE_POKEUSER, pid,
5419 /* Coerce to a uintptr_t first to avoid potential gcc warning
5420 about coercing an 8 byte integer to a 4 byte pointer. */
5421 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5422 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5423 if (errno != 0)
5424 {
5425 /* At this point, ESRCH should mean the process is
5426 already gone, in which case we simply ignore attempts
5427 to change its registers. See also the related
5428 comment in linux_resume_one_lwp. */
5429 if (errno == ESRCH)
5430 return;
5431
5432 if ((*the_low_target.cannot_store_register) (regno) == 0)
5433 error ("writing register %d: %s", regno, strerror (errno));
5434 }
5435 regaddr += sizeof (PTRACE_XFER_TYPE);
5436 }
5437 }
5438
5439 /* Fetch all registers, or just one, from the child process.
5440 If REGNO is -1, do this for all registers, skipping any that are
5441 assumed to have been retrieved by regsets_fetch_inferior_registers,
5442 unless ALL is non-zero.
5443 Otherwise, REGNO specifies which register (so we can save time). */
5444 static void
5445 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5446 struct regcache *regcache, int regno, int all)
5447 {
5448 struct usrregs_info *usr = regs_info->usrregs;
5449
5450 if (regno == -1)
5451 {
5452 for (regno = 0; regno < usr->num_regs; regno++)
5453 if (all || !linux_register_in_regsets (regs_info, regno))
5454 fetch_register (usr, regcache, regno);
5455 }
5456 else
5457 fetch_register (usr, regcache, regno);
5458 }
5459
5460 /* Store our register values back into the inferior.
5461 If REGNO is -1, do this for all registers, skipping any that are
5462 assumed to have been saved by regsets_store_inferior_registers,
5463 unless ALL is non-zero.
5464 Otherwise, REGNO specifies which register (so we can save time). */
5465 static void
5466 usr_store_inferior_registers (const struct regs_info *regs_info,
5467 struct regcache *regcache, int regno, int all)
5468 {
5469 struct usrregs_info *usr = regs_info->usrregs;
5470
5471 if (regno == -1)
5472 {
5473 for (regno = 0; regno < usr->num_regs; regno++)
5474 if (all || !linux_register_in_regsets (regs_info, regno))
5475 store_register (usr, regcache, regno);
5476 }
5477 else
5478 store_register (usr, regcache, regno);
5479 }
5480
5481 #else /* !HAVE_LINUX_USRREGS */
5482
5483 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5484 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5485
5486 #endif
5487
5488
5489 static void
5490 linux_fetch_registers (struct regcache *regcache, int regno)
5491 {
5492 int use_regsets;
5493 int all = 0;
5494 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5495
5496 if (regno == -1)
5497 {
5498 if (the_low_target.fetch_register != NULL
5499 && regs_info->usrregs != NULL)
5500 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5501 (*the_low_target.fetch_register) (regcache, regno);
5502
5503 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5504 if (regs_info->usrregs != NULL)
5505 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5506 }
5507 else
5508 {
5509 if (the_low_target.fetch_register != NULL
5510 && (*the_low_target.fetch_register) (regcache, regno))
5511 return;
5512
5513 use_regsets = linux_register_in_regsets (regs_info, regno);
5514 if (use_regsets)
5515 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5516 regcache);
5517 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5518 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5519 }
5520 }
5521
5522 static void
5523 linux_store_registers (struct regcache *regcache, int regno)
5524 {
5525 int use_regsets;
5526 int all = 0;
5527 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5528
5529 if (regno == -1)
5530 {
5531 all = regsets_store_inferior_registers (regs_info->regsets_info,
5532 regcache);
5533 if (regs_info->usrregs != NULL)
5534 usr_store_inferior_registers (regs_info, regcache, regno, all);
5535 }
5536 else
5537 {
5538 use_regsets = linux_register_in_regsets (regs_info, regno);
5539 if (use_regsets)
5540 all = regsets_store_inferior_registers (regs_info->regsets_info,
5541 regcache);
5542 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5543 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5544 }
5545 }
5546
5547
5548 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5549 to debugger memory starting at MYADDR. */
5550
5551 static int
5552 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5553 {
5554 int pid = lwpid_of (current_thread);
5555 register PTRACE_XFER_TYPE *buffer;
5556 register CORE_ADDR addr;
5557 register int count;
5558 char filename[64];
5559 register int i;
5560 int ret;
5561 int fd;
5562
5563 /* Try using /proc. Don't bother for one word. */
5564 if (len >= 3 * sizeof (long))
5565 {
5566 int bytes;
5567
5568 /* We could keep this file open and cache it - possibly one per
5569 thread. That requires some juggling, but is even faster. */
5570 sprintf (filename, "/proc/%d/mem", pid);
5571 fd = open (filename, O_RDONLY | O_LARGEFILE);
5572 if (fd == -1)
5573 goto no_proc;
5574
5575 /* If pread64 is available, use it. It's faster if the kernel
5576 supports it (only one syscall), and it's 64-bit safe even on
5577 32-bit platforms (for instance, SPARC debugging a SPARC64
5578 application). */
5579 #ifdef HAVE_PREAD64
5580 bytes = pread64 (fd, myaddr, len, memaddr);
5581 #else
5582 bytes = -1;
5583 if (lseek (fd, memaddr, SEEK_SET) != -1)
5584 bytes = read (fd, myaddr, len);
5585 #endif
5586
5587 close (fd);
5588 if (bytes == len)
5589 return 0;
5590
5591 /* Some data was read, we'll try to get the rest with ptrace. */
5592 if (bytes > 0)
5593 {
5594 memaddr += bytes;
5595 myaddr += bytes;
5596 len -= bytes;
5597 }
5598 }
5599
5600 no_proc:
5601 /* Round starting address down to longword boundary. */
5602 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5603 /* Round ending address up; get number of longwords that makes. */
5604 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5605 / sizeof (PTRACE_XFER_TYPE));
5606 /* Allocate buffer of that many longwords. */
5607 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5608
5609 /* Read all the longwords */
5610 errno = 0;
5611 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5612 {
5613 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5614 about coercing an 8 byte integer to a 4 byte pointer. */
5615 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5616 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5617 (PTRACE_TYPE_ARG4) 0);
5618 if (errno)
5619 break;
5620 }
5621 ret = errno;
5622
5623 /* Copy appropriate bytes out of the buffer. */
5624 if (i > 0)
5625 {
5626 i *= sizeof (PTRACE_XFER_TYPE);
5627 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5628 memcpy (myaddr,
5629 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5630 i < len ? i : len);
5631 }
5632
5633 return ret;
5634 }
5635
5636 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5637 memory at MEMADDR. On failure (cannot write to the inferior)
5638 returns the value of errno. Always succeeds if LEN is zero. */
5639
5640 static int
5641 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5642 {
5643 register int i;
5644 /* Round starting address down to longword boundary. */
5645 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5646 /* Round ending address up; get number of longwords that makes. */
