]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/linux-low.c
Fix formatting in coff-x86_64.c
[thirdparty/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #ifndef ELFMAG0
50 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
51 then ELFMAG0 will have been defined. If it didn't get included by
52 gdb_proc_service.h then including it will likely introduce a duplicate
53 definition of elf_fpregset_t. */
54 #include <elf.h>
55 #endif
56 #include "nat/linux-namespaces.h"
57
58 #ifndef SPUFS_MAGIC
59 #define SPUFS_MAGIC 0x23c9b64e
60 #endif
61
62 #ifdef HAVE_PERSONALITY
63 # include <sys/personality.h>
64 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
65 # define ADDR_NO_RANDOMIZE 0x0040000
66 # endif
67 #endif
68
69 #ifndef O_LARGEFILE
70 #define O_LARGEFILE 0
71 #endif
72
73 /* Some targets did not define these ptrace constants from the start,
74 so gdbserver defines them locally here. In the future, these may
75 be removed after they are added to asm/ptrace.h. */
76 #if !(defined(PT_TEXT_ADDR) \
77 || defined(PT_DATA_ADDR) \
78 || defined(PT_TEXT_END_ADDR))
79 #if defined(__mcoldfire__)
80 /* These are still undefined in 3.10 kernels. */
81 #define PT_TEXT_ADDR 49*4
82 #define PT_DATA_ADDR 50*4
83 #define PT_TEXT_END_ADDR 51*4
84 /* BFIN already defines these since at least 2.6.32 kernels. */
85 #elif defined(BFIN)
86 #define PT_TEXT_ADDR 220
87 #define PT_TEXT_END_ADDR 224
88 #define PT_DATA_ADDR 228
89 /* These are still undefined in 3.10 kernels. */
90 #elif defined(__TMS320C6X__)
91 #define PT_TEXT_ADDR (0x10000*4)
92 #define PT_DATA_ADDR (0x10004*4)
93 #define PT_TEXT_END_ADDR (0x10008*4)
94 #endif
95 #endif
96
97 #ifdef HAVE_LINUX_BTRACE
98 # include "nat/linux-btrace.h"
99 # include "btrace-common.h"
100 #endif
101
102 #ifndef HAVE_ELF32_AUXV_T
103 /* Copied from glibc's elf.h. */
104 typedef struct
105 {
106 uint32_t a_type; /* Entry type */
107 union
108 {
109 uint32_t a_val; /* Integer value */
110 /* We use to have pointer elements added here. We cannot do that,
111 though, since it does not work when using 32-bit definitions
112 on 64-bit platforms and vice versa. */
113 } a_un;
114 } Elf32_auxv_t;
115 #endif
116
117 #ifndef HAVE_ELF64_AUXV_T
118 /* Copied from glibc's elf.h. */
119 typedef struct
120 {
121 uint64_t a_type; /* Entry type */
122 union
123 {
124 uint64_t a_val; /* Integer value */
125 /* We use to have pointer elements added here. We cannot do that,
126 though, since it does not work when using 32-bit definitions
127 on 64-bit platforms and vice versa. */
128 } a_un;
129 } Elf64_auxv_t;
130 #endif
131
132 /* Does the current host support PTRACE_GETREGSET? */
133 int have_ptrace_getregset = -1;
134
135 /* LWP accessors. */
136
137 /* See nat/linux-nat.h. */
138
139 ptid_t
140 ptid_of_lwp (struct lwp_info *lwp)
141 {
142 return ptid_of (get_lwp_thread (lwp));
143 }
144
145 /* See nat/linux-nat.h. */
146
147 void
148 lwp_set_arch_private_info (struct lwp_info *lwp,
149 struct arch_lwp_info *info)
150 {
151 lwp->arch_private = info;
152 }
153
154 /* See nat/linux-nat.h. */
155
156 struct arch_lwp_info *
157 lwp_arch_private_info (struct lwp_info *lwp)
158 {
159 return lwp->arch_private;
160 }
161
162 /* See nat/linux-nat.h. */
163
164 int
165 lwp_is_stopped (struct lwp_info *lwp)
166 {
167 return lwp->stopped;
168 }
169
170 /* See nat/linux-nat.h. */
171
172 enum target_stop_reason
173 lwp_stop_reason (struct lwp_info *lwp)
174 {
175 return lwp->stop_reason;
176 }
177
178 /* A list of all unknown processes which receive stop signals. Some
179 other process will presumably claim each of these as forked
180 children momentarily. */
181
182 struct simple_pid_list
183 {
184 /* The process ID. */
185 int pid;
186
187 /* The status as reported by waitpid. */
188 int status;
189
190 /* Next in chain. */
191 struct simple_pid_list *next;
192 };
193 struct simple_pid_list *stopped_pids;
194
195 /* Trivial list manipulation functions to keep track of a list of new
196 stopped processes. */
197
198 static void
199 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
200 {
201 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
202
203 new_pid->pid = pid;
204 new_pid->status = status;
205 new_pid->next = *listp;
206 *listp = new_pid;
207 }
208
209 static int
210 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
211 {
212 struct simple_pid_list **p;
213
214 for (p = listp; *p != NULL; p = &(*p)->next)
215 if ((*p)->pid == pid)
216 {
217 struct simple_pid_list *next = (*p)->next;
218
219 *statusp = (*p)->status;
220 xfree (*p);
221 *p = next;
222 return 1;
223 }
224 return 0;
225 }
226
227 enum stopping_threads_kind
228 {
229 /* Not stopping threads presently. */
230 NOT_STOPPING_THREADS,
231
232 /* Stopping threads. */
233 STOPPING_THREADS,
234
235 /* Stopping and suspending threads. */
236 STOPPING_AND_SUSPENDING_THREADS
237 };
238
239 /* This is set while stop_all_lwps is in effect. */
240 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
241
242 /* FIXME make into a target method? */
243 int using_threads = 1;
244
245 /* True if we're presently stabilizing threads (moving them out of
246 jump pads). */
247 static int stabilizing_threads;
248
249 static void linux_resume_one_lwp (struct lwp_info *lwp,
250 int step, int signal, siginfo_t *info);
251 static void linux_resume (struct thread_resume *resume_info, size_t n);
252 static void stop_all_lwps (int suspend, struct lwp_info *except);
253 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
254 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
255 int *wstat, int options);
256 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
257 static struct lwp_info *add_lwp (ptid_t ptid);
258 static void linux_mourn (struct process_info *process);
259 static int linux_stopped_by_watchpoint (void);
260 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
261 static int lwp_is_marked_dead (struct lwp_info *lwp);
262 static void proceed_all_lwps (void);
263 static int finish_step_over (struct lwp_info *lwp);
264 static int kill_lwp (unsigned long lwpid, int signo);
265 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
266 static void complete_ongoing_step_over (void);
267 static int linux_low_ptrace_options (int attached);
268
269 /* When the event-loop is doing a step-over, this points at the thread
270 being stepped. */
271 ptid_t step_over_bkpt;
272
273 /* True if the low target can hardware single-step. */
274
275 static int
276 can_hardware_single_step (void)
277 {
278 if (the_low_target.supports_hardware_single_step != NULL)
279 return the_low_target.supports_hardware_single_step ();
280 else
281 return 0;
282 }
283
284 /* True if the low target can software single-step. Such targets
285 implement the BREAKPOINT_REINSERT_ADDR callback. */
286
287 static int
288 can_software_single_step (void)
289 {
290 return (the_low_target.breakpoint_reinsert_addr != NULL);
291 }
292
293 /* True if the low target supports memory breakpoints. If so, we'll
294 have a GET_PC implementation. */
295
296 static int
297 supports_breakpoints (void)
298 {
299 return (the_low_target.get_pc != NULL);
300 }
301
302 /* Returns true if this target can support fast tracepoints. This
303 does not mean that the in-process agent has been loaded in the
304 inferior. */
305
306 static int
307 supports_fast_tracepoints (void)
308 {
309 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
310 }
311
312 /* True if LWP is stopped in its stepping range. */
313
314 static int
315 lwp_in_step_range (struct lwp_info *lwp)
316 {
317 CORE_ADDR pc = lwp->stop_pc;
318
319 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
320 }
321
322 struct pending_signals
323 {
324 int signal;
325 siginfo_t info;
326 struct pending_signals *prev;
327 };
328
329 /* The read/write ends of the pipe registered as waitable file in the
330 event loop. */
331 static int linux_event_pipe[2] = { -1, -1 };
332
333 /* True if we're currently in async mode. */
334 #define target_is_async_p() (linux_event_pipe[0] != -1)
335
336 static void send_sigstop (struct lwp_info *lwp);
337 static void wait_for_sigstop (void);
338
339 /* Return non-zero if HEADER is a 64-bit ELF file. */
340
341 static int
342 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
343 {
344 if (header->e_ident[EI_MAG0] == ELFMAG0
345 && header->e_ident[EI_MAG1] == ELFMAG1
346 && header->e_ident[EI_MAG2] == ELFMAG2
347 && header->e_ident[EI_MAG3] == ELFMAG3)
348 {
349 *machine = header->e_machine;
350 return header->e_ident[EI_CLASS] == ELFCLASS64;
351
352 }
353 *machine = EM_NONE;
354 return -1;
355 }
356
357 /* Return non-zero if FILE is a 64-bit ELF file,
358 zero if the file is not a 64-bit ELF file,
359 and -1 if the file is not accessible or doesn't exist. */
360
361 static int
362 elf_64_file_p (const char *file, unsigned int *machine)
363 {
364 Elf64_Ehdr header;
365 int fd;
366
367 fd = open (file, O_RDONLY);
368 if (fd < 0)
369 return -1;
370
371 if (read (fd, &header, sizeof (header)) != sizeof (header))
372 {
373 close (fd);
374 return 0;
375 }
376 close (fd);
377
378 return elf_64_header_p (&header, machine);
379 }
380
381 /* Accepts an integer PID; Returns true if the executable PID is
382 running is a 64-bit ELF file.. */
383
384 int
385 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
386 {
387 char file[PATH_MAX];
388
389 sprintf (file, "/proc/%d/exe", pid);
390 return elf_64_file_p (file, machine);
391 }
392
393 static void
394 delete_lwp (struct lwp_info *lwp)
395 {
396 struct thread_info *thr = get_lwp_thread (lwp);
397
398 if (debug_threads)
399 debug_printf ("deleting %ld\n", lwpid_of (thr));
400
401 remove_thread (thr);
402 free (lwp->arch_private);
403 free (lwp);
404 }
405
406 /* Add a process to the common process list, and set its private
407 data. */
408
409 static struct process_info *
410 linux_add_process (int pid, int attached)
411 {
412 struct process_info *proc;
413
414 proc = add_process (pid, attached);
415 proc->priv = XCNEW (struct process_info_private);
416
417 if (the_low_target.new_process != NULL)
418 proc->priv->arch_private = the_low_target.new_process ();
419
420 return proc;
421 }
422
423 static CORE_ADDR get_pc (struct lwp_info *lwp);
424
425 /* Call the target arch_setup function on the current thread. */
426
427 static void
428 linux_arch_setup (void)
429 {
430 the_low_target.arch_setup ();
431 }
432
433 /* Call the target arch_setup function on THREAD. */
434
435 static void
436 linux_arch_setup_thread (struct thread_info *thread)
437 {
438 struct thread_info *saved_thread;
439
440 saved_thread = current_thread;
441 current_thread = thread;
442
443 linux_arch_setup ();
444
445 current_thread = saved_thread;
446 }
447
448 /* Handle a GNU/Linux extended wait response. If we see a clone,
449 fork, or vfork event, we need to add the new LWP to our list
450 (and return 0 so as not to report the trap to higher layers).
451 If we see an exec event, we will modify ORIG_EVENT_LWP to point
452 to a new LWP representing the new program. */
453
454 static int
455 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
456 {
457 struct lwp_info *event_lwp = *orig_event_lwp;
458 int event = linux_ptrace_get_extended_event (wstat);
459 struct thread_info *event_thr = get_lwp_thread (event_lwp);
460 struct lwp_info *new_lwp;
461
462 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
463
464 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
465 || (event == PTRACE_EVENT_CLONE))
466 {
467 ptid_t ptid;
468 unsigned long new_pid;
469 int ret, status;
470
471 /* Get the pid of the new lwp. */
472 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
473 &new_pid);
474
475 /* If we haven't already seen the new PID stop, wait for it now. */
476 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
477 {
478 /* The new child has a pending SIGSTOP. We can't affect it until it
479 hits the SIGSTOP, but we're already attached. */
480
481 ret = my_waitpid (new_pid, &status, __WALL);
482
483 if (ret == -1)
484 perror_with_name ("waiting for new child");
485 else if (ret != new_pid)
486 warning ("wait returned unexpected PID %d", ret);
487 else if (!WIFSTOPPED (status))
488 warning ("wait returned unexpected status 0x%x", status);
489 }
490
491 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
492 {
493 struct process_info *parent_proc;
494 struct process_info *child_proc;
495 struct lwp_info *child_lwp;
496 struct thread_info *child_thr;
497 struct target_desc *tdesc;
498
499 ptid = ptid_build (new_pid, new_pid, 0);
500
501 if (debug_threads)
502 {
503 debug_printf ("HEW: Got fork event from LWP %ld, "
504 "new child is %d\n",
505 ptid_get_lwp (ptid_of (event_thr)),
506 ptid_get_pid (ptid));
507 }
508
509 /* Add the new process to the tables and clone the breakpoint
510 lists of the parent. We need to do this even if the new process
511 will be detached, since we will need the process object and the
512 breakpoints to remove any breakpoints from memory when we
513 detach, and the client side will access registers. */
514 child_proc = linux_add_process (new_pid, 0);
515 gdb_assert (child_proc != NULL);
516 child_lwp = add_lwp (ptid);
517 gdb_assert (child_lwp != NULL);
518 child_lwp->stopped = 1;
519 child_lwp->must_set_ptrace_flags = 1;
520 child_lwp->status_pending_p = 0;
521 child_thr = get_lwp_thread (child_lwp);
522 child_thr->last_resume_kind = resume_stop;
523 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
524
525 /* If we're suspending all threads, leave this one suspended
526 too. */
527 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
528 {
529 if (debug_threads)
530 debug_printf ("HEW: leaving child suspended\n");
531 child_lwp->suspended = 1;
532 }
533
534 parent_proc = get_thread_process (event_thr);
535 child_proc->attached = parent_proc->attached;
536 clone_all_breakpoints (&child_proc->breakpoints,
537 &child_proc->raw_breakpoints,
538 parent_proc->breakpoints);
539
540 tdesc = XNEW (struct target_desc);
541 copy_target_description (tdesc, parent_proc->tdesc);
542 child_proc->tdesc = tdesc;
543
544 /* Clone arch-specific process data. */
545 if (the_low_target.new_fork != NULL)
546 the_low_target.new_fork (parent_proc, child_proc);
547
548 /* Save fork info in the parent thread. */
549 if (event == PTRACE_EVENT_FORK)
550 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
551 else if (event == PTRACE_EVENT_VFORK)
552 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
553
554 event_lwp->waitstatus.value.related_pid = ptid;
555
556 /* The status_pending field contains bits denoting the
557 extended event, so when the pending event is handled,
558 the handler will look at lwp->waitstatus. */
559 event_lwp->status_pending_p = 1;
560 event_lwp->status_pending = wstat;
561
562 /* Report the event. */
563 return 0;
564 }
565
566 if (debug_threads)
567 debug_printf ("HEW: Got clone event "
568 "from LWP %ld, new child is LWP %ld\n",
569 lwpid_of (event_thr), new_pid);
570
571 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
572 new_lwp = add_lwp (ptid);
573
574 /* Either we're going to immediately resume the new thread
575 or leave it stopped. linux_resume_one_lwp is a nop if it
576 thinks the thread is currently running, so set this first
577 before calling linux_resume_one_lwp. */
578 new_lwp->stopped = 1;
579
580 /* If we're suspending all threads, leave this one suspended
581 too. */
582 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
583 new_lwp->suspended = 1;
584
585 /* Normally we will get the pending SIGSTOP. But in some cases
586 we might get another signal delivered to the group first.
