]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
gdbserver gnu/linux: stepping over breakpoint
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <sys/ptrace.h>
28 #include "nat/linux-ptrace.h"
29 #include "nat/linux-procfs.h"
30 #include "nat/linux-personality.h"
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34 #include <unistd.h>
35 #include <sys/syscall.h>
36 #include <sched.h>
37 #include <ctype.h>
38 #include <pwd.h>
39 #include <sys/types.h>
40 #include <dirent.h>
41 #include <sys/stat.h>
42 #include <sys/vfs.h>
43 #include <sys/uio.h>
44 #include "filestuff.h"
45 #include "tracepoint.h"
46 #include "hostio.h"
47 #ifndef ELFMAG0
48 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
49 then ELFMAG0 will have been defined. If it didn't get included by
50 gdb_proc_service.h then including it will likely introduce a duplicate
51 definition of elf_fpregset_t. */
52 #include <elf.h>
53 #endif
54
55 #ifndef SPUFS_MAGIC
56 #define SPUFS_MAGIC 0x23c9b64e
57 #endif
58
59 #ifdef HAVE_PERSONALITY
60 # include <sys/personality.h>
61 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
62 # define ADDR_NO_RANDOMIZE 0x0040000
63 # endif
64 #endif
65
66 #ifndef O_LARGEFILE
67 #define O_LARGEFILE 0
68 #endif
69
70 #ifndef W_STOPCODE
71 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
72 #endif
73
74 /* This is the kernel's hard limit. Not to be confused with
75 SIGRTMIN. */
76 #ifndef __SIGRTMIN
77 #define __SIGRTMIN 32
78 #endif
79
80 /* Some targets did not define these ptrace constants from the start,
81 so gdbserver defines them locally here. In the future, these may
82 be removed after they are added to asm/ptrace.h. */
83 #if !(defined(PT_TEXT_ADDR) \
84 || defined(PT_DATA_ADDR) \
85 || defined(PT_TEXT_END_ADDR))
86 #if defined(__mcoldfire__)
87 /* These are still undefined in 3.10 kernels. */
88 #define PT_TEXT_ADDR 49*4
89 #define PT_DATA_ADDR 50*4
90 #define PT_TEXT_END_ADDR 51*4
91 /* BFIN already defines these since at least 2.6.32 kernels. */
92 #elif defined(BFIN)
93 #define PT_TEXT_ADDR 220
94 #define PT_TEXT_END_ADDR 224
95 #define PT_DATA_ADDR 228
96 /* These are still undefined in 3.10 kernels. */
97 #elif defined(__TMS320C6X__)
98 #define PT_TEXT_ADDR (0x10000*4)
99 #define PT_DATA_ADDR (0x10004*4)
100 #define PT_TEXT_END_ADDR (0x10008*4)
101 #endif
102 #endif
103
104 #ifdef HAVE_LINUX_BTRACE
105 # include "nat/linux-btrace.h"
106 # include "btrace-common.h"
107 #endif
108
109 #ifndef HAVE_ELF32_AUXV_T
110 /* Copied from glibc's elf.h. */
111 typedef struct
112 {
113 uint32_t a_type; /* Entry type */
114 union
115 {
116 uint32_t a_val; /* Integer value */
117 /* We use to have pointer elements added here. We cannot do that,
118 though, since it does not work when using 32-bit definitions
119 on 64-bit platforms and vice versa. */
120 } a_un;
121 } Elf32_auxv_t;
122 #endif
123
124 #ifndef HAVE_ELF64_AUXV_T
125 /* Copied from glibc's elf.h. */
126 typedef struct
127 {
128 uint64_t a_type; /* Entry type */
129 union
130 {
131 uint64_t a_val; /* Integer value */
132 /* We use to have pointer elements added here. We cannot do that,
133 though, since it does not work when using 32-bit definitions
134 on 64-bit platforms and vice versa. */
135 } a_un;
136 } Elf64_auxv_t;
137 #endif
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* A list of all unknown processes which receive stop signals. Some
183 other process will presumably claim each of these as forked
184 children momentarily. */
185
186 struct simple_pid_list
187 {
188 /* The process ID. */
189 int pid;
190
191 /* The status as reported by waitpid. */
192 int status;
193
194 /* Next in chain. */
195 struct simple_pid_list *next;
196 };
197 struct simple_pid_list *stopped_pids;
198
199 /* Trivial list manipulation functions to keep track of a list of new
200 stopped processes. */
201
202 static void
203 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
204 {
205 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
206
207 new_pid->pid = pid;
208 new_pid->status = status;
209 new_pid->next = *listp;
210 *listp = new_pid;
211 }
212
213 static int
214 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
215 {
216 struct simple_pid_list **p;
217
218 for (p = listp; *p != NULL; p = &(*p)->next)
219 if ((*p)->pid == pid)
220 {
221 struct simple_pid_list *next = (*p)->next;
222
223 *statusp = (*p)->status;
224 xfree (*p);
225 *p = next;
226 return 1;
227 }
228 return 0;
229 }
230
231 enum stopping_threads_kind
232 {
233 /* Not stopping threads presently. */
234 NOT_STOPPING_THREADS,
235
236 /* Stopping threads. */
237 STOPPING_THREADS,
238
239 /* Stopping and suspending threads. */
240 STOPPING_AND_SUSPENDING_THREADS
241 };
242
243 /* This is set while stop_all_lwps is in effect. */
244 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
245
246 /* FIXME make into a target method? */
247 int using_threads = 1;
248
249 /* True if we're presently stabilizing threads (moving them out of
250 jump pads). */
251 static int stabilizing_threads;
252
253 static void linux_resume_one_lwp (struct lwp_info *lwp,
254 int step, int signal, siginfo_t *info);
255 static void linux_resume (struct thread_resume *resume_info, size_t n);
256 static void stop_all_lwps (int suspend, struct lwp_info *except);
257 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
258 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
259 int *wstat, int options);
260 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
261 static struct lwp_info *add_lwp (ptid_t ptid);
262 static int linux_stopped_by_watchpoint (void);
263 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
264 static void proceed_all_lwps (void);
265 static int finish_step_over (struct lwp_info *lwp);
266 static int kill_lwp (unsigned long lwpid, int signo);
267
268 /* When the event-loop is doing a step-over, this points at the thread
269 being stepped. */
270 ptid_t step_over_bkpt;
271
272 /* True if the low target can hardware single-step. Such targets
273 don't need a BREAKPOINT_REINSERT_ADDR callback. */
274
275 static int
276 can_hardware_single_step (void)
277 {
278 return (the_low_target.breakpoint_reinsert_addr == NULL);
279 }
280
281 /* True if the low target supports memory breakpoints. If so, we'll
282 have a GET_PC implementation. */
283
284 static int
285 supports_breakpoints (void)
286 {
287 return (the_low_target.get_pc != NULL);
288 }
289
290 /* Returns true if this target can support fast tracepoints. This
291 does not mean that the in-process agent has been loaded in the
292 inferior. */
293
294 static int
295 supports_fast_tracepoints (void)
296 {
297 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
298 }
299
300 /* True if LWP is stopped in its stepping range. */
301
302 static int
303 lwp_in_step_range (struct lwp_info *lwp)
304 {
305 CORE_ADDR pc = lwp->stop_pc;
306
307 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
308 }
309
310 struct pending_signals
311 {
312 int signal;
313 siginfo_t info;
314 struct pending_signals *prev;
315 };
316
317 /* The read/write ends of the pipe registered as waitable file in the
318 event loop. */
319 static int linux_event_pipe[2] = { -1, -1 };
320
321 /* True if we're currently in async mode. */
322 #define target_is_async_p() (linux_event_pipe[0] != -1)
323
324 static void send_sigstop (struct lwp_info *lwp);
325 static void wait_for_sigstop (void);
326
327 /* Return non-zero if HEADER is a 64-bit ELF file. */
328
329 static int
330 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
331 {
332 if (header->e_ident[EI_MAG0] == ELFMAG0
333 && header->e_ident[EI_MAG1] == ELFMAG1
334 && header->e_ident[EI_MAG2] == ELFMAG2
335 && header->e_ident[EI_MAG3] == ELFMAG3)
336 {
337 *machine = header->e_machine;
338 return header->e_ident[EI_CLASS] == ELFCLASS64;
339
340 }
341 *machine = EM_NONE;
342 return -1;
343 }
344
345 /* Return non-zero if FILE is a 64-bit ELF file,
346 zero if the file is not a 64-bit ELF file,
347 and -1 if the file is not accessible or doesn't exist. */
348
349 static int
350 elf_64_file_p (const char *file, unsigned int *machine)
351 {
352 Elf64_Ehdr header;
353 int fd;
354
355 fd = open (file, O_RDONLY);
356 if (fd < 0)
357 return -1;
358
359 if (read (fd, &header, sizeof (header)) != sizeof (header))
360 {
361 close (fd);
362 return 0;
363 }
364 close (fd);
365
366 return elf_64_header_p (&header, machine);
367 }
368
369 /* Accepts an integer PID; Returns true if the executable PID is
370 running is a 64-bit ELF file.. */
371
372 int
373 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
374 {
375 char file[PATH_MAX];
376
377 sprintf (file, "/proc/%d/exe", pid);
378 return elf_64_file_p (file, machine);
379 }
380
381 static void
382 delete_lwp (struct lwp_info *lwp)
383 {
384 struct thread_info *thr = get_lwp_thread (lwp);
385
386 if (debug_threads)
387 debug_printf ("deleting %ld\n", lwpid_of (thr));
388
389 remove_thread (thr);
390 free (lwp->arch_private);
391 free (lwp);
392 }
393
394 /* Add a process to the common process list, and set its private
395 data. */
396
397 static struct process_info *
398 linux_add_process (int pid, int attached)
399 {
400 struct process_info *proc;
401
402 proc = add_process (pid, attached);
403 proc->priv = xcalloc (1, sizeof (*proc->priv));
404
405 /* Set the arch when the first LWP stops. */
406 proc->priv->new_inferior = 1;
407
408 if (the_low_target.new_process != NULL)
409 proc->priv->arch_private = the_low_target.new_process ();
410
411 return proc;
412 }
413
414 static CORE_ADDR get_pc (struct lwp_info *lwp);
415
416 /* Handle a GNU/Linux extended wait response. If we see a clone
417 event, we need to add the new LWP to our list (and not report the
418 trap to higher layers). */
419
420 static void
421 handle_extended_wait (struct lwp_info *event_child, int wstat)
422 {
423 int event = linux_ptrace_get_extended_event (wstat);
424 struct thread_info *event_thr = get_lwp_thread (event_child);
425 struct lwp_info *new_lwp;
426
427 if (event == PTRACE_EVENT_CLONE)
428 {
429 ptid_t ptid;
430 unsigned long new_pid;
431 int ret, status;
432
433 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
434 &new_pid);
435
436 /* If we haven't already seen the new PID stop, wait for it now. */
437 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
438 {
439 /* The new child has a pending SIGSTOP. We can't affect it until it
440 hits the SIGSTOP, but we're already attached. */
441
442 ret = my_waitpid (new_pid, &status, __WALL);
443
444 if (ret == -1)
445 perror_with_name ("waiting for new child");
446 else if (ret != new_pid)
447 warning ("wait returned unexpected PID %d", ret);
448 else if (!WIFSTOPPED (status))
449 warning ("wait returned unexpected status 0x%x", status);
450 }
451
452 if (debug_threads)
453 debug_printf ("HEW: Got clone event "
454 "from LWP %ld, new child is LWP %ld\n",
455 lwpid_of (event_thr), new_pid);
456
457 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
458 new_lwp = add_lwp (ptid);
459
460 /* Either we're going to immediately resume the new thread
461 or leave it stopped. linux_resume_one_lwp is a nop if it
462 thinks the thread is currently running, so set this first
463 before calling linux_resume_one_lwp. */
464 new_lwp->stopped = 1;
465
466 /* If we're suspending all threads, leave this one suspended
467 too. */
468 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
469 new_lwp->suspended = 1;
470
471 /* Normally we will get the pending SIGSTOP. But in some cases
472 we might get another signal delivered to the group first.
473 If we do get another signal, be sure not to lose it. */
474 if (WSTOPSIG (status) != SIGSTOP)
475 {
476 new_lwp->stop_expected = 1;
477 new_lwp->status_pending_p = 1;
478 new_lwp->status_pending = status;
479 }
480 }
481 }
482
483 /* Return the PC as read from the regcache of LWP, without any
484 adjustment. */
485
486 static CORE_ADDR
487 get_pc (struct lwp_info *lwp)
488 {
489 struct thread_info *saved_thread;
490 struct regcache *regcache;
491 CORE_ADDR pc;
492
493 if (the_low_target.get_pc == NULL)
494 return 0;
495
496 saved_thread = current_thread;
497 current_thread = get_lwp_thread (lwp);
498
499 regcache = get_thread_regcache (current_thread, 1);
500 pc = (*the_low_target.get_pc) (regcache);
501
502 if (debug_threads)
503 debug_printf ("pc is 0x%lx\n", (long) pc);
504
505 current_thread = saved_thread;
506 return pc;
507 }
508
509 /* This function should only be called if LWP got a SIGTRAP.
510 The SIGTRAP could mean several things.
511
512 On i386, where decr_pc_after_break is non-zero:
513
514 If we were single-stepping this process using PTRACE_SINGLESTEP, we
515 will get only the one SIGTRAP. The value of $eip will be the next
516 instruction. If the instruction we stepped over was a breakpoint,
517 we need to decrement the PC.
518
519 If we continue the process using PTRACE_CONT, we will get a
520 SIGTRAP when we hit a breakpoint. The value of $eip will be
521 the instruction after the breakpoint (i.e. needs to be
522 decremented). If we report the SIGTRAP to GDB, we must also
523 report the undecremented PC. If the breakpoint is removed, we
524 must resume at the decremented PC.
525
526 On a non-decr_pc_after_break machine with hardware or kernel
527 single-step:
528
529 If we either single-step a breakpoint instruction, or continue and
530 hit a breakpoint instruction, our PC will point at the breakpoint
531 instruction. */
532
533 static int
534 check_stopped_by_breakpoint (struct lwp_info *lwp)
535 {
536 CORE_ADDR pc;
537 CORE_ADDR sw_breakpoint_pc;
538 struct thread_info *saved_thread;
539 #if USE_SIGTRAP_SIGINFO
540 siginfo_t siginfo;
541 #endif
542
543 if (the_low_target.get_pc == NULL)
544 return 0;
545
546 pc = get_pc (lwp);
547 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
548
549 /* breakpoint_at reads from the current thread. */
550 saved_thread = current_thread;
551 current_thread = get_lwp_thread (lwp);
552
553 #if USE_SIGTRAP_SIGINFO
554 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
555 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
556 {
557 if (siginfo.si_signo == SIGTRAP)
558 {
559 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
560 {
561 if (debug_threads)
562 {
563 struct thread_info *thr = get_lwp_thread (lwp);
564
565 debug_printf ("CSBB: %s stopped by software breakpoint\n",
566 target_pid_to_str (ptid_of (thr)));
567 }
568
569 /* Back up the PC if necessary. */
570 if (pc != sw_breakpoint_pc)
571 {
572 struct regcache *regcache
573 = get_thread_regcache (current_thread, 1);
574 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
575 }
576
577 lwp->stop_pc = sw_breakpoint_pc;
578 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
579 current_thread = saved_thread;
580 return 1;
581 }
582 else if (siginfo.si_code == TRAP_HWBKPT)
583 {
584 if (debug_threads)
585 {
586 struct thread_info *thr = get_lwp_thread (lwp);
587
588 debug_printf ("CSBB: %s stopped by hardware "
589 "breakpoint/watchpoint\n",
590 target_pid_to_str (ptid_of (thr)));
591 }
592
593 lwp->stop_pc = pc;
594 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
595 current_thread = saved_thread;
596 return 1;
597 }
598 else if (siginfo.si_code == TRAP_TRACE)
599 {
600 if (debug_threads)
601 {
602 struct thread_info *thr = get_lwp_thread (lwp);
603
604 debug_printf ("CSBB: %s stopped by trace\n",
605 target_pid_to_str (ptid_of (thr)));
606 }
607 }
608 }
609 }
610 #else
611 /* We may have just stepped a breakpoint instruction. E.g., in
612 non-stop mode, GDB first tells the thread A to step a range, and
613 then the user inserts a breakpoint inside the range. In that
614 case we need to report the breakpoint PC. */
615 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
616 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
617 {
618 if (debug_threads)
619 {
620 struct thread_info *thr = get_lwp_thread (lwp);
621
622 debug_printf ("CSBB: %s stopped by software breakpoint\n",
623 target_pid_to_str (ptid_of (thr)));
624 }
625
626 /* Back up the PC if necessary. */
627 if (pc != sw_breakpoint_pc)
628 {
629 struct regcache *regcache
630 = get_thread_regcache (current_thread, 1);
631 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
632 }
633
634 lwp->stop_pc = sw_breakpoint_pc;
635 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
636 current_thread = saved_thread;
637 return 1;
638 }
639
640 if (hardware_breakpoint_inserted_here (pc))
641 {
642 if (debug_threads)
643 {
644 struct thread_info *thr = get_lwp_thread (lwp);
645
646 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
647 target_pid_to_str (ptid_of (thr)));
648 }
649
650 lwp->stop_pc = pc;
651 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
652 current_thread = saved_thread;
653 return 1;
654 }
655 #endif
656
657 current_thread = saved_thread;
658 return 0;
659 }
660
661 static struct lwp_info *
662 add_lwp (ptid_t ptid)
663 {
664 struct lwp_info *lwp;
665
666 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
667 memset (lwp, 0, sizeof (*lwp));
668
669 if (the_low_target.new_thread != NULL)
670 the_low_target.new_thread (lwp);
671
672 lwp->thread = add_thread (ptid, lwp);
673
674 return lwp;
675 }
676
677 /* Start an inferior process and returns its pid.
678 ALLARGS is a vector of program-name and args. */
679
680 static int
681 linux_create_inferior (char *program, char **allargs)
682 {
683 struct lwp_info *new_lwp;
684 int pid;
685 ptid_t ptid;
686 struct cleanup *restore_personality
687 = maybe_disable_address_space_randomization (disable_randomization);
688
689 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
690 pid = vfork ();
691 #else
692 pid = fork ();
693 #endif
694 if (pid < 0)
695 perror_with_name ("fork");
696
697 if (pid == 0)
698 {
699 close_most_fds ();
700 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
701
702 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
703 signal (__SIGRTMIN + 1, SIG_DFL);
704 #endif
705
706 setpgid (0, 0);
707
708 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
709 stdout to stderr so that inferior i/o doesn't corrupt the connection.
710 Also, redirect stdin to /dev/null. */
711 if (remote_connection_is_stdio ())
712 {
713 close (0);
714 open ("/dev/null", O_RDONLY);
715 dup2 (2, 1);
716 if (write (2, "stdin/stdout redirected\n",
717 sizeof ("stdin/stdout redirected\n") - 1) < 0)
718 {
719 /* Errors ignored. */;
720 }
721 }
722
723 execv (program, allargs);
724 if (errno == ENOENT)
725 execvp (program, allargs);
726
727 fprintf (stderr, "Cannot exec %s: %s.\n", program,
728 strerror (errno));
729 fflush (stderr);
730 _exit (0177);
731 }
732
733 do_cleanups (restore_personality);
734
735 linux_add_process (pid, 0);
736
737 ptid = ptid_build (pid, pid, 0);
738 new_lwp = add_lwp (ptid);
739 new_lwp->must_set_ptrace_flags = 1;
740
741 return pid;
742 }
743
744 /* Attach to an inferior process. Returns 0 on success, ERRNO on
745 error. */
746
747 int
748 linux_attach_lwp (ptid_t ptid)
749 {
750 struct lwp_info *new_lwp;
751 int lwpid = ptid_get_lwp (ptid);
752
753 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
754 != 0)
755 return errno;
756
757 new_lwp = add_lwp (ptid);
758
759 /* We need to wait for SIGSTOP before being able to make the next
760 ptrace call on this LWP. */
761 new_lwp->must_set_ptrace_flags = 1;
762
763 if (linux_proc_pid_is_stopped (lwpid))
764 {
765 if (debug_threads)
766 debug_printf ("Attached to a stopped process\n");
767
768 /* The process is definitely stopped. It is in a job control
769 stop, unless the kernel predates the TASK_STOPPED /
770 TASK_TRACED distinction, in which case it might be in a
771 ptrace stop. Make sure it is in a ptrace stop; from there we
772 can kill it, signal it, et cetera.
773
774 First make sure there is a pending SIGSTOP. Since we are
775 already attached, the process can not transition from stopped
776 to running without a PTRACE_CONT; so we know this signal will
777 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
778 probably already in the queue (unless this kernel is old
779 enough to use TASK_STOPPED for ptrace stops); but since
780 SIGSTOP is not an RT signal, it can only be queued once. */
781 kill_lwp (lwpid, SIGSTOP);
782
783 /* Finally, resume the stopped process. This will deliver the
784 SIGSTOP (or a higher priority signal, just like normal
785 PTRACE_ATTACH), which we'll catch later on. */
786 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
787 }
788
789 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
790 brings it to a halt.
791
792 There are several cases to consider here:
793
794 1) gdbserver has already attached to the process and is being notified
795 of a new thread that is being created.
796 In this case we should ignore that SIGSTOP and resume the
797 process. This is handled below by setting stop_expected = 1,
798 and the fact that add_thread sets last_resume_kind ==
799 resume_continue.
800
801 2) This is the first thread (the process thread), and we're attaching
802 to it via attach_inferior.
803 In this case we want the process thread to stop.
804 This is handled by having linux_attach set last_resume_kind ==
805 resume_stop after we return.
806
807 If the pid we are attaching to is also the tgid, we attach to and
808 stop all the existing threads. Otherwise, we attach to pid and
809 ignore any other threads in the same group as this pid.
810
811 3) GDB is connecting to gdbserver and is requesting an enumeration of all
812 existing threads.
813 In this case we want the thread to stop.
814 FIXME: This case is currently not properly handled.
815 We should wait for the SIGSTOP but don't. Things work apparently
816 because enough time passes between when we ptrace (ATTACH) and when
817 gdb makes the next ptrace call on the thread.