5647 register int count
5648 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5649 / sizeof (PTRACE_XFER_TYPE);
5650
5651 /* Allocate buffer of that many longwords. */
5652 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5653
5654 int pid = lwpid_of (current_thread);
5655
5656 if (len == 0)
5657 {
5658 /* Zero length write always succeeds. */
5659 return 0;
5660 }
5661
5662 if (debug_threads)
5663 {
5664 /* Dump up to four bytes. */
5665 char str[4 * 2 + 1];
5666 char *p = str;
5667 int dump = len < 4 ? len : 4;
5668
5669 for (i = 0; i < dump; i++)
5670 {
5671 sprintf (p, "%02x", myaddr[i]);
5672 p += 2;
5673 }
5674 *p = '\0';
5675
5676 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5677 str, (long) memaddr, pid);
5678 }
5679
5680 /* Fill start and end extra bytes of buffer with existing memory data. */
5681
5682 errno = 0;
5683 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5684 about coercing an 8 byte integer to a 4 byte pointer. */
5685 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5686 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5687 (PTRACE_TYPE_ARG4) 0);
5688 if (errno)
5689 return errno;
5690
5691 if (count > 1)
5692 {
5693 errno = 0;
5694 buffer[count - 1]
5695 = ptrace (PTRACE_PEEKTEXT, pid,
5696 /* Coerce to a uintptr_t first to avoid potential gcc warning
5697 about coercing an 8 byte integer to a 4 byte pointer. */
5698 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5699 * sizeof (PTRACE_XFER_TYPE)),
5700 (PTRACE_TYPE_ARG4) 0);
5701 if (errno)
5702 return errno;
5703 }
5704
5705 /* Copy data to be written over corresponding part of buffer. */
5706
5707 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5708 myaddr, len);
5709
5710 /* Write the entire buffer. */
5711
5712 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5713 {
5714 errno = 0;
5715 ptrace (PTRACE_POKETEXT, pid,
5716 /* Coerce to a uintptr_t first to avoid potential gcc warning
5717 about coercing an 8 byte integer to a 4 byte pointer. */
5718 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5719 (PTRACE_TYPE_ARG4) buffer[i]);
5720 if (errno)
5721 return errno;
5722 }
5723
5724 return 0;
5725 }
5726
5727 static void
5728 linux_look_up_symbols (void)
5729 {
5730 #ifdef USE_THREAD_DB
5731 struct process_info *proc = current_process ();
5732
5733 if (proc->priv->thread_db != NULL)
5734 return;
5735
5736 thread_db_init ();
5737 #endif
5738 }
5739
5740 static void
5741 linux_request_interrupt (void)
5742 {
5743 extern unsigned long signal_pid;
5744
5745 /* Send a SIGINT to the process group. This acts just like the user
5746 typed a ^C on the controlling terminal. */
5747 kill (-signal_pid, SIGINT);
5748 }
5749
5750 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5751 to debugger memory starting at MYADDR. */
5752
5753 static int
5754 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5755 {
5756 char filename[PATH_MAX];
5757 int fd, n;
5758 int pid = lwpid_of (current_thread);
5759
5760 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5761
5762 fd = open (filename, O_RDONLY);
5763 if (fd < 0)
5764 return -1;
5765
5766 if (offset != (CORE_ADDR) 0
5767 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5768 n = -1;
5769 else
5770 n = read (fd, myaddr, len);
5771
5772 close (fd);
5773
5774 return n;
5775 }
5776
5777 /* These breakpoint and watchpoint related wrapper functions simply
5778 pass on the function call if the target has registered a
5779 corresponding function. */
5780
5781 static int
5782 linux_supports_z_point_type (char z_type)
5783 {
5784 return (the_low_target.supports_z_point_type != NULL
5785 && the_low_target.supports_z_point_type (z_type));
5786 }
5787
5788 static int
5789 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5790 int size, struct raw_breakpoint *bp)
5791 {
5792 if (type == raw_bkpt_type_sw)
5793 return insert_memory_breakpoint (bp);
5794 else if (the_low_target.insert_point != NULL)
5795 return the_low_target.insert_point (type, addr, size, bp);
5796 else
5797 /* Unsupported (see target.h). */
5798 return 1;
5799 }
5800
5801 static int
5802 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5803 int size, struct raw_breakpoint *bp)
5804 {
5805 if (type == raw_bkpt_type_sw)
5806 return remove_memory_breakpoint (bp);
5807 else if (the_low_target.remove_point != NULL)
5808 return the_low_target.remove_point (type, addr, size, bp);
5809 else
5810 /* Unsupported (see target.h). */
5811 return 1;
5812 }
5813
5814 /* Implement the to_stopped_by_sw_breakpoint target_ops
5815 method. */
5816
5817 static int
5818 linux_stopped_by_sw_breakpoint (void)
5819 {
5820 struct lwp_info *lwp = get_thread_lwp (current_thread);
5821
5822 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5823 }
5824
5825 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5826 method. */
5827
5828 static int
5829 linux_supports_stopped_by_sw_breakpoint (void)
5830 {
5831 return USE_SIGTRAP_SIGINFO;
5832 }
5833
5834 /* Implement the to_stopped_by_hw_breakpoint target_ops
5835 method. */
5836
5837 static int
5838 linux_stopped_by_hw_breakpoint (void)
5839 {
5840 struct lwp_info *lwp = get_thread_lwp (current_thread);
5841
5842 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5843 }
5844
5845 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5846 method. */
5847
5848 static int
5849 linux_supports_stopped_by_hw_breakpoint (void)
5850 {
5851 return USE_SIGTRAP_SIGINFO;
5852 }
5853
5854 /* Implement the supports_hardware_single_step target_ops method. */
5855
5856 static int
5857 linux_supports_hardware_single_step (void)
5858 {
5859 return can_hardware_single_step ();
5860 }
5861
5862 static int
5863 linux_supports_software_single_step (void)
5864 {
5865 return can_software_single_step ();
5866 }
5867
5868 static int
5869 linux_stopped_by_watchpoint (void)
5870 {
5871 struct lwp_info *lwp = get_thread_lwp (current_thread);
5872
5873 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5874 }
5875
5876 static CORE_ADDR
5877 linux_stopped_data_address (void)
5878 {
5879 struct lwp_info *lwp = get_thread_lwp (current_thread);
5880
5881 return lwp->stopped_data_address;
5882 }
5883
5884 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5885 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5886 && defined(PT_TEXT_END_ADDR)
5887
5888 /* This is only used for targets that define PT_TEXT_ADDR,
5889 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5890 the target has different ways of acquiring this information, like
5891 loadmaps. */
5892
5893 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5894 to tell gdb about. */
5895
5896 static int
5897 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5898 {
5899 unsigned long text, text_end, data;
5900 int pid = lwpid_of (current_thread);
5901
5902 errno = 0;
5903
5904 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5905 (PTRACE_TYPE_ARG4) 0);
5906 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5907 (PTRACE_TYPE_ARG4) 0);
5908 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5909 (PTRACE_TYPE_ARG4) 0);
5910
5911 if (errno == 0)
5912 {
5913 /* Both text and data offsets produced at compile-time (and so
5914 used by gdb) are relative to the beginning of the program,
5915 with the data segment immediately following the text segment.