587 If we do get another signal, be sure not to lose it. */
588 if (WSTOPSIG (status) != SIGSTOP)
589 {
590 new_lwp->stop_expected = 1;
591 new_lwp->status_pending_p = 1;
592 new_lwp->status_pending = status;
593 }
594 else if (report_thread_events)
595 {
596 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
597 new_lwp->status_pending_p = 1;
598 new_lwp->status_pending = status;
599 }
600
601 /* Don't report the event. */
602 return 1;
603 }
604 else if (event == PTRACE_EVENT_VFORK_DONE)
605 {
606 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
607
608 /* Report the event. */
609 return 0;
610 }
611 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
612 {
613 struct process_info *proc;
614 ptid_t event_ptid;
615 pid_t event_pid;
616
617 if (debug_threads)
618 {
619 debug_printf ("HEW: Got exec event from LWP %ld\n",
620 lwpid_of (event_thr));
621 }
622
623 /* Get the event ptid. */
624 event_ptid = ptid_of (event_thr);
625 event_pid = ptid_get_pid (event_ptid);
626
627 /* Delete the execing process and all its threads. */
628 proc = get_thread_process (event_thr);
629 linux_mourn (proc);
630 current_thread = NULL;
631
632 /* Create a new process/lwp/thread. */
633 proc = linux_add_process (event_pid, 0);
634 event_lwp = add_lwp (event_ptid);
635 event_thr = get_lwp_thread (event_lwp);
636 gdb_assert (current_thread == event_thr);
637 linux_arch_setup_thread (event_thr);
638
639 /* Set the event status. */
640 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
641 event_lwp->waitstatus.value.execd_pathname
642 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
643
644 /* Mark the exec status as pending. */
645 event_lwp->stopped = 1;
646 event_lwp->status_pending_p = 1;
647 event_lwp->status_pending = wstat;
648 event_thr->last_resume_kind = resume_continue;
649 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
650
651 /* Report the event. */
652 *orig_event_lwp = event_lwp;
653 return 0;
654 }
655
656 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
657 }
658
659 /* Return the PC as read from the regcache of LWP, without any
660 adjustment. */
661
662 static CORE_ADDR
663 get_pc (struct lwp_info *lwp)
664 {
665 struct thread_info *saved_thread;
666 struct regcache *regcache;
667 CORE_ADDR pc;
668
669 if (the_low_target.get_pc == NULL)
670 return 0;
671
672 saved_thread = current_thread;
673 current_thread = get_lwp_thread (lwp);
674
675 regcache = get_thread_regcache (current_thread, 1);
676 pc = (*the_low_target.get_pc) (regcache);
677
678 if (debug_threads)
679 debug_printf ("pc is 0x%lx\n", (long) pc);
680
681 current_thread = saved_thread;
682 return pc;
683 }
684
685 /* This function should only be called if LWP got a SIGTRAP.
686 The SIGTRAP could mean several things.
687
688 On i386, where decr_pc_after_break is non-zero:
689
690 If we were single-stepping this process using PTRACE_SINGLESTEP, we
691 will get only the one SIGTRAP. The value of $eip will be the next
692 instruction. If the instruction we stepped over was a breakpoint,
693 we need to decrement the PC.
694
695 If we continue the process using PTRACE_CONT, we will get a
696 SIGTRAP when we hit a breakpoint. The value of $eip will be
697 the instruction after the breakpoint (i.e. needs to be
698 decremented). If we report the SIGTRAP to GDB, we must also
699 report the undecremented PC. If the breakpoint is removed, we
700 must resume at the decremented PC.
701
702 On a non-decr_pc_after_break machine with hardware or kernel
703 single-step:
704
705 If we either single-step a breakpoint instruction, or continue and
706 hit a breakpoint instruction, our PC will point at the breakpoint
707 instruction. */
708
709 static int
710 check_stopped_by_breakpoint (struct lwp_info *lwp)
711 {
712 CORE_ADDR pc;
713 CORE_ADDR sw_breakpoint_pc;
714 struct thread_info *saved_thread;
715 #if USE_SIGTRAP_SIGINFO
716 siginfo_t siginfo;
717 #endif
718
719 if (the_low_target.get_pc == NULL)
720 return 0;
721
722 pc = get_pc (lwp);
723 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
724
725 /* breakpoint_at reads from the current thread. */
726 saved_thread = current_thread;
727 current_thread = get_lwp_thread (lwp);
728
729 #if USE_SIGTRAP_SIGINFO
730 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
731 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
732 {
733 if (siginfo.si_signo == SIGTRAP)
734 {
735 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
736 {
737 if (debug_threads)
738 {
739 struct thread_info *thr = get_lwp_thread (lwp);
740
741 debug_printf ("CSBB: %s stopped by software breakpoint\n",
742 target_pid_to_str (ptid_of (thr)));
743 }
744
745 /* Back up the PC if necessary. */
746 if (pc != sw_breakpoint_pc)
747 {
748 struct regcache *regcache
749 = get_thread_regcache (current_thread, 1);
750 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
751 }
752
753 lwp->stop_pc = sw_breakpoint_pc;
754 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
755 current_thread = saved_thread;
756 return 1;
757 }
758 else if (siginfo.si_code == TRAP_HWBKPT)
759 {
760 if (debug_threads)
761 {
762 struct thread_info *thr = get_lwp_thread (lwp);
763
764 debug_printf ("CSBB: %s stopped by hardware "
765 "breakpoint/watchpoint\n",
766 target_pid_to_str (ptid_of (thr)));
767 }
768
769 lwp->stop_pc = pc;
770 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
771 current_thread = saved_thread;
772 return 1;
773 }
774 else if (siginfo.si_code == TRAP_TRACE)
775 {
776 if (debug_threads)
777 {
778 struct thread_info *thr = get_lwp_thread (lwp);
779
780 debug_printf ("CSBB: %s stopped by trace\n",
781 target_pid_to_str (ptid_of (thr)));
782 }
783
784 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
785 }
786 }
787 }
788 #else
789 /* We may have just stepped a breakpoint instruction. E.g., in
790 non-stop mode, GDB first tells the thread A to step a range, and
791 then the user inserts a breakpoint inside the range. In that
792 case we need to report the breakpoint PC. */
793 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
794 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
795 {
796 if (debug_threads)
797 {
798 struct thread_info *thr = get_lwp_thread (lwp);
799
800 debug_printf ("CSBB: %s stopped by software breakpoint\n",
801 target_pid_to_str (ptid_of (thr)));
802 }
803
804 /* Back up the PC if necessary. */
805 if (pc != sw_breakpoint_pc)
806 {
807 struct regcache *regcache
808 = get_thread_regcache (current_thread, 1);
809 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
810 }
811
812 lwp->stop_pc = sw_breakpoint_pc;
813 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
814 current_thread = saved_thread;
815 return 1;
816 }
817
818 if (hardware_breakpoint_inserted_here (pc))
819 {
820 if (debug_threads)
821 {
822 struct thread_info *thr = get_lwp_thread (lwp);
823
824 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
825 target_pid_to_str (ptid_of (thr)));
826 }
827
828 lwp->stop_pc = pc;
829 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
830 current_thread = saved_thread;
831 return 1;
832 }
833 #endif
834
835 current_thread = saved_thread;
836 return 0;
837 }
838
839 static struct lwp_info *
840 add_lwp (ptid_t ptid)
841 {
842 struct lwp_info *lwp;
843
844 lwp = XCNEW (struct lwp_info);
845
846 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
847
848 if (the_low_target.new_thread != NULL)
849 the_low_target.new_thread (lwp);
850
851 lwp->thread = add_thread (ptid, lwp);
852
853 return lwp;
854 }
855
856 /* Start an inferior process and returns its pid.
857 ALLARGS is a vector of program-name and args. */
858
859 static int
860 linux_create_inferior (char *program, char **allargs)
861 {
862 struct lwp_info *new_lwp;
863 int pid;
864 ptid_t ptid;
865 struct cleanup *restore_personality
866 = maybe_disable_address_space_randomization (disable_randomization);
867
868 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
869 pid = vfork ();
870 #else
871 pid = fork ();
872 #endif
873 if (pid < 0)
874 perror_with_name ("fork");
875
876 if (pid == 0)
877 {
878 close_most_fds ();
879 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
880
881 setpgid (0, 0);
882
883 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
884 stdout to stderr so that inferior i/o doesn't corrupt the connection.
885 Also, redirect stdin to /dev/null. */
886 if (remote_connection_is_stdio ())
887 {
888 close (0);
889 open ("/dev/null", O_RDONLY);
890 dup2 (2, 1);
891 if (write (2, "stdin/stdout redirected\n",
892 sizeof ("stdin/stdout redirected\n") - 1) < 0)
893 {
894 /* Errors ignored. */;
895 }
896 }
897
898 execv (program, allargs);
899 if (errno == ENOENT)
900 execvp (program, allargs);
901
902 fprintf (stderr, "Cannot exec %s: %s.\n", program,
903 strerror (errno));
904 fflush (stderr);
905 _exit (0177);
906 }
907
908 do_cleanups (restore_personality);
909
910 linux_add_process (pid, 0);
911
912 ptid = ptid_build (pid, pid, 0);
913 new_lwp = add_lwp (ptid);
914 new_lwp->must_set_ptrace_flags = 1;
915
916 return pid;
917 }
918
919 /* Implement the post_create_inferior target_ops method. */
920
921 static void
922 linux_post_create_inferior (void)
923 {
924 struct lwp_info *lwp = get_thread_lwp (current_thread);
925
926 linux_arch_setup ();
927
928 if (lwp->must_set_ptrace_flags)
929 {
930 struct process_info *proc = current_process ();
931 int options = linux_low_ptrace_options (proc->attached);
932
933 linux_enable_event_reporting (lwpid_of (current_thread), options);
934 lwp->must_set_ptrace_flags = 0;
935 }
936 }
937
938 /* Attach to an inferior process. Returns 0 on success, ERRNO on
939 error. */
940
941 int
942 linux_attach_lwp (ptid_t ptid)
943 {
944 struct lwp_info *new_lwp;
945 int lwpid = ptid_get_lwp (ptid);
946
947 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
948 != 0)
949 return errno;
950
951 new_lwp = add_lwp (ptid);
952
953 /* We need to wait for SIGSTOP before being able to make the next
954 ptrace call on this LWP. */
955 new_lwp->must_set_ptrace_flags = 1;
956
957 if (linux_proc_pid_is_stopped (lwpid))
958 {
959 if (debug_threads)
960 debug_printf ("Attached to a stopped process\n");
961
962 /* The process is definitely stopped. It is in a job control
963 stop, unless the kernel predates the TASK_STOPPED /
964 TASK_TRACED distinction, in which case it might be in a
965 ptrace stop. Make sure it is in a ptrace stop; from there we
966 can kill it, signal it, et cetera.
967
968 First make sure there is a pending SIGSTOP. Since we are
969 already attached, the process can not transition from stopped
970 to running without a PTRACE_CONT; so we know this signal will
971 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
972 probably already in the queue (unless this kernel is old
973 enough to use TASK_STOPPED for ptrace stops); but since
974 SIGSTOP is not an RT signal, it can only be queued once. */
975 kill_lwp (lwpid, SIGSTOP);
976
977 /* Finally, resume the stopped process. This will deliver the
978 SIGSTOP (or a higher priority signal, just like normal
979 PTRACE_ATTACH), which we'll catch later on. */
980 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
981 }
982
983 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
984 brings it to a halt.
985
986 There are several cases to consider here:
987
988 1) gdbserver has already attached to the process and is being notified
989 of a new thread that is being created.
990 In this case we should ignore that SIGSTOP and resume the
991 process. This is handled below by setting stop_expected = 1,
992 and the fact that add_thread sets last_resume_kind ==
993 resume_continue.
994
995 2) This is the first thread (the process thread), and we're attaching
996 to it via attach_inferior.
997 In this case we want the process thread to stop.
998 This is handled by having linux_attach set last_resume_kind ==
999 resume_stop after we return.
1000
1001 If the pid we are attaching to is also the tgid, we attach to and
1002 stop all the existing threads. Otherwise, we attach to pid and
1003 ignore any other threads in the same group as this pid.
1004
1005 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1006 existing threads.
1007 In this case we want the thread to stop.
1008 FIXME: This case is currently not properly handled.
1009 We should wait for the SIGSTOP but don't. Things work apparently
1010 because enough time passes between when we ptrace (ATTACH) and when
1011 gdb makes the next ptrace call on the thread.