818
819 On the other hand, if we are currently trying to stop all threads, we
820 should treat the new thread as if we had sent it a SIGSTOP. This works
821 because we are guaranteed that the add_lwp call above added us to the
822 end of the list, and so the new thread has not yet reached
823 wait_for_sigstop (but will). */
824 new_lwp->stop_expected = 1;
825
826 return 0;
827 }
828
829 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
830 already attached. Returns true if a new LWP is found, false
831 otherwise. */
832
833 static int
834 attach_proc_task_lwp_callback (ptid_t ptid)
835 {
836 /* Is this a new thread? */
837 if (find_thread_ptid (ptid) == NULL)
838 {
839 int lwpid = ptid_get_lwp (ptid);
840 int err;
841
842 if (debug_threads)
843 debug_printf ("Found new lwp %d\n", lwpid);
844
845 err = linux_attach_lwp (ptid);
846
847 /* Be quiet if we simply raced with the thread exiting. EPERM
848 is returned if the thread's task still exists, and is marked
849 as exited or zombie, as well as other conditions, so in that
850 case, confirm the status in /proc/PID/status. */
851 if (err == ESRCH
852 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
853 {
854 if (debug_threads)
855 {
856 debug_printf ("Cannot attach to lwp %d: "
857 "thread is gone (%d: %s)\n",
858 lwpid, err, strerror (err));
859 }
860 }
861 else if (err != 0)
862 {
863 warning (_("Cannot attach to lwp %d: %s"),
864 lwpid,
865 linux_ptrace_attach_fail_reason_string (ptid, err));
866 }
867
868 return 1;
869 }
870 return 0;
871 }
872
873 /* Attach to PID. If PID is the tgid, attach to it and all
874 of its threads. */
875
876 static int
877 linux_attach (unsigned long pid)
878 {
879 ptid_t ptid = ptid_build (pid, pid, 0);
880 int err;
881
882 /* Attach to PID. We will check for other threads
883 soon. */
884 err = linux_attach_lwp (ptid);
885 if (err != 0)
886 error ("Cannot attach to process %ld: %s",
887 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
888
889 linux_add_process (pid, 1);
890
891 if (!non_stop)
892 {
893 struct thread_info *thread;
894
895 /* Don't ignore the initial SIGSTOP if we just attached to this
896 process. It will be collected by wait shortly. */
897 thread = find_thread_ptid (ptid_build (pid, pid, 0));
898 thread->last_resume_kind = resume_stop;
899 }
900
901 /* We must attach to every LWP. If /proc is mounted, use that to
902 find them now. On the one hand, the inferior may be using raw
903 clone instead of using pthreads. On the other hand, even if it
904 is using pthreads, GDB may not be connected yet (thread_db needs
905 to do symbol lookups, through qSymbol). Also, thread_db walks
906 structures in the inferior's address space to find the list of
907 threads/LWPs, and those structures may well be corrupted. Note
908 that once thread_db is loaded, we'll still use it to list threads
909 and associate pthread info with each LWP. */
910 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
911 return 0;
912 }
913
914 struct counter
915 {
916 int pid;
917 int count;
918 };
919
920 static int
921 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
922 {
923 struct counter *counter = args;
924
925 if (ptid_get_pid (entry->id) == counter->pid)
926 {
927 if (++counter->count > 1)
928 return 1;
929 }
930
931 return 0;
932 }
933
934 static int
935 last_thread_of_process_p (int pid)
936 {
937 struct counter counter = { pid , 0 };
938
939 return (find_inferior (&all_threads,
940 second_thread_of_pid_p, &counter) == NULL);
941 }
942
943 /* Kill LWP. */
944
945 static void
946 linux_kill_one_lwp (struct lwp_info *lwp)
947 {
948 struct thread_info *thr = get_lwp_thread (lwp);
949 int pid = lwpid_of (thr);
950
951 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
952 there is no signal context, and ptrace(PTRACE_KILL) (or
953 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
954 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
955 alternative is to kill with SIGKILL. We only need one SIGKILL
956 per process, not one for each thread. But since we still support
957 linuxthreads, and we also support debugging programs using raw
958 clone without CLONE_THREAD, we send one for each thread. For
959 years, we used PTRACE_KILL only, so we're being a bit paranoid
960 about some old kernels where PTRACE_KILL might work better
961 (dubious if there are any such, but that's why it's paranoia), so
962 we try SIGKILL first, PTRACE_KILL second, and so we're fine
963 everywhere. */
964
965 errno = 0;
966 kill_lwp (pid, SIGKILL);
967 if (debug_threads)
968 {
969 int save_errno = errno;
970
971 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
972 target_pid_to_str (ptid_of (thr)),
973 save_errno ? strerror (save_errno) : "OK");
974 }
975
976 errno = 0;
977 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
978 if (debug_threads)
979 {
980 int save_errno = errno;
981
982 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
983 target_pid_to_str (ptid_of (thr)),
984 save_errno ? strerror (save_errno) : "OK");
985 }
986 }
987
988 /* Kill LWP and wait for it to die. */
989
990 static void
991 kill_wait_lwp (struct lwp_info *lwp)
992 {
993 struct thread_info *thr = get_lwp_thread (lwp);
994 int pid = ptid_get_pid (ptid_of (thr));
995 int lwpid = ptid_get_lwp (ptid_of (thr));
996 int wstat;
997 int res;
998
999 if (debug_threads)
1000 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1001
1002 do
1003 {
1004 linux_kill_one_lwp (lwp);
1005
1006 /* Make sure it died. Notes:
1007
1008 - The loop is most likely unnecessary.
1009
1010 - We don't use linux_wait_for_event as that could delete lwps
1011 while we're iterating over them. We're not interested in
1012 any pending status at this point, only in making sure all
1013 wait status on the kernel side are collected until the
1014 process is reaped.
1015
1016 - We don't use __WALL here as the __WALL emulation relies on
1017 SIGCHLD, and killing a stopped process doesn't generate
1018 one, nor an exit status.
1019 */
1020 res = my_waitpid (lwpid, &wstat, 0);
1021 if (res == -1 && errno == ECHILD)
1022 res = my_waitpid (lwpid, &wstat, __WCLONE);
1023 } while (res > 0 && WIFSTOPPED (wstat));
1024
1025 gdb_assert (res > 0);
1026 }
1027
1028 /* Callback for `find_inferior'. Kills an lwp of a given process,
1029 except the leader. */
1030
1031 static int
1032 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1033 {
1034 struct thread_info *thread = (struct thread_info *) entry;
1035 struct lwp_info *lwp = get_thread_lwp (thread);
1036 int pid = * (int *) args;
1037
1038 if (ptid_get_pid (entry->id) != pid)
1039 return 0;
1040
1041 /* We avoid killing the first thread here, because of a Linux kernel (at
1042 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1043 the children get a chance to be reaped, it will remain a zombie
1044 forever. */
1045
1046 if (lwpid_of (thread) == pid)
1047 {
1048 if (debug_threads)
1049 debug_printf ("lkop: is last of process %s\n",
1050 target_pid_to_str (entry->id));
1051 return 0;
1052 }
1053
1054 kill_wait_lwp (lwp);
1055 return 0;
1056 }
1057
1058 static int
1059 linux_kill (int pid)
1060 {
1061 struct process_info *process;
1062 struct lwp_info *lwp;
1063
1064 process = find_process_pid (pid);
1065 if (process == NULL)
1066 return -1;
1067
1068 /* If we're killing a running inferior, make sure it is stopped
1069 first, as PTRACE_KILL will not work otherwise. */
1070 stop_all_lwps (0, NULL);
1071
1072 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1073
1074 /* See the comment in linux_kill_one_lwp. We did not kill the first
1075 thread in the list, so do so now. */
1076 lwp = find_lwp_pid (pid_to_ptid (pid));
1077
1078 if (lwp == NULL)
1079 {
1080 if (debug_threads)
1081 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1082 pid);
1083 }
1084 else
1085 kill_wait_lwp (lwp);
1086
1087 the_target->mourn (process);
1088
1089 /* Since we presently can only stop all lwps of all processes, we
1090 need to unstop lwps of other processes. */
1091 unstop_all_lwps (0, NULL);
1092 return 0;
1093 }
1094
1095 /* Get pending signal of THREAD, for detaching purposes. This is the
1096 signal the thread last stopped for, which we need to deliver to the
1097 thread when detaching, otherwise, it'd be suppressed/lost. */
1098
1099 static int
1100 get_detach_signal (struct thread_info *thread)
1101 {
1102 enum gdb_signal signo = GDB_SIGNAL_0;
1103 int status;
1104 struct lwp_info *lp = get_thread_lwp (thread);
1105
1106 if (lp->status_pending_p)
1107 status = lp->status_pending;
1108 else
1109 {
1110 /* If the thread had been suspended by gdbserver, and it stopped
1111 cleanly, then it'll have stopped with SIGSTOP. But we don't
1112 want to deliver that SIGSTOP. */
1113 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1114 || thread->last_status.value.sig == GDB_SIGNAL_0)
1115 return 0;
1116
1117 /* Otherwise, we may need to deliver the signal we
1118 intercepted. */
1119 status = lp->last_status;
1120 }
1121
1122 if (!WIFSTOPPED (status))
1123 {
1124 if (debug_threads)
1125 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1126 target_pid_to_str (ptid_of (thread)));
1127 return 0;
1128 }
1129
1130 /* Extended wait statuses aren't real SIGTRAPs. */
1131 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1132 {
1133 if (debug_threads)
1134 debug_printf ("GPS: lwp %s had stopped with extended "
1135 "status: no pending signal\n",
1136 target_pid_to_str (ptid_of (thread)));
1137 return 0;
1138 }
1139
1140 signo = gdb_signal_from_host (WSTOPSIG (status));
1141
1142 if (program_signals_p && !program_signals[signo])
1143 {
1144 if (debug_threads)
1145 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1146 target_pid_to_str (ptid_of (thread)),
1147 gdb_signal_to_string (signo));
1148 return 0;
1149 }
1150 else if (!program_signals_p
1151 /* If we have no way to know which signals GDB does not
1152 want to have passed to the program, assume
1153 SIGTRAP/SIGINT, which is GDB's default. */
1154 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1155 {
1156 if (debug_threads)
1157 debug_printf ("GPS: lwp %s had signal %s, "
1158 "but we don't know if we should pass it. "
1159 "Default to not.\n",
1160 target_pid_to_str (ptid_of (thread)),
1161 gdb_signal_to_string (signo));
1162 return 0;
1163 }
1164 else
1165 {
1166 if (debug_threads)
1167 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1168 target_pid_to_str (ptid_of (thread)),
1169 gdb_signal_to_string (signo));
1170
1171 return WSTOPSIG (status);
1172 }
1173 }
1174
1175 static int
1176 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1177 {
1178 struct thread_info *thread = (struct thread_info *) entry;
1179 struct lwp_info *lwp = get_thread_lwp (thread);
1180 int pid = * (int *) args;
1181 int sig;
1182
1183 if (ptid_get_pid (entry->id) != pid)
1184 return 0;
1185
1186 /* If there is a pending SIGSTOP, get rid of it. */
1187 if (lwp->stop_expected)
1188 {
1189 if (debug_threads)
1190 debug_printf ("Sending SIGCONT to %s\n",
1191 target_pid_to_str (ptid_of (thread)));
1192
1193 kill_lwp (lwpid_of (thread), SIGCONT);
1194 lwp->stop_expected = 0;
1195 }
1196
1197 /* Flush any pending changes to the process's registers. */
1198 regcache_invalidate_thread (thread);
1199
1200 /* Pass on any pending signal for this thread. */
1201 sig = get_detach_signal (thread);
1202
1203 /* Finally, let it resume. */
1204 if (the_low_target.prepare_to_resume != NULL)
1205 the_low_target.prepare_to_resume (lwp);
1206 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1207 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1208 error (_("Can't detach %s: %s"),
1209 target_pid_to_str (ptid_of (thread)),
1210 strerror (errno));
1211
1212 delete_lwp (lwp);
1213 return 0;
1214 }
1215
1216 static int
1217 linux_detach (int pid)
1218 {
1219 struct process_info *process;
1220
1221 process = find_process_pid (pid);
1222 if (process == NULL)
1223 return -1;
1224
1225 /* Stop all threads before detaching. First, ptrace requires that
1226 the thread is stopped to sucessfully detach. Second, thread_db
1227 may need to uninstall thread event breakpoints from memory, which
1228 only works with a stopped process anyway. */
1229 stop_all_lwps (0, NULL);
1230
1231 #ifdef USE_THREAD_DB
1232 thread_db_detach (process);
1233 #endif
1234
1235 /* Stabilize threads (move out of jump pads). */
1236 stabilize_threads ();
1237
1238 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1239
1240 the_target->mourn (process);
1241
1242 /* Since we presently can only stop all lwps of all processes, we
1243 need to unstop lwps of other processes. */
1244 unstop_all_lwps (0, NULL);
1245 return 0;
1246 }
1247
1248 /* Remove all LWPs that belong to process PROC from the lwp list. */
1249
1250 static int
1251 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1252 {
1253 struct thread_info *thread = (struct thread_info *) entry;
1254 struct lwp_info *lwp = get_thread_lwp (thread);
1255 struct process_info *process = proc;
1256
1257 if (pid_of (thread) == pid_of (process))
1258 delete_lwp (lwp);
1259
1260 return 0;
1261 }
1262
1263 static void
1264 linux_mourn (struct process_info *process)
1265 {
1266 struct process_info_private *priv;
1267
1268 #ifdef USE_THREAD_DB
1269 thread_db_mourn (process);
1270 #endif
1271
1272 find_inferior (&all_threads, delete_lwp_callback, process);
1273
1274 /* Freeing all private data. */
1275 priv = process->priv;
1276 free (priv->arch_private);
1277 free (priv);
1278 process->priv = NULL;
1279
1280 remove_process (process);
1281 }
1282
1283 static void
1284 linux_join (int pid)
1285 {
1286 int status, ret;
1287
1288 do {
1289 ret = my_waitpid (pid, &status, 0);
1290 if (WIFEXITED (status) || WIFSIGNALED (status))
1291 break;
1292 } while (ret != -1 || errno != ECHILD);
1293 }
1294
1295 /* Return nonzero if the given thread is still alive. */
1296 static int
1297 linux_thread_alive (ptid_t ptid)
1298 {
1299 struct lwp_info *lwp = find_lwp_pid (ptid);
1300
1301 /* We assume we always know if a thread exits. If a whole process
1302 exited but we still haven't been able to report it to GDB, we'll
1303 hold on to the last lwp of the dead process. */
1304 if (lwp != NULL)
1305 return !lwp->dead;
1306 else
1307 return 0;
1308 }
1309
1310 /* Return 1 if this lwp still has an interesting status pending. If
1311 not (e.g., it had stopped for a breakpoint that is gone), return
1312 false. */
1313
1314 static int
1315 thread_still_has_status_pending_p (struct thread_info *thread)
1316 {
1317 struct lwp_info *lp = get_thread_lwp (thread);
1318
1319 if (!lp->status_pending_p)
1320 return 0;
1321
1322 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1323 report any status pending the LWP may have. */
1324 if (thread->last_resume_kind == resume_stop
1325 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1326 return 0;
1327
1328 if (thread->last_resume_kind != resume_stop
1329 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1330 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1331 {
1332 struct thread_info *saved_thread;
1333 CORE_ADDR pc;
1334 int discard = 0;
1335
1336 gdb_assert (lp->last_status != 0);
1337
1338 pc = get_pc (lp);
1339
1340 saved_thread = current_thread;
1341 current_thread = thread;
1342
1343 if (pc != lp->stop_pc)
1344 {
1345 if (debug_threads)
1346 debug_printf ("PC of %ld changed\n",
1347 lwpid_of (thread));
1348 discard = 1;
1349 }
1350
1351 #if !USE_SIGTRAP_SIGINFO
1352 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1353 && !(*the_low_target.breakpoint_at) (pc))
1354 {
1355 if (debug_threads)
1356 debug_printf ("previous SW breakpoint of %ld gone\n",
1357 lwpid_of (thread));
1358 discard = 1;
1359 }
1360 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1361 && !hardware_breakpoint_inserted_here (pc))
1362 {
1363 if (debug_threads)
1364 debug_printf ("previous HW breakpoint of %ld gone\n",
1365 lwpid_of (thread));
1366 discard = 1;
1367 }
1368 #endif
1369
1370 current_thread = saved_thread;
1371
1372 if (discard)
1373 {
1374 if (debug_threads)
1375 debug_printf ("discarding pending breakpoint status\n");
1376 lp->status_pending_p = 0;
1377 return 0;
1378 }
1379 }
1380
1381 return 1;
1382 }
1383
1384 /* Return 1 if this lwp has an interesting status pending. */
1385 static int
1386 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1387 {
1388 struct thread_info *thread = (struct thread_info *) entry;
1389 struct lwp_info *lp = get_thread_lwp (thread);
1390 ptid_t ptid = * (ptid_t *) arg;
1391
1392 /* Check if we're only interested in events from a specific process
1393 or a specific LWP. */
1394 if (!ptid_match (ptid_of (thread), ptid))
1395 return 0;
1396
1397 if (lp->status_pending_p
1398 && !thread_still_has_status_pending_p (thread))
1399 {
1400 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1401 return 0;
1402 }
1403
1404 return lp->status_pending_p;
1405 }
1406
1407 static int
1408 same_lwp (struct inferior_list_entry *entry, void *data)
1409 {
1410 ptid_t ptid = *(ptid_t *) data;
1411 int lwp;
1412
1413 if (ptid_get_lwp (ptid) != 0)
1414 lwp = ptid_get_lwp (ptid);
1415 else
1416 lwp = ptid_get_pid (ptid);
1417
1418 if (ptid_get_lwp (entry->id) == lwp)
1419 return 1;
1420
1421 return 0;
1422 }
1423
1424 struct lwp_info *
1425 find_lwp_pid (ptid_t ptid)
1426 {
1427 struct inferior_list_entry *thread
1428 = find_inferior (&all_threads, same_lwp, &ptid);
1429
1430 if (thread == NULL)
1431 return NULL;
1432
1433 return get_thread_lwp ((struct thread_info *) thread);
1434 }
1435
1436 /* Return the number of known LWPs in the tgid given by PID. */
1437
1438 static int
1439 num_lwps (int pid)
1440 {
1441 struct inferior_list_entry *inf, *tmp;
1442 int count = 0;
1443
1444 ALL_INFERIORS (&all_threads, inf, tmp)
1445 {
1446 if (ptid_get_pid (inf->id) == pid)
1447 count++;
1448 }
1449
1450 return count;
1451 }
1452
1453 /* The arguments passed to iterate_over_lwps. */
1454
1455 struct iterate_over_lwps_args
1456 {
1457 /* The FILTER argument passed to iterate_over_lwps. */
1458 ptid_t filter;
1459
1460 /* The CALLBACK argument passed to iterate_over_lwps. */
1461 iterate_over_lwps_ftype *callback;
1462
1463 /* The DATA argument passed to iterate_over_lwps. */
1464 void *data;
1465 };
1466
1467 /* Callback for find_inferior used by iterate_over_lwps to filter
1468 calls to the callback supplied to that function. Returning a
1469 nonzero value causes find_inferiors to stop iterating and return
1470 the current inferior_list_entry. Returning zero indicates that
1471 find_inferiors should continue iterating. */
1472
1473 static int
1474 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1475 {
1476 struct iterate_over_lwps_args *args
1477 = (struct iterate_over_lwps_args *) args_p;
1478
1479 if (ptid_match (entry->id, args->filter))
1480 {
1481 struct thread_info *thr = (struct thread_info *) entry;
1482 struct lwp_info *lwp = get_thread_lwp (thr);
1483
1484 return (*args->callback) (lwp, args->data);
1485 }
1486
1487 return 0;
1488 }
1489
1490 /* See nat/linux-nat.h. */
1491
1492 struct lwp_info *
1493 iterate_over_lwps (ptid_t filter,
1494 iterate_over_lwps_ftype callback,
1495 void *data)
1496 {
1497 struct iterate_over_lwps_args args = {filter, callback, data};
1498 struct inferior_list_entry *entry;
1499
1500 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1501 if (entry == NULL)
1502 return NULL;
1503
1504 return get_thread_lwp ((struct thread_info *) entry);
1505 }
1506
1507 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1508 their exits until all other threads in the group have exited. */
1509
1510 static void
1511 check_zombie_leaders (void)
1512 {
1513 struct process_info *proc, *tmp;
1514
1515 ALL_PROCESSES (proc, tmp)
1516 {
1517 pid_t leader_pid = pid_of (proc);
1518 struct lwp_info *leader_lp;
1519
1520 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1521
1522 if (debug_threads)
1523 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1524 "num_lwps=%d, zombie=%d\n",
1525 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1526 linux_proc_pid_is_zombie (leader_pid));
1527
1528 if (leader_lp != NULL
1529 /* Check if there are other threads in the group, as we may
1530 have raced with the inferior simply exiting. */
1531 && !last_thread_of_process_p (leader_pid)
1532 && linux_proc_pid_is_zombie (leader_pid))
1533 {
1534 /* A leader zombie can mean one of two things:
1535
1536 - It exited, and there's an exit status pending
1537 available, or only the leader exited (not the whole
1538 program). In the latter case, we can't waitpid the
1539 leader's exit status until all other threads are gone.
1540
1541 - There are 3 or more threads in the group, and a thread
1542 other than the leader exec'd. On an exec, the Linux
1543 kernel destroys all other threads (except the execing
1544 one) in the thread group, and resets the execing thread's
1545 tid to the tgid. No exit notification is sent for the
1546 execing thread -- from the ptracer's perspective, it
1547 appears as though the execing thread just vanishes.
1548 Until we reap all other threads except the leader and the
1549 execing thread, the leader will be zombie, and the
1550 execing thread will be in `D (disc sleep)'. As soon as
1551 all other threads are reaped, the execing thread changes
1552 it's tid to the tgid, and the previous (zombie) leader
1553 vanishes, giving place to the "new" leader. We could try
1554 distinguishing the exit and exec cases, by waiting once
1555 more, and seeing if something comes out, but it doesn't
1556 sound useful. The previous leader _does_ go away, and
1557 we'll re-add the new one once we see the exec event
1558 (which is just the same as what would happen if the
1559 previous leader did exit voluntarily before some other
1560 thread execs). */
1561
1562 if (debug_threads)
1563 fprintf (stderr,
1564 "CZL: Thread group leader %d zombie "
1565 "(it exited, or another thread execd).\n",
1566 leader_pid);
1567
1568 delete_lwp (leader_lp);
1569 }
1570 }
1571 }
1572
1573 /* Callback for `find_inferior'. Returns the first LWP that is not
1574 stopped. ARG is a PTID filter. */
1575
1576 static int
1577 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1578 {
1579 struct thread_info *thr = (struct thread_info *) entry;
1580 struct lwp_info *lwp;
1581 ptid_t filter = *(ptid_t *) arg;
1582
1583 if (!ptid_match (ptid_of (thr), filter))
1584 return 0;
1585
1586 lwp = get_thread_lwp (thr);
1587 if (!lwp->stopped)
1588 return 1;
1589
1590 return 0;
1591 }
1592
1593 /* This function should only be called if the LWP got a SIGTRAP.
1594
1595 Handle any tracepoint steps or hits. Return true if a tracepoint
1596 event was handled, 0 otherwise. */
1597
1598 static int
1599 handle_tracepoints (struct lwp_info *lwp)
1600 {
1601 struct thread_info *tinfo = get_lwp_thread (lwp);
1602 int tpoint_related_event = 0;
1603
1604 gdb_assert (lwp->suspended == 0);
1605
1606 /* If this tracepoint hit causes a tracing stop, we'll immediately
1607 uninsert tracepoints. To do this, we temporarily pause all
1608 threads, unpatch away, and then unpause threads. We need to make
1609 sure the unpausing doesn't resume LWP too. */
1610 lwp->suspended++;
1611
1612 /* And we need to be sure that any all-threads-stopping doesn't try
1613 to move threads out of the jump pads, as it could deadlock the
1614 inferior (LWP could be in the jump pad, maybe even holding the
1615 lock.) */
1616
1617 /* Do any necessary step collect actions. */
1618 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1619
1620 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1621
1622 /* See if we just hit a tracepoint and do its main collect
1623 actions. */
1624 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1625
1626 lwp->suspended--;
1627
1628 gdb_assert (lwp->suspended == 0);
1629 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1630
1631 if (tpoint_related_event)
1632 {
1633 if (debug_threads)
1634 debug_printf ("got a tracepoint event\n");
1635 return 1;
1636 }
1637
1638 return 0;
1639 }
1640
1641 /* Convenience wrapper. Returns true if LWP is presently collecting a
1642 fast tracepoint. */
1643
1644 static int
1645 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1646 struct fast_tpoint_collect_status *status)
1647 {
1648 CORE_ADDR thread_area;
1649 struct thread_info *thread = get_lwp_thread (lwp);
1650
1651 if (the_low_target.get_thread_area == NULL)
1652 return 0;
1653
1654 /* Get the thread area address. This is used to recognize which
1655 thread is which when tracing with the in-process agent library.