5916 However, the actual runtime layout in memory may put the data
5917 somewhere else, so when we send gdb a data base-address, we
5918 use the real data base address and subtract the compile-time
5919 data base-address from it (which is just the length of the
5920 text segment). BSS immediately follows data in both
5921 cases. */
5922 *text_p = text;
5923 *data_p = data - (text_end - text);
5924
5925 return 1;
5926 }
5927 return 0;
5928 }
5929 #endif
5930
5931 static int
5932 linux_qxfer_osdata (const char *annex,
5933 unsigned char *readbuf, unsigned const char *writebuf,
5934 CORE_ADDR offset, int len)
5935 {
5936 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5937 }
5938
5939 /* Convert a native/host siginfo object, into/from the siginfo in the
5940 layout of the inferiors' architecture. */
5941
5942 static void
5943 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
5944 {
5945 int done = 0;
5946
5947 if (the_low_target.siginfo_fixup != NULL)
5948 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5949
5950 /* If there was no callback, or the callback didn't do anything,
5951 then just do a straight memcpy. */
5952 if (!done)
5953 {
5954 if (direction == 1)
5955 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5956 else
5957 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5958 }
5959 }
5960
5961 static int
5962 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5963 unsigned const char *writebuf, CORE_ADDR offset, int len)
5964 {
5965 int pid;
5966 siginfo_t siginfo;
5967 gdb_byte inf_siginfo[sizeof (siginfo_t)];
5968
5969 if (current_thread == NULL)
5970 return -1;
5971
5972 pid = lwpid_of (current_thread);
5973
5974 if (debug_threads)
5975 debug_printf ("%s siginfo for lwp %d.\n",
5976 readbuf != NULL ? "Reading" : "Writing",
5977 pid);
5978
5979 if (offset >= sizeof (siginfo))
5980 return -1;
5981
5982 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5983 return -1;
5984
5985 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5986 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5987 inferior with a 64-bit GDBSERVER should look the same as debugging it
5988 with a 32-bit GDBSERVER, we need to convert it. */
5989 siginfo_fixup (&siginfo, inf_siginfo, 0);
5990
5991 if (offset + len > sizeof (siginfo))
5992 len = sizeof (siginfo) - offset;
5993
5994 if (readbuf != NULL)
5995 memcpy (readbuf, inf_siginfo + offset, len);
5996 else
5997 {
5998 memcpy (inf_siginfo + offset, writebuf, len);
5999
6000 /* Convert back to ptrace layout before flushing it out. */
6001 siginfo_fixup (&siginfo, inf_siginfo, 1);
6002
6003 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6004 return -1;
6005 }
6006
6007 return len;
6008 }
6009
6010 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6011 so we notice when children change state; as the handler for the
6012 sigsuspend in my_waitpid. */
6013
6014 static void
6015 sigchld_handler (int signo)
6016 {
6017 int old_errno = errno;
6018
6019 if (debug_threads)
6020 {
6021 do
6022 {
6023 /* fprintf is not async-signal-safe, so call write
6024 directly. */
6025 if (write (2, "sigchld_handler\n",
6026 sizeof ("sigchld_handler\n") - 1) < 0)
6027 break; /* just ignore */
6028 } while (0);
6029 }
6030
6031 if (target_is_async_p ())
6032 async_file_mark (); /* trigger a linux_wait */
6033
6034 errno = old_errno;
6035 }
6036
6037 static int
6038 linux_supports_non_stop (void)
6039 {
6040 return 1;
6041 }
6042
6043 static int
6044 linux_async (int enable)
6045 {
6046 int previous = target_is_async_p ();
6047
6048 if (debug_threads)
6049 debug_printf ("linux_async (%d), previous=%d\n",
6050 enable, previous);
6051
6052 if (previous != enable)
6053 {
6054 sigset_t mask;
6055 sigemptyset (&mask);
6056 sigaddset (&mask, SIGCHLD);
6057
6058 sigprocmask (SIG_BLOCK, &mask, NULL);
6059
6060 if (enable)
6061 {
6062 if (pipe (linux_event_pipe) == -1)
6063 {
6064 linux_event_pipe[0] = -1;
6065 linux_event_pipe[1] = -1;
6066 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6067
6068 warning ("creating event pipe failed.");
6069 return previous;
6070 }
6071
6072 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6073 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6074
6075 /* Register the event loop handler. */
6076 add_file_handler (linux_event_pipe[0],
6077 handle_target_event, NULL);
6078
6079 /* Always trigger a linux_wait. */
6080 async_file_mark ();
6081 }
6082 else
6083 {
6084 delete_file_handler (linux_event_pipe[0]);
6085
6086 close (linux_event_pipe[0]);
6087 close (linux_event_pipe[1]);
6088 linux_event_pipe[0] = -1;
6089 linux_event_pipe[1] = -1;
6090 }
6091
6092 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6093 }
6094
6095 return previous;
6096 }
6097
6098 static int
6099 linux_start_non_stop (int nonstop)
6100 {
6101 /* Register or unregister from event-loop accordingly. */
6102 linux_async (nonstop);
6103
6104 if (target_is_async_p () != (nonstop != 0))
6105 return -1;
6106
6107 return 0;
6108 }
6109
6110 static int
6111 linux_supports_multi_process (void)
6112 {
6113 return 1;
6114 }
6115
6116 /* Check if fork events are supported. */
6117
6118 static int
6119 linux_supports_fork_events (void)
6120 {
6121 return linux_supports_tracefork ();
6122 }
6123
6124 /* Check if vfork events are supported. */
6125
6126 static int
6127 linux_supports_vfork_events (void)
6128 {
6129 return linux_supports_tracefork ();
6130 }
6131
6132 /* Check if exec events are supported. */
6133
6134 static int
6135 linux_supports_exec_events (void)
6136 {
6137 return linux_supports_traceexec ();
6138 }
6139
6140 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6141 options for the specified lwp. */
6142
6143 static int
6144 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6145 void *args)
6146 {
6147 struct thread_info *thread = (struct thread_info *) entry;
6148 struct lwp_info *lwp = get_thread_lwp (thread);
6149
6150 if (!lwp->stopped)
6151 {
6152 /* Stop the lwp so we can modify its ptrace options. */
6153 lwp->must_set_ptrace_flags = 1;
6154 linux_stop_lwp (lwp);
6155 }
6156 else
6157 {
6158 /* Already stopped; go ahead and set the ptrace options. */
6159 struct process_info *proc = find_process_pid (pid_of (thread));