1012
1013 On the other hand, if we are currently trying to stop all threads, we
1014 should treat the new thread as if we had sent it a SIGSTOP. This works
1015 because we are guaranteed that the add_lwp call above added us to the
1016 end of the list, and so the new thread has not yet reached
1017 wait_for_sigstop (but will). */
1018 new_lwp->stop_expected = 1;
1019
1020 return 0;
1021 }
1022
1023 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1024 already attached. Returns true if a new LWP is found, false
1025 otherwise. */
1026
1027 static int
1028 attach_proc_task_lwp_callback (ptid_t ptid)
1029 {
1030 /* Is this a new thread? */
1031 if (find_thread_ptid (ptid) == NULL)
1032 {
1033 int lwpid = ptid_get_lwp (ptid);
1034 int err;
1035
1036 if (debug_threads)
1037 debug_printf ("Found new lwp %d\n", lwpid);
1038
1039 err = linux_attach_lwp (ptid);
1040
1041 /* Be quiet if we simply raced with the thread exiting. EPERM
1042 is returned if the thread's task still exists, and is marked
1043 as exited or zombie, as well as other conditions, so in that
1044 case, confirm the status in /proc/PID/status. */
1045 if (err == ESRCH
1046 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1047 {
1048 if (debug_threads)
1049 {
1050 debug_printf ("Cannot attach to lwp %d: "
1051 "thread is gone (%d: %s)\n",
1052 lwpid, err, strerror (err));
1053 }
1054 }
1055 else if (err != 0)
1056 {
1057 warning (_("Cannot attach to lwp %d: %s"),
1058 lwpid,
1059 linux_ptrace_attach_fail_reason_string (ptid, err));
1060 }
1061
1062 return 1;
1063 }
1064 return 0;
1065 }
1066
1067 static void async_file_mark (void);
1068
1069 /* Attach to PID. If PID is the tgid, attach to it and all
1070 of its threads. */
1071
1072 static int
1073 linux_attach (unsigned long pid)
1074 {
1075 struct process_info *proc;
1076 struct thread_info *initial_thread;
1077 ptid_t ptid = ptid_build (pid, pid, 0);
1078 int err;
1079
1080 /* Attach to PID. We will check for other threads
1081 soon. */
1082 err = linux_attach_lwp (ptid);
1083 if (err != 0)
1084 error ("Cannot attach to process %ld: %s",
1085 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1086
1087 proc = linux_add_process (pid, 1);
1088
1089 /* Don't ignore the initial SIGSTOP if we just attached to this
1090 process. It will be collected by wait shortly. */
1091 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1092 initial_thread->last_resume_kind = resume_stop;
1093
1094 /* We must attach to every LWP. If /proc is mounted, use that to
1095 find them now. On the one hand, the inferior may be using raw
1096 clone instead of using pthreads. On the other hand, even if it
1097 is using pthreads, GDB may not be connected yet (thread_db needs
1098 to do symbol lookups, through qSymbol). Also, thread_db walks
1099 structures in the inferior's address space to find the list of
1100 threads/LWPs, and those structures may well be corrupted. Note
1101 that once thread_db is loaded, we'll still use it to list threads
1102 and associate pthread info with each LWP. */
1103 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1104
1105 /* GDB will shortly read the xml target description for this
1106 process, to figure out the process' architecture. But the target
1107 description is only filled in when the first process/thread in
1108 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1109 that now, otherwise, if GDB is fast enough, it could read the
1110 target description _before_ that initial stop. */
1111 if (non_stop)
1112 {
1113 struct lwp_info *lwp;
1114 int wstat, lwpid;
1115 ptid_t pid_ptid = pid_to_ptid (pid);
1116
1117 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1118 &wstat, __WALL);
1119 gdb_assert (lwpid > 0);
1120
1121 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1122
1123 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1124 {
1125 lwp->status_pending_p = 1;
1126 lwp->status_pending = wstat;
1127 }
1128
1129 initial_thread->last_resume_kind = resume_continue;
1130
1131 async_file_mark ();
1132
1133 gdb_assert (proc->tdesc != NULL);
1134 }
1135
1136 return 0;
1137 }
1138
1139 struct counter
1140 {
1141 int pid;
1142 int count;
1143 };
1144
1145 static int
1146 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
1147 {
1148 struct counter *counter = (struct counter *) args;
1149
1150 if (ptid_get_pid (entry->id) == counter->pid)
1151 {
1152 if (++counter->count > 1)
1153 return 1;
1154 }
1155
1156 return 0;
1157 }
1158
1159 static int
1160 last_thread_of_process_p (int pid)
1161 {
1162 struct counter counter = { pid , 0 };
1163
1164 return (find_inferior (&all_threads,
1165 second_thread_of_pid_p, &counter) == NULL);
1166 }
1167
1168 /* Kill LWP. */
1169
1170 static void
1171 linux_kill_one_lwp (struct lwp_info *lwp)
1172 {
1173 struct thread_info *thr = get_lwp_thread (lwp);
1174 int pid = lwpid_of (thr);
1175
1176 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1177 there is no signal context, and ptrace(PTRACE_KILL) (or
1178 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1179 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1180 alternative is to kill with SIGKILL. We only need one SIGKILL
1181 per process, not one for each thread. But since we still support
1182 support debugging programs using raw clone without CLONE_THREAD,
1183 we send one for each thread. For years, we used PTRACE_KILL
1184 only, so we're being a bit paranoid about some old kernels where
1185 PTRACE_KILL might work better (dubious if there are any such, but
1186 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1187 second, and so we're fine everywhere. */
1188
1189 errno = 0;
1190 kill_lwp (pid, SIGKILL);
1191 if (debug_threads)
1192 {
1193 int save_errno = errno;
1194
1195 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1196 target_pid_to_str (ptid_of (thr)),
1197 save_errno ? strerror (save_errno) : "OK");
1198 }
1199
1200 errno = 0;
1201 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1202 if (debug_threads)
1203 {
1204 int save_errno = errno;
1205
1206 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1207 target_pid_to_str (ptid_of (thr)),
1208 save_errno ? strerror (save_errno) : "OK");
1209 }
1210 }
1211
1212 /* Kill LWP and wait for it to die. */
1213
1214 static void
1215 kill_wait_lwp (struct lwp_info *lwp)
1216 {
1217 struct thread_info *thr = get_lwp_thread (lwp);
1218 int pid = ptid_get_pid (ptid_of (thr));
1219 int lwpid = ptid_get_lwp (ptid_of (thr));
1220 int wstat;
1221 int res;
1222
1223 if (debug_threads)
1224 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1225
1226 do
1227 {
1228 linux_kill_one_lwp (lwp);
1229
1230 /* Make sure it died. Notes:
1231
1232 - The loop is most likely unnecessary.
1233
1234 - We don't use linux_wait_for_event as that could delete lwps
1235 while we're iterating over them. We're not interested in
1236 any pending status at this point, only in making sure all
1237 wait status on the kernel side are collected until the
1238 process is reaped.
1239
1240 - We don't use __WALL here as the __WALL emulation relies on
1241 SIGCHLD, and killing a stopped process doesn't generate
1242 one, nor an exit status.
1243 */
1244 res = my_waitpid (lwpid, &wstat, 0);
1245 if (res == -1 && errno == ECHILD)
1246 res = my_waitpid (lwpid, &wstat, __WCLONE);
1247 } while (res > 0 && WIFSTOPPED (wstat));
1248
1249 /* Even if it was stopped, the child may have already disappeared.
1250 E.g., if it was killed by SIGKILL. */
1251 if (res < 0 && errno != ECHILD)
1252 perror_with_name ("kill_wait_lwp");
1253 }
1254
1255 /* Callback for `find_inferior'. Kills an lwp of a given process,
1256 except the leader. */
1257
1258 static int
1259 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1260 {
1261 struct thread_info *thread = (struct thread_info *) entry;
1262 struct lwp_info *lwp = get_thread_lwp (thread);
1263 int pid = * (int *) args;
1264
1265 if (ptid_get_pid (entry->id) != pid)
1266 return 0;
1267
1268 /* We avoid killing the first thread here, because of a Linux kernel (at
1269 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1270 the children get a chance to be reaped, it will remain a zombie
1271 forever. */
1272
1273 if (lwpid_of (thread) == pid)
1274 {
1275 if (debug_threads)
1276 debug_printf ("lkop: is last of process %s\n",
1277 target_pid_to_str (entry->id));
1278 return 0;
1279 }
1280
1281 kill_wait_lwp (lwp);
1282 return 0;
1283 }
1284
1285 static int
1286 linux_kill (int pid)
1287 {
1288 struct process_info *process;
1289 struct lwp_info *lwp;
1290
1291 process = find_process_pid (pid);
1292 if (process == NULL)
1293 return -1;
1294
1295 /* If we're killing a running inferior, make sure it is stopped
1296 first, as PTRACE_KILL will not work otherwise. */
1297 stop_all_lwps (0, NULL);
1298
1299 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1300
1301 /* See the comment in linux_kill_one_lwp. We did not kill the first
1302 thread in the list, so do so now. */
1303 lwp = find_lwp_pid (pid_to_ptid (pid));
1304
1305 if (lwp == NULL)
1306 {
1307 if (debug_threads)
1308 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1309 pid);
1310 }
1311 else
1312 kill_wait_lwp (lwp);
1313
1314 the_target->mourn (process);
1315
1316 /* Since we presently can only stop all lwps of all processes, we
1317 need to unstop lwps of other processes. */
1318 unstop_all_lwps (0, NULL);
1319 return 0;
1320 }
1321
1322 /* Get pending signal of THREAD, for detaching purposes. This is the
1323 signal the thread last stopped for, which we need to deliver to the
1324 thread when detaching, otherwise, it'd be suppressed/lost. */
1325
1326 static int
1327 get_detach_signal (struct thread_info *thread)
1328 {
1329 enum gdb_signal signo = GDB_SIGNAL_0;
1330 int status;
1331 struct lwp_info *lp = get_thread_lwp (thread);
1332
1333 if (lp->status_pending_p)
1334 status = lp->status_pending;
1335 else
1336 {
1337 /* If the thread had been suspended by gdbserver, and it stopped
1338 cleanly, then it'll have stopped with SIGSTOP. But we don't
1339 want to deliver that SIGSTOP. */
1340 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1341 || thread->last_status.value.sig == GDB_SIGNAL_0)
1342 return 0;
1343
1344 /* Otherwise, we may need to deliver the signal we
1345 intercepted. */
1346 status = lp->last_status;
1347 }
1348
1349 if (!WIFSTOPPED (status))
1350 {
1351 if (debug_threads)
1352 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1353 target_pid_to_str (ptid_of (thread)));
1354 return 0;
1355 }
1356
1357 /* Extended wait statuses aren't real SIGTRAPs. */
1358 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1359 {
1360 if (debug_threads)
1361 debug_printf ("GPS: lwp %s had stopped with extended "
1362 "status: no pending signal\n",
1363 target_pid_to_str (ptid_of (thread)));
1364 return 0;
1365 }
1366
1367 signo = gdb_signal_from_host (WSTOPSIG (status));
1368
1369 if (program_signals_p && !program_signals[signo])
1370 {
1371 if (debug_threads)
1372 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1373 target_pid_to_str (ptid_of (thread)),
1374 gdb_signal_to_string (signo));
1375 return 0;
1376 }
1377 else if (!program_signals_p
1378 /* If we have no way to know which signals GDB does not
1379 want to have passed to the program, assume
1380 SIGTRAP/SIGINT, which is GDB's default. */
1381 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1382 {
1383 if (debug_threads)
1384 debug_printf ("GPS: lwp %s had signal %s, "
1385 "but we don't know if we should pass it. "
1386 "Default to not.\n",
1387 target_pid_to_str (ptid_of (thread)),
1388 gdb_signal_to_string (signo));
1389 return 0;
1390 }
1391 else
1392 {
1393 if (debug_threads)
1394 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1395 target_pid_to_str (ptid_of (thread)),
1396 gdb_signal_to_string (signo));
1397
1398 return WSTOPSIG (status);
1399 }
1400 }
1401
1402 static int
1403 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1404 {
1405 struct thread_info *thread = (struct thread_info *) entry;
1406 struct lwp_info *lwp = get_thread_lwp (thread);
1407 int pid = * (int *) args;
1408 int sig;
1409
1410 if (ptid_get_pid (entry->id) != pid)
1411 return 0;
1412
1413 /* If there is a pending SIGSTOP, get rid of it. */
1414 if (lwp->stop_expected)
1415 {
1416 if (debug_threads)
1417 debug_printf ("Sending SIGCONT to %s\n",
1418 target_pid_to_str (ptid_of (thread)));
1419
1420 kill_lwp (lwpid_of (thread), SIGCONT);
1421 lwp->stop_expected = 0;
1422 }
1423
1424 /* Flush any pending changes to the process's registers. */
1425 regcache_invalidate_thread (thread);
1426
1427 /* Pass on any pending signal for this thread. */
1428 sig = get_detach_signal (thread);
1429
1430 /* Finally, let it resume. */
1431 if (the_low_target.prepare_to_resume != NULL)
1432 the_low_target.prepare_to_resume (lwp);
1433 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1434 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1435 error (_("Can't detach %s: %s"),
1436 target_pid_to_str (ptid_of (thread)),
1437 strerror (errno));
1438
1439 delete_lwp (lwp);
1440 return 0;
1441 }
1442
1443 static int
1444 linux_detach (int pid)
1445 {
1446 struct process_info *process;
1447
1448 process = find_process_pid (pid);
1449 if (process == NULL)
1450 return -1;
1451
1452 /* As there's a step over already in progress, let it finish first,
1453 otherwise nesting a stabilize_threads operation on top gets real
1454 messy. */
1455 complete_ongoing_step_over ();
1456
1457 /* Stop all threads before detaching. First, ptrace requires that
1458 the thread is stopped to sucessfully detach. Second, thread_db
1459 may need to uninstall thread event breakpoints from memory, which
1460 only works with a stopped process anyway. */
1461 stop_all_lwps (0, NULL);
1462
1463 #ifdef USE_THREAD_DB
1464 thread_db_detach (process);
1465 #endif
1466
1467 /* Stabilize threads (move out of jump pads). */
1468 stabilize_threads ();
1469
1470 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1471
1472 the_target->mourn (process);
1473
1474 /* Since we presently can only stop all lwps of all processes, we
1475 need to unstop lwps of other processes. */
1476 unstop_all_lwps (0, NULL);
1477 return 0;
1478 }
1479
1480 /* Remove all LWPs that belong to process PROC from the lwp list. */
1481
1482 static int
1483 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1484 {
1485 struct thread_info *thread = (struct thread_info *) entry;
1486 struct lwp_info *lwp = get_thread_lwp (thread);