1656 We don't read anything from the address, and treat it as opaque;
1657 it's the address itself that we assume is unique per-thread. */
1658 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1659 return 0;
1660
1661 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1662 }
1663
1664 /* The reason we resume in the caller, is because we want to be able
1665 to pass lwp->status_pending as WSTAT, and we need to clear
1666 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1667 refuses to resume. */
1668
1669 static int
1670 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1671 {
1672 struct thread_info *saved_thread;
1673
1674 saved_thread = current_thread;
1675 current_thread = get_lwp_thread (lwp);
1676
1677 if ((wstat == NULL
1678 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1679 && supports_fast_tracepoints ()
1680 && agent_loaded_p ())
1681 {
1682 struct fast_tpoint_collect_status status;
1683 int r;
1684
1685 if (debug_threads)
1686 debug_printf ("Checking whether LWP %ld needs to move out of the "
1687 "jump pad.\n",
1688 lwpid_of (current_thread));
1689
1690 r = linux_fast_tracepoint_collecting (lwp, &status);
1691
1692 if (wstat == NULL
1693 || (WSTOPSIG (*wstat) != SIGILL
1694 && WSTOPSIG (*wstat) != SIGFPE
1695 && WSTOPSIG (*wstat) != SIGSEGV
1696 && WSTOPSIG (*wstat) != SIGBUS))
1697 {
1698 lwp->collecting_fast_tracepoint = r;
1699
1700 if (r != 0)
1701 {
1702 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1703 {
1704 /* Haven't executed the original instruction yet.
1705 Set breakpoint there, and wait till it's hit,
1706 then single-step until exiting the jump pad. */
1707 lwp->exit_jump_pad_bkpt
1708 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1709 }
1710
1711 if (debug_threads)
1712 debug_printf ("Checking whether LWP %ld needs to move out of "
1713 "the jump pad...it does\n",
1714 lwpid_of (current_thread));
1715 current_thread = saved_thread;
1716
1717 return 1;
1718 }
1719 }
1720 else
1721 {
1722 /* If we get a synchronous signal while collecting, *and*
1723 while executing the (relocated) original instruction,
1724 reset the PC to point at the tpoint address, before
1725 reporting to GDB. Otherwise, it's an IPA lib bug: just
1726 report the signal to GDB, and pray for the best. */
1727
1728 lwp->collecting_fast_tracepoint = 0;
1729
1730 if (r != 0
1731 && (status.adjusted_insn_addr <= lwp->stop_pc
1732 && lwp->stop_pc < status.adjusted_insn_addr_end))
1733 {
1734 siginfo_t info;
1735 struct regcache *regcache;
1736
1737 /* The si_addr on a few signals references the address
1738 of the faulting instruction. Adjust that as
1739 well. */
1740 if ((WSTOPSIG (*wstat) == SIGILL
1741 || WSTOPSIG (*wstat) == SIGFPE
1742 || WSTOPSIG (*wstat) == SIGBUS
1743 || WSTOPSIG (*wstat) == SIGSEGV)
1744 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1745 (PTRACE_TYPE_ARG3) 0, &info) == 0
1746 /* Final check just to make sure we don't clobber
1747 the siginfo of non-kernel-sent signals. */
1748 && (uintptr_t) info.si_addr == lwp->stop_pc)
1749 {
1750 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1751 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1752 (PTRACE_TYPE_ARG3) 0, &info);
1753 }
1754
1755 regcache = get_thread_regcache (current_thread, 1);
1756 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1757 lwp->stop_pc = status.tpoint_addr;
1758
1759 /* Cancel any fast tracepoint lock this thread was
1760 holding. */
1761 force_unlock_trace_buffer ();
1762 }
1763
1764 if (lwp->exit_jump_pad_bkpt != NULL)
1765 {
1766 if (debug_threads)
1767 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1768 "stopping all threads momentarily.\n");
1769
1770 stop_all_lwps (1, lwp);
1771
1772 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1773 lwp->exit_jump_pad_bkpt = NULL;
1774
1775 unstop_all_lwps (1, lwp);
1776
1777 gdb_assert (lwp->suspended >= 0);
1778 }
1779 }
1780 }
1781
1782 if (debug_threads)
1783 debug_printf ("Checking whether LWP %ld needs to move out of the "
1784 "jump pad...no\n",
1785 lwpid_of (current_thread));
1786
1787 current_thread = saved_thread;
1788 return 0;
1789 }
1790
1791 /* Enqueue one signal in the "signals to report later when out of the
1792 jump pad" list. */
1793
1794 static void
1795 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1796 {
1797 struct pending_signals *p_sig;
1798 struct thread_info *thread = get_lwp_thread (lwp);
1799
1800 if (debug_threads)
1801 debug_printf ("Deferring signal %d for LWP %ld.\n",
1802 WSTOPSIG (*wstat), lwpid_of (thread));
1803
1804 if (debug_threads)
1805 {
1806 struct pending_signals *sig;
1807
1808 for (sig = lwp->pending_signals_to_report;
1809 sig != NULL;
1810 sig = sig->prev)
1811 debug_printf (" Already queued %d\n",
1812 sig->signal);
1813
1814 debug_printf (" (no more currently queued signals)\n");
1815 }
1816
1817 /* Don't enqueue non-RT signals if they are already in the deferred
1818 queue. (SIGSTOP being the easiest signal to see ending up here
1819 twice) */
1820 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1821 {
1822 struct pending_signals *sig;
1823
1824 for (sig = lwp->pending_signals_to_report;
1825 sig != NULL;
1826 sig = sig->prev)
1827 {
1828 if (sig->signal == WSTOPSIG (*wstat))
1829 {
1830 if (debug_threads)
1831 debug_printf ("Not requeuing already queued non-RT signal %d"
1832 " for LWP %ld\n",
1833 sig->signal,
1834 lwpid_of (thread));
1835 return;
1836 }
1837 }
1838 }
1839
1840 p_sig = xmalloc (sizeof (*p_sig));
1841 p_sig->prev = lwp->pending_signals_to_report;
1842 p_sig->signal = WSTOPSIG (*wstat);
1843 memset (&p_sig->info, 0, sizeof (siginfo_t));
1844 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1845 &p_sig->info);
1846
1847 lwp->pending_signals_to_report = p_sig;
1848 }
1849
1850 /* Dequeue one signal from the "signals to report later when out of
1851 the jump pad" list. */
1852
1853 static int
1854 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1855 {
1856 struct thread_info *thread = get_lwp_thread (lwp);
1857
1858 if (lwp->pending_signals_to_report != NULL)
1859 {
1860 struct pending_signals **p_sig;
1861
1862 p_sig = &lwp->pending_signals_to_report;
1863 while ((*p_sig)->prev != NULL)
1864 p_sig = &(*p_sig)->prev;
1865
1866 *wstat = W_STOPCODE ((*p_sig)->signal);
1867 if ((*p_sig)->info.si_signo != 0)
1868 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1869 &(*p_sig)->info);
1870 free (*p_sig);
1871 *p_sig = NULL;
1872
1873 if (debug_threads)
1874 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
1875 WSTOPSIG (*wstat), lwpid_of (thread));
1876
1877 if (debug_threads)
1878 {
1879 struct pending_signals *sig;
1880
1881 for (sig = lwp->pending_signals_to_report;
1882 sig != NULL;
1883 sig = sig->prev)
1884 debug_printf (" Still queued %d\n",
1885 sig->signal);
1886
1887 debug_printf (" (no more queued signals)\n");
1888 }
1889
1890 return 1;
1891 }
1892
1893 return 0;
1894 }
1895
1896 /* Fetch the possibly triggered data watchpoint info and store it in
1897 CHILD.
1898
1899 On some archs, like x86, that use debug registers to set
1900 watchpoints, it's possible that the way to know which watched
1901 address trapped, is to check the register that is used to select
1902 which address to watch. Problem is, between setting the watchpoint
1903 and reading back which data address trapped, the user may change
1904 the set of watchpoints, and, as a consequence, GDB changes the
1905 debug registers in the inferior. To avoid reading back a stale
1906 stopped-data-address when that happens, we cache in LP the fact
1907 that a watchpoint trapped, and the corresponding data address, as
1908 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
1909 registers meanwhile, we have the cached data we can rely on. */
1910
1911 static int
1912 check_stopped_by_watchpoint (struct lwp_info *child)
1913 {
1914 if (the_low_target.stopped_by_watchpoint != NULL)
1915 {
1916 struct thread_info *saved_thread;
1917
1918 saved_thread = current_thread;
1919 current_thread = get_lwp_thread (child);
1920
1921 if (the_low_target.stopped_by_watchpoint ())
1922 {
1923 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
1924
1925 if (the_low_target.stopped_data_address != NULL)
1926 child->stopped_data_address
1927 = the_low_target.stopped_data_address ();
1928 else
1929 child->stopped_data_address = 0;
1930 }
1931
1932 current_thread = saved_thread;
1933 }
1934
1935 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1936 }
1937
1938 /* Do low-level handling of the event, and check if we should go on
1939 and pass it to caller code. Return the affected lwp if we are, or
1940 NULL otherwise. */
1941
1942 static struct lwp_info *
1943 linux_low_filter_event (int lwpid, int wstat)
1944 {
1945 struct lwp_info *child;
1946 struct thread_info *thread;
1947 int have_stop_pc = 0;
1948
1949 child = find_lwp_pid (pid_to_ptid (lwpid));
1950
1951 /* If we didn't find a process, one of two things presumably happened:
1952 - A process we started and then detached from has exited. Ignore it.
1953 - A process we are controlling has forked and the new child's stop
1954 was reported to us by the kernel. Save its PID. */
1955 if (child == NULL && WIFSTOPPED (wstat))
1956 {
1957 add_to_pid_list (&stopped_pids, lwpid, wstat);
1958 return NULL;
1959 }
1960 else if (child == NULL)
1961 return NULL;
1962
1963 thread = get_lwp_thread (child);
1964
1965 child->stopped = 1;
1966
1967 child->last_status = wstat;
1968
1969 /* Check if the thread has exited. */
1970 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
1971 {
1972 if (debug_threads)
1973 debug_printf ("LLFE: %d exited.\n", lwpid);
1974 if (num_lwps (pid_of (thread)) > 1)
1975 {
1976
1977 /* If there is at least one more LWP, then the exit signal was
1978 not the end of the debugged application and should be
1979 ignored. */
1980 delete_lwp (child);
1981 return NULL;
1982 }
1983 else
1984 {
1985 /* This was the last lwp in the process. Since events are
1986 serialized to GDB core, and we can't report this one
1987 right now, but GDB core and the other target layers will
1988 want to be notified about the exit code/signal, leave the
1989 status pending for the next time we're able to report
1990 it. */
1991 mark_lwp_dead (child, wstat);
1992 return child;
1993 }
1994 }
1995
1996 gdb_assert (WIFSTOPPED (wstat));
1997
1998 if (WIFSTOPPED (wstat))
1999 {
2000 struct process_info *proc;
2001
2002 /* Architecture-specific setup after inferior is running. This
2003 needs to happen after we have attached to the inferior and it
2004 is stopped for the first time, but before we access any
2005 inferior registers. */
2006 proc = find_process_pid (pid_of (thread));
2007 if (proc->priv->new_inferior)
2008 {
2009 struct thread_info *saved_thread;
2010
2011 saved_thread = current_thread;
2012 current_thread = thread;
2013
2014 the_low_target.arch_setup ();
2015
2016 current_thread = saved_thread;
2017
2018 proc->priv->new_inferior = 0;
2019 }
2020 }
2021
2022 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2023 {
2024 struct process_info *proc = find_process_pid (pid_of (thread));
2025
2026 linux_enable_event_reporting (lwpid, proc->attached);
2027 child->must_set_ptrace_flags = 0;
2028 }
2029
2030 /* Be careful to not overwrite stop_pc until
2031 check_stopped_by_breakpoint is called. */
2032 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2033 && linux_is_extended_waitstatus (wstat))
2034 {
2035 child->stop_pc = get_pc (child);
2036 handle_extended_wait (child, wstat);
2037 return NULL;
2038 }
2039
2040 /* Check first whether this was a SW/HW breakpoint before checking
2041 watchpoints, because at least s390 can't tell the data address of
2042 hardware watchpoint hits, and returns stopped-by-watchpoint as
2043 long as there's a watchpoint set. */
2044 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2045 {
2046 if (check_stopped_by_breakpoint (child))
2047 have_stop_pc = 1;
2048 }
2049
2050 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2051 or hardware watchpoint. Check which is which if we got
2052 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2053 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2054 && (child->stop_reason == TARGET_STOPPED_BY_NO_REASON
2055 || child->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
2056 check_stopped_by_watchpoint (child);
2057
2058 if (!have_stop_pc)
2059 child->stop_pc = get_pc (child);
2060
2061 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2062 && child->stop_expected)
2063 {
2064 if (debug_threads)
2065 debug_printf ("Expected stop.\n");
2066 child->stop_expected = 0;
2067
2068 if (thread->last_resume_kind == resume_stop)
2069 {
2070 /* We want to report the stop to the core. Treat the
2071 SIGSTOP as a normal event. */
2072 if (debug_threads)
2073 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2074 target_pid_to_str (ptid_of (thread)));
2075 }
2076 else if (stopping_threads != NOT_STOPPING_THREADS)
2077 {
2078 /* Stopping threads. We don't want this SIGSTOP to end up
2079 pending. */
2080 if (debug_threads)
2081 debug_printf ("LLW: SIGSTOP caught for %s "
2082 "while stopping threads.\n",
2083 target_pid_to_str (ptid_of (thread)));
2084 return NULL;
2085 }
2086 else
2087 {
2088 /* This is a delayed SIGSTOP. Filter out the event. */
2089 if (debug_threads)
2090 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2091 child->stepping ? "step" : "continue",
2092 target_pid_to_str (ptid_of (thread)));
2093
2094 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2095 return NULL;
2096 }
2097 }
2098
2099 child->status_pending_p = 1;
2100 child->status_pending = wstat;
2101 return child;
2102 }
2103
2104 /* Resume LWPs that are currently stopped without any pending status
2105 to report, but are resumed from the core's perspective. */
2106
2107 static void
2108 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2109 {
2110 struct thread_info *thread = (struct thread_info *) entry;
2111 struct lwp_info *lp = get_thread_lwp (thread);
2112
2113 if (lp->stopped
2114 && !lp->status_pending_p
2115 && thread->last_resume_kind != resume_stop
2116 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2117 {
2118 int step = thread->last_resume_kind == resume_step;
2119
2120 if (debug_threads)
2121 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2122 target_pid_to_str (ptid_of (thread)),
2123 paddress (lp->stop_pc),
2124 step);
2125
2126 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2127 }
2128 }
2129
2130 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2131 match FILTER_PTID (leaving others pending). The PTIDs can be:
2132 minus_one_ptid, to specify any child; a pid PTID, specifying all
2133 lwps of a thread group; or a PTID representing a single lwp. Store
2134 the stop status through the status pointer WSTAT. OPTIONS is
2135 passed to the waitpid call. Return 0 if no event was found and
2136 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2137 was found. Return the PID of the stopped child otherwise. */
2138
2139 static int
2140 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2141 int *wstatp, int options)
2142 {
2143 struct thread_info *event_thread;
2144 struct lwp_info *event_child, *requested_child;
2145 sigset_t block_mask, prev_mask;
2146
2147 retry:
2148 /* N.B. event_thread points to the thread_info struct that contains
2149 event_child. Keep them in sync. */
2150 event_thread = NULL;
2151 event_child = NULL;
2152 requested_child = NULL;
2153
2154 /* Check for a lwp with a pending status. */
2155
2156 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2157 {
2158 event_thread = (struct thread_info *)
2159 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2160 if (event_thread != NULL)
2161 event_child = get_thread_lwp (event_thread);
2162 if (debug_threads && event_thread)
2163 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2164 }
2165 else if (!ptid_equal (filter_ptid, null_ptid))
2166 {
2167 requested_child = find_lwp_pid (filter_ptid);
2168
2169 if (stopping_threads == NOT_STOPPING_THREADS
2170 && requested_child->status_pending_p
2171 && requested_child->collecting_fast_tracepoint)
2172 {
2173 enqueue_one_deferred_signal (requested_child,
2174 &requested_child->status_pending);
2175 requested_child->status_pending_p = 0;
2176 requested_child->status_pending = 0;
2177 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2178 }
2179
2180 if (requested_child->suspended
2181 && requested_child->status_pending_p)
2182 {
2183 internal_error (__FILE__, __LINE__,
2184 "requesting an event out of a"
2185 " suspended child?");
2186 }
2187
2188 if (requested_child->status_pending_p)
2189 {
2190 event_child = requested_child;
2191 event_thread = get_lwp_thread (event_child);
2192 }
2193 }
2194
2195 if (event_child != NULL)
2196 {
2197 if (debug_threads)
2198 debug_printf ("Got an event from pending child %ld (%04x)\n",
2199 lwpid_of (event_thread), event_child->status_pending);
2200 *wstatp = event_child->status_pending;
2201 event_child->status_pending_p = 0;
2202 event_child->status_pending = 0;
2203 current_thread = event_thread;
2204 return lwpid_of (event_thread);
2205 }
2206
2207 /* But if we don't find a pending event, we'll have to wait.
2208
2209 We only enter this loop if no process has a pending wait status.
2210 Thus any action taken in response to a wait status inside this
2211 loop is responding as soon as we detect the status, not after any
2212 pending events. */
2213
2214 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2215 all signals while here. */
2216 sigfillset (&block_mask);
2217 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2218
2219 /* Always pull all events out of the kernel. We'll randomly select
2220 an event LWP out of all that have events, to prevent
2221 starvation. */
2222 while (event_child == NULL)
2223 {
2224 pid_t ret = 0;
2225
2226 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2227 quirks:
2228
2229 - If the thread group leader exits while other threads in the
2230 thread group still exist, waitpid(TGID, ...) hangs. That
2231 waitpid won't return an exit status until the other threads
2232 in the group are reaped.
2233
2234 - When a non-leader thread execs, that thread just vanishes
2235 without reporting an exit (so we'd hang if we waited for it
2236 explicitly in that case). The exec event is reported to
2237 the TGID pid (although we don't currently enable exec
2238 events). */
2239 errno = 0;
2240 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2241
2242 if (debug_threads)
2243 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2244 ret, errno ? strerror (errno) : "ERRNO-OK");
2245
2246 if (ret > 0)
2247 {
2248 if (debug_threads)
2249 {
2250 debug_printf ("LLW: waitpid %ld received %s\n",
2251 (long) ret, status_to_str (*wstatp));
2252 }
2253
2254 /* Filter all events. IOW, leave all events pending. We'll
2255 randomly select an event LWP out of all that have events
2256 below. */
2257 linux_low_filter_event (ret, *wstatp);
2258 /* Retry until nothing comes out of waitpid. A single
2259 SIGCHLD can indicate more than one child stopped. */
2260 continue;
2261 }
2262
2263 /* Now that we've pulled all events out of the kernel, resume
2264 LWPs that don't have an interesting event to report. */
2265 if (stopping_threads == NOT_STOPPING_THREADS)
2266 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2267
2268 /* ... and find an LWP with a status to report to the core, if
2269 any. */
2270 event_thread = (struct thread_info *)
2271 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2272 if (event_thread != NULL)
2273 {
2274 event_child = get_thread_lwp (event_thread);
2275 *wstatp = event_child->status_pending;
2276 event_child->status_pending_p = 0;
2277 event_child->status_pending = 0;
2278 break;
2279 }
2280
2281 /* Check for zombie thread group leaders. Those can't be reaped
2282 until all other threads in the thread group are. */
2283 check_zombie_leaders ();
2284
2285 /* If there are no resumed children left in the set of LWPs we
2286 want to wait for, bail. We can't just block in
2287 waitpid/sigsuspend, because lwps might have been left stopped
2288 in trace-stop state, and we'd be stuck forever waiting for
2289 their status to change (which would only happen if we resumed
2290 them). Even if WNOHANG is set, this return code is preferred
2291 over 0 (below), as it is more detailed. */
2292 if ((find_inferior (&all_threads,
2293 not_stopped_callback,
2294 &wait_ptid) == NULL))
2295 {
2296 if (debug_threads)
2297 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2298 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2299 return -1;
2300 }
2301
2302 /* No interesting event to report to the caller. */
2303 if ((options & WNOHANG))
2304 {
2305 if (debug_threads)
2306 debug_printf ("WNOHANG set, no event found\n");
2307
2308 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2309 return 0;
2310 }
2311
2312 /* Block until we get an event reported with SIGCHLD. */
2313 if (debug_threads)
2314 debug_printf ("sigsuspend'ing\n");
2315
2316 sigsuspend (&prev_mask);
2317 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2318 goto retry;
2319 }
2320
2321 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2322
2323 current_thread = event_thread;
2324
2325 /* Check for thread exit. */
2326 if (! WIFSTOPPED (*wstatp))
2327 {
2328 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2329
2330 if (debug_threads)
2331 debug_printf ("LWP %d is the last lwp of process. "
2332 "Process %ld exiting.\n",
2333 pid_of (event_thread), lwpid_of (event_thread));
2334 return lwpid_of (event_thread);
2335 }
2336
2337 return lwpid_of (event_thread);
2338 }
2339
2340 /* Wait for an event from child(ren) PTID. PTIDs can be:
2341 minus_one_ptid, to specify any child; a pid PTID, specifying all
2342 lwps of a thread group; or a PTID representing a single lwp. Store
2343 the stop status through the status pointer WSTAT. OPTIONS is
2344 passed to the waitpid call. Return 0 if no event was found and
2345 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2346 was found. Return the PID of the stopped child otherwise. */
2347
2348 static int
2349 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2350 {
2351 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2352 }
2353
2354 /* Count the LWP's that have had events. */
2355
2356 static int
2357 count_events_callback (struct inferior_list_entry *entry, void *data)
2358 {
2359 struct thread_info *thread = (struct thread_info *) entry;
2360 struct lwp_info *lp = get_thread_lwp (thread);
2361 int *count = data;
2362
2363 gdb_assert (count != NULL);
2364
2365 /* Count only resumed LWPs that have an event pending. */
2366 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2367 && lp->status_pending_p)
2368 (*count)++;
2369
2370 return 0;
2371 }
2372
2373 /* Select the LWP (if any) that is currently being single-stepped. */
2374
2375 static int
2376 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2377 {
2378 struct thread_info *thread = (struct thread_info *) entry;
2379 struct lwp_info *lp = get_thread_lwp (thread);
2380
2381 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2382 && thread->last_resume_kind == resume_step
2383 && lp->status_pending_p)
2384 return 1;
2385 else
2386 return 0;
2387 }
2388
2389 /* Select the Nth LWP that has had an event. */
2390
2391 static int
2392 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2393 {
2394 struct thread_info *thread = (struct thread_info *) entry;
2395 struct lwp_info *lp = get_thread_lwp (thread);
2396 int *selector = data;
2397
2398 gdb_assert (selector != NULL);
2399
2400 /* Select only resumed LWPs that have an event pending. */
2401 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2402 && lp->status_pending_p)
2403 if ((*selector)-- == 0)
2404 return 1;
2405
2406 return 0;
2407 }
2408
2409 /* Select one LWP out of those that have events pending. */
2410
2411 static void
2412 select_event_lwp (struct lwp_info **orig_lp)
2413 {
2414 int num_events = 0;
2415 int random_selector;
2416 struct thread_info *event_thread = NULL;
2417
2418 /* In all-stop, give preference to the LWP that is being
2419 single-stepped. There will be at most one, and it's the LWP that
2420 the core is most interested in. If we didn't do this, then we'd
2421 have to handle pending step SIGTRAPs somehow in case the core
2422 later continues the previously-stepped thread, otherwise we'd
2423 report the pending SIGTRAP, and the core, not having stepped the
2424 thread, wouldn't understand what the trap was for, and therefore
2425 would report it to the user as a random signal. */
2426 if (!non_stop)
2427 {
2428 event_thread
2429 = (struct thread_info *) find_inferior (&all_threads,
2430 select_singlestep_lwp_callback,
2431 NULL);
2432 if (event_thread != NULL)
2433 {
2434 if (debug_threads)
2435 debug_printf ("SEL: Select single-step %s\n",
2436 target_pid_to_str (ptid_of (event_thread)));
2437 }
2438 }
2439 if (event_thread == NULL)
2440 {
2441 /* No single-stepping LWP. Select one at random, out of those
2442 which have had events. */
2443
2444 /* First see how many events we have. */
2445 find_inferior (&all_threads, count_events_callback, &num_events);
2446 gdb_assert (num_events > 0);
2447
2448 /* Now randomly pick a LWP out of those that have had
2449 events. */
2450 random_selector = (int)
2451 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2452
2453 if (debug_threads && num_events > 1)
2454 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2455 num_events, random_selector);
2456
2457 event_thread
2458 = (struct thread_info *) find_inferior (&all_threads,
2459 select_event_lwp_callback,
2460 &random_selector);
2461 }
2462
2463 if (event_thread != NULL)
2464 {
2465 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2466
2467 /* Switch the event LWP. */
2468 *orig_lp = event_lp;
2469 }
2470 }
2471
2472 /* Decrement the suspend count of an LWP. */
2473
2474 static int
2475 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2476 {
2477 struct thread_info *thread = (struct thread_info *) entry;
2478 struct lwp_info *lwp = get_thread_lwp (thread);
2479
2480 /* Ignore EXCEPT. */
2481 if (lwp == except)
2482 return 0;
2483
2484 lwp->suspended--;
2485
2486 gdb_assert (lwp->suspended >= 0);
2487 return 0;
2488 }
2489
2490 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2491 NULL. */
2492
2493 static void
2494 unsuspend_all_lwps (struct lwp_info *except)
2495 {
2496 find_inferior (&all_threads, unsuspend_one_lwp, except);
2497 }
2498
2499 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2500 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2501 void *data);
2502 static int lwp_running (struct inferior_list_entry *entry, void *data);
2503 static ptid_t linux_wait_1 (ptid_t ptid,
2504 struct target_waitstatus *ourstatus,
2505 int target_options);
2506
2507 /* Stabilize threads (move out of jump pads).