6160 int options = linux_low_ptrace_options (proc->attached);
6161
6162 linux_enable_event_reporting (lwpid_of (thread), options);
6163 lwp->must_set_ptrace_flags = 0;
6164 }
6165
6166 return 0;
6167 }
6168
6169 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6170 ptrace flags for all inferiors. This is in case the new GDB connection
6171 doesn't support the same set of events that the previous one did. */
6172
6173 static void
6174 linux_handle_new_gdb_connection (void)
6175 {
6176 pid_t pid;
6177
6178 /* Request that all the lwps reset their ptrace options. */
6179 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6180 }
6181
6182 static int
6183 linux_supports_disable_randomization (void)
6184 {
6185 #ifdef HAVE_PERSONALITY
6186 return 1;
6187 #else
6188 return 0;
6189 #endif
6190 }
6191
6192 static int
6193 linux_supports_agent (void)
6194 {
6195 return 1;
6196 }
6197
6198 static int
6199 linux_supports_range_stepping (void)
6200 {
6201 if (*the_low_target.supports_range_stepping == NULL)
6202 return 0;
6203
6204 return (*the_low_target.supports_range_stepping) ();
6205 }
6206
6207 /* Enumerate spufs IDs for process PID. */
6208 static int
6209 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6210 {
6211 int pos = 0;
6212 int written = 0;
6213 char path[128];
6214 DIR *dir;
6215 struct dirent *entry;
6216
6217 sprintf (path, "/proc/%ld/fd", pid);
6218 dir = opendir (path);
6219 if (!dir)
6220 return -1;
6221
6222 rewinddir (dir);
6223 while ((entry = readdir (dir)) != NULL)
6224 {
6225 struct stat st;
6226 struct statfs stfs;
6227 int fd;
6228
6229 fd = atoi (entry->d_name);
6230 if (!fd)
6231 continue;
6232
6233 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6234 if (stat (path, &st) != 0)
6235 continue;
6236 if (!S_ISDIR (st.st_mode))
6237 continue;
6238
6239 if (statfs (path, &stfs) != 0)
6240 continue;
6241 if (stfs.f_type != SPUFS_MAGIC)
6242 continue;
6243
6244 if (pos >= offset && pos + 4 <= offset + len)
6245 {
6246 *(unsigned int *)(buf + pos - offset) = fd;
6247 written += 4;
6248 }
6249 pos += 4;
6250 }
6251
6252 closedir (dir);
6253 return written;
6254 }
6255
6256 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6257 object type, using the /proc file system. */
6258 static int
6259 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6260 unsigned const char *writebuf,
6261 CORE_ADDR offset, int len)
6262 {
6263 long pid = lwpid_of (current_thread);
6264 char buf[128];
6265 int fd = 0;
6266 int ret = 0;
6267
6268 if (!writebuf && !readbuf)
6269 return -1;
6270
6271 if (!*annex)
6272 {
6273 if (!readbuf)
6274 return -1;
6275 else
6276 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6277 }
6278
6279 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6280 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6281 if (fd <= 0)
6282 return -1;
6283
6284 if (offset != 0
6285 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6286 {
6287 close (fd);
6288 return 0;
6289 }
6290
6291 if (writebuf)
6292 ret = write (fd, writebuf, (size_t) len);
6293 else
6294 ret = read (fd, readbuf, (size_t) len);
6295
6296 close (fd);
6297 return ret;
6298 }
6299
6300 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6301 struct target_loadseg
6302 {
6303 /* Core address to which the segment is mapped. */
6304 Elf32_Addr addr;
6305 /* VMA recorded in the program header. */
6306 Elf32_Addr p_vaddr;
6307 /* Size of this segment in memory. */
6308 Elf32_Word p_memsz;
6309 };
6310
6311 # if defined PT_GETDSBT
6312 struct target_loadmap
6313 {
6314 /* Protocol version number, must be zero. */
6315 Elf32_Word version;
6316 /* Pointer to the DSBT table, its size, and the DSBT index. */
6317 unsigned *dsbt_table;
6318 unsigned dsbt_size, dsbt_index;
6319 /* Number of segments in this map. */
6320 Elf32_Word nsegs;
6321 /* The actual memory map. */
6322 struct target_loadseg segs[/*nsegs*/];
6323 };
6324 # define LINUX_LOADMAP PT_GETDSBT
6325 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6326 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6327 # else
6328 struct target_loadmap
6329 {
6330 /* Protocol version number, must be zero. */
6331 Elf32_Half version;
6332 /* Number of segments in this map. */
6333 Elf32_Half nsegs;
6334 /* The actual memory map. */
6335 struct target_loadseg segs[/*nsegs*/];
6336 };
6337 # define LINUX_LOADMAP PTRACE_GETFDPIC
6338 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6339 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6340 # endif
6341
6342 static int
6343 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6344 unsigned char *myaddr, unsigned int len)
6345 {
6346 int pid = lwpid_of (current_thread);
6347 int addr = -1;
6348 struct target_loadmap *data = NULL;
6349 unsigned int actual_length, copy_length;
6350
6351 if (strcmp (annex, "exec") == 0)
6352 addr = (int) LINUX_LOADMAP_EXEC;
6353 else if (strcmp (annex, "interp") == 0)
6354 addr = (int) LINUX_LOADMAP_INTERP;
6355 else
6356 return -1;
6357
6358 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6359 return -1;
6360
6361 if (data == NULL)
6362 return -1;
6363
6364 actual_length = sizeof (struct target_loadmap)
6365 + sizeof (struct target_loadseg) * data->nsegs;
6366
6367 if (offset < 0 || offset > actual_length)
6368 return -1;
6369
6370 copy_length = actual_length - offset < len ? actual_length - offset : len;
6371 memcpy (myaddr, (char *) data + offset, copy_length);
6372 return copy_length;
6373 }
6374 #else
6375 # define linux_read_loadmap NULL
6376 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6377
6378 static void
6379 linux_process_qsupported (char **features, int count)
6380 {
6381 if (the_low_target.process_qsupported != NULL)
6382 the_low_target.process_qsupported (features, count);
6383 }
6384
6385 static int
6386 linux_supports_catch_syscall (void)
6387 {
6388 return (the_low_target.get_syscall_trapinfo != NULL
6389 && linux_supports_tracesysgood ());
6390 }
6391
6392 static int
6393 linux_get_ipa_tdesc_idx (void)
6394 {
6395 if (the_low_target.get_ipa_tdesc_idx == NULL)
6396 return 0;
6397
6398 return (*the_low_target.get_ipa_tdesc_idx) ();
6399 }
6400
6401 static int