1487 struct process_info *process = (struct process_info *) proc;
1488
1489 if (pid_of (thread) == pid_of (process))
1490 delete_lwp (lwp);
1491
1492 return 0;
1493 }
1494
1495 static void
1496 linux_mourn (struct process_info *process)
1497 {
1498 struct process_info_private *priv;
1499
1500 #ifdef USE_THREAD_DB
1501 thread_db_mourn (process);
1502 #endif
1503
1504 find_inferior (&all_threads, delete_lwp_callback, process);
1505
1506 /* Freeing all private data. */
1507 priv = process->priv;
1508 free (priv->arch_private);
1509 free (priv);
1510 process->priv = NULL;
1511
1512 remove_process (process);
1513 }
1514
1515 static void
1516 linux_join (int pid)
1517 {
1518 int status, ret;
1519
1520 do {
1521 ret = my_waitpid (pid, &status, 0);
1522 if (WIFEXITED (status) || WIFSIGNALED (status))
1523 break;
1524 } while (ret != -1 || errno != ECHILD);
1525 }
1526
1527 /* Return nonzero if the given thread is still alive. */
1528 static int
1529 linux_thread_alive (ptid_t ptid)
1530 {
1531 struct lwp_info *lwp = find_lwp_pid (ptid);
1532
1533 /* We assume we always know if a thread exits. If a whole process
1534 exited but we still haven't been able to report it to GDB, we'll
1535 hold on to the last lwp of the dead process. */
1536 if (lwp != NULL)
1537 return !lwp_is_marked_dead (lwp);
1538 else
1539 return 0;
1540 }
1541
1542 /* Return 1 if this lwp still has an interesting status pending. If
1543 not (e.g., it had stopped for a breakpoint that is gone), return
1544 false. */
1545
1546 static int
1547 thread_still_has_status_pending_p (struct thread_info *thread)
1548 {
1549 struct lwp_info *lp = get_thread_lwp (thread);
1550
1551 if (!lp->status_pending_p)
1552 return 0;
1553
1554 if (thread->last_resume_kind != resume_stop
1555 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1556 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1557 {
1558 struct thread_info *saved_thread;
1559 CORE_ADDR pc;
1560 int discard = 0;
1561
1562 gdb_assert (lp->last_status != 0);
1563
1564 pc = get_pc (lp);
1565
1566 saved_thread = current_thread;
1567 current_thread = thread;
1568
1569 if (pc != lp->stop_pc)
1570 {
1571 if (debug_threads)
1572 debug_printf ("PC of %ld changed\n",
1573 lwpid_of (thread));
1574 discard = 1;
1575 }
1576
1577 #if !USE_SIGTRAP_SIGINFO
1578 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1579 && !(*the_low_target.breakpoint_at) (pc))
1580 {
1581 if (debug_threads)
1582 debug_printf ("previous SW breakpoint of %ld gone\n",
1583 lwpid_of (thread));
1584 discard = 1;
1585 }
1586 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1587 && !hardware_breakpoint_inserted_here (pc))
1588 {
1589 if (debug_threads)
1590 debug_printf ("previous HW breakpoint of %ld gone\n",
1591 lwpid_of (thread));
1592 discard = 1;
1593 }
1594 #endif
1595
1596 current_thread = saved_thread;
1597
1598 if (discard)
1599 {
1600 if (debug_threads)
1601 debug_printf ("discarding pending breakpoint status\n");
1602 lp->status_pending_p = 0;
1603 return 0;
1604 }
1605 }
1606
1607 return 1;
1608 }
1609
1610 /* Returns true if LWP is resumed from the client's perspective. */
1611
1612 static int
1613 lwp_resumed (struct lwp_info *lwp)
1614 {
1615 struct thread_info *thread = get_lwp_thread (lwp);
1616
1617 if (thread->last_resume_kind != resume_stop)
1618 return 1;
1619
1620 /* Did gdb send us a `vCont;t', but we haven't reported the
1621 corresponding stop to gdb yet? If so, the thread is still
1622 resumed/running from gdb's perspective. */
1623 if (thread->last_resume_kind == resume_stop
1624 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1625 return 1;
1626
1627 return 0;
1628 }
1629
1630 /* Return 1 if this lwp has an interesting status pending. */
1631 static int
1632 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1633 {
1634 struct thread_info *thread = (struct thread_info *) entry;
1635 struct lwp_info *lp = get_thread_lwp (thread);
1636 ptid_t ptid = * (ptid_t *) arg;
1637
1638 /* Check if we're only interested in events from a specific process
1639 or a specific LWP. */
1640 if (!ptid_match (ptid_of (thread), ptid))
1641 return 0;
1642
1643 if (!lwp_resumed (lp))
1644 return 0;
1645
1646 if (lp->status_pending_p
1647 && !thread_still_has_status_pending_p (thread))
1648 {
1649 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1650 return 0;
1651 }
1652
1653 return lp->status_pending_p;
1654 }
1655
1656 static int
1657 same_lwp (struct inferior_list_entry *entry, void *data)
1658 {
1659 ptid_t ptid = *(ptid_t *) data;
1660 int lwp;
1661
1662 if (ptid_get_lwp (ptid) != 0)
1663 lwp = ptid_get_lwp (ptid);
1664 else
1665 lwp = ptid_get_pid (ptid);
1666
1667 if (ptid_get_lwp (entry->id) == lwp)
1668 return 1;
1669
1670 return 0;
1671 }
1672
1673 struct lwp_info *
1674 find_lwp_pid (ptid_t ptid)
1675 {
1676 struct inferior_list_entry *thread
1677 = find_inferior (&all_threads, same_lwp, &ptid);
1678
1679 if (thread == NULL)
1680 return NULL;
1681
1682 return get_thread_lwp ((struct thread_info *) thread);
1683 }
1684
1685 /* Return the number of known LWPs in the tgid given by PID. */
1686
1687 static int
1688 num_lwps (int pid)
1689 {
1690 struct inferior_list_entry *inf, *tmp;
1691 int count = 0;
1692
1693 ALL_INFERIORS (&all_threads, inf, tmp)
1694 {
1695 if (ptid_get_pid (inf->id) == pid)
1696 count++;
1697 }
1698
1699 return count;
1700 }
1701
1702 /* The arguments passed to iterate_over_lwps. */
1703
1704 struct iterate_over_lwps_args
1705 {
1706 /* The FILTER argument passed to iterate_over_lwps. */
1707 ptid_t filter;
1708
1709 /* The CALLBACK argument passed to iterate_over_lwps. */
1710 iterate_over_lwps_ftype *callback;
1711
1712 /* The DATA argument passed to iterate_over_lwps. */
1713 void *data;
1714 };
1715
1716 /* Callback for find_inferior used by iterate_over_lwps to filter
1717 calls to the callback supplied to that function. Returning a
1718 nonzero value causes find_inferiors to stop iterating and return
1719 the current inferior_list_entry. Returning zero indicates that
1720 find_inferiors should continue iterating. */
1721
1722 static int
1723 iterate_over_lwps_filter (struct inferior_list_entry *entry, void *args_p)
1724 {
1725 struct iterate_over_lwps_args *args
1726 = (struct iterate_over_lwps_args *) args_p;
1727
1728 if (ptid_match (entry->id, args->filter))
1729 {
1730 struct thread_info *thr = (struct thread_info *) entry;
1731 struct lwp_info *lwp = get_thread_lwp (thr);
1732
1733 return (*args->callback) (lwp, args->data);
1734 }
1735
1736 return 0;
1737 }
1738
1739 /* See nat/linux-nat.h. */
1740
1741 struct lwp_info *
1742 iterate_over_lwps (ptid_t filter,
1743 iterate_over_lwps_ftype callback,
1744 void *data)
1745 {
1746 struct iterate_over_lwps_args args = {filter, callback, data};
1747 struct inferior_list_entry *entry;
1748
1749 entry = find_inferior (&all_threads, iterate_over_lwps_filter, &args);
1750 if (entry == NULL)
1751 return NULL;
1752
1753 return get_thread_lwp ((struct thread_info *) entry);
1754 }
1755
1756 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1757 their exits until all other threads in the group have exited. */
1758
1759 static void
1760 check_zombie_leaders (void)
1761 {
1762 struct process_info *proc, *tmp;
1763
1764 ALL_PROCESSES (proc, tmp)
1765 {
1766 pid_t leader_pid = pid_of (proc);
1767 struct lwp_info *leader_lp;
1768
1769 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1770
1771 if (debug_threads)
1772 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1773 "num_lwps=%d, zombie=%d\n",
1774 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1775 linux_proc_pid_is_zombie (leader_pid));
1776
1777 if (leader_lp != NULL && !leader_lp->stopped
1778 /* Check if there are other threads in the group, as we may
1779 have raced with the inferior simply exiting. */
1780 && !last_thread_of_process_p (leader_pid)
1781 && linux_proc_pid_is_zombie (leader_pid))
1782 {
1783 /* A leader zombie can mean one of two things:
1784
1785 - It exited, and there's an exit status pending
1786 available, or only the leader exited (not the whole
1787 program). In the latter case, we can't waitpid the
1788 leader's exit status until all other threads are gone.
1789
1790 - There are 3 or more threads in the group, and a thread
1791 other than the leader exec'd. On an exec, the Linux
1792 kernel destroys all other threads (except the execing
1793 one) in the thread group, and resets the execing thread's
1794 tid to the tgid. No exit notification is sent for the
1795 execing thread -- from the ptracer's perspective, it
1796 appears as though the execing thread just vanishes.
1797 Until we reap all other threads except the leader and the
1798 execing thread, the leader will be zombie, and the
1799 execing thread will be in `D (disc sleep)'. As soon as
1800 all other threads are reaped, the execing thread changes
1801 it's tid to the tgid, and the previous (zombie) leader
1802 vanishes, giving place to the "new" leader. We could try
1803 distinguishing the exit and exec cases, by waiting once
1804 more, and seeing if something comes out, but it doesn't
1805 sound useful. The previous leader _does_ go away, and
1806 we'll re-add the new one once we see the exec event
1807 (which is just the same as what would happen if the
1808 previous leader did exit voluntarily before some other
1809 thread execs). */
1810
1811 if (debug_threads)
1812 fprintf (stderr,
1813 "CZL: Thread group leader %d zombie "
1814 "(it exited, or another thread execd).\n",
1815 leader_pid);
1816
1817 delete_lwp (leader_lp);
1818 }
1819 }
1820 }
1821
1822 /* Callback for `find_inferior'. Returns the first LWP that is not
1823 stopped. ARG is a PTID filter. */
1824
1825 static int
1826 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1827 {
1828 struct thread_info *thr = (struct thread_info *) entry;
1829 struct lwp_info *lwp;
1830 ptid_t filter = *(ptid_t *) arg;
1831
1832 if (!ptid_match (ptid_of (thr), filter))
1833 return 0;
1834
1835 lwp = get_thread_lwp (thr);
1836 if (!lwp->stopped)
1837 return 1;
1838
1839 return 0;
1840 }
1841
1842 /* Increment LWP's suspend count. */
1843
1844 static void
1845 lwp_suspended_inc (struct lwp_info *lwp)
1846 {
1847 lwp->suspended++;
1848
1849 if (debug_threads && lwp->suspended > 4)
1850 {
1851 struct thread_info *thread = get_lwp_thread (lwp);
1852
1853 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1854 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1855 }
1856 }
1857
1858 /* Decrement LWP's suspend count. */
1859
1860 static void
1861 lwp_suspended_decr (struct lwp_info *lwp)
1862 {
1863 lwp->suspended--;
1864
1865 if (lwp->suspended < 0)
1866 {
1867 struct thread_info *thread = get_lwp_thread (lwp);
1868
1869 internal_error (__FILE__, __LINE__,
1870 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1871 lwp->suspended);
1872 }
1873 }
1874
1875 /* This function should only be called if the LWP got a SIGTRAP.
1876
1877 Handle any tracepoint steps or hits. Return true if a tracepoint
1878 event was handled, 0 otherwise. */
1879
1880 static int
1881 handle_tracepoints (struct lwp_info *lwp)
1882 {
1883 struct thread_info *tinfo = get_lwp_thread (lwp);
1884 int tpoint_related_event = 0;
1885
1886 gdb_assert (lwp->suspended == 0);
1887
1888 /* If this tracepoint hit causes a tracing stop, we'll immediately
1889 uninsert tracepoints. To do this, we temporarily pause all
1890 threads, unpatch away, and then unpause threads. We need to make
1891 sure the unpausing doesn't resume LWP too. */
1892 lwp_suspended_inc (lwp);
1893
1894 /* And we need to be sure that any all-threads-stopping doesn't try
1895 to move threads out of the jump pads, as it could deadlock the
1896 inferior (LWP could be in the jump pad, maybe even holding the
1897 lock.) */
1898
1899 /* Do any necessary step collect actions. */
1900 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1901
1902 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1903
1904 /* See if we just hit a tracepoint and do its main collect
1905 actions. */
1906 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1907
1908 lwp_suspended_decr (lwp);
1909
1910 gdb_assert (lwp->suspended == 0);
1911 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1912
1913 if (tpoint_related_event)
1914 {
1915 if (debug_threads)
1916 debug_printf ("got a tracepoint event\n");
1917 return 1;
1918 }
1919
1920 return 0;
1921 }
1922
1923 /* Convenience wrapper. Returns true if LWP is presently collecting a
1924 fast tracepoint. */
1925
1926 static int
1927 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1928 struct fast_tpoint_collect_status *status)
1929 {
1930 CORE_ADDR thread_area;
1931 struct thread_info *thread = get_lwp_thread (lwp);
1932
1933 if (the_low_target.get_thread_area == NULL)
1934 return 0;
1935
1936 /* Get the thread area address. This is used to recognize which
1937 thread is which when tracing with the in-process agent library.
1938 We don't read anything from the address, and treat it as opaque;
1939 it's the address itself that we assume is unique per-thread. */
1940 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1941 return 0;
1942
1943 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1944 }
1945
1946 /* The reason we resume in the caller, is because we want to be able
1947 to pass lwp->status_pending as WSTAT, and we need to clear
1948 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1949 refuses to resume. */
1950
1951 static int
1952 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1953 {
1954 struct thread_info *saved_thread;
1955
1956 saved_thread = current_thread;
1957 current_thread = get_lwp_thread (lwp);
1958
1959 if ((wstat == NULL
1960 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1961 && supports_fast_tracepoints ()
1962 && agent_loaded_p ())
1963 {
1964 struct fast_tpoint_collect_status status;
1965 int r;
1966
1967 if (debug_threads)
1968 debug_printf ("Checking whether LWP %ld needs to move out of the "
1969 "jump pad.\n",
1970 lwpid_of (current_thread));
1971
1972 r = linux_fast_tracepoint_collecting (lwp, &status);
1973
1974 if (wstat == NULL
1975 || (WSTOPSIG (*wstat) != SIGILL
1976 && WSTOPSIG (*wstat) != SIGFPE
1977 && WSTOPSIG (*wstat) != SIGSEGV
1978 && WSTOPSIG (*wstat) != SIGBUS))
1979 {
1980 lwp->collecting_fast_tracepoint = r;
1981
1982 if (r != 0)
1983 {
1984 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1985 {
1986 /* Haven't executed the original instruction yet.