2508
2509 If a thread is midway collecting a fast tracepoint, we need to
2510 finish the collection and move it out of the jump pad before
2511 reporting the signal.
2512
2513 This avoids recursion while collecting (when a signal arrives
2514 midway, and the signal handler itself collects), which would trash
2515 the trace buffer. In case the user set a breakpoint in a signal
2516 handler, this avoids the backtrace showing the jump pad, etc..
2517 Most importantly, there are certain things we can't do safely if
2518 threads are stopped in a jump pad (or in its callee's). For
2519 example:
2520
2521 - starting a new trace run. A thread still collecting the
2522 previous run, could trash the trace buffer when resumed. The trace
2523 buffer control structures would have been reset but the thread had
2524 no way to tell. The thread could even midway memcpy'ing to the
2525 buffer, which would mean that when resumed, it would clobber the
2526 trace buffer that had been set for a new run.
2527
2528 - we can't rewrite/reuse the jump pads for new tracepoints
2529 safely. Say you do tstart while a thread is stopped midway while
2530 collecting. When the thread is later resumed, it finishes the
2531 collection, and returns to the jump pad, to execute the original
2532 instruction that was under the tracepoint jump at the time the
2533 older run had been started. If the jump pad had been rewritten
2534 since for something else in the new run, the thread would now
2535 execute the wrong / random instructions. */
2536
2537 static void
2538 linux_stabilize_threads (void)
2539 {
2540 struct thread_info *saved_thread;
2541 struct thread_info *thread_stuck;
2542
2543 thread_stuck
2544 = (struct thread_info *) find_inferior (&all_threads,
2545 stuck_in_jump_pad_callback,
2546 NULL);
2547 if (thread_stuck != NULL)
2548 {
2549 if (debug_threads)
2550 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2551 lwpid_of (thread_stuck));
2552 return;
2553 }
2554
2555 saved_thread = current_thread;
2556
2557 stabilizing_threads = 1;
2558
2559 /* Kick 'em all. */
2560 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2561
2562 /* Loop until all are stopped out of the jump pads. */
2563 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2564 {
2565 struct target_waitstatus ourstatus;
2566 struct lwp_info *lwp;
2567 int wstat;
2568
2569 /* Note that we go through the full wait even loop. While
2570 moving threads out of jump pad, we need to be able to step
2571 over internal breakpoints and such. */
2572 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2573
2574 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2575 {
2576 lwp = get_thread_lwp (current_thread);
2577
2578 /* Lock it. */
2579 lwp->suspended++;
2580
2581 if (ourstatus.value.sig != GDB_SIGNAL_0
2582 || current_thread->last_resume_kind == resume_stop)
2583 {
2584 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2585 enqueue_one_deferred_signal (lwp, &wstat);
2586 }
2587 }
2588 }
2589
2590 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2591
2592 stabilizing_threads = 0;
2593
2594 current_thread = saved_thread;
2595
2596 if (debug_threads)
2597 {
2598 thread_stuck
2599 = (struct thread_info *) find_inferior (&all_threads,
2600 stuck_in_jump_pad_callback,
2601 NULL);
2602 if (thread_stuck != NULL)
2603 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2604 lwpid_of (thread_stuck));
2605 }
2606 }
2607
2608 static void async_file_mark (void);
2609
2610 /* Convenience function that is called when the kernel reports an
2611 event that is not passed out to GDB. */
2612
2613 static ptid_t
2614 ignore_event (struct target_waitstatus *ourstatus)
2615 {
2616 /* If we got an event, there may still be others, as a single
2617 SIGCHLD can indicate more than one child stopped. This forces
2618 another target_wait call. */
2619 async_file_mark ();
2620
2621 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2622 return null_ptid;
2623 }
2624
2625 /* Wait for process, returns status. */
2626
2627 static ptid_t
2628 linux_wait_1 (ptid_t ptid,
2629 struct target_waitstatus *ourstatus, int target_options)
2630 {
2631 int w;
2632 struct lwp_info *event_child;
2633 int options;
2634 int pid;
2635 int step_over_finished;
2636 int bp_explains_trap;
2637 int maybe_internal_trap;
2638 int report_to_gdb;
2639 int trace_event;
2640 int in_step_range;
2641
2642 if (debug_threads)
2643 {
2644 debug_enter ();
2645 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2646 }
2647
2648 /* Translate generic target options into linux options. */
2649 options = __WALL;
2650 if (target_options & TARGET_WNOHANG)
2651 options |= WNOHANG;
2652
2653 bp_explains_trap = 0;
2654 trace_event = 0;
2655 in_step_range = 0;
2656 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2657
2658 if (ptid_equal (step_over_bkpt, null_ptid))
2659 pid = linux_wait_for_event (ptid, &w, options);
2660 else
2661 {
2662 if (debug_threads)
2663 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2664 target_pid_to_str (step_over_bkpt));
2665 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2666 }
2667
2668 if (pid == 0)
2669 {
2670 gdb_assert (target_options & TARGET_WNOHANG);
2671
2672 if (debug_threads)
2673 {
2674 debug_printf ("linux_wait_1 ret = null_ptid, "
2675 "TARGET_WAITKIND_IGNORE\n");
2676 debug_exit ();
2677 }
2678
2679 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2680 return null_ptid;
2681 }
2682 else if (pid == -1)
2683 {
2684 if (debug_threads)
2685 {
2686 debug_printf ("linux_wait_1 ret = null_ptid, "
2687 "TARGET_WAITKIND_NO_RESUMED\n");
2688 debug_exit ();
2689 }
2690
2691 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2692 return null_ptid;
2693 }
2694
2695 event_child = get_thread_lwp (current_thread);
2696
2697 /* linux_wait_for_event only returns an exit status for the last
2698 child of a process. Report it. */
2699 if (WIFEXITED (w) || WIFSIGNALED (w))
2700 {
2701 if (WIFEXITED (w))
2702 {
2703 ourstatus->kind = TARGET_WAITKIND_EXITED;
2704 ourstatus->value.integer = WEXITSTATUS (w);
2705
2706 if (debug_threads)
2707 {
2708 debug_printf ("linux_wait_1 ret = %s, exited with "
2709 "retcode %d\n",
2710 target_pid_to_str (ptid_of (current_thread)),
2711 WEXITSTATUS (w));
2712 debug_exit ();
2713 }
2714 }
2715 else
2716 {
2717 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2718 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2719
2720 if (debug_threads)
2721 {
2722 debug_printf ("linux_wait_1 ret = %s, terminated with "
2723 "signal %d\n",
2724 target_pid_to_str (ptid_of (current_thread)),
2725 WTERMSIG (w));
2726 debug_exit ();
2727 }
2728 }
2729
2730 return ptid_of (current_thread);
2731 }
2732
2733 /* If step-over executes a breakpoint instruction, it means a
2734 gdb/gdbserver breakpoint had been planted on top of a permanent
2735 breakpoint. The PC has been adjusted by
2736 check_stopped_by_breakpoint to point at the breakpoint address.
2737 Advance the PC manually past the breakpoint, otherwise the
2738 program would keep trapping the permanent breakpoint forever. */
2739 if (!ptid_equal (step_over_bkpt, null_ptid)
2740 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2741 {
2742 unsigned int increment_pc = the_low_target.breakpoint_len;
2743
2744 if (debug_threads)
2745 {
2746 debug_printf ("step-over for %s executed software breakpoint\n",
2747 target_pid_to_str (ptid_of (current_thread)));
2748 }
2749
2750 if (increment_pc != 0)
2751 {
2752 struct regcache *regcache
2753 = get_thread_regcache (current_thread, 1);
2754
2755 event_child->stop_pc += increment_pc;
2756 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2757
2758 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
2759 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
2760 }
2761 }
2762
2763 /* If this event was not handled before, and is not a SIGTRAP, we
2764 report it. SIGILL and SIGSEGV are also treated as traps in case
2765 a breakpoint is inserted at the current PC. If this target does
2766 not support internal breakpoints at all, we also report the
2767 SIGTRAP without further processing; it's of no concern to us. */
2768 maybe_internal_trap
2769 = (supports_breakpoints ()
2770 && (WSTOPSIG (w) == SIGTRAP
2771 || ((WSTOPSIG (w) == SIGILL
2772 || WSTOPSIG (w) == SIGSEGV)
2773 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2774
2775 if (maybe_internal_trap)
2776 {
2777 /* Handle anything that requires bookkeeping before deciding to
2778 report the event or continue waiting. */
2779
2780 /* First check if we can explain the SIGTRAP with an internal
2781 breakpoint, or if we should possibly report the event to GDB.
2782 Do this before anything that may remove or insert a
2783 breakpoint. */
2784 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2785
2786 /* We have a SIGTRAP, possibly a step-over dance has just
2787 finished. If so, tweak the state machine accordingly,
2788 reinsert breakpoints and delete any reinsert (software
2789 single-step) breakpoints. */
2790 step_over_finished = finish_step_over (event_child);
2791
2792 /* Now invoke the callbacks of any internal breakpoints there. */
2793 check_breakpoints (event_child->stop_pc);
2794
2795 /* Handle tracepoint data collecting. This may overflow the
2796 trace buffer, and cause a tracing stop, removing
2797 breakpoints. */
2798 trace_event = handle_tracepoints (event_child);
2799
2800 if (bp_explains_trap)
2801 {
2802 /* If we stepped or ran into an internal breakpoint, we've
2803 already handled it. So next time we resume (from this
2804 PC), we should step over it. */
2805 if (debug_threads)
2806 debug_printf ("Hit a gdbserver breakpoint.\n");
2807
2808 if (breakpoint_here (event_child->stop_pc))
2809 event_child->need_step_over = 1;
2810 }
2811 }
2812 else
2813 {
2814 /* We have some other signal, possibly a step-over dance was in
2815 progress, and it should be cancelled too. */
2816 step_over_finished = finish_step_over (event_child);
2817 }
2818
2819 /* We have all the data we need. Either report the event to GDB, or
2820 resume threads and keep waiting for more. */
2821
2822 /* If we're collecting a fast tracepoint, finish the collection and
2823 move out of the jump pad before delivering a signal. See
2824 linux_stabilize_threads. */
2825
2826 if (WIFSTOPPED (w)
2827 && WSTOPSIG (w) != SIGTRAP
2828 && supports_fast_tracepoints ()
2829 && agent_loaded_p ())
2830 {
2831 if (debug_threads)
2832 debug_printf ("Got signal %d for LWP %ld. Check if we need "
2833 "to defer or adjust it.\n",
2834 WSTOPSIG (w), lwpid_of (current_thread));
2835
2836 /* Allow debugging the jump pad itself. */
2837 if (current_thread->last_resume_kind != resume_step
2838 && maybe_move_out_of_jump_pad (event_child, &w))
2839 {
2840 enqueue_one_deferred_signal (event_child, &w);
2841
2842 if (debug_threads)
2843 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
2844 WSTOPSIG (w), lwpid_of (current_thread));
2845
2846 linux_resume_one_lwp (event_child, 0, 0, NULL);
2847
2848 return ignore_event (ourstatus);
2849 }
2850 }
2851
2852 if (event_child->collecting_fast_tracepoint)
2853 {
2854 if (debug_threads)
2855 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
2856 "Check if we're already there.\n",
2857 lwpid_of (current_thread),
2858 event_child->collecting_fast_tracepoint);
2859
2860 trace_event = 1;
2861
2862 event_child->collecting_fast_tracepoint
2863 = linux_fast_tracepoint_collecting (event_child, NULL);
2864
2865 if (event_child->collecting_fast_tracepoint != 1)
2866 {
2867 /* No longer need this breakpoint. */
2868 if (event_child->exit_jump_pad_bkpt != NULL)
2869 {
2870 if (debug_threads)
2871 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
2872 "stopping all threads momentarily.\n");
2873
2874 /* Other running threads could hit this breakpoint.
2875 We don't handle moribund locations like GDB does,
2876 instead we always pause all threads when removing
2877 breakpoints, so that any step-over or
2878 decr_pc_after_break adjustment is always taken
2879 care of while the breakpoint is still
2880 inserted. */
2881 stop_all_lwps (1, event_child);
2882
2883 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2884 event_child->exit_jump_pad_bkpt = NULL;
2885
2886 unstop_all_lwps (1, event_child);
2887
2888 gdb_assert (event_child->suspended >= 0);
2889 }
2890 }
2891
2892 if (event_child->collecting_fast_tracepoint == 0)
2893 {
2894 if (debug_threads)
2895 debug_printf ("fast tracepoint finished "
2896 "collecting successfully.\n");
2897
2898 /* We may have a deferred signal to report. */
2899 if (dequeue_one_deferred_signal (event_child, &w))
2900 {
2901 if (debug_threads)
2902 debug_printf ("dequeued one signal.\n");
2903 }
2904 else
2905 {
2906 if (debug_threads)
2907 debug_printf ("no deferred signals.\n");
2908
2909 if (stabilizing_threads)
2910 {
2911 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2912 ourstatus->value.sig = GDB_SIGNAL_0;
2913
2914 if (debug_threads)
2915 {
2916 debug_printf ("linux_wait_1 ret = %s, stopped "
2917 "while stabilizing threads\n",
2918 target_pid_to_str (ptid_of (current_thread)));
2919 debug_exit ();
2920 }
2921
2922 return ptid_of (current_thread);
2923 }
2924 }
2925 }
2926 }
2927
2928 /* Check whether GDB would be interested in this event. */
2929
2930 /* If GDB is not interested in this signal, don't stop other
2931 threads, and don't report it to GDB. Just resume the inferior
2932 right away. We do this for threading-related signals as well as
2933 any that GDB specifically requested we ignore. But never ignore
2934 SIGSTOP if we sent it ourselves, and do not ignore signals when
2935 stepping - they may require special handling to skip the signal
2936 handler. Also never ignore signals that could be caused by a
2937 breakpoint. */
2938 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2939 thread library? */
2940 if (WIFSTOPPED (w)
2941 && current_thread->last_resume_kind != resume_step
2942 && (
2943 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2944 (current_process ()->priv->thread_db != NULL
2945 && (WSTOPSIG (w) == __SIGRTMIN
2946 || WSTOPSIG (w) == __SIGRTMIN + 1))
2947 ||
2948 #endif
2949 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2950 && !(WSTOPSIG (w) == SIGSTOP
2951 && current_thread->last_resume_kind == resume_stop)
2952 && !linux_wstatus_maybe_breakpoint (w))))
2953 {
2954 siginfo_t info, *info_p;
2955
2956 if (debug_threads)
2957 debug_printf ("Ignored signal %d for LWP %ld.\n",
2958 WSTOPSIG (w), lwpid_of (current_thread));
2959
2960 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2961 (PTRACE_TYPE_ARG3) 0, &info) == 0)
2962 info_p = &info;
2963 else
2964 info_p = NULL;
2965 linux_resume_one_lwp (event_child, event_child->stepping,
2966 WSTOPSIG (w), info_p);
2967 return ignore_event (ourstatus);
2968 }
2969
2970 /* Note that all addresses are always "out of the step range" when
2971 there's no range to begin with. */
2972 in_step_range = lwp_in_step_range (event_child);
2973
2974 /* If GDB wanted this thread to single step, and the thread is out
2975 of the step range, we always want to report the SIGTRAP, and let
2976 GDB handle it. Watchpoints should always be reported. So should
2977 signals we can't explain. A SIGTRAP we can't explain could be a
2978 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2979 do, we're be able to handle GDB breakpoints on top of internal
2980 breakpoints, by handling the internal breakpoint and still
2981 reporting the event to GDB. If we don't, we're out of luck, GDB
2982 won't see the breakpoint hit. */
2983 report_to_gdb = (!maybe_internal_trap
2984 || (current_thread->last_resume_kind == resume_step
2985 && !in_step_range)
2986 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
2987 || (!step_over_finished && !in_step_range
2988 && !bp_explains_trap && !trace_event)
2989 || (gdb_breakpoint_here (event_child->stop_pc)
2990 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2991 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2992
2993 run_breakpoint_commands (event_child->stop_pc);
2994
2995 /* We found no reason GDB would want us to stop. We either hit one
2996 of our own breakpoints, or finished an internal step GDB
2997 shouldn't know about. */
2998 if (!report_to_gdb)
2999 {
3000 if (debug_threads)
3001 {
3002 if (bp_explains_trap)
3003 debug_printf ("Hit a gdbserver breakpoint.\n");
3004 if (step_over_finished)
3005 debug_printf ("Step-over finished.\n");
3006 if (trace_event)
3007 debug_printf ("Tracepoint event.\n");
3008 if (lwp_in_step_range (event_child))
3009 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3010 paddress (event_child->stop_pc),
3011 paddress (event_child->step_range_start),
3012 paddress (event_child->step_range_end));
3013 }
3014
3015 /* We're not reporting this breakpoint to GDB, so apply the
3016 decr_pc_after_break adjustment to the inferior's regcache
3017 ourselves. */
3018
3019 if (the_low_target.set_pc != NULL)
3020 {
3021 struct regcache *regcache
3022 = get_thread_regcache (current_thread, 1);
3023 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3024 }
3025
3026 /* We may have finished stepping over a breakpoint. If so,
3027 we've stopped and suspended all LWPs momentarily except the
3028 stepping one. This is where we resume them all again. We're
3029 going to keep waiting, so use proceed, which handles stepping
3030 over the next breakpoint. */
3031 if (debug_threads)
3032 debug_printf ("proceeding all threads.\n");
3033
3034 if (step_over_finished)
3035 unsuspend_all_lwps (event_child);
3036
3037 proceed_all_lwps ();
3038 return ignore_event (ourstatus);
3039 }
3040
3041 if (debug_threads)
3042 {
3043 if (current_thread->last_resume_kind == resume_step)
3044 {
3045 if (event_child->step_range_start == event_child->step_range_end)
3046 debug_printf ("GDB wanted to single-step, reporting event.\n");
3047 else if (!lwp_in_step_range (event_child))
3048 debug_printf ("Out of step range, reporting event.\n");
3049 }
3050 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3051 debug_printf ("Stopped by watchpoint.\n");
3052 else if (gdb_breakpoint_here (event_child->stop_pc))
3053 debug_printf ("Stopped by GDB breakpoint.\n");
3054 if (debug_threads)
3055 debug_printf ("Hit a non-gdbserver trap event.\n");
3056 }
3057
3058 /* Alright, we're going to report a stop. */
3059
3060 if (!stabilizing_threads)
3061 {
3062 /* In all-stop, stop all threads. */
3063 if (!non_stop)
3064 stop_all_lwps (0, NULL);
3065
3066 /* If we're not waiting for a specific LWP, choose an event LWP
3067 from among those that have had events. Giving equal priority
3068 to all LWPs that have had events helps prevent
3069 starvation. */
3070 if (ptid_equal (ptid, minus_one_ptid))
3071 {
3072 event_child->status_pending_p = 1;
3073 event_child->status_pending = w;
3074
3075 select_event_lwp (&event_child);
3076
3077 /* current_thread and event_child must stay in sync. */
3078 current_thread = get_lwp_thread (event_child);
3079
3080 event_child->status_pending_p = 0;
3081 w = event_child->status_pending;
3082 }
3083
3084 if (step_over_finished)
3085 {
3086 if (!non_stop)
3087 {
3088 /* If we were doing a step-over, all other threads but
3089 the stepping one had been paused in start_step_over,
3090 with their suspend counts incremented. We don't want
3091 to do a full unstop/unpause, because we're in
3092 all-stop mode (so we want threads stopped), but we
3093 still need to unsuspend the other threads, to
3094 decrement their `suspended' count back. */
3095 unsuspend_all_lwps (event_child);
3096 }
3097 else
3098 {
3099 /* If we just finished a step-over, then all threads had
3100 been momentarily paused. In all-stop, that's fine,
3101 we want threads stopped by now anyway. In non-stop,
3102 we need to re-resume threads that GDB wanted to be
3103 running. */
3104 unstop_all_lwps (1, event_child);
3105 }
3106 }
3107
3108 /* Stabilize threads (move out of jump pads). */
3109 if (!non_stop)
3110 stabilize_threads ();
3111 }
3112 else
3113 {
3114 /* If we just finished a step-over, then all threads had been
3115 momentarily paused. In all-stop, that's fine, we want
3116 threads stopped by now anyway. In non-stop, we need to
3117 re-resume threads that GDB wanted to be running. */
3118 if (step_over_finished)
3119 unstop_all_lwps (1, event_child);
3120 }
3121
3122 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3123
3124 /* Now that we've selected our final event LWP, un-adjust its PC if
3125 it was a software breakpoint, and the client doesn't know we can
3126 adjust the breakpoint ourselves. */
3127 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3128 && !swbreak_feature)
3129 {
3130 int decr_pc = the_low_target.decr_pc_after_break;
3131
3132 if (decr_pc != 0)
3133 {
3134 struct regcache *regcache
3135 = get_thread_regcache (current_thread, 1);
3136 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3137 }
3138 }
3139
3140 if (current_thread->last_resume_kind == resume_stop
3141 && WSTOPSIG (w) == SIGSTOP)
3142 {
3143 /* A thread that has been requested to stop by GDB with vCont;t,
3144 and it stopped cleanly, so report as SIG0. The use of
3145 SIGSTOP is an implementation detail. */
3146 ourstatus->value.sig = GDB_SIGNAL_0;
3147 }
3148 else if (current_thread->last_resume_kind == resume_stop
3149 && WSTOPSIG (w) != SIGSTOP)
3150 {
3151 /* A thread that has been requested to stop by GDB with vCont;t,
3152 but, it stopped for other reasons. */
3153 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3154 }
3155 else
3156 {
3157 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3158 }
3159
3160 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3161
3162 if (debug_threads)
3163 {
3164 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3165 target_pid_to_str (ptid_of (current_thread)),
3166 ourstatus->kind, ourstatus->value.sig);
3167 debug_exit ();
3168 }
3169
3170 return ptid_of (current_thread);
3171 }
3172
3173 /* Get rid of any pending event in the pipe. */
3174 static void
3175 async_file_flush (void)
3176 {
3177 int ret;
3178 char buf;
3179
3180 do
3181 ret = read (linux_event_pipe[0], &buf, 1);
3182 while (ret >= 0 || (ret == -1 && errno == EINTR));
3183 }
3184
3185 /* Put something in the pipe, so the event loop wakes up. */
3186 static void
3187 async_file_mark (void)
3188 {
3189 int ret;
3190
3191 async_file_flush ();
3192
3193 do
3194 ret = write (linux_event_pipe[1], "+", 1);
3195 while (ret == 0 || (ret == -1 && errno == EINTR));
3196
3197 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3198 be awakened anyway. */
3199 }
3200
3201 static ptid_t
3202 linux_wait (ptid_t ptid,
3203 struct target_waitstatus *ourstatus, int target_options)
3204 {
3205 ptid_t event_ptid;
3206
3207 /* Flush the async file first. */
3208 if (target_is_async_p ())
3209 async_file_flush ();
3210
3211 do
3212 {
3213 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3214 }
3215 while ((target_options & TARGET_WNOHANG) == 0
3216 && ptid_equal (event_ptid, null_ptid)
3217 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3218
3219 /* If at least one stop was reported, there may be more. A single
3220 SIGCHLD can signal more than one child stop. */