6402 linux_supports_tracepoints (void)
6403 {
6404 if (*the_low_target.supports_tracepoints == NULL)
6405 return 0;
6406
6407 return (*the_low_target.supports_tracepoints) ();
6408 }
6409
6410 static CORE_ADDR
6411 linux_read_pc (struct regcache *regcache)
6412 {
6413 if (the_low_target.get_pc == NULL)
6414 return 0;
6415
6416 return (*the_low_target.get_pc) (regcache);
6417 }
6418
6419 static void
6420 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6421 {
6422 gdb_assert (the_low_target.set_pc != NULL);
6423
6424 (*the_low_target.set_pc) (regcache, pc);
6425 }
6426
6427 static int
6428 linux_thread_stopped (struct thread_info *thread)
6429 {
6430 return get_thread_lwp (thread)->stopped;
6431 }
6432
6433 /* This exposes stop-all-threads functionality to other modules. */
6434
6435 static void
6436 linux_pause_all (int freeze)
6437 {
6438 stop_all_lwps (freeze, NULL);
6439 }
6440
6441 /* This exposes unstop-all-threads functionality to other gdbserver
6442 modules. */
6443
6444 static void
6445 linux_unpause_all (int unfreeze)
6446 {
6447 unstop_all_lwps (unfreeze, NULL);
6448 }
6449
6450 static int
6451 linux_prepare_to_access_memory (void)
6452 {
6453 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6454 running LWP. */
6455 if (non_stop)
6456 linux_pause_all (1);
6457 return 0;
6458 }
6459
6460 static void
6461 linux_done_accessing_memory (void)
6462 {
6463 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6464 running LWP. */
6465 if (non_stop)
6466 linux_unpause_all (1);
6467 }
6468
6469 static int
6470 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6471 CORE_ADDR collector,
6472 CORE_ADDR lockaddr,
6473 ULONGEST orig_size,
6474 CORE_ADDR *jump_entry,
6475 CORE_ADDR *trampoline,
6476 ULONGEST *trampoline_size,
6477 unsigned char *jjump_pad_insn,
6478 ULONGEST *jjump_pad_insn_size,
6479 CORE_ADDR *adjusted_insn_addr,
6480 CORE_ADDR *adjusted_insn_addr_end,
6481 char *err)
6482 {
6483 return (*the_low_target.install_fast_tracepoint_jump_pad)
6484 (tpoint, tpaddr, collector, lockaddr, orig_size,
6485 jump_entry, trampoline, trampoline_size,
6486 jjump_pad_insn, jjump_pad_insn_size,
6487 adjusted_insn_addr, adjusted_insn_addr_end,
6488 err);
6489 }
6490
6491 static struct emit_ops *
6492 linux_emit_ops (void)
6493 {
6494 if (the_low_target.emit_ops != NULL)
6495 return (*the_low_target.emit_ops) ();
6496 else
6497 return NULL;
6498 }
6499
6500 static int
6501 linux_get_min_fast_tracepoint_insn_len (void)
6502 {
6503 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6504 }
6505
6506 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6507
6508 static int
6509 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6510 CORE_ADDR *phdr_memaddr, int *num_phdr)
6511 {
6512 char filename[PATH_MAX];
6513 int fd;
6514 const int auxv_size = is_elf64
6515 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6516 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6517
6518 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6519
6520 fd = open (filename, O_RDONLY);
6521 if (fd < 0)
6522 return 1;
6523
6524 *phdr_memaddr = 0;
6525 *num_phdr = 0;
6526 while (read (fd, buf, auxv_size) == auxv_size
6527 && (*phdr_memaddr == 0 || *num_phdr == 0))
6528 {
6529 if (is_elf64)
6530 {
6531 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6532
6533 switch (aux->a_type)
6534 {
6535 case AT_PHDR:
6536 *phdr_memaddr = aux->a_un.a_val;
6537 break;
6538 case AT_PHNUM:
6539 *num_phdr = aux->a_un.a_val;
6540 break;
6541 }
6542 }
6543 else
6544 {
6545 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6546
6547 switch (aux->a_type)
6548 {
6549 case AT_PHDR:
6550 *phdr_memaddr = aux->a_un.a_val;
6551 break;
6552 case AT_PHNUM:
6553 *num_phdr = aux->a_un.a_val;
6554 break;
6555 }
6556 }
6557 }
6558
6559 close (fd);
6560
6561 if (*phdr_memaddr == 0 || *num_phdr == 0)
6562 {
6563 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6564 "phdr_memaddr = %ld, phdr_num = %d",
6565 (long) *phdr_memaddr, *num_phdr);
6566 return 2;
6567 }
6568
6569 return 0;
6570 }
6571
6572 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6573
6574 static CORE_ADDR
6575 get_dynamic (const int pid, const int is_elf64)
6576 {
6577 CORE_ADDR phdr_memaddr, relocation;
6578 int num_phdr, i;
6579 unsigned char *phdr_buf;
6580 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6581
6582 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6583 return 0;
6584
6585 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6586 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6587
6588 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6589 return 0;
6590
6591 /* Compute relocation: it is expected to be 0 for "regular" executables,
6592 non-zero for PIE ones. */
6593 relocation = -1;
6594 for (i = 0; relocation == -1 && i < num_phdr; i++)
6595 if (is_elf64)
6596 {
6597 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6598
6599 if (p->p_type == PT_PHDR)
6600 relocation = phdr_memaddr - p->p_vaddr;
6601 }
6602 else
6603 {
6604 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6605
6606 if (p->p_type == PT_PHDR)
6607 relocation = phdr_memaddr - p->p_vaddr;
6608 }
6609
6610 if (relocation == -1)
6611 {
6612 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6613 any real world executables, including PIE executables, have always
6614 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6615 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6616 or present DT_DEBUG anyway (fpc binaries are statically linked).
6617
6618 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6619
6620 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6621
6622 return 0;
6623 }
6624
6625 for (i = 0; i < num_phdr; i++)
6626 {
6627 if (is_elf64)
6628 {
6629 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6630
6631 if (p->p_type == PT_DYNAMIC)
6632 return p->p_vaddr + relocation;
6633 }
6634 else
6635 {
6636 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6637
6638 if (p->p_type == PT_DYNAMIC)
6639 return p->p_vaddr + relocation;
6640 }
6641 }
6642
6643 return 0;
6644 }
6645
6646 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6647 can be 0 if the inferior does not yet have the library list initialized.