1987 Set breakpoint there, and wait till it's hit,
1988 then single-step until exiting the jump pad. */
1989 lwp->exit_jump_pad_bkpt
1990 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1991 }
1992
1993 if (debug_threads)
1994 debug_printf ("Checking whether LWP %ld needs to move out of "
1995 "the jump pad...it does\n",
1996 lwpid_of (current_thread));
1997 current_thread = saved_thread;
1998
1999 return 1;
2000 }
2001 }
2002 else
2003 {
2004 /* If we get a synchronous signal while collecting, *and*
2005 while executing the (relocated) original instruction,
2006 reset the PC to point at the tpoint address, before
2007 reporting to GDB. Otherwise, it's an IPA lib bug: just
2008 report the signal to GDB, and pray for the best. */
2009
2010 lwp->collecting_fast_tracepoint = 0;
2011
2012 if (r != 0
2013 && (status.adjusted_insn_addr <= lwp->stop_pc
2014 && lwp->stop_pc < status.adjusted_insn_addr_end))
2015 {
2016 siginfo_t info;
2017 struct regcache *regcache;
2018
2019 /* The si_addr on a few signals references the address
2020 of the faulting instruction. Adjust that as
2021 well. */
2022 if ((WSTOPSIG (*wstat) == SIGILL
2023 || WSTOPSIG (*wstat) == SIGFPE
2024 || WSTOPSIG (*wstat) == SIGBUS
2025 || WSTOPSIG (*wstat) == SIGSEGV)
2026 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2027 (PTRACE_TYPE_ARG3) 0, &info) == 0
2028 /* Final check just to make sure we don't clobber
2029 the siginfo of non-kernel-sent signals. */
2030 && (uintptr_t) info.si_addr == lwp->stop_pc)
2031 {
2032 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2033 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2034 (PTRACE_TYPE_ARG3) 0, &info);
2035 }
2036
2037 regcache = get_thread_regcache (current_thread, 1);
2038 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2039 lwp->stop_pc = status.tpoint_addr;
2040
2041 /* Cancel any fast tracepoint lock this thread was
2042 holding. */
2043 force_unlock_trace_buffer ();
2044 }
2045
2046 if (lwp->exit_jump_pad_bkpt != NULL)
2047 {
2048 if (debug_threads)
2049 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2050 "stopping all threads momentarily.\n");
2051
2052 stop_all_lwps (1, lwp);
2053
2054 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2055 lwp->exit_jump_pad_bkpt = NULL;
2056
2057 unstop_all_lwps (1, lwp);
2058
2059 gdb_assert (lwp->suspended >= 0);
2060 }
2061 }
2062 }
2063
2064 if (debug_threads)
2065 debug_printf ("Checking whether LWP %ld needs to move out of the "
2066 "jump pad...no\n",
2067 lwpid_of (current_thread));
2068
2069 current_thread = saved_thread;
2070 return 0;
2071 }
2072
2073 /* Enqueue one signal in the "signals to report later when out of the
2074 jump pad" list. */
2075
2076 static void
2077 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2078 {
2079 struct pending_signals *p_sig;
2080 struct thread_info *thread = get_lwp_thread (lwp);
2081
2082 if (debug_threads)
2083 debug_printf ("Deferring signal %d for LWP %ld.\n",
2084 WSTOPSIG (*wstat), lwpid_of (thread));
2085
2086 if (debug_threads)
2087 {
2088 struct pending_signals *sig;
2089
2090 for (sig = lwp->pending_signals_to_report;
2091 sig != NULL;
2092 sig = sig->prev)
2093 debug_printf (" Already queued %d\n",
2094 sig->signal);
2095
2096 debug_printf (" (no more currently queued signals)\n");
2097 }
2098
2099 /* Don't enqueue non-RT signals if they are already in the deferred
2100 queue. (SIGSTOP being the easiest signal to see ending up here
2101 twice) */
2102 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2103 {
2104 struct pending_signals *sig;
2105
2106 for (sig = lwp->pending_signals_to_report;
2107 sig != NULL;
2108 sig = sig->prev)
2109 {
2110 if (sig->signal == WSTOPSIG (*wstat))
2111 {
2112 if (debug_threads)
2113 debug_printf ("Not requeuing already queued non-RT signal %d"
2114 " for LWP %ld\n",
2115 sig->signal,
2116 lwpid_of (thread));
2117 return;
2118 }
2119 }
2120 }
2121
2122 p_sig = XCNEW (struct pending_signals);
2123 p_sig->prev = lwp->pending_signals_to_report;
2124 p_sig->signal = WSTOPSIG (*wstat);
2125
2126 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2127 &p_sig->info);
2128
2129 lwp->pending_signals_to_report = p_sig;
2130 }
2131
2132 /* Dequeue one signal from the "signals to report later when out of
2133 the jump pad" list. */
2134
2135 static int
2136 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2137 {
2138 struct thread_info *thread = get_lwp_thread (lwp);
2139
2140 if (lwp->pending_signals_to_report != NULL)
2141 {
2142 struct pending_signals **p_sig;
2143
2144 p_sig = &lwp->pending_signals_to_report;
2145 while ((*p_sig)->prev != NULL)
2146 p_sig = &(*p_sig)->prev;
2147
2148 *wstat = W_STOPCODE ((*p_sig)->signal);
2149 if ((*p_sig)->info.si_signo != 0)
2150 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2151 &(*p_sig)->info);
2152 free (*p_sig);
2153 *p_sig = NULL;
2154
2155 if (debug_threads)
2156 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2157 WSTOPSIG (*wstat), lwpid_of (thread));
2158
2159 if (debug_threads)
2160 {
2161 struct pending_signals *sig;
2162
2163 for (sig = lwp->pending_signals_to_report;
2164 sig != NULL;
2165 sig = sig->prev)
2166 debug_printf (" Still queued %d\n",
2167 sig->signal);
2168
2169 debug_printf (" (no more queued signals)\n");
2170 }
2171
2172 return 1;
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Fetch the possibly triggered data watchpoint info and store it in
2179 CHILD.
2180
2181 On some archs, like x86, that use debug registers to set
2182 watchpoints, it's possible that the way to know which watched
2183 address trapped, is to check the register that is used to select
2184 which address to watch. Problem is, between setting the watchpoint
2185 and reading back which data address trapped, the user may change
2186 the set of watchpoints, and, as a consequence, GDB changes the
2187 debug registers in the inferior. To avoid reading back a stale
2188 stopped-data-address when that happens, we cache in LP the fact
2189 that a watchpoint trapped, and the corresponding data address, as
2190 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2191 registers meanwhile, we have the cached data we can rely on. */
2192
2193 static int
2194 check_stopped_by_watchpoint (struct lwp_info *child)
2195 {
2196 if (the_low_target.stopped_by_watchpoint != NULL)
2197 {
2198 struct thread_info *saved_thread;
2199
2200 saved_thread = current_thread;
2201 current_thread = get_lwp_thread (child);
2202
2203 if (the_low_target.stopped_by_watchpoint ())
2204 {
2205 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2206
2207 if (the_low_target.stopped_data_address != NULL)
2208 child->stopped_data_address
2209 = the_low_target.stopped_data_address ();
2210 else
2211 child->stopped_data_address = 0;
2212 }
2213
2214 current_thread = saved_thread;
2215 }
2216
2217 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2218 }
2219
2220 /* Return the ptrace options that we want to try to enable. */
2221
2222 static int
2223 linux_low_ptrace_options (int attached)
2224 {
2225 int options = 0;
2226
2227 if (!attached)
2228 options |= PTRACE_O_EXITKILL;
2229
2230 if (report_fork_events)
2231 options |= PTRACE_O_TRACEFORK;
2232
2233 if (report_vfork_events)
2234 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2235
2236 if (report_exec_events)
2237 options |= PTRACE_O_TRACEEXEC;
2238
2239 return options;
2240 }
2241
2242 /* Do low-level handling of the event, and check if we should go on
2243 and pass it to caller code. Return the affected lwp if we are, or
2244 NULL otherwise. */
2245
2246 static struct lwp_info *
2247 linux_low_filter_event (int lwpid, int wstat)
2248 {
2249 struct lwp_info *child;
2250 struct thread_info *thread;
2251 int have_stop_pc = 0;
2252
2253 child = find_lwp_pid (pid_to_ptid (lwpid));
2254
2255 /* Check for stop events reported by a process we didn't already
2256 know about - anything not already in our LWP list.
2257
2258 If we're expecting to receive stopped processes after
2259 fork, vfork, and clone events, then we'll just add the
2260 new one to our list and go back to waiting for the event
2261 to be reported - the stopped process might be returned
2262 from waitpid before or after the event is.
2263
2264 But note the case of a non-leader thread exec'ing after the
2265 leader having exited, and gone from our lists (because
2266 check_zombie_leaders deleted it). The non-leader thread
2267 changes its tid to the tgid. */
2268
2269 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2270 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2271 {
2272 ptid_t child_ptid;
2273
2274 /* A multi-thread exec after we had seen the leader exiting. */
2275 if (debug_threads)
2276 {
2277 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2278 "after exec.\n", lwpid);
2279 }
2280
2281 child_ptid = ptid_build (lwpid, lwpid, 0);
2282 child = add_lwp (child_ptid);
2283 child->stopped = 1;
2284 current_thread = child->thread;
2285 }
2286
2287 /* If we didn't find a process, one of two things presumably happened:
2288 - A process we started and then detached from has exited. Ignore it.
2289 - A process we are controlling has forked and the new child's stop
2290 was reported to us by the kernel. Save its PID. */
2291 if (child == NULL && WIFSTOPPED (wstat))
2292 {
2293 add_to_pid_list (&stopped_pids, lwpid, wstat);
2294 return NULL;
2295 }
2296 else if (child == NULL)
2297 return NULL;
2298
2299 thread = get_lwp_thread (child);
2300
2301 child->stopped = 1;
2302
2303 child->last_status = wstat;
2304
2305 /* Check if the thread has exited. */
2306 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2307 {
2308 if (debug_threads)
2309 debug_printf ("LLFE: %d exited.\n", lwpid);
2310 /* If there is at least one more LWP, then the exit signal was
2311 not the end of the debugged application and should be
2312 ignored, unless GDB wants to hear about thread exits. */
2313 if (report_thread_events
2314 || last_thread_of_process_p (pid_of (thread)))
2315 {
2316 /* Since events are serialized to GDB core, and we can't
2317 report this one right now. Leave the status pending for
2318 the next time we're able to report it. */
2319 mark_lwp_dead (child, wstat);
2320 return child;
2321 }
2322 else
2323 {
2324 delete_lwp (child);
2325 return NULL;
2326 }
2327 }
2328
2329 gdb_assert (WIFSTOPPED (wstat));
2330
2331 if (WIFSTOPPED (wstat))
2332 {
2333 struct process_info *proc;
2334
2335 /* Architecture-specific setup after inferior is running. */
2336 proc = find_process_pid (pid_of (thread));
2337 if (proc->tdesc == NULL)
2338 {
2339 if (proc->attached)
2340 {
2341 /* This needs to happen after we have attached to the
2342 inferior and it is stopped for the first time, but
2343 before we access any inferior registers. */
2344 linux_arch_setup_thread (thread);
2345 }
2346 else
2347 {
2348 /* The process is started, but GDBserver will do
2349 architecture-specific setup after the program stops at
2350 the first instruction. */
2351 child->status_pending_p = 1;
2352 child->status_pending = wstat;
2353 return child;
2354 }
2355 }
2356 }
2357
2358 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2359 {
2360 struct process_info *proc = find_process_pid (pid_of (thread));
2361 int options = linux_low_ptrace_options (proc->attached);
2362
2363 linux_enable_event_reporting (lwpid, options);
2364 child->must_set_ptrace_flags = 0;
2365 }
2366
2367 /* Be careful to not overwrite stop_pc until
2368 check_stopped_by_breakpoint is called. */
2369 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2370 && linux_is_extended_waitstatus (wstat))
2371 {
2372 child->stop_pc = get_pc (child);
2373 if (handle_extended_wait (&child, wstat))
2374 {
2375 /* The event has been handled, so just return without
2376 reporting it. */
2377 return NULL;
2378 }
2379 }
2380
2381 /* Check first whether this was a SW/HW breakpoint before checking
2382 watchpoints, because at least s390 can't tell the data address of
2383 hardware watchpoint hits, and returns stopped-by-watchpoint as
2384 long as there's a watchpoint set. */
2385 if (WIFSTOPPED (wstat) && linux_wstatus_maybe_breakpoint (wstat))
2386 {
2387 if (check_stopped_by_breakpoint (child))
2388 have_stop_pc = 1;
2389 }
2390
2391 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2392 or hardware watchpoint. Check which is which if we got
2393 TARGET_STOPPED_BY_HW_BREAKPOINT. Likewise, we may have single
2394 stepped an instruction that triggered a watchpoint. In that
2395 case, on some architectures (such as x86), instead of
2396 TRAP_HWBKPT, si_code indicates TRAP_TRACE, and we need to check
2397 the debug registers separately. */
2398 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2399 && child->stop_reason != TARGET_STOPPED_BY_SW_BREAKPOINT)
2400 check_stopped_by_watchpoint (child);
2401
2402 if (!have_stop_pc)
2403 child->stop_pc = get_pc (child);
2404
2405 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2406 && child->stop_expected)
2407 {
2408 if (debug_threads)
2409 debug_printf ("Expected stop.\n");
2410 child->stop_expected = 0;
2411
2412 if (thread->last_resume_kind == resume_stop)
2413 {
2414 /* We want to report the stop to the core. Treat the
2415 SIGSTOP as a normal event. */
2416 if (debug_threads)
2417 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2418 target_pid_to_str (ptid_of (thread)));
2419 }
2420 else if (stopping_threads != NOT_STOPPING_THREADS)
2421 {
2422 /* Stopping threads. We don't want this SIGSTOP to end up
2423 pending. */
2424 if (debug_threads)
2425 debug_printf ("LLW: SIGSTOP caught for %s "
2426 "while stopping threads.\n",
2427 target_pid_to_str (ptid_of (thread)));
2428 return NULL;
2429 }
2430 else
2431 {
2432 /* This is a delayed SIGSTOP. Filter out the event. */
2433 if (debug_threads)
2434 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2435 child->stepping ? "step" : "continue",
2436 target_pid_to_str (ptid_of (thread)));
2437
2438 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2439 return NULL;
2440 }
2441 }
2442
2443 child->status_pending_p = 1;
2444 child->status_pending = wstat;
2445 return child;
2446 }
2447
2448 /* Resume LWPs that are currently stopped without any pending status
2449 to report, but are resumed from the core's perspective. */
2450
2451 static void
2452 resume_stopped_resumed_lwps (struct inferior_list_entry *entry)
2453 {
2454 struct thread_info *thread = (struct thread_info *) entry;
2455 struct lwp_info *lp = get_thread_lwp (thread);
2456
2457 if (lp->stopped
2458 && !lp->suspended
2459 && !lp->status_pending_p
2460 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2461 {
2462 int step = thread->last_resume_kind == resume_step;
2463
2464 if (debug_threads)
2465 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2466 target_pid_to_str (ptid_of (thread)),
2467 paddress (lp->stop_pc),
2468 step);
2469
2470 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2471 }
2472 }
2473
2474 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2475 match FILTER_PTID (leaving others pending). The PTIDs can be:
2476 minus_one_ptid, to specify any child; a pid PTID, specifying all
2477 lwps of a thread group; or a PTID representing a single lwp. Store
2478 the stop status through the status pointer WSTAT. OPTIONS is
2479 passed to the waitpid call. Return 0 if no event was found and
2480 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2481 was found. Return the PID of the stopped child otherwise. */
2482
2483 static int
2484 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2485 int *wstatp, int options)
2486 {
2487 struct thread_info *event_thread;
2488 struct lwp_info *event_child, *requested_child;
2489 sigset_t block_mask, prev_mask;
2490
2491 retry:
2492 /* N.B. event_thread points to the thread_info struct that contains
2493 event_child. Keep them in sync. */
2494 event_thread = NULL;
2495 event_child = NULL;
2496 requested_child = NULL;
2497
2498 /* Check for a lwp with a pending status. */
2499
2500 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2501 {
2502 event_thread = (struct thread_info *)
2503 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2504 if (event_thread != NULL)
2505 event_child = get_thread_lwp (event_thread);
2506 if (debug_threads && event_thread)
2507 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2508 }
2509 else if (!ptid_equal (filter_ptid, null_ptid))
2510 {
2511 requested_child = find_lwp_pid (filter_ptid);
2512
2513 if (stopping_threads == NOT_STOPPING_THREADS
2514 && requested_child->status_pending_p
2515 && requested_child->collecting_fast_tracepoint)
2516 {
2517 enqueue_one_deferred_signal (requested_child,
2518 &requested_child->status_pending);
2519 requested_child->status_pending_p = 0;
2520 requested_child->status_pending = 0;
2521 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2522 }
2523
2524 if (requested_child->suspended
2525 && requested_child->status_pending_p)
2526 {
2527 internal_error (__FILE__, __LINE__,
2528 "requesting an event out of a"
2529 " suspended child?");
2530 }
2531
2532 if (requested_child->status_pending_p)
2533 {
2534 event_child = requested_child;
2535 event_thread = get_lwp_thread (event_child);
2536 }
2537 }
2538
2539 if (event_child != NULL)
2540 {
2541 if (debug_threads)
2542 debug_printf ("Got an event from pending child %ld (%04x)\n",
2543 lwpid_of (event_thread), event_child->status_pending);
2544 *wstatp = event_child->status_pending;
2545 event_child->status_pending_p = 0;
2546 event_child->status_pending = 0;
2547 current_thread = event_thread;
2548 return lwpid_of (event_thread);
2549 }
2550
2551 /* But if we don't find a pending event, we'll have to wait.