3221 if (target_is_async_p ()
3222 && (target_options & TARGET_WNOHANG) != 0
3223 && !ptid_equal (event_ptid, null_ptid))
3224 async_file_mark ();
3225
3226 return event_ptid;
3227 }
3228
3229 /* Send a signal to an LWP. */
3230
3231 static int
3232 kill_lwp (unsigned long lwpid, int signo)
3233 {
3234 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3235 fails, then we are not using nptl threads and we should be using kill. */
3236
3237 #ifdef __NR_tkill
3238 {
3239 static int tkill_failed;
3240
3241 if (!tkill_failed)
3242 {
3243 int ret;
3244
3245 errno = 0;
3246 ret = syscall (__NR_tkill, lwpid, signo);
3247 if (errno != ENOSYS)
3248 return ret;
3249 tkill_failed = 1;
3250 }
3251 }
3252 #endif
3253
3254 return kill (lwpid, signo);
3255 }
3256
3257 void
3258 linux_stop_lwp (struct lwp_info *lwp)
3259 {
3260 send_sigstop (lwp);
3261 }
3262
3263 static void
3264 send_sigstop (struct lwp_info *lwp)
3265 {
3266 int pid;
3267
3268 pid = lwpid_of (get_lwp_thread (lwp));
3269
3270 /* If we already have a pending stop signal for this process, don't
3271 send another. */
3272 if (lwp->stop_expected)
3273 {
3274 if (debug_threads)
3275 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3276
3277 return;
3278 }
3279
3280 if (debug_threads)
3281 debug_printf ("Sending sigstop to lwp %d\n", pid);
3282
3283 lwp->stop_expected = 1;
3284 kill_lwp (pid, SIGSTOP);
3285 }
3286
3287 static int
3288 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3289 {
3290 struct thread_info *thread = (struct thread_info *) entry;
3291 struct lwp_info *lwp = get_thread_lwp (thread);
3292
3293 /* Ignore EXCEPT. */
3294 if (lwp == except)
3295 return 0;
3296
3297 if (lwp->stopped)
3298 return 0;
3299
3300 send_sigstop (lwp);
3301 return 0;
3302 }
3303
3304 /* Increment the suspend count of an LWP, and stop it, if not stopped
3305 yet. */
3306 static int
3307 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3308 void *except)
3309 {
3310 struct thread_info *thread = (struct thread_info *) entry;
3311 struct lwp_info *lwp = get_thread_lwp (thread);
3312
3313 /* Ignore EXCEPT. */
3314 if (lwp == except)
3315 return 0;
3316
3317 lwp->suspended++;
3318
3319 return send_sigstop_callback (entry, except);
3320 }
3321
3322 static void
3323 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3324 {
3325 /* It's dead, really. */
3326 lwp->dead = 1;
3327
3328 /* Store the exit status for later. */
3329 lwp->status_pending_p = 1;
3330 lwp->status_pending = wstat;
3331
3332 /* Prevent trying to stop it. */
3333 lwp->stopped = 1;
3334
3335 /* No further stops are expected from a dead lwp. */
3336 lwp->stop_expected = 0;
3337 }
3338
3339 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3340
3341 static void
3342 wait_for_sigstop (void)
3343 {
3344 struct thread_info *saved_thread;
3345 ptid_t saved_tid;
3346 int wstat;
3347 int ret;
3348
3349 saved_thread = current_thread;
3350 if (saved_thread != NULL)
3351 saved_tid = saved_thread->entry.id;
3352 else
3353 saved_tid = null_ptid; /* avoid bogus unused warning */
3354
3355 if (debug_threads)
3356 debug_printf ("wait_for_sigstop: pulling events\n");
3357
3358 /* Passing NULL_PTID as filter indicates we want all events to be
3359 left pending. Eventually this returns when there are no
3360 unwaited-for children left. */
3361 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3362 &wstat, __WALL);
3363 gdb_assert (ret == -1);
3364
3365 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3366 current_thread = saved_thread;
3367 else
3368 {
3369 if (debug_threads)
3370 debug_printf ("Previously current thread died.\n");
3371
3372 if (non_stop)
3373 {
3374 /* We can't change the current inferior behind GDB's back,
3375 otherwise, a subsequent command may apply to the wrong
3376 process. */
3377 current_thread = NULL;
3378 }
3379 else
3380 {
3381 /* Set a valid thread as current. */
3382 set_desired_thread (0);
3383 }
3384 }
3385 }
3386
3387 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3388 move it out, because we need to report the stop event to GDB. For
3389 example, if the user puts a breakpoint in the jump pad, it's
3390 because she wants to debug it. */
3391
3392 static int
3393 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3394 {
3395 struct thread_info *thread = (struct thread_info *) entry;
3396 struct lwp_info *lwp = get_thread_lwp (thread);
3397
3398 gdb_assert (lwp->suspended == 0);
3399 gdb_assert (lwp->stopped);
3400
3401 /* Allow debugging the jump pad, gdb_collect, etc.. */
3402 return (supports_fast_tracepoints ()
3403 && agent_loaded_p ()
3404 && (gdb_breakpoint_here (lwp->stop_pc)
3405 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3406 || thread->last_resume_kind == resume_step)
3407 && linux_fast_tracepoint_collecting (lwp, NULL));
3408 }
3409
3410 static void
3411 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3412 {
3413 struct thread_info *thread = (struct thread_info *) entry;
3414 struct lwp_info *lwp = get_thread_lwp (thread);
3415 int *wstat;
3416
3417 gdb_assert (lwp->suspended == 0);
3418 gdb_assert (lwp->stopped);
3419
3420 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3421
3422 /* Allow debugging the jump pad, gdb_collect, etc. */
3423 if (!gdb_breakpoint_here (lwp->stop_pc)
3424 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3425 && thread->last_resume_kind != resume_step
3426 && maybe_move_out_of_jump_pad (lwp, wstat))
3427 {
3428 if (debug_threads)
3429 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3430 lwpid_of (thread));
3431
3432 if (wstat)
3433 {
3434 lwp->status_pending_p = 0;
3435 enqueue_one_deferred_signal (lwp, wstat);
3436
3437 if (debug_threads)
3438 debug_printf ("Signal %d for LWP %ld deferred "
3439 "(in jump pad)\n",
3440 WSTOPSIG (*wstat), lwpid_of (thread));
3441 }
3442
3443 linux_resume_one_lwp (lwp, 0, 0, NULL);
3444 }
3445 else
3446 lwp->suspended++;
3447 }
3448
3449 static int
3450 lwp_running (struct inferior_list_entry *entry, void *data)
3451 {
3452 struct thread_info *thread = (struct thread_info *) entry;
3453 struct lwp_info *lwp = get_thread_lwp (thread);
3454
3455 if (lwp->dead)
3456 return 0;
3457 if (lwp->stopped)
3458 return 0;
3459 return 1;
3460 }
3461
3462 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3463 If SUSPEND, then also increase the suspend count of every LWP,
3464 except EXCEPT. */
3465
3466 static void
3467 stop_all_lwps (int suspend, struct lwp_info *except)
3468 {
3469 /* Should not be called recursively. */
3470 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3471
3472 if (debug_threads)
3473 {
3474 debug_enter ();
3475 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3476 suspend ? "stop-and-suspend" : "stop",
3477 except != NULL
3478 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3479 : "none");
3480 }
3481
3482 stopping_threads = (suspend
3483 ? STOPPING_AND_SUSPENDING_THREADS
3484 : STOPPING_THREADS);
3485
3486 if (suspend)
3487 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3488 else
3489 find_inferior (&all_threads, send_sigstop_callback, except);
3490 wait_for_sigstop ();
3491 stopping_threads = NOT_STOPPING_THREADS;
3492
3493 if (debug_threads)
3494 {
3495 debug_printf ("stop_all_lwps done, setting stopping_threads "
3496 "back to !stopping\n");
3497 debug_exit ();
3498 }
3499 }
3500
3501 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3502 SIGNAL is nonzero, give it that signal. */
3503
3504 static void
3505 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3506 int step, int signal, siginfo_t *info)
3507 {
3508 struct thread_info *thread = get_lwp_thread (lwp);
3509 struct thread_info *saved_thread;
3510 int fast_tp_collecting;
3511
3512 if (lwp->stopped == 0)
3513 return;
3514
3515 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3516
3517 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3518
3519 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3520 user used the "jump" command, or "set $pc = foo"). */
3521 if (lwp->stop_pc != get_pc (lwp))
3522 {
3523 /* Collecting 'while-stepping' actions doesn't make sense
3524 anymore. */
3525 release_while_stepping_state_list (thread);
3526 }
3527
3528 /* If we have pending signals or status, and a new signal, enqueue the
3529 signal. Also enqueue the signal if we are waiting to reinsert a
3530 breakpoint; it will be picked up again below. */
3531 if (signal != 0
3532 && (lwp->status_pending_p
3533 || lwp->pending_signals != NULL
3534 || lwp->bp_reinsert != 0
3535 || fast_tp_collecting))
3536 {
3537 struct pending_signals *p_sig;
3538 p_sig = xmalloc (sizeof (*p_sig));
3539 p_sig->prev = lwp->pending_signals;
3540 p_sig->signal = signal;
3541 if (info == NULL)
3542 memset (&p_sig->info, 0, sizeof (siginfo_t));
3543 else
3544 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3545 lwp->pending_signals = p_sig;
3546 }
3547
3548 if (lwp->status_pending_p)
3549 {
3550 if (debug_threads)
3551 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3552 " has pending status\n",
3553 lwpid_of (thread), step ? "step" : "continue", signal,
3554 lwp->stop_expected ? "expected" : "not expected");
3555 return;
3556 }
3557
3558 saved_thread = current_thread;
3559 current_thread = thread;
3560
3561 if (debug_threads)
3562 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3563 lwpid_of (thread), step ? "step" : "continue", signal,
3564 lwp->stop_expected ? "expected" : "not expected");
3565
3566 /* This bit needs some thinking about. If we get a signal that
3567 we must report while a single-step reinsert is still pending,
3568 we often end up resuming the thread. It might be better to
3569 (ew) allow a stack of pending events; then we could be sure that
3570 the reinsert happened right away and not lose any signals.
3571
3572 Making this stack would also shrink the window in which breakpoints are
3573 uninserted (see comment in linux_wait_for_lwp) but not enough for
3574 complete correctness, so it won't solve that problem. It may be
3575 worthwhile just to solve this one, however. */
3576 if (lwp->bp_reinsert != 0)
3577 {
3578 if (debug_threads)
3579 debug_printf (" pending reinsert at 0x%s\n",
3580 paddress (lwp->bp_reinsert));
3581
3582 if (can_hardware_single_step ())
3583 {
3584 if (fast_tp_collecting == 0)
3585 {
3586 if (step == 0)
3587 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3588 if (lwp->suspended)
3589 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3590 lwp->suspended);
3591 }
3592
3593 step = 1;
3594 }
3595
3596 /* Postpone any pending signal. It was enqueued above. */
3597 signal = 0;
3598 }
3599
3600 if (fast_tp_collecting == 1)
3601 {
3602 if (debug_threads)
3603 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3604 " (exit-jump-pad-bkpt)\n",
3605 lwpid_of (thread));
3606
3607 /* Postpone any pending signal. It was enqueued above. */
3608 signal = 0;
3609 }
3610 else if (fast_tp_collecting == 2)
3611 {
3612 if (debug_threads)
3613 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3614 " single-stepping\n",
3615 lwpid_of (thread));
3616
3617 if (can_hardware_single_step ())
3618 step = 1;
3619 else
3620 {
3621 internal_error (__FILE__, __LINE__,
3622 "moving out of jump pad single-stepping"
3623 " not implemented on this target");
3624 }
3625
3626 /* Postpone any pending signal. It was enqueued above. */
3627 signal = 0;
3628 }
3629
3630 /* If we have while-stepping actions in this thread set it stepping.
3631 If we have a signal to deliver, it may or may not be set to
3632 SIG_IGN, we don't know. Assume so, and allow collecting
3633 while-stepping into a signal handler. A possible smart thing to
3634 do would be to set an internal breakpoint at the signal return
3635 address, continue, and carry on catching this while-stepping
3636 action only when that breakpoint is hit. A future
3637 enhancement. */
3638 if (thread->while_stepping != NULL
3639 && can_hardware_single_step ())
3640 {
3641 if (debug_threads)
3642 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
3643 lwpid_of (thread));
3644 step = 1;
3645 }
3646
3647 if (the_low_target.get_pc != NULL)
3648 {
3649 struct regcache *regcache = get_thread_regcache (current_thread, 1);
3650
3651 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
3652
3653 if (debug_threads)
3654 {
3655 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
3656 (long) lwp->stop_pc);
3657 }
3658 }
3659
3660 /* If we have pending signals, consume one unless we are trying to
3661 reinsert a breakpoint or we're trying to finish a fast tracepoint
3662 collect. */
3663 if (lwp->pending_signals != NULL
3664 && lwp->bp_reinsert == 0
3665 && fast_tp_collecting == 0)
3666 {
3667 struct pending_signals **p_sig;
3668
3669 p_sig = &lwp->pending_signals;
3670 while ((*p_sig)->prev != NULL)
3671 p_sig = &(*p_sig)->prev;
3672
3673 signal = (*p_sig)->signal;
3674 if ((*p_sig)->info.si_signo != 0)
3675 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3676 &(*p_sig)->info);
3677
3678 free (*p_sig);
3679 *p_sig = NULL;
3680 }
3681
3682 if (the_low_target.prepare_to_resume != NULL)
3683 the_low_target.prepare_to_resume (lwp);
3684
3685 regcache_invalidate_thread (thread);
3686 errno = 0;
3687 lwp->stepping = step;
3688 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
3689 (PTRACE_TYPE_ARG3) 0,
3690 /* Coerce to a uintptr_t first to avoid potential gcc warning
3691 of coercing an 8 byte integer to a 4 byte pointer. */
3692 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3693
3694 current_thread = saved_thread;
3695 if (errno)
3696 perror_with_name ("resuming thread");
3697
3698 /* Successfully resumed. Clear state that no longer makes sense,
3699 and mark the LWP as running. Must not do this before resuming
3700 otherwise if that fails other code will be confused. E.g., we'd
3701 later try to stop the LWP and hang forever waiting for a stop
3702 status. Note that we must not throw after this is cleared,
3703 otherwise handle_zombie_lwp_error would get confused. */
3704 lwp->stopped = 0;
3705 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3706 }
3707
3708 /* Called when we try to resume a stopped LWP and that errors out. If
3709 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
3710 or about to become), discard the error, clear any pending status
3711 the LWP may have, and return true (we'll collect the exit status
3712 soon enough). Otherwise, return false. */
3713
3714 static int
3715 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
3716 {
3717 struct thread_info *thread = get_lwp_thread (lp);
3718
3719 /* If we get an error after resuming the LWP successfully, we'd
3720 confuse !T state for the LWP being gone. */
3721 gdb_assert (lp->stopped);
3722
3723 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
3724 because even if ptrace failed with ESRCH, the tracee may be "not
3725 yet fully dead", but already refusing ptrace requests. In that
3726 case the tracee has 'R (Running)' state for a little bit
3727 (observed in Linux 3.18). See also the note on ESRCH in the
3728 ptrace(2) man page. Instead, check whether the LWP has any state
3729 other than ptrace-stopped. */
3730
3731 /* Don't assume anything if /proc/PID/status can't be read. */
3732 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
3733 {
3734 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3735 lp->status_pending_p = 0;
3736 return 1;
3737 }
3738 return 0;
3739 }
3740
3741 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
3742 disappears while we try to resume it. */
3743
3744 static void
3745 linux_resume_one_lwp (struct lwp_info *lwp,
3746 int step, int signal, siginfo_t *info)
3747 {
3748 TRY
3749 {
3750 linux_resume_one_lwp_throw (lwp, step, signal, info);
3751 }
3752 CATCH (ex, RETURN_MASK_ERROR)
3753 {
3754 if (!check_ptrace_stopped_lwp_gone (lwp))
3755 throw_exception (ex);
3756 }
3757 END_CATCH
3758 }
3759
3760 struct thread_resume_array
3761 {
3762 struct thread_resume *resume;
3763 size_t n;
3764 };
3765
3766 /* This function is called once per thread via find_inferior.
3767 ARG is a pointer to a thread_resume_array struct.
3768 We look up the thread specified by ENTRY in ARG, and mark the thread
3769 with a pointer to the appropriate resume request.
3770
3771 This algorithm is O(threads * resume elements), but resume elements
3772 is small (and will remain small at least until GDB supports thread
3773 suspension). */
3774
3775 static int
3776 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3777 {
3778 struct thread_info *thread = (struct thread_info *) entry;
3779 struct lwp_info *lwp = get_thread_lwp (thread);
3780 int ndx;
3781 struct thread_resume_array *r;
3782
3783 r = arg;
3784
3785 for (ndx = 0; ndx < r->n; ndx++)
3786 {
3787 ptid_t ptid = r->resume[ndx].thread;
3788 if (ptid_equal (ptid, minus_one_ptid)
3789 || ptid_equal (ptid, entry->id)
3790 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3791 of PID'. */
3792 || (ptid_get_pid (ptid) == pid_of (thread)
3793 && (ptid_is_pid (ptid)
3794 || ptid_get_lwp (ptid) == -1)))
3795 {
3796 if (r->resume[ndx].kind == resume_stop
3797 && thread->last_resume_kind == resume_stop)
3798 {
3799 if (debug_threads)
3800 debug_printf ("already %s LWP %ld at GDB's request\n",
3801 (thread->last_status.kind
3802 == TARGET_WAITKIND_STOPPED)
3803 ? "stopped"
3804 : "stopping",
3805 lwpid_of (thread));
3806
3807 continue;
3808 }
3809
3810 lwp->resume = &r->resume[ndx];
3811 thread->last_resume_kind = lwp->resume->kind;
3812
3813 lwp->step_range_start = lwp->resume->step_range_start;
3814 lwp->step_range_end = lwp->resume->step_range_end;
3815
3816 /* If we had a deferred signal to report, dequeue one now.
3817 This can happen if LWP gets more than one signal while
3818 trying to get out of a jump pad. */
3819 if (lwp->stopped
3820 && !lwp->status_pending_p
3821 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3822 {
3823 lwp->status_pending_p = 1;
3824
3825 if (debug_threads)
3826 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
3827 "leaving status pending.\n",
3828 WSTOPSIG (lwp->status_pending),
3829 lwpid_of (thread));
3830 }
3831
3832 return 0;
3833 }
3834 }
3835
3836 /* No resume action for this thread. */
3837 lwp->resume = NULL;
3838
3839 return 0;
3840 }
3841
3842 /* find_inferior callback for linux_resume.
3843 Set *FLAG_P if this lwp has an interesting status pending. */
3844
3845 static int
3846 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3847 {
3848 struct thread_info *thread = (struct thread_info *) entry;
3849 struct lwp_info *lwp = get_thread_lwp (thread);
3850
3851 /* LWPs which will not be resumed are not interesting, because
3852 we might not wait for them next time through linux_wait. */
3853 if (lwp->resume == NULL)
3854 return 0;
3855
3856 if (thread_still_has_status_pending_p (thread))
3857 * (int *) flag_p = 1;
3858
3859 return 0;
3860 }
3861
3862 /* Return 1 if this lwp that GDB wants running is stopped at an
3863 internal breakpoint that we need to step over. It assumes that any
3864 required STOP_PC adjustment has already been propagated to the
3865 inferior's regcache. */
3866
3867 static int
3868 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3869 {
3870 struct thread_info *thread = (struct thread_info *) entry;
3871 struct lwp_info *lwp = get_thread_lwp (thread);
3872 struct thread_info *saved_thread;
3873 CORE_ADDR pc;
3874
3875 /* LWPs which will not be resumed are not interesting, because we
3876 might not wait for them next time through linux_wait. */
3877
3878 if (!lwp->stopped)
3879 {
3880 if (debug_threads)
3881 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
3882 lwpid_of (thread));
3883 return 0;
3884 }
3885
3886 if (thread->last_resume_kind == resume_stop)
3887 {
3888 if (debug_threads)
3889 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
3890 " stopped\n",
3891 lwpid_of (thread));
3892 return 0;
3893 }
3894
3895 gdb_assert (lwp->suspended >= 0);
3896
3897 if (lwp->suspended)
3898 {
3899 if (debug_threads)
3900 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
3901 lwpid_of (thread));
3902 return 0;
3903 }
3904
3905 if (!lwp->need_step_over)
3906 {
3907 if (debug_threads)
3908 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
3909 }
3910
3911 if (lwp->status_pending_p)
3912 {
3913 if (debug_threads)
3914 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
3915 " status.\n",
3916 lwpid_of (thread));
3917 return 0;
3918 }
3919
3920 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3921 or we have. */
3922 pc = get_pc (lwp);
3923
3924 /* If the PC has changed since we stopped, then don't do anything,
3925 and let the breakpoint/tracepoint be hit. This happens if, for
3926 instance, GDB handled the decr_pc_after_break subtraction itself,
3927 GDB is OOL stepping this thread, or the user has issued a "jump"
3928 command, or poked thread's registers herself. */
3929 if (pc != lwp->stop_pc)
3930 {
3931 if (debug_threads)
3932 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
3933 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3934 lwpid_of (thread),
3935 paddress (lwp->stop_pc), paddress (pc));
3936
3937 lwp->need_step_over = 0;
3938 return 0;
3939 }
3940
3941 saved_thread = current_thread;
3942 current_thread = thread;
3943
3944 /* We can only step over breakpoints we know about. */
3945 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3946 {
3947 /* Don't step over a breakpoint that GDB expects to hit
3948 though. If the condition is being evaluated on the target's side
3949 and it evaluate to false, step over this breakpoint as well. */
3950 if (gdb_breakpoint_here (pc)
3951 && gdb_condition_true_at_breakpoint (pc)
3952 && gdb_no_commands_at_breakpoint (pc))
3953 {
3954 if (debug_threads)
3955 debug_printf ("Need step over [LWP %ld]? yes, but found"
3956 " GDB breakpoint at 0x%s; skipping step over\n",
3957 lwpid_of (thread), paddress (pc));
3958
3959 current_thread = saved_thread;
3960 return 0;
3961 }
3962 else
3963 {
3964 if (debug_threads)
3965 debug_printf ("Need step over [LWP %ld]? yes, "
3966 "found breakpoint at 0x%s\n",
3967 lwpid_of (thread), paddress (pc));
3968
3969 /* We've found an lwp that needs stepping over --- return 1 so
3970 that find_inferior stops looking. */
3971 current_thread = saved_thread;
3972
3973 /* If the step over is cancelled, this is set again. */
3974 lwp->need_step_over = 0;
3975 return 1;
3976 }
3977 }
3978
3979 current_thread = saved_thread;
3980
3981 if (debug_threads)
3982 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
3983 " at 0x%s\n",
3984 lwpid_of (thread), paddress (pc));
3985
3986 return 0;
3987 }
3988
3989 /* Start a step-over operation on LWP. When LWP stopped at a
3990 breakpoint, to make progress, we need to remove the breakpoint out
3991 of the way. If we let other threads run while we do that, they may
3992 pass by the breakpoint location and miss hitting it. To avoid
3993 that, a step-over momentarily stops all threads while LWP is
3994 single-stepped while the breakpoint is temporarily uninserted from
3995 the inferior. When the single-step finishes, we reinsert the
3996 breakpoint, and let all threads that are supposed to be running,
3997 run again.