6648 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6649 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6650
6651 static CORE_ADDR
6652 get_r_debug (const int pid, const int is_elf64)
6653 {
6654 CORE_ADDR dynamic_memaddr;
6655 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6656 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6657 CORE_ADDR map = -1;
6658
6659 dynamic_memaddr = get_dynamic (pid, is_elf64);
6660 if (dynamic_memaddr == 0)
6661 return map;
6662
6663 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6664 {
6665 if (is_elf64)
6666 {
6667 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6668 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6669 union
6670 {
6671 Elf64_Xword map;
6672 unsigned char buf[sizeof (Elf64_Xword)];
6673 }
6674 rld_map;
6675 #endif
6676 #ifdef DT_MIPS_RLD_MAP
6677 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6678 {
6679 if (linux_read_memory (dyn->d_un.d_val,
6680 rld_map.buf, sizeof (rld_map.buf)) == 0)
6681 return rld_map.map;
6682 else
6683 break;
6684 }
6685 #endif /* DT_MIPS_RLD_MAP */
6686 #ifdef DT_MIPS_RLD_MAP_REL
6687 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6688 {
6689 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6690 rld_map.buf, sizeof (rld_map.buf)) == 0)
6691 return rld_map.map;
6692 else
6693 break;
6694 }
6695 #endif /* DT_MIPS_RLD_MAP_REL */
6696
6697 if (dyn->d_tag == DT_DEBUG && map == -1)
6698 map = dyn->d_un.d_val;
6699
6700 if (dyn->d_tag == DT_NULL)
6701 break;
6702 }
6703 else
6704 {
6705 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6706 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6707 union
6708 {
6709 Elf32_Word map;
6710 unsigned char buf[sizeof (Elf32_Word)];
6711 }
6712 rld_map;
6713 #endif
6714 #ifdef DT_MIPS_RLD_MAP
6715 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6716 {
6717 if (linux_read_memory (dyn->d_un.d_val,
6718 rld_map.buf, sizeof (rld_map.buf)) == 0)
6719 return rld_map.map;
6720 else
6721 break;
6722 }
6723 #endif /* DT_MIPS_RLD_MAP */
6724 #ifdef DT_MIPS_RLD_MAP_REL
6725 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6726 {
6727 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6728 rld_map.buf, sizeof (rld_map.buf)) == 0)
6729 return rld_map.map;
6730 else
6731 break;
6732 }
6733 #endif /* DT_MIPS_RLD_MAP_REL */
6734
6735 if (dyn->d_tag == DT_DEBUG && map == -1)
6736 map = dyn->d_un.d_val;
6737
6738 if (dyn->d_tag == DT_NULL)
6739 break;
6740 }
6741
6742 dynamic_memaddr += dyn_size;
6743 }
6744
6745 return map;
6746 }
6747
6748 /* Read one pointer from MEMADDR in the inferior. */
6749
6750 static int
6751 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6752 {
6753 int ret;
6754
6755 /* Go through a union so this works on either big or little endian
6756 hosts, when the inferior's pointer size is smaller than the size
6757 of CORE_ADDR. It is assumed the inferior's endianness is the
6758 same of the superior's. */
6759 union
6760 {
6761 CORE_ADDR core_addr;
6762 unsigned int ui;
6763 unsigned char uc;
6764 } addr;
6765
6766 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6767 if (ret == 0)
6768 {
6769 if (ptr_size == sizeof (CORE_ADDR))
6770 *ptr = addr.core_addr;
6771 else if (ptr_size == sizeof (unsigned int))
6772 *ptr = addr.ui;
6773 else
6774 gdb_assert_not_reached ("unhandled pointer size");
6775 }
6776 return ret;
6777 }
6778
6779 struct link_map_offsets
6780 {
6781 /* Offset and size of r_debug.r_version. */
6782 int r_version_offset;
6783
6784 /* Offset and size of r_debug.r_map. */
6785 int r_map_offset;
6786
6787 /* Offset to l_addr field in struct link_map. */
6788 int l_addr_offset;
6789
6790 /* Offset to l_name field in struct link_map. */
6791 int l_name_offset;
6792
6793 /* Offset to l_ld field in struct link_map. */
6794 int l_ld_offset;
6795
6796 /* Offset to l_next field in struct link_map. */
6797 int l_next_offset;
6798
6799 /* Offset to l_prev field in struct link_map. */
6800 int l_prev_offset;
6801 };
6802
6803 /* Construct qXfer:libraries-svr4:read reply. */
6804
6805 static int
6806 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6807 unsigned const char *writebuf,
6808 CORE_ADDR offset, int len)
6809 {
6810 char *document;
6811 unsigned document_len;
6812 struct process_info_private *const priv = current_process ()->priv;
6813 char filename[PATH_MAX];
6814 int pid, is_elf64;
6815
6816 static const struct link_map_offsets lmo_32bit_offsets =
6817 {
6818 0, /* r_version offset. */
6819 4, /* r_debug.r_map offset. */
6820 0, /* l_addr offset in link_map. */
6821 4, /* l_name offset in link_map. */
6822 8, /* l_ld offset in link_map. */
6823 12, /* l_next offset in link_map. */
6824 16 /* l_prev offset in link_map. */
6825 };
6826
6827 static const struct link_map_offsets lmo_64bit_offsets =
6828 {
6829 0, /* r_version offset. */
6830 8, /* r_debug.r_map offset. */
6831 0, /* l_addr offset in link_map. */
6832 8, /* l_name offset in link_map. */
6833 16, /* l_ld offset in link_map. */
6834 24, /* l_next offset in link_map. */
6835 32 /* l_prev offset in link_map. */
6836 };
6837 const struct link_map_offsets *lmo;
6838 unsigned int machine;
6839 int ptr_size;
6840 CORE_ADDR lm_addr = 0, lm_prev = 0;
6841 int allocated = 1024;
6842 char *p;
6843 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6844 int header_done = 0;
6845
6846 if (writebuf != NULL)
6847 return -2;
6848 if (readbuf == NULL)
6849 return -1;
6850
6851 pid = lwpid_of (current_thread);
6852 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6853 is_elf64 = elf_64_file_p (filename, &machine);
6854 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6855 ptr_size = is_elf64 ? 8 : 4;
6856
6857 while (annex[0] != '\0')
6858 {
6859 const char *sep;
6860 CORE_ADDR *addrp;
6861 int len;
6862
6863 sep = strchr (annex, '=');
6864 if (sep == NULL)
6865 break;
6866
6867 len = sep - annex;
6868 if (len == 5 && startswith (annex, "start"))
6869 addrp = &lm_addr;
6870 else if (len == 4 && startswith (annex, "prev"))
6871 addrp = &lm_prev;
6872 else
6873 {
6874 annex = strchr (sep, ';');
6875 if (annex == NULL)
6876 break;
6877 annex++;
6878 continue;
6879 }
6880
6881 annex = decode_address_to_semicolon (addrp, sep + 1);
6882 }
6883
6884 if (lm_addr == 0)
6885 {
6886 int r_version = 0;
6887
6888 if (priv->r_debug == 0)
6889 priv->r_debug = get_r_debug (pid, is_elf64);
6890
6891 /* We failed to find DT_DEBUG. Such situation will not change
6892 for this inferior - do not retry it. Report it to GDB as
6893 E01, see for the reasons at the GDB solib-svr4.c side. */
6894 if (priv->r_debug == (CORE_ADDR) -1)
6895 return -1;
6896
6897 if (priv->r_debug != 0)
6898 {
6899 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6900 (unsigned char *) &r_version,
6901 sizeof (r_version)) != 0