2552
2553 We only enter this loop if no process has a pending wait status.
2554 Thus any action taken in response to a wait status inside this
2555 loop is responding as soon as we detect the status, not after any
2556 pending events. */
2557
2558 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2559 all signals while here. */
2560 sigfillset (&block_mask);
2561 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2562
2563 /* Always pull all events out of the kernel. We'll randomly select
2564 an event LWP out of all that have events, to prevent
2565 starvation. */
2566 while (event_child == NULL)
2567 {
2568 pid_t ret = 0;
2569
2570 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2571 quirks:
2572
2573 - If the thread group leader exits while other threads in the
2574 thread group still exist, waitpid(TGID, ...) hangs. That
2575 waitpid won't return an exit status until the other threads
2576 in the group are reaped.
2577
2578 - When a non-leader thread execs, that thread just vanishes
2579 without reporting an exit (so we'd hang if we waited for it
2580 explicitly in that case). The exec event is reported to
2581 the TGID pid. */
2582 errno = 0;
2583 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2584
2585 if (debug_threads)
2586 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2587 ret, errno ? strerror (errno) : "ERRNO-OK");
2588
2589 if (ret > 0)
2590 {
2591 if (debug_threads)
2592 {
2593 debug_printf ("LLW: waitpid %ld received %s\n",
2594 (long) ret, status_to_str (*wstatp));
2595 }
2596
2597 /* Filter all events. IOW, leave all events pending. We'll
2598 randomly select an event LWP out of all that have events
2599 below. */
2600 linux_low_filter_event (ret, *wstatp);
2601 /* Retry until nothing comes out of waitpid. A single
2602 SIGCHLD can indicate more than one child stopped. */
2603 continue;
2604 }
2605
2606 /* Now that we've pulled all events out of the kernel, resume
2607 LWPs that don't have an interesting event to report. */
2608 if (stopping_threads == NOT_STOPPING_THREADS)
2609 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2610
2611 /* ... and find an LWP with a status to report to the core, if
2612 any. */
2613 event_thread = (struct thread_info *)
2614 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2615 if (event_thread != NULL)
2616 {
2617 event_child = get_thread_lwp (event_thread);
2618 *wstatp = event_child->status_pending;
2619 event_child->status_pending_p = 0;
2620 event_child->status_pending = 0;
2621 break;
2622 }
2623
2624 /* Check for zombie thread group leaders. Those can't be reaped
2625 until all other threads in the thread group are. */
2626 check_zombie_leaders ();
2627
2628 /* If there are no resumed children left in the set of LWPs we
2629 want to wait for, bail. We can't just block in
2630 waitpid/sigsuspend, because lwps might have been left stopped
2631 in trace-stop state, and we'd be stuck forever waiting for
2632 their status to change (which would only happen if we resumed
2633 them). Even if WNOHANG is set, this return code is preferred
2634 over 0 (below), as it is more detailed. */
2635 if ((find_inferior (&all_threads,
2636 not_stopped_callback,
2637 &wait_ptid) == NULL))
2638 {
2639 if (debug_threads)
2640 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2641 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2642 return -1;
2643 }
2644
2645 /* No interesting event to report to the caller. */
2646 if ((options & WNOHANG))
2647 {
2648 if (debug_threads)
2649 debug_printf ("WNOHANG set, no event found\n");
2650
2651 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2652 return 0;
2653 }
2654
2655 /* Block until we get an event reported with SIGCHLD. */
2656 if (debug_threads)
2657 debug_printf ("sigsuspend'ing\n");
2658
2659 sigsuspend (&prev_mask);
2660 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2661 goto retry;
2662 }
2663
2664 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2665
2666 current_thread = event_thread;
2667
2668 return lwpid_of (event_thread);
2669 }
2670
2671 /* Wait for an event from child(ren) PTID. PTIDs can be:
2672 minus_one_ptid, to specify any child; a pid PTID, specifying all
2673 lwps of a thread group; or a PTID representing a single lwp. Store
2674 the stop status through the status pointer WSTAT. OPTIONS is
2675 passed to the waitpid call. Return 0 if no event was found and
2676 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2677 was found. Return the PID of the stopped child otherwise. */
2678
2679 static int
2680 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2681 {
2682 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2683 }
2684
2685 /* Count the LWP's that have had events. */
2686
2687 static int
2688 count_events_callback (struct inferior_list_entry *entry, void *data)
2689 {
2690 struct thread_info *thread = (struct thread_info *) entry;
2691 struct lwp_info *lp = get_thread_lwp (thread);
2692 int *count = (int *) data;
2693
2694 gdb_assert (count != NULL);
2695
2696 /* Count only resumed LWPs that have an event pending. */
2697 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2698 && lp->status_pending_p)
2699 (*count)++;
2700
2701 return 0;
2702 }
2703
2704 /* Select the LWP (if any) that is currently being single-stepped. */
2705
2706 static int
2707 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2708 {
2709 struct thread_info *thread = (struct thread_info *) entry;
2710 struct lwp_info *lp = get_thread_lwp (thread);
2711
2712 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2713 && thread->last_resume_kind == resume_step
2714 && lp->status_pending_p)
2715 return 1;
2716 else
2717 return 0;
2718 }
2719
2720 /* Select the Nth LWP that has had an event. */
2721
2722 static int
2723 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2724 {
2725 struct thread_info *thread = (struct thread_info *) entry;
2726 struct lwp_info *lp = get_thread_lwp (thread);
2727 int *selector = (int *) data;
2728
2729 gdb_assert (selector != NULL);
2730
2731 /* Select only resumed LWPs that have an event pending. */
2732 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2733 && lp->status_pending_p)
2734 if ((*selector)-- == 0)
2735 return 1;
2736
2737 return 0;
2738 }
2739
2740 /* Select one LWP out of those that have events pending. */
2741
2742 static void
2743 select_event_lwp (struct lwp_info **orig_lp)
2744 {
2745 int num_events = 0;
2746 int random_selector;
2747 struct thread_info *event_thread = NULL;
2748
2749 /* In all-stop, give preference to the LWP that is being
2750 single-stepped. There will be at most one, and it's the LWP that
2751 the core is most interested in. If we didn't do this, then we'd
2752 have to handle pending step SIGTRAPs somehow in case the core
2753 later continues the previously-stepped thread, otherwise we'd
2754 report the pending SIGTRAP, and the core, not having stepped the
2755 thread, wouldn't understand what the trap was for, and therefore
2756 would report it to the user as a random signal. */
2757 if (!non_stop)
2758 {
2759 event_thread
2760 = (struct thread_info *) find_inferior (&all_threads,
2761 select_singlestep_lwp_callback,
2762 NULL);
2763 if (event_thread != NULL)
2764 {
2765 if (debug_threads)
2766 debug_printf ("SEL: Select single-step %s\n",
2767 target_pid_to_str (ptid_of (event_thread)));
2768 }
2769 }
2770 if (event_thread == NULL)
2771 {
2772 /* No single-stepping LWP. Select one at random, out of those
2773 which have had events. */
2774
2775 /* First see how many events we have. */
2776 find_inferior (&all_threads, count_events_callback, &num_events);
2777 gdb_assert (num_events > 0);
2778
2779 /* Now randomly pick a LWP out of those that have had
2780 events. */
2781 random_selector = (int)
2782 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2783
2784 if (debug_threads && num_events > 1)
2785 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2786 num_events, random_selector);
2787
2788 event_thread
2789 = (struct thread_info *) find_inferior (&all_threads,
2790 select_event_lwp_callback,
2791 &random_selector);
2792 }
2793
2794 if (event_thread != NULL)
2795 {
2796 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2797
2798 /* Switch the event LWP. */
2799 *orig_lp = event_lp;
2800 }
2801 }
2802
2803 /* Decrement the suspend count of an LWP. */
2804
2805 static int
2806 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2807 {
2808 struct thread_info *thread = (struct thread_info *) entry;
2809 struct lwp_info *lwp = get_thread_lwp (thread);
2810
2811 /* Ignore EXCEPT. */
2812 if (lwp == except)
2813 return 0;
2814
2815 lwp_suspended_decr (lwp);
2816 return 0;
2817 }
2818
2819 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2820 NULL. */
2821
2822 static void
2823 unsuspend_all_lwps (struct lwp_info *except)
2824 {
2825 find_inferior (&all_threads, unsuspend_one_lwp, except);
2826 }
2827
2828 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2829 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2830 void *data);
2831 static int lwp_running (struct inferior_list_entry *entry, void *data);
2832 static ptid_t linux_wait_1 (ptid_t ptid,
2833 struct target_waitstatus *ourstatus,
2834 int target_options);
2835
2836 /* Stabilize threads (move out of jump pads).
2837
2838 If a thread is midway collecting a fast tracepoint, we need to
2839 finish the collection and move it out of the jump pad before
2840 reporting the signal.
2841
2842 This avoids recursion while collecting (when a signal arrives
2843 midway, and the signal handler itself collects), which would trash
2844 the trace buffer. In case the user set a breakpoint in a signal
2845 handler, this avoids the backtrace showing the jump pad, etc..
2846 Most importantly, there are certain things we can't do safely if
2847 threads are stopped in a jump pad (or in its callee's). For
2848 example:
2849
2850 - starting a new trace run. A thread still collecting the
2851 previous run, could trash the trace buffer when resumed. The trace
2852 buffer control structures would have been reset but the thread had
2853 no way to tell. The thread could even midway memcpy'ing to the
2854 buffer, which would mean that when resumed, it would clobber the
2855 trace buffer that had been set for a new run.
2856
2857 - we can't rewrite/reuse the jump pads for new tracepoints
2858 safely. Say you do tstart while a thread is stopped midway while
2859 collecting. When the thread is later resumed, it finishes the
2860 collection, and returns to the jump pad, to execute the original
2861 instruction that was under the tracepoint jump at the time the
2862 older run had been started. If the jump pad had been rewritten
2863 since for something else in the new run, the thread would now
2864 execute the wrong / random instructions. */
2865
2866 static void
2867 linux_stabilize_threads (void)
2868 {
2869 struct thread_info *saved_thread;
2870 struct thread_info *thread_stuck;
2871
2872 thread_stuck
2873 = (struct thread_info *) find_inferior (&all_threads,
2874 stuck_in_jump_pad_callback,
2875 NULL);
2876 if (thread_stuck != NULL)
2877 {
2878 if (debug_threads)
2879 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2880 lwpid_of (thread_stuck));
2881 return;
2882 }
2883
2884 saved_thread = current_thread;
2885
2886 stabilizing_threads = 1;
2887
2888 /* Kick 'em all. */
2889 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2890
2891 /* Loop until all are stopped out of the jump pads. */
2892 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2893 {
2894 struct target_waitstatus ourstatus;
2895 struct lwp_info *lwp;
2896 int wstat;
2897
2898 /* Note that we go through the full wait even loop. While
2899 moving threads out of jump pad, we need to be able to step
2900 over internal breakpoints and such. */
2901 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2902
2903 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2904 {
2905 lwp = get_thread_lwp (current_thread);
2906
2907 /* Lock it. */
2908 lwp_suspended_inc (lwp);
2909
2910 if (ourstatus.value.sig != GDB_SIGNAL_0
2911 || current_thread->last_resume_kind == resume_stop)
2912 {
2913 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2914 enqueue_one_deferred_signal (lwp, &wstat);
2915 }
2916 }
2917 }
2918
2919 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2920
2921 stabilizing_threads = 0;
2922
2923 current_thread = saved_thread;
2924
2925 if (debug_threads)
2926 {
2927 thread_stuck
2928 = (struct thread_info *) find_inferior (&all_threads,
2929 stuck_in_jump_pad_callback,
2930 NULL);
2931 if (thread_stuck != NULL)
2932 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2933 lwpid_of (thread_stuck));
2934 }
2935 }
2936
2937 /* Convenience function that is called when the kernel reports an
2938 event that is not passed out to GDB. */
2939
2940 static ptid_t
2941 ignore_event (struct target_waitstatus *ourstatus)
2942 {
2943 /* If we got an event, there may still be others, as a single
2944 SIGCHLD can indicate more than one child stopped. This forces
2945 another target_wait call. */
2946 async_file_mark ();
2947
2948 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2949 return null_ptid;
2950 }
2951
2952 /* Convenience function that is called when the kernel reports an exit
2953 event. This decides whether to report the event to GDB as a
2954 process exit event, a thread exit event, or to suppress the
2955 event. */
2956
2957 static ptid_t
2958 filter_exit_event (struct lwp_info *event_child,
2959 struct target_waitstatus *ourstatus)
2960 {
2961 struct thread_info *thread = get_lwp_thread (event_child);
2962 ptid_t ptid = ptid_of (thread);
2963
2964 if (!last_thread_of_process_p (pid_of (thread)))
2965 {
2966 if (report_thread_events)
2967 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2968 else
2969 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2970
2971 delete_lwp (event_child);
2972 }
2973 return ptid;
2974 }
2975
2976 /* Wait for process, returns status. */
2977
2978 static ptid_t
2979 linux_wait_1 (ptid_t ptid,
2980 struct target_waitstatus *ourstatus, int target_options)
2981 {
2982 int w;
2983 struct lwp_info *event_child;
2984 int options;
2985 int pid;
2986 int step_over_finished;
2987 int bp_explains_trap;
2988 int maybe_internal_trap;
2989 int report_to_gdb;
2990 int trace_event;
2991 int in_step_range;
2992 int any_resumed;
2993
2994 if (debug_threads)
2995 {
2996 debug_enter ();
2997 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2998 }
2999
3000 /* Translate generic target options into linux options. */
3001 options = __WALL;
3002 if (target_options & TARGET_WNOHANG)
3003 options |= WNOHANG;
3004
3005 bp_explains_trap = 0;
3006 trace_event = 0;
3007 in_step_range = 0;
3008 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3009
3010 /* Find a resumed LWP, if any. */
3011 if (find_inferior (&all_threads,
3012 status_pending_p_callback,
3013 &minus_one_ptid) != NULL)
3014 any_resumed = 1;
3015 else if ((find_inferior (&all_threads,
3016 not_stopped_callback,
3017 &minus_one_ptid) != NULL))
3018 any_resumed = 1;
3019 else
3020 any_resumed = 0;
3021
3022 if (ptid_equal (step_over_bkpt, null_ptid))
3023 pid = linux_wait_for_event (ptid, &w, options);
3024 else
3025 {
3026 if (debug_threads)
3027 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3028 target_pid_to_str (step_over_bkpt));
3029 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3030 }
3031
3032 if (pid == 0 || (pid == -1 && !any_resumed))
3033 {
3034 gdb_assert (target_options & TARGET_WNOHANG);
3035
3036 if (debug_threads)
3037 {
3038 debug_printf ("linux_wait_1 ret = null_ptid, "
3039 "TARGET_WAITKIND_IGNORE\n");
3040 debug_exit ();
3041 }
3042
3043 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3044 return null_ptid;
3045 }
3046 else if (pid == -1)
3047 {
3048 if (debug_threads)
3049 {
3050 debug_printf ("linux_wait_1 ret = null_ptid, "
3051 "TARGET_WAITKIND_NO_RESUMED\n");
3052 debug_exit ();
3053 }
3054
3055 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3056 return null_ptid;
3057 }
3058
3059 event_child = get_thread_lwp (current_thread);
3060
3061 /* linux_wait_for_event only returns an exit status for the last
3062 child of a process. Report it. */
3063 if (WIFEXITED (w) || WIFSIGNALED (w))
3064 {
3065 if (WIFEXITED (w))
3066 {
3067 ourstatus->kind = TARGET_WAITKIND_EXITED;
3068 ourstatus->value.integer = WEXITSTATUS (w);
3069
3070 if (debug_threads)
3071 {
3072 debug_printf ("linux_wait_1 ret = %s, exited with "
3073 "retcode %d\n",
3074 target_pid_to_str (ptid_of (current_thread)),
3075 WEXITSTATUS (w));
3076 debug_exit ();
3077 }
3078 }
3079 else
3080 {
3081 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3082 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3083
3084 if (debug_threads)
3085 {
3086 debug_printf ("linux_wait_1 ret = %s, terminated with "
3087 "signal %d\n",
3088 target_pid_to_str (ptid_of (current_thread)),
3089 WTERMSIG (w));
3090 debug_exit ();
3091 }
3092 }
3093
3094 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3095 return filter_exit_event (event_child, ourstatus);
3096
3097 return ptid_of (current_thread);
3098 }
3099
3100 /* If step-over executes a breakpoint instruction, in the case of a
3101 hardware single step it means a gdb/gdbserver breakpoint had been
3102 planted on top of a permanent breakpoint, in the case of a software
3103 single step it may just mean that gdbserver hit the reinsert breakpoint.