3998
3999 On targets that don't support hardware single-step, we don't
4000 currently support full software single-stepping. Instead, we only
4001 support stepping over the thread event breakpoint, by asking the
4002 low target where to place a reinsert breakpoint. Since this
4003 routine assumes the breakpoint being stepped over is a thread event
4004 breakpoint, it usually assumes the return address of the current
4005 function is a good enough place to set the reinsert breakpoint. */
4006
4007 static int
4008 start_step_over (struct lwp_info *lwp)
4009 {
4010 struct thread_info *thread = get_lwp_thread (lwp);
4011 struct thread_info *saved_thread;
4012 CORE_ADDR pc;
4013 int step;
4014
4015 if (debug_threads)
4016 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4017 lwpid_of (thread));
4018
4019 stop_all_lwps (1, lwp);
4020 gdb_assert (lwp->suspended == 0);
4021
4022 if (debug_threads)
4023 debug_printf ("Done stopping all threads for step-over.\n");
4024
4025 /* Note, we should always reach here with an already adjusted PC,
4026 either by GDB (if we're resuming due to GDB's request), or by our
4027 caller, if we just finished handling an internal breakpoint GDB
4028 shouldn't care about. */
4029 pc = get_pc (lwp);
4030
4031 saved_thread = current_thread;
4032 current_thread = thread;
4033
4034 lwp->bp_reinsert = pc;
4035 uninsert_breakpoints_at (pc);
4036 uninsert_fast_tracepoint_jumps_at (pc);
4037
4038 if (can_hardware_single_step ())
4039 {
4040 step = 1;
4041 }
4042 else
4043 {
4044 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4045 set_reinsert_breakpoint (raddr);
4046 step = 0;
4047 }
4048
4049 current_thread = saved_thread;
4050
4051 linux_resume_one_lwp (lwp, step, 0, NULL);
4052
4053 /* Require next event from this LWP. */
4054 step_over_bkpt = thread->entry.id;
4055 return 1;
4056 }
4057
4058 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4059 start_step_over, if still there, and delete any reinsert
4060 breakpoints we've set, on non hardware single-step targets. */
4061
4062 static int
4063 finish_step_over (struct lwp_info *lwp)
4064 {
4065 if (lwp->bp_reinsert != 0)
4066 {
4067 if (debug_threads)
4068 debug_printf ("Finished step over.\n");
4069
4070 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4071 may be no breakpoint to reinsert there by now. */
4072 reinsert_breakpoints_at (lwp->bp_reinsert);
4073 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4074
4075 lwp->bp_reinsert = 0;
4076
4077 /* Delete any software-single-step reinsert breakpoints. No
4078 longer needed. We don't have to worry about other threads
4079 hitting this trap, and later not being able to explain it,
4080 because we were stepping over a breakpoint, and we hold all
4081 threads but LWP stopped while doing that. */
4082 if (!can_hardware_single_step ())
4083 delete_reinsert_breakpoints ();
4084
4085 step_over_bkpt = null_ptid;
4086 return 1;
4087 }
4088 else
4089 return 0;
4090 }
4091
4092 /* This function is called once per thread. We check the thread's resume
4093 request, which will tell us whether to resume, step, or leave the thread
4094 stopped; and what signal, if any, it should be sent.
4095
4096 For threads which we aren't explicitly told otherwise, we preserve
4097 the stepping flag; this is used for stepping over gdbserver-placed
4098 breakpoints.
4099
4100 If pending_flags was set in any thread, we queue any needed
4101 signals, since we won't actually resume. We already have a pending
4102 event to report, so we don't need to preserve any step requests;
4103 they should be re-issued if necessary. */
4104
4105 static int
4106 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4107 {
4108 struct thread_info *thread = (struct thread_info *) entry;
4109 struct lwp_info *lwp = get_thread_lwp (thread);
4110 int step;
4111 int leave_all_stopped = * (int *) arg;
4112 int leave_pending;
4113
4114 if (lwp->resume == NULL)
4115 return 0;
4116
4117 if (lwp->resume->kind == resume_stop)
4118 {
4119 if (debug_threads)
4120 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4121
4122 if (!lwp->stopped)
4123 {
4124 if (debug_threads)
4125 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4126
4127 /* Stop the thread, and wait for the event asynchronously,
4128 through the event loop. */
4129 send_sigstop (lwp);
4130 }
4131 else
4132 {
4133 if (debug_threads)
4134 debug_printf ("already stopped LWP %ld\n",
4135 lwpid_of (thread));
4136
4137 /* The LWP may have been stopped in an internal event that
4138 was not meant to be notified back to GDB (e.g., gdbserver
4139 breakpoint), so we should be reporting a stop event in
4140 this case too. */
4141
4142 /* If the thread already has a pending SIGSTOP, this is a
4143 no-op. Otherwise, something later will presumably resume
4144 the thread and this will cause it to cancel any pending
4145 operation, due to last_resume_kind == resume_stop. If
4146 the thread already has a pending status to report, we
4147 will still report it the next time we wait - see
4148 status_pending_p_callback. */
4149
4150 /* If we already have a pending signal to report, then
4151 there's no need to queue a SIGSTOP, as this means we're
4152 midway through moving the LWP out of the jumppad, and we
4153 will report the pending signal as soon as that is
4154 finished. */
4155 if (lwp->pending_signals_to_report == NULL)
4156 send_sigstop (lwp);
4157 }
4158
4159 /* For stop requests, we're done. */
4160 lwp->resume = NULL;
4161 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4162 return 0;
4163 }
4164
4165 /* If this thread which is about to be resumed has a pending status,
4166 then don't resume any threads - we can just report the pending
4167 status. Make sure to queue any signals that would otherwise be
4168 sent. In all-stop mode, we do this decision based on if *any*
4169 thread has a pending status. If there's a thread that needs the
4170 step-over-breakpoint dance, then don't resume any other thread
4171 but that particular one. */
4172 leave_pending = (lwp->status_pending_p || leave_all_stopped);
4173
4174 if (!leave_pending)
4175 {
4176 if (debug_threads)
4177 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4178
4179 step = (lwp->resume->kind == resume_step);
4180 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4181 }
4182 else
4183 {
4184 if (debug_threads)
4185 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4186
4187 /* If we have a new signal, enqueue the signal. */
4188 if (lwp->resume->sig != 0)
4189 {
4190 struct pending_signals *p_sig;
4191 p_sig = xmalloc (sizeof (*p_sig));
4192 p_sig->prev = lwp->pending_signals;
4193 p_sig->signal = lwp->resume->sig;
4194 memset (&p_sig->info, 0, sizeof (siginfo_t));
4195
4196 /* If this is the same signal we were previously stopped by,
4197 make sure to queue its siginfo. We can ignore the return
4198 value of ptrace; if it fails, we'll skip
4199 PTRACE_SETSIGINFO. */
4200 if (WIFSTOPPED (lwp->last_status)
4201 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4202 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4203 &p_sig->info);
4204
4205 lwp->pending_signals = p_sig;
4206 }
4207 }
4208
4209 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4210 lwp->resume = NULL;
4211 return 0;
4212 }
4213
4214 static void
4215 linux_resume (struct thread_resume *resume_info, size_t n)
4216 {
4217 struct thread_resume_array array = { resume_info, n };
4218 struct thread_info *need_step_over = NULL;
4219 int any_pending;
4220 int leave_all_stopped;
4221
4222 if (debug_threads)
4223 {
4224 debug_enter ();
4225 debug_printf ("linux_resume:\n");
4226 }
4227
4228 find_inferior (&all_threads, linux_set_resume_request, &array);
4229
4230 /* If there is a thread which would otherwise be resumed, which has
4231 a pending status, then don't resume any threads - we can just
4232 report the pending status. Make sure to queue any signals that
4233 would otherwise be sent. In non-stop mode, we'll apply this
4234 logic to each thread individually. We consume all pending events
4235 before considering to start a step-over (in all-stop). */
4236 any_pending = 0;
4237 if (!non_stop)
4238 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4239
4240 /* If there is a thread which would otherwise be resumed, which is
4241 stopped at a breakpoint that needs stepping over, then don't
4242 resume any threads - have it step over the breakpoint with all
4243 other threads stopped, then resume all threads again. Make sure
4244 to queue any signals that would otherwise be delivered or
4245 queued. */
4246 if (!any_pending && supports_breakpoints ())
4247 need_step_over
4248 = (struct thread_info *) find_inferior (&all_threads,
4249 need_step_over_p, NULL);
4250
4251 leave_all_stopped = (need_step_over != NULL || any_pending);
4252
4253 if (debug_threads)
4254 {
4255 if (need_step_over != NULL)
4256 debug_printf ("Not resuming all, need step over\n");
4257 else if (any_pending)
4258 debug_printf ("Not resuming, all-stop and found "
4259 "an LWP with pending status\n");
4260 else
4261 debug_printf ("Resuming, no pending status or step over needed\n");
4262 }
4263
4264 /* Even if we're leaving threads stopped, queue all signals we'd
4265 otherwise deliver. */
4266 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4267
4268 if (need_step_over)
4269 start_step_over (get_thread_lwp (need_step_over));
4270
4271 if (debug_threads)
4272 {
4273 debug_printf ("linux_resume done\n");
4274 debug_exit ();
4275 }
4276 }
4277
4278 /* This function is called once per thread. We check the thread's
4279 last resume request, which will tell us whether to resume, step, or
4280 leave the thread stopped. Any signal the client requested to be
4281 delivered has already been enqueued at this point.
4282
4283 If any thread that GDB wants running is stopped at an internal
4284 breakpoint that needs stepping over, we start a step-over operation
4285 on that particular thread, and leave all others stopped. */
4286
4287 static int
4288 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4289 {
4290 struct thread_info *thread = (struct thread_info *) entry;
4291 struct lwp_info *lwp = get_thread_lwp (thread);
4292 int step;
4293
4294 if (lwp == except)
4295 return 0;
4296
4297 if (debug_threads)
4298 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4299
4300 if (!lwp->stopped)
4301 {
4302 if (debug_threads)
4303 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4304 return 0;
4305 }
4306
4307 if (thread->last_resume_kind == resume_stop
4308 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4309 {
4310 if (debug_threads)
4311 debug_printf (" client wants LWP to remain %ld stopped\n",
4312 lwpid_of (thread));
4313 return 0;
4314 }
4315
4316 if (lwp->status_pending_p)
4317 {
4318 if (debug_threads)
4319 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4320 lwpid_of (thread));
4321 return 0;
4322 }
4323
4324 gdb_assert (lwp->suspended >= 0);
4325
4326 if (lwp->suspended)
4327 {
4328 if (debug_threads)
4329 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4330 return 0;
4331 }
4332
4333 if (thread->last_resume_kind == resume_stop
4334 && lwp->pending_signals_to_report == NULL
4335 && lwp->collecting_fast_tracepoint == 0)
4336 {
4337 /* We haven't reported this LWP as stopped yet (otherwise, the
4338 last_status.kind check above would catch it, and we wouldn't
4339 reach here. This LWP may have been momentarily paused by a
4340 stop_all_lwps call while handling for example, another LWP's
4341 step-over. In that case, the pending expected SIGSTOP signal
4342 that was queued at vCont;t handling time will have already
4343 been consumed by wait_for_sigstop, and so we need to requeue
4344 another one here. Note that if the LWP already has a SIGSTOP
4345 pending, this is a no-op. */
4346
4347 if (debug_threads)
4348 debug_printf ("Client wants LWP %ld to stop. "
4349 "Making sure it has a SIGSTOP pending\n",
4350 lwpid_of (thread));
4351
4352 send_sigstop (lwp);
4353 }
4354
4355 step = thread->last_resume_kind == resume_step;
4356 linux_resume_one_lwp (lwp, step, 0, NULL);
4357 return 0;
4358 }
4359
4360 static int
4361 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4362 {
4363 struct thread_info *thread = (struct thread_info *) entry;
4364 struct lwp_info *lwp = get_thread_lwp (thread);
4365
4366 if (lwp == except)
4367 return 0;
4368
4369 lwp->suspended--;
4370 gdb_assert (lwp->suspended >= 0);
4371
4372 return proceed_one_lwp (entry, except);
4373 }
4374
4375 /* When we finish a step-over, set threads running again. If there's
4376 another thread that may need a step-over, now's the time to start
4377 it. Eventually, we'll move all threads past their breakpoints. */
4378
4379 static void
4380 proceed_all_lwps (void)
4381 {
4382 struct thread_info *need_step_over;
4383
4384 /* If there is a thread which would otherwise be resumed, which is
4385 stopped at a breakpoint that needs stepping over, then don't
4386 resume any threads - have it step over the breakpoint with all
4387 other threads stopped, then resume all threads again. */
4388
4389 if (supports_breakpoints ())
4390 {
4391 need_step_over
4392 = (struct thread_info *) find_inferior (&all_threads,
4393 need_step_over_p, NULL);
4394
4395 if (need_step_over != NULL)
4396 {
4397 if (debug_threads)
4398 debug_printf ("proceed_all_lwps: found "
4399 "thread %ld needing a step-over\n",
4400 lwpid_of (need_step_over));
4401
4402 start_step_over (get_thread_lwp (need_step_over));
4403 return;
4404 }
4405 }
4406
4407 if (debug_threads)
4408 debug_printf ("Proceeding, no step-over needed\n");
4409
4410 find_inferior (&all_threads, proceed_one_lwp, NULL);
4411 }
4412
4413 /* Stopped LWPs that the client wanted to be running, that don't have
4414 pending statuses, are set to run again, except for EXCEPT, if not
4415 NULL. This undoes a stop_all_lwps call. */
4416
4417 static void
4418 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4419 {
4420 if (debug_threads)
4421 {
4422 debug_enter ();
4423 if (except)
4424 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4425 lwpid_of (get_lwp_thread (except)));
4426 else
4427 debug_printf ("unstopping all lwps\n");
4428 }
4429
4430 if (unsuspend)
4431 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4432 else
4433 find_inferior (&all_threads, proceed_one_lwp, except);
4434
4435 if (debug_threads)
4436 {
4437 debug_printf ("unstop_all_lwps done\n");
4438 debug_exit ();
4439 }
4440 }
4441
4442
4443 #ifdef HAVE_LINUX_REGSETS
4444
4445 #define use_linux_regsets 1
4446
4447 /* Returns true if REGSET has been disabled. */
4448
4449 static int
4450 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4451 {
4452 return (info->disabled_regsets != NULL
4453 && info->disabled_regsets[regset - info->regsets]);
4454 }
4455
4456 /* Disable REGSET. */
4457
4458 static void
4459 disable_regset (struct regsets_info *info, struct regset_info *regset)
4460 {
4461 int dr_offset;
4462
4463 dr_offset = regset - info->regsets;
4464 if (info->disabled_regsets == NULL)
4465 info->disabled_regsets = xcalloc (1, info->num_regsets);
4466 info->disabled_regsets[dr_offset] = 1;
4467 }
4468
4469 static int
4470 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4471 struct regcache *regcache)
4472 {
4473 struct regset_info *regset;
4474 int saw_general_regs = 0;
4475 int pid;
4476 struct iovec iov;
4477
4478 pid = lwpid_of (current_thread);
4479 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4480 {
4481 void *buf, *data;
4482 int nt_type, res;
4483
4484 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4485 continue;
4486
4487 buf = xmalloc (regset->size);
4488
4489 nt_type = regset->nt_type;
4490 if (nt_type)
4491 {
4492 iov.iov_base = buf;
4493 iov.iov_len = regset->size;
4494 data = (void *) &iov;
4495 }
4496 else
4497 data = buf;
4498
4499 #ifndef __sparc__
4500 res = ptrace (regset->get_request, pid,
4501 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4502 #else
4503 res = ptrace (regset->get_request, pid, data, nt_type);
4504 #endif
4505 if (res < 0)
4506 {
4507 if (errno == EIO)
4508 {
4509 /* If we get EIO on a regset, do not try it again for
4510 this process mode. */
4511 disable_regset (regsets_info, regset);
4512 }
4513 else if (errno == ENODATA)
4514 {
4515 /* ENODATA may be returned if the regset is currently
4516 not "active". This can happen in normal operation,
4517 so suppress the warning in this case. */
4518 }
4519 else
4520 {
4521 char s[256];
4522 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4523 pid);
4524 perror (s);
4525 }
4526 }
4527 else
4528 {
4529 if (regset->type == GENERAL_REGS)
4530 saw_general_regs = 1;
4531 regset->store_function (regcache, buf);
4532 }
4533 free (buf);
4534 }
4535 if (saw_general_regs)
4536 return 0;
4537 else
4538 return 1;
4539 }
4540
4541 static int
4542 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4543 struct regcache *regcache)
4544 {
4545 struct regset_info *regset;
4546 int saw_general_regs = 0;
4547 int pid;
4548 struct iovec iov;
4549
4550 pid = lwpid_of (current_thread);
4551 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
4552 {
4553 void *buf, *data;
4554 int nt_type, res;
4555
4556 if (regset->size == 0 || regset_disabled (regsets_info, regset)
4557 || regset->fill_function == NULL)
4558 continue;
4559
4560 buf = xmalloc (regset->size);
4561
4562 /* First fill the buffer with the current register set contents,
4563 in case there are any items in the kernel's regset that are
4564 not in gdbserver's regcache. */
4565
4566 nt_type = regset->nt_type;
4567 if (nt_type)
4568 {
4569 iov.iov_base = buf;
4570 iov.iov_len = regset->size;
4571 data = (void *) &iov;
4572 }
4573 else
4574 data = buf;
4575
4576 #ifndef __sparc__
4577 res = ptrace (regset->get_request, pid,
4578 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4579 #else
4580 res = ptrace (regset->get_request, pid, data, nt_type);
4581 #endif
4582
4583 if (res == 0)
4584 {
4585 /* Then overlay our cached registers on that. */
4586 regset->fill_function (regcache, buf);
4587
4588 /* Only now do we write the register set. */
4589 #ifndef __sparc__
4590 res = ptrace (regset->set_request, pid,
4591 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4592 #else
4593 res = ptrace (regset->set_request, pid, data, nt_type);
4594 #endif
4595 }
4596
4597 if (res < 0)
4598 {
4599 if (errno == EIO)
4600 {
4601 /* If we get EIO on a regset, do not try it again for
4602 this process mode. */
4603 disable_regset (regsets_info, regset);
4604 }
4605 else if (errno == ESRCH)
4606 {
4607 /* At this point, ESRCH should mean the process is
4608 already gone, in which case we simply ignore attempts
4609 to change its registers. See also the related
4610 comment in linux_resume_one_lwp. */
4611 free (buf);
4612 return 0;
4613 }
4614 else
4615 {
4616 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4617 }
4618 }
4619 else if (regset->type == GENERAL_REGS)
4620 saw_general_regs = 1;
4621 free (buf);
4622 }
4623 if (saw_general_regs)
4624 return 0;
4625 else
4626 return 1;
4627 }
4628
4629 #else /* !HAVE_LINUX_REGSETS */
4630
4631 #define use_linux_regsets 0
4632 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4633 #define regsets_store_inferior_registers(regsets_info, regcache) 1
4634
4635 #endif
4636
4637 /* Return 1 if register REGNO is supported by one of the regset ptrace
4638 calls or 0 if it has to be transferred individually. */
4639
4640 static int
4641 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4642 {
4643 unsigned char mask = 1 << (regno % 8);
4644 size_t index = regno / 8;
4645
4646 return (use_linux_regsets
4647 && (regs_info->regset_bitmap == NULL
4648 || (regs_info->regset_bitmap[index] & mask) != 0));
4649 }
4650
4651 #ifdef HAVE_LINUX_USRREGS
4652
4653 int
4654 register_addr (const struct usrregs_info *usrregs, int regnum)
4655 {
4656 int addr;
4657
4658 if (regnum < 0 || regnum >= usrregs->num_regs)
4659 error ("Invalid register number %d.", regnum);
4660
4661 addr = usrregs->regmap[regnum];
4662
4663 return addr;
4664 }
4665
4666 /* Fetch one register. */
4667 static void
4668 fetch_register (const struct usrregs_info *usrregs,
4669 struct regcache *regcache, int regno)
4670 {
4671 CORE_ADDR regaddr;
4672 int i, size;
4673 char *buf;
4674 int pid;
4675
4676 if (regno >= usrregs->num_regs)
4677 return;
4678 if ((*the_low_target.cannot_fetch_register) (regno))
4679 return;
4680
4681 regaddr = register_addr (usrregs, regno);
4682 if (regaddr == -1)
4683 return;
4684
4685 size = ((register_size (regcache->tdesc, regno)
4686 + sizeof (PTRACE_XFER_TYPE) - 1)
4687 & -sizeof (PTRACE_XFER_TYPE));
4688 buf = alloca (size);
4689
4690 pid = lwpid_of (current_thread);
4691 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4692 {
4693 errno = 0;
4694 *(PTRACE_XFER_TYPE *) (buf + i) =
4695 ptrace (PTRACE_PEEKUSER, pid,
4696 /* Coerce to a uintptr_t first to avoid potential gcc warning
4697 of coercing an 8 byte integer to a 4 byte pointer. */
4698 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
4699 regaddr += sizeof (PTRACE_XFER_TYPE);
4700 if (errno != 0)
4701 error ("reading register %d: %s", regno, strerror (errno));
4702 }
4703
4704 if (the_low_target.supply_ptrace_register)
4705 the_low_target.supply_ptrace_register (regcache, regno, buf);
4706 else
4707 supply_register (regcache, regno, buf);
4708 }
4709
4710 /* Store one register. */
4711 static void
4712 store_register (const struct usrregs_info *usrregs,
4713 struct regcache *regcache, int regno)
4714 {
4715 CORE_ADDR regaddr;
4716 int i, size;
4717 char *buf;
4718 int pid;
4719
4720 if (regno >= usrregs->num_regs)
4721 return;
4722 if ((*the_low_target.cannot_store_register) (regno))
4723 return;
4724
4725 regaddr = register_addr (usrregs, regno);
4726 if (regaddr == -1)
4727 return;
4728
4729 size = ((register_size (regcache->tdesc, regno)
4730 + sizeof (PTRACE_XFER_TYPE) - 1)
4731 & -sizeof (PTRACE_XFER_TYPE));
4732 buf = alloca (size);
4733 memset (buf, 0, size);
4734
4735 if (the_low_target.collect_ptrace_register)
4736 the_low_target.collect_ptrace_register (regcache, regno, buf);
4737 else
4738 collect_register (regcache, regno, buf);
4739
4740 pid = lwpid_of (current_thread);
4741 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4742 {
4743 errno = 0;
4744 ptrace (PTRACE_POKEUSER, pid,
4745 /* Coerce to a uintptr_t first to avoid potential gcc warning
4746 about coercing an 8 byte integer to a 4 byte pointer. */
4747 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
4748 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
4749 if (errno != 0)
4750 {
4751 /* At this point, ESRCH should mean the process is
4752 already gone, in which case we simply ignore attempts
4753 to change its registers. See also the related
4754 comment in linux_resume_one_lwp. */
4755 if (errno == ESRCH)
4756 return;
4757
4758 if ((*the_low_target.cannot_store_register) (regno) == 0)
4759 error ("writing register %d: %s", regno, strerror (errno));
4760 }
4761 regaddr += sizeof (PTRACE_XFER_TYPE);
4762 }
4763 }
4764
4765 /* Fetch all registers, or just one, from the child process.