6902 || r_version != 1)
6903 {
6904 warning ("unexpected r_debug version %d", r_version);
6905 }
6906 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6907 &lm_addr, ptr_size) != 0)
6908 {
6909 warning ("unable to read r_map from 0x%lx",
6910 (long) priv->r_debug + lmo->r_map_offset);
6911 }
6912 }
6913 }
6914
6915 document = (char *) xmalloc (allocated);
6916 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6917 p = document + strlen (document);
6918
6919 while (lm_addr
6920 && read_one_ptr (lm_addr + lmo->l_name_offset,
6921 &l_name, ptr_size) == 0
6922 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6923 &l_addr, ptr_size) == 0
6924 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6925 &l_ld, ptr_size) == 0
6926 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6927 &l_prev, ptr_size) == 0
6928 && read_one_ptr (lm_addr + lmo->l_next_offset,
6929 &l_next, ptr_size) == 0)
6930 {
6931 unsigned char libname[PATH_MAX];
6932
6933 if (lm_prev != l_prev)
6934 {
6935 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6936 (long) lm_prev, (long) l_prev);
6937 break;
6938 }
6939
6940 /* Ignore the first entry even if it has valid name as the first entry
6941 corresponds to the main executable. The first entry should not be
6942 skipped if the dynamic loader was loaded late by a static executable
6943 (see solib-svr4.c parameter ignore_first). But in such case the main
6944 executable does not have PT_DYNAMIC present and this function already
6945 exited above due to failed get_r_debug. */
6946 if (lm_prev == 0)
6947 {
6948 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6949 p = p + strlen (p);
6950 }
6951 else
6952 {
6953 /* Not checking for error because reading may stop before
6954 we've got PATH_MAX worth of characters. */
6955 libname[0] = '\0';
6956 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6957 libname[sizeof (libname) - 1] = '\0';
6958 if (libname[0] != '\0')
6959 {
6960 /* 6x the size for xml_escape_text below. */
6961 size_t len = 6 * strlen ((char *) libname);
6962 char *name;
6963
6964 if (!header_done)
6965 {
6966 /* Terminate `<library-list-svr4'. */
6967 *p++ = '>';
6968 header_done = 1;
6969 }
6970
6971 while (allocated < p - document + len + 200)
6972 {
6973 /* Expand to guarantee sufficient storage. */
6974 uintptr_t document_len = p - document;
6975
6976 document = (char *) xrealloc (document, 2 * allocated);
6977 allocated *= 2;
6978 p = document + document_len;
6979 }
6980
6981 name = xml_escape_text ((char *) libname);
6982 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6983 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6984 name, (unsigned long) lm_addr,
6985 (unsigned long) l_addr, (unsigned long) l_ld);
6986 free (name);
6987 }
6988 }
6989
6990 lm_prev = lm_addr;
6991 lm_addr = l_next;
6992 }
6993
6994 if (!header_done)
6995 {
6996 /* Empty list; terminate `<library-list-svr4'. */
6997 strcpy (p, "/>");
6998 }
6999 else
7000 strcpy (p, "</library-list-svr4>");
7001
7002 document_len = strlen (document);
7003 if (offset < document_len)
7004 document_len -= offset;
7005 else
7006 document_len = 0;
7007 if (len > document_len)
7008 len = document_len;
7009
7010 memcpy (readbuf, document + offset, len);
7011 xfree (document);
7012
7013 return len;
7014 }
7015
7016 #ifdef HAVE_LINUX_BTRACE
7017
7018 /* See to_disable_btrace target method. */
7019
7020 static int
7021 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7022 {
7023 enum btrace_error err;
7024
7025 err = linux_disable_btrace (tinfo);
7026 return (err == BTRACE_ERR_NONE ? 0 : -1);
7027 }
7028
7029 /* Encode an Intel Processor Trace configuration. */
7030
7031 static void
7032 linux_low_encode_pt_config (struct buffer *buffer,
7033 const struct btrace_data_pt_config *config)
7034 {
7035 buffer_grow_str (buffer, "<pt-config>\n");
7036
7037 switch (config->cpu.vendor)
7038 {
7039 case CV_INTEL:
7040 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7041 "model=\"%u\" stepping=\"%u\"/>\n",
7042 config->cpu.family, config->cpu.model,
7043 config->cpu.stepping);
7044 break;
7045
7046 default:
7047 break;
7048 }
7049
7050 buffer_grow_str (buffer, "</pt-config>\n");
7051 }
7052
7053 /* Encode a raw buffer. */
7054
7055 static void
7056 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7057 unsigned int size)
7058 {
7059 if (size == 0)
7060 return;
7061
7062 /* We use hex encoding - see common/rsp-low.h. */
7063 buffer_grow_str (buffer, "<raw>\n");
7064
7065 while (size-- > 0)
7066 {
7067 char elem[2];
7068
7069 elem[0] = tohex ((*data >> 4) & 0xf);
7070 elem[1] = tohex (*data++ & 0xf);
7071
7072 buffer_grow (buffer, elem, 2);
7073 }
7074
7075 buffer_grow_str (buffer, "</raw>\n");
7076 }
7077
7078 /* See to_read_btrace target method. */
7079
7080 static int
7081 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7082 enum btrace_read_type type)
7083 {
7084 struct btrace_data btrace;
7085 struct btrace_block *block;
7086 enum btrace_error err;
7087 int i;
7088
7089 btrace_data_init (&btrace);
7090
7091 err = linux_read_btrace (&btrace, tinfo, type);
7092 if (err != BTRACE_ERR_NONE)
7093 {
7094 if (err == BTRACE_ERR_OVERFLOW)
7095 buffer_grow_str0 (buffer, "E.Overflow.");
7096 else
7097 buffer_grow_str0 (buffer, "E.Generic Error.");
7098
7099 goto err;
7100 }
7101
7102 switch (btrace.format)
7103 {
7104 case BTRACE_FORMAT_NONE:
7105 buffer_grow_str0 (buffer, "E.No Trace.");
7106 goto err;
7107
7108 case BTRACE_FORMAT_BTS:
7109 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7110 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7111
7112 for (i = 0;
7113 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7114 i++)
7115 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7116 paddress (block->begin), paddress (block->end));
7117
7118 buffer_grow_str0 (buffer, "</btrace>\n");
7119 break;
7120
7121 case BTRACE_FORMAT_PT:
7122 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7123 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7124 buffer_grow_str (buffer, "<pt>\n");
7125
7126 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7127
7128 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7129 btrace.variant.pt.size);
7130
7131 buffer_grow_str (buffer, "</pt>\n");
7132 buffer_grow_str0 (buffer, "</btrace>\n");
7133 break;
7134
7135 default:
7136 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7137 goto err;
7138 }
7139
7140 btrace_data_fini (&btrace);
7141 return 0;
7142
7143 err:
7144 btrace_data_fini (&btrace);
7145 return -1;
7146 }
7147
7148 /* See to_btrace_conf target method. */
7149
7150 static int
7151 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7152 struct buffer *buffer)
7153 {
7154 const struct btrace_config *conf;
7155
7156 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7157 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7158