3104 The PC has been adjusted by check_stopped_by_breakpoint to point at
3105 the breakpoint address.
3106 So in the case of the hardware single step advance the PC manually
3107 past the breakpoint and in the case of software single step advance only
3108 if it's not the reinsert_breakpoint we are hitting.
3109 This avoids that a program would keep trapping a permanent breakpoint
3110 forever. */
3111 if (!ptid_equal (step_over_bkpt, null_ptid)
3112 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3113 && (event_child->stepping
3114 || !reinsert_breakpoint_inserted_here (event_child->stop_pc)))
3115 {
3116 int increment_pc = 0;
3117 int breakpoint_kind = 0;
3118 CORE_ADDR stop_pc = event_child->stop_pc;
3119
3120 breakpoint_kind =
3121 the_target->breakpoint_kind_from_current_state (&stop_pc);
3122 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3123
3124 if (debug_threads)
3125 {
3126 debug_printf ("step-over for %s executed software breakpoint\n",
3127 target_pid_to_str (ptid_of (current_thread)));
3128 }
3129
3130 if (increment_pc != 0)
3131 {
3132 struct regcache *regcache
3133 = get_thread_regcache (current_thread, 1);
3134
3135 event_child->stop_pc += increment_pc;
3136 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3137
3138 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3139 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3140 }
3141 }
3142
3143 /* If this event was not handled before, and is not a SIGTRAP, we
3144 report it. SIGILL and SIGSEGV are also treated as traps in case
3145 a breakpoint is inserted at the current PC. If this target does
3146 not support internal breakpoints at all, we also report the
3147 SIGTRAP without further processing; it's of no concern to us. */
3148 maybe_internal_trap
3149 = (supports_breakpoints ()
3150 && (WSTOPSIG (w) == SIGTRAP
3151 || ((WSTOPSIG (w) == SIGILL
3152 || WSTOPSIG (w) == SIGSEGV)
3153 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3154
3155 if (maybe_internal_trap)
3156 {
3157 /* Handle anything that requires bookkeeping before deciding to
3158 report the event or continue waiting. */
3159
3160 /* First check if we can explain the SIGTRAP with an internal
3161 breakpoint, or if we should possibly report the event to GDB.
3162 Do this before anything that may remove or insert a
3163 breakpoint. */
3164 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3165
3166 /* We have a SIGTRAP, possibly a step-over dance has just
3167 finished. If so, tweak the state machine accordingly,
3168 reinsert breakpoints and delete any reinsert (software
3169 single-step) breakpoints. */
3170 step_over_finished = finish_step_over (event_child);
3171
3172 /* Now invoke the callbacks of any internal breakpoints there. */
3173 check_breakpoints (event_child->stop_pc);
3174
3175 /* Handle tracepoint data collecting. This may overflow the
3176 trace buffer, and cause a tracing stop, removing
3177 breakpoints. */
3178 trace_event = handle_tracepoints (event_child);
3179
3180 if (bp_explains_trap)
3181 {
3182 /* If we stepped or ran into an internal breakpoint, we've
3183 already handled it. So next time we resume (from this
3184 PC), we should step over it. */
3185 if (debug_threads)
3186 debug_printf ("Hit a gdbserver breakpoint.\n");
3187
3188 if (breakpoint_here (event_child->stop_pc))
3189 event_child->need_step_over = 1;
3190 }
3191 }
3192 else
3193 {
3194 /* We have some other signal, possibly a step-over dance was in
3195 progress, and it should be cancelled too. */
3196 step_over_finished = finish_step_over (event_child);
3197 }
3198
3199 /* We have all the data we need. Either report the event to GDB, or
3200 resume threads and keep waiting for more. */
3201
3202 /* If we're collecting a fast tracepoint, finish the collection and
3203 move out of the jump pad before delivering a signal. See
3204 linux_stabilize_threads. */
3205
3206 if (WIFSTOPPED (w)
3207 && WSTOPSIG (w) != SIGTRAP
3208 && supports_fast_tracepoints ()
3209 && agent_loaded_p ())
3210 {
3211 if (debug_threads)
3212 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3213 "to defer or adjust it.\n",
3214 WSTOPSIG (w), lwpid_of (current_thread));
3215
3216 /* Allow debugging the jump pad itself. */
3217 if (current_thread->last_resume_kind != resume_step
3218 && maybe_move_out_of_jump_pad (event_child, &w))
3219 {
3220 enqueue_one_deferred_signal (event_child, &w);
3221
3222 if (debug_threads)
3223 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3224 WSTOPSIG (w), lwpid_of (current_thread));
3225
3226 linux_resume_one_lwp (event_child, 0, 0, NULL);
3227
3228 return ignore_event (ourstatus);
3229 }
3230 }
3231
3232 if (event_child->collecting_fast_tracepoint)
3233 {
3234 if (debug_threads)
3235 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3236 "Check if we're already there.\n",
3237 lwpid_of (current_thread),
3238 event_child->collecting_fast_tracepoint);
3239
3240 trace_event = 1;
3241
3242 event_child->collecting_fast_tracepoint
3243 = linux_fast_tracepoint_collecting (event_child, NULL);
3244
3245 if (event_child->collecting_fast_tracepoint != 1)
3246 {
3247 /* No longer need this breakpoint. */
3248 if (event_child->exit_jump_pad_bkpt != NULL)
3249 {
3250 if (debug_threads)
3251 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3252 "stopping all threads momentarily.\n");
3253
3254 /* Other running threads could hit this breakpoint.
3255 We don't handle moribund locations like GDB does,
3256 instead we always pause all threads when removing
3257 breakpoints, so that any step-over or
3258 decr_pc_after_break adjustment is always taken
3259 care of while the breakpoint is still
3260 inserted. */
3261 stop_all_lwps (1, event_child);
3262
3263 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3264 event_child->exit_jump_pad_bkpt = NULL;
3265
3266 unstop_all_lwps (1, event_child);
3267
3268 gdb_assert (event_child->suspended >= 0);
3269 }
3270 }
3271
3272 if (event_child->collecting_fast_tracepoint == 0)
3273 {
3274 if (debug_threads)
3275 debug_printf ("fast tracepoint finished "
3276 "collecting successfully.\n");
3277
3278 /* We may have a deferred signal to report. */
3279 if (dequeue_one_deferred_signal (event_child, &w))
3280 {
3281 if (debug_threads)
3282 debug_printf ("dequeued one signal.\n");
3283 }
3284 else
3285 {
3286 if (debug_threads)
3287 debug_printf ("no deferred signals.\n");
3288
3289 if (stabilizing_threads)
3290 {
3291 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3292 ourstatus->value.sig = GDB_SIGNAL_0;
3293
3294 if (debug_threads)
3295 {
3296 debug_printf ("linux_wait_1 ret = %s, stopped "
3297 "while stabilizing threads\n",
3298 target_pid_to_str (ptid_of (current_thread)));
3299 debug_exit ();
3300 }
3301
3302 return ptid_of (current_thread);
3303 }
3304 }
3305 }
3306 }
3307
3308 /* Check whether GDB would be interested in this event. */
3309
3310 /* If GDB is not interested in this signal, don't stop other
3311 threads, and don't report it to GDB. Just resume the inferior
3312 right away. We do this for threading-related signals as well as
3313 any that GDB specifically requested we ignore. But never ignore
3314 SIGSTOP if we sent it ourselves, and do not ignore signals when
3315 stepping - they may require special handling to skip the signal
3316 handler. Also never ignore signals that could be caused by a
3317 breakpoint. */
3318 if (WIFSTOPPED (w)
3319 && current_thread->last_resume_kind != resume_step
3320 && (
3321 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3322 (current_process ()->priv->thread_db != NULL
3323 && (WSTOPSIG (w) == __SIGRTMIN
3324 || WSTOPSIG (w) == __SIGRTMIN + 1))
3325 ||
3326 #endif
3327 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3328 && !(WSTOPSIG (w) == SIGSTOP
3329 && current_thread->last_resume_kind == resume_stop)
3330 && !linux_wstatus_maybe_breakpoint (w))))
3331 {
3332 siginfo_t info, *info_p;
3333
3334 if (debug_threads)
3335 debug_printf ("Ignored signal %d for LWP %ld.\n",
3336 WSTOPSIG (w), lwpid_of (current_thread));
3337
3338 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3339 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3340 info_p = &info;
3341 else
3342 info_p = NULL;
3343
3344 if (step_over_finished)
3345 {
3346 /* We cancelled this thread's step-over above. We still
3347 need to unsuspend all other LWPs, and set them back
3348 running again while the signal handler runs. */
3349 unsuspend_all_lwps (event_child);
3350
3351 /* Enqueue the pending signal info so that proceed_all_lwps
3352 doesn't lose it. */
3353 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3354
3355 proceed_all_lwps ();
3356 }
3357 else
3358 {
3359 linux_resume_one_lwp (event_child, event_child->stepping,
3360 WSTOPSIG (w), info_p);
3361 }
3362 return ignore_event (ourstatus);
3363 }
3364
3365 /* Note that all addresses are always "out of the step range" when
3366 there's no range to begin with. */
3367 in_step_range = lwp_in_step_range (event_child);
3368
3369 /* If GDB wanted this thread to single step, and the thread is out
3370 of the step range, we always want to report the SIGTRAP, and let
3371 GDB handle it. Watchpoints should always be reported. So should
3372 signals we can't explain. A SIGTRAP we can't explain could be a
3373 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3374 do, we're be able to handle GDB breakpoints on top of internal
3375 breakpoints, by handling the internal breakpoint and still
3376 reporting the event to GDB. If we don't, we're out of luck, GDB
3377 won't see the breakpoint hit. If we see a single-step event but
3378 the thread should be continuing, don't pass the trap to gdb.