4766 If REGNO is -1, do this for all registers, skipping any that are
4767 assumed to have been retrieved by regsets_fetch_inferior_registers,
4768 unless ALL is non-zero.
4769 Otherwise, REGNO specifies which register (so we can save time). */
4770 static void
4771 usr_fetch_inferior_registers (const struct regs_info *regs_info,
4772 struct regcache *regcache, int regno, int all)
4773 {
4774 struct usrregs_info *usr = regs_info->usrregs;
4775
4776 if (regno == -1)
4777 {
4778 for (regno = 0; regno < usr->num_regs; regno++)
4779 if (all || !linux_register_in_regsets (regs_info, regno))
4780 fetch_register (usr, regcache, regno);
4781 }
4782 else
4783 fetch_register (usr, regcache, regno);
4784 }
4785
4786 /* Store our register values back into the inferior.
4787 If REGNO is -1, do this for all registers, skipping any that are
4788 assumed to have been saved by regsets_store_inferior_registers,
4789 unless ALL is non-zero.
4790 Otherwise, REGNO specifies which register (so we can save time). */
4791 static void
4792 usr_store_inferior_registers (const struct regs_info *regs_info,
4793 struct regcache *regcache, int regno, int all)
4794 {
4795 struct usrregs_info *usr = regs_info->usrregs;
4796
4797 if (regno == -1)
4798 {
4799 for (regno = 0; regno < usr->num_regs; regno++)
4800 if (all || !linux_register_in_regsets (regs_info, regno))
4801 store_register (usr, regcache, regno);
4802 }
4803 else
4804 store_register (usr, regcache, regno);
4805 }
4806
4807 #else /* !HAVE_LINUX_USRREGS */
4808
4809 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4810 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4811
4812 #endif
4813
4814
4815 void
4816 linux_fetch_registers (struct regcache *regcache, int regno)
4817 {
4818 int use_regsets;
4819 int all = 0;
4820 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4821
4822 if (regno == -1)
4823 {
4824 if (the_low_target.fetch_register != NULL
4825 && regs_info->usrregs != NULL)
4826 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
4827 (*the_low_target.fetch_register) (regcache, regno);
4828
4829 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
4830 if (regs_info->usrregs != NULL)
4831 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
4832 }
4833 else
4834 {
4835 if (the_low_target.fetch_register != NULL
4836 && (*the_low_target.fetch_register) (regcache, regno))
4837 return;
4838
4839 use_regsets = linux_register_in_regsets (regs_info, regno);
4840 if (use_regsets)
4841 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
4842 regcache);
4843 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4844 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
4845 }
4846 }
4847
4848 void
4849 linux_store_registers (struct regcache *regcache, int regno)
4850 {
4851 int use_regsets;
4852 int all = 0;
4853 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4854
4855 if (regno == -1)
4856 {
4857 all = regsets_store_inferior_registers (regs_info->regsets_info,
4858 regcache);
4859 if (regs_info->usrregs != NULL)
4860 usr_store_inferior_registers (regs_info, regcache, regno, all);
4861 }
4862 else
4863 {
4864 use_regsets = linux_register_in_regsets (regs_info, regno);
4865 if (use_regsets)
4866 all = regsets_store_inferior_registers (regs_info->regsets_info,
4867 regcache);
4868 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4869 usr_store_inferior_registers (regs_info, regcache, regno, 1);
4870 }
4871 }
4872
4873
4874 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4875 to debugger memory starting at MYADDR. */
4876
4877 static int
4878 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4879 {
4880 int pid = lwpid_of (current_thread);
4881 register PTRACE_XFER_TYPE *buffer;
4882 register CORE_ADDR addr;
4883 register int count;
4884 char filename[64];
4885 register int i;
4886 int ret;
4887 int fd;
4888
4889 /* Try using /proc. Don't bother for one word. */
4890 if (len >= 3 * sizeof (long))
4891 {
4892 int bytes;
4893
4894 /* We could keep this file open and cache it - possibly one per
4895 thread. That requires some juggling, but is even faster. */
4896 sprintf (filename, "/proc/%d/mem", pid);
4897 fd = open (filename, O_RDONLY | O_LARGEFILE);
4898 if (fd == -1)
4899 goto no_proc;
4900
4901 /* If pread64 is available, use it. It's faster if the kernel
4902 supports it (only one syscall), and it's 64-bit safe even on
4903 32-bit platforms (for instance, SPARC debugging a SPARC64
4904 application). */
4905 #ifdef HAVE_PREAD64
4906 bytes = pread64 (fd, myaddr, len, memaddr);
4907 #else
4908 bytes = -1;
4909 if (lseek (fd, memaddr, SEEK_SET) != -1)
4910 bytes = read (fd, myaddr, len);
4911 #endif
4912
4913 close (fd);
4914 if (bytes == len)
4915 return 0;
4916
4917 /* Some data was read, we'll try to get the rest with ptrace. */
4918 if (bytes > 0)
4919 {
4920 memaddr += bytes;
4921 myaddr += bytes;
4922 len -= bytes;
4923 }
4924 }
4925
4926 no_proc:
4927 /* Round starting address down to longword boundary. */
4928 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4929 /* Round ending address up; get number of longwords that makes. */
4930 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4931 / sizeof (PTRACE_XFER_TYPE));
4932 /* Allocate buffer of that many longwords. */
4933 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4934
4935 /* Read all the longwords */
4936 errno = 0;
4937 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4938 {
4939 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4940 about coercing an 8 byte integer to a 4 byte pointer. */
4941 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4942 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4943 (PTRACE_TYPE_ARG4) 0);
4944 if (errno)
4945 break;
4946 }
4947 ret = errno;
4948
4949 /* Copy appropriate bytes out of the buffer. */
4950 if (i > 0)
4951 {
4952 i *= sizeof (PTRACE_XFER_TYPE);
4953 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4954 memcpy (myaddr,
4955 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4956 i < len ? i : len);
4957 }
4958
4959 return ret;
4960 }
4961
4962 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4963 memory at MEMADDR. On failure (cannot write to the inferior)
4964 returns the value of errno. Always succeeds if LEN is zero. */
4965
4966 static int
4967 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4968 {
4969 register int i;
4970 /* Round starting address down to longword boundary. */
4971 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4972 /* Round ending address up; get number of longwords that makes. */
4973 register int count
4974 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4975 / sizeof (PTRACE_XFER_TYPE);
4976
4977 /* Allocate buffer of that many longwords. */
4978 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4979 alloca (count * sizeof (PTRACE_XFER_TYPE));
4980
4981 int pid = lwpid_of (current_thread);
4982
4983 if (len == 0)
4984 {
4985 /* Zero length write always succeeds. */
4986 return 0;
4987 }
4988
4989 if (debug_threads)
4990 {
4991 /* Dump up to four bytes. */
4992 unsigned int val = * (unsigned int *) myaddr;
4993 if (len == 1)
4994 val = val & 0xff;
4995 else if (len == 2)
4996 val = val & 0xffff;
4997 else if (len == 3)
4998 val = val & 0xffffff;
4999 debug_printf ("Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
5000 val, (long)memaddr);
5001 }
5002
5003 /* Fill start and end extra bytes of buffer with existing memory data. */
5004
5005 errno = 0;
5006 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5007 about coercing an 8 byte integer to a 4 byte pointer. */
5008 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5009 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5010 (PTRACE_TYPE_ARG4) 0);
5011 if (errno)
5012 return errno;
5013
5014 if (count > 1)
5015 {
5016 errno = 0;
5017 buffer[count - 1]
5018 = ptrace (PTRACE_PEEKTEXT, pid,
5019 /* Coerce to a uintptr_t first to avoid potential gcc warning
5020 about coercing an 8 byte integer to a 4 byte pointer. */
5021 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5022 * sizeof (PTRACE_XFER_TYPE)),
5023 (PTRACE_TYPE_ARG4) 0);
5024 if (errno)
5025 return errno;
5026 }
5027
5028 /* Copy data to be written over corresponding part of buffer. */
5029
5030 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5031 myaddr, len);
5032
5033 /* Write the entire buffer. */
5034
5035 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5036 {
5037 errno = 0;
5038 ptrace (PTRACE_POKETEXT, pid,
5039 /* Coerce to a uintptr_t first to avoid potential gcc warning
5040 about coercing an 8 byte integer to a 4 byte pointer. */
5041 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5042 (PTRACE_TYPE_ARG4) buffer[i]);
5043 if (errno)
5044 return errno;
5045 }
5046
5047 return 0;
5048 }
5049
5050 static void
5051 linux_look_up_symbols (void)
5052 {
5053 #ifdef USE_THREAD_DB
5054 struct process_info *proc = current_process ();
5055
5056 if (proc->priv->thread_db != NULL)
5057 return;
5058
5059 /* If the kernel supports tracing clones, then we don't need to
5060 use the magic thread event breakpoint to learn about
5061 threads. */
5062 thread_db_init (!linux_supports_traceclone ());
5063 #endif
5064 }
5065
5066 static void
5067 linux_request_interrupt (void)
5068 {
5069 extern unsigned long signal_pid;
5070
5071 /* Send a SIGINT to the process group. This acts just like the user
5072 typed a ^C on the controlling terminal. */
5073 kill (-signal_pid, SIGINT);
5074 }
5075
5076 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5077 to debugger memory starting at MYADDR. */
5078
5079 static int
5080 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5081 {
5082 char filename[PATH_MAX];
5083 int fd, n;
5084 int pid = lwpid_of (current_thread);
5085
5086 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5087
5088 fd = open (filename, O_RDONLY);
5089 if (fd < 0)
5090 return -1;
5091
5092 if (offset != (CORE_ADDR) 0
5093 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5094 n = -1;
5095 else
5096 n = read (fd, myaddr, len);
5097
5098 close (fd);
5099
5100 return n;
5101 }
5102
5103 /* These breakpoint and watchpoint related wrapper functions simply
5104 pass on the function call if the target has registered a
5105 corresponding function. */
5106
5107 static int
5108 linux_supports_z_point_type (char z_type)
5109 {
5110 return (the_low_target.supports_z_point_type != NULL
5111 && the_low_target.supports_z_point_type (z_type));
5112 }
5113
5114 static int
5115 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5116 int size, struct raw_breakpoint *bp)
5117 {
5118 if (type == raw_bkpt_type_sw)
5119 return insert_memory_breakpoint (bp);
5120 else if (the_low_target.insert_point != NULL)
5121 return the_low_target.insert_point (type, addr, size, bp);
5122 else
5123 /* Unsupported (see target.h). */
5124 return 1;
5125 }
5126
5127 static int
5128 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5129 int size, struct raw_breakpoint *bp)
5130 {
5131 if (type == raw_bkpt_type_sw)
5132 return remove_memory_breakpoint (bp);
5133 else if (the_low_target.remove_point != NULL)
5134 return the_low_target.remove_point (type, addr, size, bp);
5135 else
5136 /* Unsupported (see target.h). */
5137 return 1;
5138 }
5139
5140 /* Implement the to_stopped_by_sw_breakpoint target_ops
5141 method. */
5142
5143 static int
5144 linux_stopped_by_sw_breakpoint (void)
5145 {
5146 struct lwp_info *lwp = get_thread_lwp (current_thread);
5147
5148 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5149 }
5150
5151 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5152 method. */
5153
5154 static int
5155 linux_supports_stopped_by_sw_breakpoint (void)
5156 {
5157 return USE_SIGTRAP_SIGINFO;
5158 }
5159
5160 /* Implement the to_stopped_by_hw_breakpoint target_ops
5161 method. */
5162
5163 static int
5164 linux_stopped_by_hw_breakpoint (void)
5165 {
5166 struct lwp_info *lwp = get_thread_lwp (current_thread);
5167
5168 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5169 }
5170
5171 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5172 method. */
5173
5174 static int
5175 linux_supports_stopped_by_hw_breakpoint (void)
5176 {
5177 return USE_SIGTRAP_SIGINFO;
5178 }
5179
5180 static int
5181 linux_stopped_by_watchpoint (void)
5182 {
5183 struct lwp_info *lwp = get_thread_lwp (current_thread);
5184
5185 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5186 }
5187
5188 static CORE_ADDR
5189 linux_stopped_data_address (void)
5190 {
5191 struct lwp_info *lwp = get_thread_lwp (current_thread);
5192
5193 return lwp->stopped_data_address;
5194 }
5195
5196 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5197 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5198 && defined(PT_TEXT_END_ADDR)
5199
5200 /* This is only used for targets that define PT_TEXT_ADDR,
5201 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5202 the target has different ways of acquiring this information, like
5203 loadmaps. */
5204
5205 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5206 to tell gdb about. */
5207
5208 static int
5209 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5210 {
5211 unsigned long text, text_end, data;
5212 int pid = lwpid_of (get_thread_lwp (current_thread));
5213
5214 errno = 0;
5215
5216 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5217 (PTRACE_TYPE_ARG4) 0);
5218 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5219 (PTRACE_TYPE_ARG4) 0);
5220 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5221 (PTRACE_TYPE_ARG4) 0);
5222
5223 if (errno == 0)
5224 {
5225 /* Both text and data offsets produced at compile-time (and so
5226 used by gdb) are relative to the beginning of the program,
5227 with the data segment immediately following the text segment.
5228 However, the actual runtime layout in memory may put the data
5229 somewhere else, so when we send gdb a data base-address, we
5230 use the real data base address and subtract the compile-time
5231 data base-address from it (which is just the length of the
5232 text segment). BSS immediately follows data in both
5233 cases. */
5234 *text_p = text;
5235 *data_p = data - (text_end - text);
5236
5237 return 1;
5238 }
5239 return 0;
5240 }
5241 #endif
5242
5243 static int
5244 linux_qxfer_osdata (const char *annex,
5245 unsigned char *readbuf, unsigned const char *writebuf,
5246 CORE_ADDR offset, int len)
5247 {
5248 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5249 }
5250
5251 /* Convert a native/host siginfo object, into/from the siginfo in the
5252 layout of the inferiors' architecture. */
5253
5254 static void
5255 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5256 {
5257 int done = 0;
5258
5259 if (the_low_target.siginfo_fixup != NULL)
5260 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5261
5262 /* If there was no callback, or the callback didn't do anything,
5263 then just do a straight memcpy. */
5264 if (!done)
5265 {
5266 if (direction == 1)
5267 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5268 else
5269 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5270 }
5271 }
5272
5273 static int
5274 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5275 unsigned const char *writebuf, CORE_ADDR offset, int len)
5276 {
5277 int pid;
5278 siginfo_t siginfo;
5279 char inf_siginfo[sizeof (siginfo_t)];
5280
5281 if (current_thread == NULL)
5282 return -1;
5283
5284 pid = lwpid_of (current_thread);
5285
5286 if (debug_threads)
5287 debug_printf ("%s siginfo for lwp %d.\n",
5288 readbuf != NULL ? "Reading" : "Writing",
5289 pid);
5290
5291 if (offset >= sizeof (siginfo))
5292 return -1;
5293
5294 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5295 return -1;
5296
5297 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5298 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5299 inferior with a 64-bit GDBSERVER should look the same as debugging it
5300 with a 32-bit GDBSERVER, we need to convert it. */
5301 siginfo_fixup (&siginfo, inf_siginfo, 0);
5302
5303 if (offset + len > sizeof (siginfo))
5304 len = sizeof (siginfo) - offset;
5305
5306 if (readbuf != NULL)
5307 memcpy (readbuf, inf_siginfo + offset, len);
5308 else
5309 {
5310 memcpy (inf_siginfo + offset, writebuf, len);
5311
5312 /* Convert back to ptrace layout before flushing it out. */
5313 siginfo_fixup (&siginfo, inf_siginfo, 1);
5314
5315 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5316 return -1;
5317 }
5318
5319 return len;
5320 }
5321
5322 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5323 so we notice when children change state; as the handler for the
5324 sigsuspend in my_waitpid. */
5325
5326 static void
5327 sigchld_handler (int signo)
5328 {
5329 int old_errno = errno;
5330
5331 if (debug_threads)
5332 {
5333 do
5334 {
5335 /* fprintf is not async-signal-safe, so call write
5336 directly. */
5337 if (write (2, "sigchld_handler\n",
5338 sizeof ("sigchld_handler\n") - 1) < 0)
5339 break; /* just ignore */
5340 } while (0);
5341 }
5342
5343 if (target_is_async_p ())
5344 async_file_mark (); /* trigger a linux_wait */
5345
5346 errno = old_errno;
5347 }
5348
5349 static int
5350 linux_supports_non_stop (void)
5351 {
5352 return 1;
5353 }
5354
5355 static int
5356 linux_async (int enable)
5357 {
5358 int previous = target_is_async_p ();
5359
5360 if (debug_threads)
5361 debug_printf ("linux_async (%d), previous=%d\n",
5362 enable, previous);
5363
5364 if (previous != enable)
5365 {
5366 sigset_t mask;
5367 sigemptyset (&mask);
5368 sigaddset (&mask, SIGCHLD);
5369
5370 sigprocmask (SIG_BLOCK, &mask, NULL);
5371
5372 if (enable)
5373 {
5374 if (pipe (linux_event_pipe) == -1)
5375 {
5376 linux_event_pipe[0] = -1;
5377 linux_event_pipe[1] = -1;
5378 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5379
5380 warning ("creating event pipe failed.");
5381 return previous;
5382 }
5383
5384 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5385 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5386
5387 /* Register the event loop handler. */
5388 add_file_handler (linux_event_pipe[0],
5389 handle_target_event, NULL);
5390
5391 /* Always trigger a linux_wait. */
5392 async_file_mark ();
5393 }
5394 else
5395 {
5396 delete_file_handler (linux_event_pipe[0]);
5397
5398 close (linux_event_pipe[0]);
5399 close (linux_event_pipe[1]);
5400 linux_event_pipe[0] = -1;
5401 linux_event_pipe[1] = -1;
5402 }
5403
5404 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5405 }
5406
5407 return previous;
5408 }
5409
5410 static int
5411 linux_start_non_stop (int nonstop)
5412 {
5413 /* Register or unregister from event-loop accordingly. */
5414 linux_async (nonstop);
5415
5416 if (target_is_async_p () != (nonstop != 0))
5417 return -1;
5418
5419 return 0;
5420 }
5421
5422 static int
5423 linux_supports_multi_process (void)
5424 {
5425 return 1;
5426 }
5427
5428 static int
5429 linux_supports_disable_randomization (void)
5430 {
5431 #ifdef HAVE_PERSONALITY
5432 return 1;
5433 #else
5434 return 0;
5435 #endif
5436 }
5437
5438 static int
5439 linux_supports_agent (void)
5440 {
5441 return 1;
5442 }
5443
5444 static int
5445 linux_supports_range_stepping (void)
5446 {
5447 if (*the_low_target.supports_range_stepping == NULL)
5448 return 0;
5449
5450 return (*the_low_target.supports_range_stepping) ();
5451 }
5452
5453 /* Enumerate spufs IDs for process PID. */
5454 static int
5455 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5456 {
5457 int pos = 0;
5458 int written = 0;
5459 char path[128];
5460 DIR *dir;
5461 struct dirent *entry;
5462
5463 sprintf (path, "/proc/%ld/fd", pid);
5464 dir = opendir (path);
5465 if (!dir)
5466 return -1;
5467
5468 rewinddir (dir);
5469 while ((entry = readdir (dir)) != NULL)
5470 {
5471 struct stat st;
5472 struct statfs stfs;
5473 int fd;
5474
5475 fd = atoi (entry->d_name);
5476 if (!fd)
5477 continue;
5478
5479 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5480 if (stat (path, &st) != 0)
5481 continue;
5482 if (!S_ISDIR (st.st_mode))
5483 continue;
5484
5485 if (statfs (path, &stfs) != 0)
5486 continue;
5487 if (stfs.f_type != SPUFS_MAGIC)
5488 continue;
5489
5490 if (pos >= offset && pos + 4 <= offset + len)
5491 {
5492 *(unsigned int *)(buf + pos - offset) = fd;
5493 written += 4;
5494 }
5495 pos += 4;
5496 }
5497
5498 closedir (dir);
5499 return written;
5500 }
5501
5502 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5503 object type, using the /proc file system. */
5504 static int
5505 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5506 unsigned const char *writebuf,
5507 CORE_ADDR offset, int len)
5508 {
5509 long pid = lwpid_of (current_thread);
5510 char buf[128];
5511 int fd = 0;
5512 int ret = 0;
5513
5514 if (!writebuf && !readbuf)
5515 return -1;
5516
5517 if (!*annex)
5518 {
5519 if (!readbuf)
5520 return -1;
5521 else
5522 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5523 }
5524
5525 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5526 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5527 if (fd <= 0)
5528 return -1;
5529
5530 if (offset != 0
5531 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5532 {
5533 close (fd);
5534 return 0;
5535 }
5536
5537 if (writebuf)
5538 ret = write (fd, writebuf, (size_t) len);
5539 else
5540 ret = read (fd, readbuf, (size_t) len);
5541
5542 close (fd);
5543 return ret;
5544 }
5545
5546 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5547 struct target_loadseg
5548 {
5549 /* Core address to which the segment is mapped. */
5550 Elf32_Addr addr;
5551 /* VMA recorded in the program header. */
5552 Elf32_Addr p_vaddr;
5553 /* Size of this segment in memory. */
5554 Elf32_Word p_memsz;
5555 };
5556
5557 # if defined PT_GETDSBT
5558 struct target_loadmap
5559 {
5560 /* Protocol version number, must be zero. */
5561 Elf32_Word version;
5562 /* Pointer to the DSBT table, its size, and the DSBT index. */
5563 unsigned *dsbt_table;
5564 unsigned dsbt_size, dsbt_index;
5565 /* Number of segments in this map. */
5566 Elf32_Word nsegs;
5567 /* The actual memory map. */
5568 struct target_loadseg segs[/*nsegs*/];
5569 };
5570 # define LINUX_LOADMAP PT_GETDSBT
5571 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5572 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5573 # else
5574 struct target_loadmap
5575 {
5576 /* Protocol version number, must be zero. */
5577 Elf32_Half version;
5578 /* Number of segments in this map. */
5579 Elf32_Half nsegs;
5580 /* The actual memory map. */
5581 struct target_loadseg segs[/*nsegs*/];
5582 };
5583 # define LINUX_LOADMAP PTRACE_GETFDPIC
5584 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5585 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5586 # endif
5587
5588 static int
5589 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5590 unsigned char *myaddr, unsigned int len)
5591 {
5592 int pid = lwpid_of (current_thread);
5593 int addr = -1;
5594 struct target_loadmap *data = NULL;
5595 unsigned int actual_length, copy_length;
5596
5597 if (strcmp (annex, "exec") == 0)
5598 addr = (int) LINUX_LOADMAP_EXEC;
5599 else if (strcmp (annex, "interp") == 0)
5600 addr = (int) LINUX_LOADMAP_INTERP;
5601 else
5602 return -1;
5603
5604 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5605 return -1;
5606
5607 if (data == NULL)
5608 return -1;
5609
5610 actual_length = sizeof (struct target_loadmap)
5611 + sizeof (struct target_loadseg) * data->nsegs;
5612
5613 if (offset < 0 || offset > actual_length)
5614 return -1;
5615
5616 copy_length = actual_length - offset < len ? actual_length - offset : len;
5617 memcpy (myaddr, (char *) data + offset, copy_length);
5618 return copy_length;
5619 }
5620 #else
5621 # define linux_read_loadmap NULL
5622 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5623
5624 static void
5625 linux_process_qsupported (const char *query)
5626 {
5627 if (the_low_target.process_qsupported != NULL)
5628 the_low_target.process_qsupported (query);
5629 }
5630
5631 static int
5632 linux_supports_tracepoints (void)
5633 {
5634 if (*the_low_target.supports_tracepoints == NULL)
5635 return 0;
5636
5637 return (*the_low_target.supports_tracepoints) ();
5638 }
5639
5640 static CORE_ADDR
5641 linux_read_pc (struct regcache *regcache)
5642 {
5643 if (the_low_target.get_pc == NULL)
5644 return 0;
5645
5646 return (*the_low_target.get_pc) (regcache);
5647 }
5648
5649 static void
5650 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5651 {
5652 gdb_assert (the_low_target.set_pc != NULL);
5653
5654 (*the_low_target.set_pc) (regcache, pc);
5655 }
5656
5657 static int
5658 linux_thread_stopped (struct thread_info *thread)
5659 {
5660 return get_thread_lwp (thread)->stopped;
5661 }
5662
5663 /* This exposes stop-all-threads functionality to other modules. */
5664
5665 static void
5666 linux_pause_all (int freeze)
5667 {
5668 stop_all_lwps (freeze, NULL);
5669 }
5670
5671 /* This exposes unstop-all-threads functionality to other gdbserver
5672 modules. */
5673
5674 static void
5675 linux_unpause_all (int unfreeze)
5676 {
5677 unstop_all_lwps (unfreeze, NULL);
5678 }
5679
5680 static int
5681 linux_prepare_to_access_memory (void)
5682 {
5683 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5684 running LWP. */
5685 if (non_stop)
5686 linux_pause_all (1);
5687 return 0;
5688 }
5689
5690 static void
5691 linux_done_accessing_memory (void)
5692 {
5693 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5694 running LWP. */
5695 if (non_stop)
5696 linux_unpause_all (1);
5697 }
5698
5699 static int
5700 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5701 CORE_ADDR collector,
5702 CORE_ADDR lockaddr,
5703 ULONGEST orig_size,
5704 CORE_ADDR *jump_entry,
5705 CORE_ADDR *trampoline,
5706 ULONGEST *trampoline_size,
5707 unsigned char *jjump_pad_insn,
5708 ULONGEST *jjump_pad_insn_size,
5709 CORE_ADDR *adjusted_insn_addr,
5710 CORE_ADDR *adjusted_insn_addr_end,
5711 char *err)
5712 {
5713 return (*the_low_target.install_fast_tracepoint_jump_pad)
5714 (tpoint, tpaddr, collector, lockaddr, orig_size,
5715 jump_entry, trampoline, trampoline_size,
5716 jjump_pad_insn, jjump_pad_insn_size,
5717 adjusted_insn_addr, adjusted_insn_addr_end,
5718 err);
5719 }
5720
5721 static struct emit_ops *
5722 linux_emit_ops (void)
5723 {
5724 if (the_low_target.emit_ops != NULL)
5725 return (*the_low_target.emit_ops) ();
5726 else
5727 return NULL;
5728 }
5729
5730 static int
5731 linux_get_min_fast_tracepoint_insn_len (void)
5732 {
5733 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5734 }
5735
5736 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5737
5738 static int
5739 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5740 CORE_ADDR *phdr_memaddr, int *num_phdr)
5741 {
5742 char filename[PATH_MAX];
5743 int fd;
5744 const int auxv_size = is_elf64
5745 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5746 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5747
5748 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5749
5750 fd = open (filename, O_RDONLY);
5751 if (fd < 0)
5752 return 1;
5753
5754 *phdr_memaddr = 0;
5755 *num_phdr = 0;
5756 while (read (fd, buf, auxv_size) == auxv_size
5757 && (*phdr_memaddr == 0 || *num_phdr == 0))
5758 {
5759 if (is_elf64)
5760 {
5761 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5762
5763 switch (aux->a_type)
5764 {
5765 case AT_PHDR:
5766 *phdr_memaddr = aux->a_un.a_val;
5767 break;
5768 case AT_PHNUM:
5769 *num_phdr = aux->a_un.a_val;
5770 break;
5771 }
5772 }
5773 else
5774 {
5775 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5776
5777 switch (aux->a_type)
5778 {
5779 case AT_PHDR:
5780 *phdr_memaddr = aux->a_un.a_val;
5781 break;
5782 case AT_PHNUM:
5783 *num_phdr = aux->a_un.a_val;
5784 break;
5785 }
5786 }
5787 }
5788
5789 close (fd);
5790
5791 if (*phdr_memaddr == 0 || *num_phdr == 0)
5792 {
5793 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5794 "phdr_memaddr = %ld, phdr_num = %d",
5795 (long) *phdr_memaddr, *num_phdr);
5796 return 2;
5797 }
5798
5799 return 0;
5800 }
5801
5802 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5803
5804 static CORE_ADDR
5805 get_dynamic (const int pid, const int is_elf64)
5806 {
5807 CORE_ADDR phdr_memaddr, relocation;
5808 int num_phdr, i;
5809 unsigned char *phdr_buf;
5810 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5811
5812 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5813 return 0;
5814
5815 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5816 phdr_buf = alloca (num_phdr * phdr_size);
5817
5818 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5819 return 0;
5820
5821 /* Compute relocation: it is expected to be 0 for "regular" executables,
5822 non-zero for PIE ones. */
5823 relocation = -1;
5824 for (i = 0; relocation == -1 && i < num_phdr; i++)
5825 if (is_elf64)
5826 {
5827 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5828
5829 if (p->p_type == PT_PHDR)
5830 relocation = phdr_memaddr - p->p_vaddr;
5831 }
5832 else
5833 {
5834 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5835
5836 if (p->p_type == PT_PHDR)
5837 relocation = phdr_memaddr - p->p_vaddr;
5838 }
5839
5840 if (relocation == -1)
5841 {
5842 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5843 any real world executables, including PIE executables, have always
5844 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5845 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5846 or present DT_DEBUG anyway (fpc binaries are statically linked).