7159 conf = linux_btrace_conf (tinfo);
7160 if (conf != NULL)
7161 {
7162 switch (conf->format)
7163 {
7164 case BTRACE_FORMAT_NONE:
7165 break;
7166
7167 case BTRACE_FORMAT_BTS:
7168 buffer_xml_printf (buffer, "<bts");
7169 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7170 buffer_xml_printf (buffer, " />\n");
7171 break;
7172
7173 case BTRACE_FORMAT_PT:
7174 buffer_xml_printf (buffer, "<pt");
7175 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7176 buffer_xml_printf (buffer, "/>\n");
7177 break;
7178 }
7179 }
7180
7181 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7182 return 0;
7183 }
7184 #endif /* HAVE_LINUX_BTRACE */
7185
7186 /* See nat/linux-nat.h. */
7187
7188 ptid_t
7189 current_lwp_ptid (void)
7190 {
7191 return ptid_of (current_thread);
7192 }
7193
7194 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7195
7196 static int
7197 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7198 {
7199 if (the_low_target.breakpoint_kind_from_pc != NULL)
7200 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7201 else
7202 return default_breakpoint_kind_from_pc (pcptr);
7203 }
7204
7205 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7206
7207 static const gdb_byte *
7208 linux_sw_breakpoint_from_kind (int kind, int *size)
7209 {
7210 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7211
7212 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7213 }
7214
7215 /* Implementation of the target_ops method
7216 "breakpoint_kind_from_current_state". */
7217
7218 static int
7219 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7220 {
7221 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7222 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7223 else
7224 return linux_breakpoint_kind_from_pc (pcptr);
7225 }
7226
7227 /* Default implementation of linux_target_ops method "set_pc" for
7228 32-bit pc register which is literally named "pc". */
7229
7230 void
7231 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7232 {
7233 uint32_t newpc = pc;
7234
7235 supply_register_by_name (regcache, "pc", &newpc);
7236 }
7237
7238 /* Default implementation of linux_target_ops method "get_pc" for
7239 32-bit pc register which is literally named "pc". */
7240
7241 CORE_ADDR
7242 linux_get_pc_32bit (struct regcache *regcache)
7243 {
7244 uint32_t pc;
7245
7246 collect_register_by_name (regcache, "pc", &pc);
7247 if (debug_threads)
7248 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7249 return pc;
7250 }
7251
7252 /* Default implementation of linux_target_ops method "set_pc" for
7253 64-bit pc register which is literally named "pc". */
7254
7255 void
7256 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7257 {
7258 uint64_t newpc = pc;
7259
7260 supply_register_by_name (regcache, "pc", &newpc);
7261 }
7262
7263 /* Default implementation of linux_target_ops method "get_pc" for
7264 64-bit pc register which is literally named "pc". */
7265
7266 CORE_ADDR
7267 linux_get_pc_64bit (struct regcache *regcache)
7268 {
7269 uint64_t pc;
7270
7271 collect_register_by_name (regcache, "pc", &pc);
7272 if (debug_threads)
7273 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7274 return pc;
7275 }
7276
7277
7278 static struct target_ops linux_target_ops = {
7279 linux_create_inferior,
7280 linux_post_create_inferior,
7281 linux_attach,
7282 linux_kill,
7283 linux_detach,
7284 linux_mourn,
7285 linux_join,
7286 linux_thread_alive,
7287 linux_resume,
7288 linux_wait,
7289 linux_fetch_registers,
7290 linux_store_registers,
7291 linux_prepare_to_access_memory,
7292 linux_done_accessing_memory,
7293 linux_read_memory,
7294 linux_write_memory,
7295 linux_look_up_symbols,
7296 linux_request_interrupt,
7297 linux_read_auxv,
7298 linux_supports_z_point_type,
7299 linux_insert_point,
7300 linux_remove_point,
7301 linux_stopped_by_sw_breakpoint,
7302 linux_supports_stopped_by_sw_breakpoint,
7303 linux_stopped_by_hw_breakpoint,
7304 linux_supports_stopped_by_hw_breakpoint,
7305 linux_supports_hardware_single_step,
7306 linux_stopped_by_watchpoint,
7307 linux_stopped_data_address,
7308 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7309 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7310 && defined(PT_TEXT_END_ADDR)
7311 linux_read_offsets,
7312 #else
7313 NULL,
7314 #endif
7315 #ifdef USE_THREAD_DB
7316 thread_db_get_tls_address,
7317 #else
7318 NULL,
7319 #endif
7320 linux_qxfer_spu,
7321 hostio_last_error_from_errno,
7322 linux_qxfer_osdata,
7323 linux_xfer_siginfo,
7324 linux_supports_non_stop,
7325 linux_async,
7326 linux_start_non_stop,
7327 linux_supports_multi_process,
7328 linux_supports_fork_events,
7329 linux_supports_vfork_events,
7330 linux_supports_exec_events,
7331 linux_handle_new_gdb_connection,
7332 #ifdef USE_THREAD_DB
7333 thread_db_handle_monitor_command,
7334 #else
7335 NULL,
7336 #endif
7337 linux_common_core_of_thread,
7338 linux_read_loadmap,
7339 linux_process_qsupported,
7340 linux_supports_tracepoints,
7341 linux_read_pc,
7342 linux_write_pc,
7343 linux_thread_stopped,
7344 NULL,
7345 linux_pause_all,
7346 linux_unpause_all,
7347 linux_stabilize_threads,
7348 linux_install_fast_tracepoint_jump_pad,
7349 linux_emit_ops,
7350 linux_supports_disable_randomization,
7351 linux_get_min_fast_tracepoint_insn_len,
7352 linux_qxfer_libraries_svr4,
7353 linux_supports_agent,
7354 #ifdef HAVE_LINUX_BTRACE
7355 linux_supports_btrace,
7356 linux_enable_btrace,
7357 linux_low_disable_btrace,
7358 linux_low_read_btrace,
7359 linux_low_btrace_conf,
7360 #else
7361 NULL,
7362 NULL,
7363 NULL,
7364 NULL,
7365 NULL,
7366 #endif
7367 linux_supports_range_stepping,
7368 linux_proc_pid_to_exec_file,
7369 linux_mntns_open_cloexec,
7370 linux_mntns_unlink,
7371 linux_mntns_readlink,
7372 linux_breakpoint_kind_from_pc,
7373 linux_sw_breakpoint_from_kind,
7374 linux_proc_tid_get_name,
7375 linux_breakpoint_kind_from_current_state,
7376 linux_supports_software_single_step,
7377 linux_supports_catch_syscall,
7378 linux_get_ipa_tdesc_idx,
7379 };
7380
7381 #ifdef HAVE_LINUX_REGSETS
7382 void
7383 initialize_regsets_info (struct regsets_info *info)
7384 {
7385 for (info->num_regsets = 0;
7386 info->regsets[info->num_regsets].size >= 0;
7387 info->num_regsets++)
7388 ;
7389 }
7390 #endif
7391
7392 void
7393 initialize_low (void)
7394 {
7395 struct sigaction sigchld_action;
7396
7397 memset (&sigchld_action, 0, sizeof (sigchld_action));
7398 set_target_ops (&linux_target_ops);
7399
7400 linux_ptrace_init_warnings ();
7401
7402 sigchld_action.sa_handler = sigchld_handler;
7403 sigemptyset (&sigchld_action.sa_mask);
7404 sigchld_action.sa_flags = SA_RESTART;
7405 sigaction (SIGCHLD, &sigchld_action, NULL);
7406
7407 initialize_low_arch ();
7408
7409 linux_check_ptrace_features ();
7410 }