5847
5848 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5849
5850 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5851
5852 return 0;
5853 }
5854
5855 for (i = 0; i < num_phdr; i++)
5856 {
5857 if (is_elf64)
5858 {
5859 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5860
5861 if (p->p_type == PT_DYNAMIC)
5862 return p->p_vaddr + relocation;
5863 }
5864 else
5865 {
5866 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5867
5868 if (p->p_type == PT_DYNAMIC)
5869 return p->p_vaddr + relocation;
5870 }
5871 }
5872
5873 return 0;
5874 }
5875
5876 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5877 can be 0 if the inferior does not yet have the library list initialized.
5878 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5879 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5880
5881 static CORE_ADDR
5882 get_r_debug (const int pid, const int is_elf64)
5883 {
5884 CORE_ADDR dynamic_memaddr;
5885 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5886 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5887 CORE_ADDR map = -1;
5888
5889 dynamic_memaddr = get_dynamic (pid, is_elf64);
5890 if (dynamic_memaddr == 0)
5891 return map;
5892
5893 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5894 {
5895 if (is_elf64)
5896 {
5897 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5898 #ifdef DT_MIPS_RLD_MAP
5899 union
5900 {
5901 Elf64_Xword map;
5902 unsigned char buf[sizeof (Elf64_Xword)];
5903 }
5904 rld_map;
5905
5906 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5907 {
5908 if (linux_read_memory (dyn->d_un.d_val,
5909 rld_map.buf, sizeof (rld_map.buf)) == 0)
5910 return rld_map.map;
5911 else
5912 break;
5913 }
5914 #endif /* DT_MIPS_RLD_MAP */
5915
5916 if (dyn->d_tag == DT_DEBUG && map == -1)
5917 map = dyn->d_un.d_val;
5918
5919 if (dyn->d_tag == DT_NULL)
5920 break;
5921 }
5922 else
5923 {
5924 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5925 #ifdef DT_MIPS_RLD_MAP
5926 union
5927 {
5928 Elf32_Word map;
5929 unsigned char buf[sizeof (Elf32_Word)];
5930 }
5931 rld_map;
5932
5933 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5934 {
5935 if (linux_read_memory (dyn->d_un.d_val,
5936 rld_map.buf, sizeof (rld_map.buf)) == 0)
5937 return rld_map.map;
5938 else
5939 break;
5940 }
5941 #endif /* DT_MIPS_RLD_MAP */
5942
5943 if (dyn->d_tag == DT_DEBUG && map == -1)
5944 map = dyn->d_un.d_val;
5945
5946 if (dyn->d_tag == DT_NULL)
5947 break;
5948 }
5949
5950 dynamic_memaddr += dyn_size;
5951 }
5952
5953 return map;
5954 }
5955
5956 /* Read one pointer from MEMADDR in the inferior. */
5957
5958 static int
5959 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5960 {
5961 int ret;
5962
5963 /* Go through a union so this works on either big or little endian
5964 hosts, when the inferior's pointer size is smaller than the size
5965 of CORE_ADDR. It is assumed the inferior's endianness is the
5966 same of the superior's. */
5967 union
5968 {
5969 CORE_ADDR core_addr;
5970 unsigned int ui;
5971 unsigned char uc;
5972 } addr;
5973
5974 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5975 if (ret == 0)
5976 {
5977 if (ptr_size == sizeof (CORE_ADDR))
5978 *ptr = addr.core_addr;
5979 else if (ptr_size == sizeof (unsigned int))
5980 *ptr = addr.ui;
5981 else
5982 gdb_assert_not_reached ("unhandled pointer size");
5983 }
5984 return ret;
5985 }
5986
5987 struct link_map_offsets
5988 {
5989 /* Offset and size of r_debug.r_version. */
5990 int r_version_offset;
5991
5992 /* Offset and size of r_debug.r_map. */
5993 int r_map_offset;
5994
5995 /* Offset to l_addr field in struct link_map. */
5996 int l_addr_offset;
5997
5998 /* Offset to l_name field in struct link_map. */
5999 int l_name_offset;
6000
6001 /* Offset to l_ld field in struct link_map. */
6002 int l_ld_offset;
6003
6004 /* Offset to l_next field in struct link_map. */
6005 int l_next_offset;
6006
6007 /* Offset to l_prev field in struct link_map. */
6008 int l_prev_offset;
6009 };
6010
6011 /* Construct qXfer:libraries-svr4:read reply. */
6012
6013 static int
6014 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6015 unsigned const char *writebuf,
6016 CORE_ADDR offset, int len)
6017 {
6018 char *document;
6019 unsigned document_len;
6020 struct process_info_private *const priv = current_process ()->priv;
6021 char filename[PATH_MAX];
6022 int pid, is_elf64;
6023
6024 static const struct link_map_offsets lmo_32bit_offsets =
6025 {
6026 0, /* r_version offset. */
6027 4, /* r_debug.r_map offset. */
6028 0, /* l_addr offset in link_map. */
6029 4, /* l_name offset in link_map. */
6030 8, /* l_ld offset in link_map. */
6031 12, /* l_next offset in link_map. */
6032 16 /* l_prev offset in link_map. */
6033 };
6034
6035 static const struct link_map_offsets lmo_64bit_offsets =
6036 {
6037 0, /* r_version offset. */
6038 8, /* r_debug.r_map offset. */
6039 0, /* l_addr offset in link_map. */
6040 8, /* l_name offset in link_map. */
6041 16, /* l_ld offset in link_map. */
6042 24, /* l_next offset in link_map. */
6043 32 /* l_prev offset in link_map. */
6044 };
6045 const struct link_map_offsets *lmo;
6046 unsigned int machine;
6047 int ptr_size;
6048 CORE_ADDR lm_addr = 0, lm_prev = 0;
6049 int allocated = 1024;
6050 char *p;
6051 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6052 int header_done = 0;
6053
6054 if (writebuf != NULL)
6055 return -2;
6056 if (readbuf == NULL)
6057 return -1;
6058
6059 pid = lwpid_of (current_thread);
6060 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6061 is_elf64 = elf_64_file_p (filename, &machine);
6062 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6063 ptr_size = is_elf64 ? 8 : 4;
6064
6065 while (annex[0] != '\0')
6066 {
6067 const char *sep;
6068 CORE_ADDR *addrp;
6069 int len;
6070
6071 sep = strchr (annex, '=');
6072 if (sep == NULL)
6073 break;
6074
6075 len = sep - annex;
6076 if (len == 5 && startswith (annex, "start"))
6077 addrp = &lm_addr;
6078 else if (len == 4 && startswith (annex, "prev"))
6079 addrp = &lm_prev;
6080 else
6081 {
6082 annex = strchr (sep, ';');
6083 if (annex == NULL)
6084 break;
6085 annex++;
6086 continue;
6087 }
6088
6089 annex = decode_address_to_semicolon (addrp, sep + 1);
6090 }
6091
6092 if (lm_addr == 0)
6093 {
6094 int r_version = 0;
6095
6096 if (priv->r_debug == 0)
6097 priv->r_debug = get_r_debug (pid, is_elf64);
6098
6099 /* We failed to find DT_DEBUG. Such situation will not change
6100 for this inferior - do not retry it. Report it to GDB as
6101 E01, see for the reasons at the GDB solib-svr4.c side. */
6102 if (priv->r_debug == (CORE_ADDR) -1)
6103 return -1;
6104
6105 if (priv->r_debug != 0)
6106 {
6107 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6108 (unsigned char *) &r_version,
6109 sizeof (r_version)) != 0
6110 || r_version != 1)
6111 {
6112 warning ("unexpected r_debug version %d", r_version);
6113 }
6114 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6115 &lm_addr, ptr_size) != 0)
6116 {
6117 warning ("unable to read r_map from 0x%lx",
6118 (long) priv->r_debug + lmo->r_map_offset);
6119 }
6120 }
6121 }
6122
6123 document = xmalloc (allocated);
6124 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6125 p = document + strlen (document);
6126
6127 while (lm_addr
6128 && read_one_ptr (lm_addr + lmo->l_name_offset,
6129 &l_name, ptr_size) == 0
6130 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6131 &l_addr, ptr_size) == 0
6132 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6133 &l_ld, ptr_size) == 0
6134 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6135 &l_prev, ptr_size) == 0
6136 && read_one_ptr (lm_addr + lmo->l_next_offset,
6137 &l_next, ptr_size) == 0)
6138 {
6139 unsigned char libname[PATH_MAX];
6140
6141 if (lm_prev != l_prev)
6142 {
6143 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6144 (long) lm_prev, (long) l_prev);
6145 break;
6146 }
6147
6148 /* Ignore the first entry even if it has valid name as the first entry
6149 corresponds to the main executable. The first entry should not be
6150 skipped if the dynamic loader was loaded late by a static executable
6151 (see solib-svr4.c parameter ignore_first). But in such case the main
6152 executable does not have PT_DYNAMIC present and this function already
6153 exited above due to failed get_r_debug. */
6154 if (lm_prev == 0)
6155 {
6156 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6157 p = p + strlen (p);
6158 }
6159 else
6160 {
6161 /* Not checking for error because reading may stop before
6162 we've got PATH_MAX worth of characters. */
6163 libname[0] = '\0';
6164 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6165 libname[sizeof (libname) - 1] = '\0';
6166 if (libname[0] != '\0')
6167 {
6168 /* 6x the size for xml_escape_text below. */
6169 size_t len = 6 * strlen ((char *) libname);
6170 char *name;
6171
6172 if (!header_done)
6173 {
6174 /* Terminate `<library-list-svr4'. */
6175 *p++ = '>';
6176 header_done = 1;
6177 }
6178
6179 while (allocated < p - document + len + 200)
6180 {
6181 /* Expand to guarantee sufficient storage. */
6182 uintptr_t document_len = p - document;
6183
6184 document = xrealloc (document, 2 * allocated);
6185 allocated *= 2;
6186 p = document + document_len;
6187 }
6188
6189 name = xml_escape_text ((char *) libname);
6190 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6191 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6192 name, (unsigned long) lm_addr,
6193 (unsigned long) l_addr, (unsigned long) l_ld);
6194 free (name);
6195 }
6196 }
6197
6198 lm_prev = lm_addr;
6199 lm_addr = l_next;
6200 }
6201
6202 if (!header_done)
6203 {
6204 /* Empty list; terminate `<library-list-svr4'. */
6205 strcpy (p, "/>");
6206 }
6207 else
6208 strcpy (p, "</library-list-svr4>");
6209
6210 document_len = strlen (document);
6211 if (offset < document_len)
6212 document_len -= offset;
6213 else
6214 document_len = 0;
6215 if (len > document_len)
6216 len = document_len;
6217
6218 memcpy (readbuf, document + offset, len);
6219 xfree (document);
6220
6221 return len;
6222 }
6223
6224 #ifdef HAVE_LINUX_BTRACE
6225
6226 /* See to_enable_btrace target method. */
6227
6228 static struct btrace_target_info *
6229 linux_low_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
6230 {
6231 struct btrace_target_info *tinfo;
6232
6233 tinfo = linux_enable_btrace (ptid, conf);
6234
6235 if (tinfo != NULL && tinfo->ptr_bits == 0)
6236 {
6237 struct thread_info *thread = find_thread_ptid (ptid);
6238 struct regcache *regcache = get_thread_regcache (thread, 0);
6239
6240 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
6241 }
6242
6243 return tinfo;
6244 }
6245
6246 /* See to_disable_btrace target method. */
6247
6248 static int
6249 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6250 {
6251 enum btrace_error err;
6252
6253 err = linux_disable_btrace (tinfo);
6254 return (err == BTRACE_ERR_NONE ? 0 : -1);
6255 }
6256
6257 /* See to_read_btrace target method. */
6258
6259 static int
6260 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6261 int type)
6262 {
6263 struct btrace_data btrace;
6264 struct btrace_block *block;
6265 enum btrace_error err;
6266 int i;
6267
6268 btrace_data_init (&btrace);
6269
6270 err = linux_read_btrace (&btrace, tinfo, type);
6271 if (err != BTRACE_ERR_NONE)
6272 {
6273 if (err == BTRACE_ERR_OVERFLOW)
6274 buffer_grow_str0 (buffer, "E.Overflow.");
6275 else
6276 buffer_grow_str0 (buffer, "E.Generic Error.");
6277
6278 btrace_data_fini (&btrace);
6279 return -1;
6280 }
6281
6282 switch (btrace.format)
6283 {
6284 case BTRACE_FORMAT_NONE:
6285 buffer_grow_str0 (buffer, "E.No Trace.");
6286 break;
6287
6288 case BTRACE_FORMAT_BTS:
6289 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6290 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6291
6292 for (i = 0;
6293 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6294 i++)
6295 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6296 paddress (block->begin), paddress (block->end));
6297
6298 buffer_grow_str0 (buffer, "</btrace>\n");
6299 break;
6300
6301 default:
6302 buffer_grow_str0 (buffer, "E.Unknown Trace Format.");
6303
6304 btrace_data_fini (&btrace);
6305 return -1;
6306 }
6307
6308 btrace_data_fini (&btrace);
6309 return 0;
6310 }
6311
6312 /* See to_btrace_conf target method. */
6313
6314 static int
6315 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
6316 struct buffer *buffer)
6317 {
6318 const struct btrace_config *conf;
6319
6320 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
6321 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
6322
6323 conf = linux_btrace_conf (tinfo);
6324 if (conf != NULL)
6325 {
6326 switch (conf->format)
6327 {
6328 case BTRACE_FORMAT_NONE:
6329 break;
6330
6331 case BTRACE_FORMAT_BTS:
6332 buffer_xml_printf (buffer, "<bts");
6333 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
6334 buffer_xml_printf (buffer, " />\n");
6335 break;
6336 }
6337 }
6338
6339 buffer_grow_str0 (buffer, "</btrace-conf>\n");
6340 return 0;
6341 }
6342 #endif /* HAVE_LINUX_BTRACE */
6343
6344 /* See nat/linux-nat.h. */
6345
6346 ptid_t
6347 current_lwp_ptid (void)
6348 {
6349 return ptid_of (current_thread);
6350 }
6351
6352 static struct target_ops linux_target_ops = {
6353 linux_create_inferior,
6354 linux_attach,
6355 linux_kill,
6356 linux_detach,
6357 linux_mourn,
6358 linux_join,
6359 linux_thread_alive,
6360 linux_resume,
6361 linux_wait,
6362 linux_fetch_registers,
6363 linux_store_registers,
6364 linux_prepare_to_access_memory,
6365 linux_done_accessing_memory,
6366 linux_read_memory,
6367 linux_write_memory,
6368 linux_look_up_symbols,
6369 linux_request_interrupt,
6370 linux_read_auxv,
6371 linux_supports_z_point_type,
6372 linux_insert_point,
6373 linux_remove_point,
6374 linux_stopped_by_sw_breakpoint,
6375 linux_supports_stopped_by_sw_breakpoint,
6376 linux_stopped_by_hw_breakpoint,
6377 linux_supports_stopped_by_hw_breakpoint,
6378 linux_stopped_by_watchpoint,
6379 linux_stopped_data_address,
6380 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6381 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6382 && defined(PT_TEXT_END_ADDR)
6383 linux_read_offsets,
6384 #else
6385 NULL,
6386 #endif
6387 #ifdef USE_THREAD_DB
6388 thread_db_get_tls_address,
6389 #else
6390 NULL,
6391 #endif
6392 linux_qxfer_spu,
6393 hostio_last_error_from_errno,
6394 linux_qxfer_osdata,
6395 linux_xfer_siginfo,
6396 linux_supports_non_stop,
6397 linux_async,
6398 linux_start_non_stop,
6399 linux_supports_multi_process,
6400 #ifdef USE_THREAD_DB
6401 thread_db_handle_monitor_command,
6402 #else
6403 NULL,
6404 #endif
6405 linux_common_core_of_thread,
6406 linux_read_loadmap,
6407 linux_process_qsupported,
6408 linux_supports_tracepoints,
6409 linux_read_pc,
6410 linux_write_pc,
6411 linux_thread_stopped,
6412 NULL,
6413 linux_pause_all,
6414 linux_unpause_all,
6415 linux_stabilize_threads,
6416 linux_install_fast_tracepoint_jump_pad,
6417 linux_emit_ops,
6418 linux_supports_disable_randomization,
6419 linux_get_min_fast_tracepoint_insn_len,
6420 linux_qxfer_libraries_svr4,
6421 linux_supports_agent,
6422 #ifdef HAVE_LINUX_BTRACE
6423 linux_supports_btrace,
6424 linux_low_enable_btrace,
6425 linux_low_disable_btrace,
6426 linux_low_read_btrace,
6427 linux_low_btrace_conf,
6428 #else
6429 NULL,
6430 NULL,
6431 NULL,
6432 NULL,
6433 NULL,
6434 #endif
6435 linux_supports_range_stepping,
6436 };
6437
6438 static void
6439 linux_init_signals ()
6440 {
6441 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6442 to find what the cancel signal actually is. */
6443 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6444 signal (__SIGRTMIN+1, SIG_IGN);
6445 #endif
6446 }
6447
6448 #ifdef HAVE_LINUX_REGSETS
6449 void
6450 initialize_regsets_info (struct regsets_info *info)
6451 {
6452 for (info->num_regsets = 0;
6453 info->regsets[info->num_regsets].size >= 0;
6454 info->num_regsets++)
6455 ;
6456 }
6457 #endif
6458
6459 void
6460 initialize_low (void)
6461 {
6462 struct sigaction sigchld_action;
6463 memset (&sigchld_action, 0, sizeof (sigchld_action));
6464 set_target_ops (&linux_target_ops);
6465 set_breakpoint_data (the_low_target.breakpoint,
6466 the_low_target.breakpoint_len);
6467 linux_init_signals ();
6468 linux_ptrace_init_warnings ();
6469
6470 sigchld_action.sa_handler = sigchld_handler;
6471 sigemptyset (&sigchld_action.sa_mask);
6472 sigchld_action.sa_flags = SA_RESTART;
6473 sigaction (SIGCHLD, &sigchld_action, NULL);
6474
6475 initialize_low_arch ();
6476 }