3379 That indicates that we had previously finished a single-step but
3380 left the single-step pending -- see
3381 complete_ongoing_step_over. */
3382 report_to_gdb = (!maybe_internal_trap
3383 || (current_thread->last_resume_kind == resume_step
3384 && !in_step_range)
3385 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3386 || (!in_step_range
3387 && !bp_explains_trap
3388 && !trace_event
3389 && !step_over_finished
3390 && !(current_thread->last_resume_kind == resume_continue
3391 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3392 || (gdb_breakpoint_here (event_child->stop_pc)
3393 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3394 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3395 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3396
3397 run_breakpoint_commands (event_child->stop_pc);
3398
3399 /* We found no reason GDB would want us to stop. We either hit one
3400 of our own breakpoints, or finished an internal step GDB
3401 shouldn't know about. */
3402 if (!report_to_gdb)
3403 {
3404 if (debug_threads)
3405 {
3406 if (bp_explains_trap)
3407 debug_printf ("Hit a gdbserver breakpoint.\n");
3408 if (step_over_finished)
3409 debug_printf ("Step-over finished.\n");
3410 if (trace_event)
3411 debug_printf ("Tracepoint event.\n");
3412 if (lwp_in_step_range (event_child))
3413 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3414 paddress (event_child->stop_pc),
3415 paddress (event_child->step_range_start),
3416 paddress (event_child->step_range_end));
3417 }
3418
3419 /* We're not reporting this breakpoint to GDB, so apply the
3420 decr_pc_after_break adjustment to the inferior's regcache
3421 ourselves. */
3422
3423 if (the_low_target.set_pc != NULL)
3424 {
3425 struct regcache *regcache
3426 = get_thread_regcache (current_thread, 1);
3427 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3428 }
3429
3430 /* We may have finished stepping over a breakpoint. If so,
3431 we've stopped and suspended all LWPs momentarily except the
3432 stepping one. This is where we resume them all again. We're
3433 going to keep waiting, so use proceed, which handles stepping
3434 over the next breakpoint. */
3435 if (debug_threads)
3436 debug_printf ("proceeding all threads.\n");
3437
3438 if (step_over_finished)
3439 unsuspend_all_lwps (event_child);
3440
3441 proceed_all_lwps ();
3442 return ignore_event (ourstatus);
3443 }
3444
3445 if (debug_threads)
3446 {
3447 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3448 {
3449 char *str;
3450
3451 str = target_waitstatus_to_string (&event_child->waitstatus);
3452 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3453 lwpid_of (get_lwp_thread (event_child)), str);
3454 xfree (str);
3455 }
3456 if (current_thread->last_resume_kind == resume_step)
3457 {
3458 if (event_child->step_range_start == event_child->step_range_end)
3459 debug_printf ("GDB wanted to single-step, reporting event.\n");
3460 else if (!lwp_in_step_range (event_child))
3461 debug_printf ("Out of step range, reporting event.\n");
3462 }
3463 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3464 debug_printf ("Stopped by watchpoint.\n");
3465 else if (gdb_breakpoint_here (event_child->stop_pc))
3466 debug_printf ("Stopped by GDB breakpoint.\n");
3467 if (debug_threads)
3468 debug_printf ("Hit a non-gdbserver trap event.\n");
3469 }
3470
3471 /* Alright, we're going to report a stop. */
3472
3473 if (!stabilizing_threads)
3474 {
3475 /* In all-stop, stop all threads. */
3476 if (!non_stop)
3477 stop_all_lwps (0, NULL);
3478
3479 /* If we're not waiting for a specific LWP, choose an event LWP
3480 from among those that have had events. Giving equal priority
3481 to all LWPs that have had events helps prevent
3482 starvation. */
3483 if (ptid_equal (ptid, minus_one_ptid))
3484 {
3485 event_child->status_pending_p = 1;
3486 event_child->status_pending = w;
3487
3488 select_event_lwp (&event_child);
3489
3490 /* current_thread and event_child must stay in sync. */
3491 current_thread = get_lwp_thread (event_child);
3492
3493 event_child->status_pending_p = 0;
3494 w = event_child->status_pending;
3495 }
3496
3497 if (step_over_finished)
3498 {
3499 if (!non_stop)
3500 {
3501 /* If we were doing a step-over, all other threads but
3502 the stepping one had been paused in start_step_over,
3503 with their suspend counts incremented. We don't want
3504 to do a full unstop/unpause, because we're in
3505 all-stop mode (so we want threads stopped), but we
3506 still need to unsuspend the other threads, to
3507 decrement their `suspended' count back. */
3508 unsuspend_all_lwps (event_child);
3509 }
3510 else
3511 {
3512 /* If we just finished a step-over, then all threads had
3513 been momentarily paused. In all-stop, that's fine,
3514 we want threads stopped by now anyway. In non-stop,
3515 we need to re-resume threads that GDB wanted to be
3516 running. */
3517 unstop_all_lwps (1, event_child);
3518 }
3519 }
3520
3521 /* Stabilize threads (move out of jump pads). */
3522 if (!non_stop)
3523 stabilize_threads ();
3524 }
3525 else
3526 {
3527 /* If we just finished a step-over, then all threads had been
3528 momentarily paused. In all-stop, that's fine, we want
3529 threads stopped by now anyway. In non-stop, we need to
3530 re-resume threads that GDB wanted to be running. */
3531 if (step_over_finished)
3532 unstop_all_lwps (1, event_child);
3533 }
3534
3535 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3536 {
3537 /* If the reported event is an exit, fork, vfork or exec, let
3538 GDB know. */
3539 *ourstatus = event_child->waitstatus;
3540 /* Clear the event lwp's waitstatus since we handled it already. */
3541 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3542 }
3543 else
3544 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3545
3546 /* Now that we've selected our final event LWP, un-adjust its PC if
3547 it was a software breakpoint, and the client doesn't know we can
3548 adjust the breakpoint ourselves. */
3549 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3550 && !swbreak_feature)
3551 {
3552 int decr_pc = the_low_target.decr_pc_after_break;
3553
3554 if (decr_pc != 0)
3555 {
3556 struct regcache *regcache
3557 = get_thread_regcache (current_thread, 1);
3558 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3559 }
3560 }
3561
3562 if (current_thread->last_resume_kind == resume_stop
3563 && WSTOPSIG (w) == SIGSTOP)
3564 {
3565 /* A thread that has been requested to stop by GDB with vCont;t,
3566 and it stopped cleanly, so report as SIG0. The use of
3567 SIGSTOP is an implementation detail. */
3568 ourstatus->value.sig = GDB_SIGNAL_0;
3569 }
3570 else if (current_thread->last_resume_kind == resume_stop
3571 && WSTOPSIG (w) != SIGSTOP)
3572 {
3573 /* A thread that has been requested to stop by GDB with vCont;t,
3574 but, it stopped for other reasons. */
3575 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3576 }
3577 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3578 {
3579 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3580 }
3581
3582 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3583
3584 if (debug_threads)
3585 {
3586 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3587 target_pid_to_str (ptid_of (current_thread)),
3588 ourstatus->kind, ourstatus->value.sig);
3589 debug_exit ();
3590 }
3591
3592 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3593 return filter_exit_event (event_child, ourstatus);
3594
3595 return ptid_of (current_thread);
3596 }
3597
3598 /* Get rid of any pending event in the pipe. */
3599 static void
3600 async_file_flush (void)
3601 {
3602 int ret;
3603 char buf;
3604
3605 do
3606 ret = read (linux_event_pipe[0], &buf, 1);
3607 while (ret >= 0 || (ret == -1 && errno == EINTR));
3608 }
3609
3610 /* Put something in the pipe, so the event loop wakes up. */
3611 static void
3612 async_file_mark (void)
3613 {
3614 int ret;
3615
3616 async_file_flush ();
3617
3618 do
3619 ret = write (linux_event_pipe[1], "+", 1);
3620 while (ret == 0 || (ret == -1 && errno == EINTR));
3621
3622 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3623 be awakened anyway. */
3624 }
3625
3626 static ptid_t
3627 linux_wait (ptid_t ptid,
3628 struct target_waitstatus *ourstatus, int target_options)
3629 {
3630 ptid_t event_ptid;
3631
3632 /* Flush the async file first. */
3633 if (target_is_async_p ())
3634 async_file_flush ();
3635
3636 do
3637 {
3638 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3639 }
3640 while ((target_options & TARGET_WNOHANG) == 0
3641 && ptid_equal (event_ptid, null_ptid)
3642 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3643
3644 /* If at least one stop was reported, there may be more. A single
3645 SIGCHLD can signal more than one child stop. */
3646 if (target_is_async_p ()
3647 && (target_options & TARGET_WNOHANG) != 0
3648 && !ptid_equal (event_ptid, null_ptid))
3649 async_file_mark ();
3650
3651 return event_ptid;
3652 }
3653
3654 /* Send a signal to an LWP. */
3655
3656 static int
3657 kill_lwp (unsigned long lwpid, int signo)
3658 {
3659 int ret;
3660
3661 errno = 0;
3662 ret = syscall (__NR_tkill, lwpid, signo);
3663 if (errno == ENOSYS)
3664 {
3665 /* If tkill fails, then we are not using nptl threads, a
3666 configuration we no longer support. */
3667 perror_with_name (("tkill"));
3668 }
3669 return ret;
3670 }
3671
3672 void
3673 linux_stop_lwp (struct lwp_info *lwp)
3674 {
3675 send_sigstop (lwp);
3676 }
3677
3678 static void
3679 send_sigstop (struct lwp_info *lwp)
3680 {
3681 int pid;
3682
3683 pid = lwpid_of (get_lwp_thread (lwp));
3684
3685 /* If we already have a pending stop signal for this process, don't
3686 send another. */
3687 if (lwp->stop_expected)
3688 {
3689 if (debug_threads)
3690 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3691
3692 return;
3693 }
3694
3695 if (debug_threads)
3696 debug_printf ("Sending sigstop to lwp %d\n", pid);
3697
3698 lwp->stop_expected = 1;
3699 kill_lwp (pid, SIGSTOP);
3700 }
3701
3702 static int
3703 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3704 {
3705 struct thread_info *thread = (struct thread_info *) entry;
3706 struct lwp_info *lwp = get_thread_lwp (thread);
3707
3708 /* Ignore EXCEPT. */
3709 if (lwp == except)
3710 return 0;
3711
3712 if (lwp->stopped)
3713 return 0;
3714
3715 send_sigstop (lwp);
3716 return 0;
3717 }
3718
3719 /* Increment the suspend count of an LWP, and stop it, if not stopped
3720 yet. */
3721 static int
3722 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3723 void *except)
3724 {
3725 struct thread_info *thread = (struct thread_info *) entry;
3726 struct lwp_info *lwp = get_thread_lwp (thread);
3727
3728 /* Ignore EXCEPT. */
3729 if (lwp == except)
3730 return 0;
3731
3732 lwp_suspended_inc (lwp);
3733
3734 return send_sigstop_callback (entry, except);
3735 }
3736
3737 static void
3738 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3739 {
3740 /* Store the exit status for later. */
3741 lwp->status_pending_p = 1;
3742 lwp->status_pending = wstat;
3743
3744 /* Store in waitstatus as well, as there's nothing else to process
3745 for this event. */
3746 if (WIFEXITED (wstat))
3747 {
3748 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3749 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3750 }
3751 else if (WIFSIGNALED (wstat))
3752 {
3753 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3754 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3755 }
3756
3757 /* Prevent trying to stop it. */
3758 lwp->stopped = 1;
3759
3760 /* No further stops are expected from a dead lwp. */
3761 lwp->stop_expected = 0;
3762 }
3763
3764 /* Return true if LWP has exited already, and has a pending exit event
3765 to report to GDB. */
3766
3767 static int
3768 lwp_is_marked_dead (struct lwp_info *lwp)
3769 {
3770 return (lwp->status_pending_p
3771 && (WIFEXITED (lwp->status_pending)
3772 || WIFSIGNALED (lwp->status_pending)));
3773 }
3774
3775 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3776
3777 static void
3778 wait_for_sigstop (void)
3779 {
3780 struct thread_info *saved_thread;
3781 ptid_t saved_tid;
3782 int wstat;
3783 int ret;
3784
3785 saved_thread = current_thread;
3786 if (saved_thread != NULL)
3787 saved_tid = saved_thread->entry.id;
3788 else
3789 saved_tid = null_ptid; /* avoid bogus unused warning */
3790
3791 if (debug_threads)
3792 debug_printf ("wait_for_sigstop: pulling events\n");
3793
3794 /* Passing NULL_PTID as filter indicates we want all events to be
3795 left pending. Eventually this returns when there are no
3796 unwaited-for children left. */
3797 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3798 &wstat, __WALL);
3799 gdb_assert (ret == -1);
3800
3801 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3802 current_thread = saved_thread;
3803 else
3804 {
3805 if (debug_threads)
3806 debug_printf ("Previously current thread died.\n");
3807
3808 /* We can't change the current inferior behind GDB's back,
3809 otherwise, a subsequent command may apply to the wrong
3810 process. */
3811 current_thread = NULL;
3812 }
3813 }
3814
3815 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3816 move it out, because we need to report the stop event to GDB. For
3817 example, if the user puts a breakpoint in the jump pad, it's
3818 because she wants to debug it. */
3819
3820 static int
3821 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3822 {
3823 struct thread_info *thread = (struct thread_info *) entry;
3824 struct lwp_info *lwp = get_thread_lwp (thread);
3825
3826 if (lwp->suspended != 0)
3827 {
3828 internal_error (__FILE__, __LINE__,
3829 "LWP %ld is suspended, suspended=%d\n",
3830 lwpid_of (thread), lwp->suspended);
3831 }
3832 gdb_assert (lwp->stopped);
3833
3834 /* Allow debugging the jump pad, gdb_collect, etc.. */
3835 return (supports_fast_tracepoints ()
3836 && agent_loaded_p ()
3837 && (gdb_breakpoint_here (lwp->stop_pc)
3838 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3839 || thread->last_resume_kind == resume_step)
3840 && linux_fast_tracepoint_collecting (lwp, NULL));
3841 }
3842
3843 static void
3844 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3845 {
3846 struct thread_info *thread = (struct thread_info *) entry;
3847 struct thread_info *saved_thread;
3848 struct lwp_info *lwp = get_thread_lwp (thread);
3849 int *wstat;
3850
3851 if (lwp->suspended != 0)
3852 {
3853 internal_error (__FILE__, __LINE__,
3854 "LWP %ld is suspended, suspended=%d\n",
3855 lwpid_of (thread), lwp->suspended);
3856 }
3857 gdb_assert (lwp->stopped);
3858
3859 /* For gdb_breakpoint_here. */
3860 saved_thread = current_thread;
3861 current_thread = thread;
3862
3863 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3864
3865 /* Allow debugging the jump pad, gdb_collect, etc. */
3866 if (!gdb_breakpoint_here (lwp->stop_pc)
3867 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3868 && thread->last_resume_kind != resume_step
3869 && maybe_move_out_of_jump_pad (lwp, wstat))
3870 {
3871 if (debug_threads)
3872 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3873 lwpid_of (thread));
3874
3875 if (wstat)
3876 {
3877 lwp->status_pending_p = 0;
3878 enqueue_one_deferred_signal (lwp, wstat);
3879
3880 if (debug_threads)
3881 debug_printf ("Signal %d for LWP %ld deferred "
3882 "(in jump pad)\n",
3883 WSTOPSIG (*wstat), lwpid_of (thread));
3884 }
3885
3886 linux_resume_one_lwp (lwp, 0, 0, NULL);
3887 }
3888 else
3889 lwp_suspended_inc (lwp);
3890
3891 current_thread = saved_thread;
3892 }
3893
3894 static int
3895 lwp_running (struct inferior_list_entry *entry, void *data)
3896 {
3897 struct thread_info *thread = (struct thread_info *) entry;
3898 struct lwp_info *lwp = get_thread_lwp (thread);
3899
3900 if (lwp_is_marked_dead (lwp))
3901 return 0;
3902 if (lwp->stopped)
3903 return 0;
3904 return 1;
3905 }
3906
3907 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3908 If SUSPEND, then also increase the suspend count of every LWP,
3909 except EXCEPT. */
3910
3911 static void
3912 stop_all_lwps (int suspend, struct lwp_info *except)
3913 {
3914 /* Should not be called recursively. */
3915 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3916
3917 if (debug_threads)
3918 {
3919 debug_enter ();
3920 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3921 suspend ? "stop-and-suspend" : "stop",
3922 except != NULL
3923 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3924 : "none");
3925 }
3926
3927 stopping_threads = (suspend
3928 ? STOPPING_AND_SUSPENDING_THREADS
3929 : STOPPING_THREADS);
3930
3931 if (suspend)
3932 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3933 else
3934 find_inferior (&all_threads, send_sigstop_callback, except);
3935 wait_for_sigstop ();
3936 stopping_threads = NOT_STOPPING_THREADS;
3937
3938 if (debug_threads)
3939 {
3940 debug_printf ("stop_all_lwps done, setting stopping_threads "
3941 "back to !stopping\n");
3942 debug_exit ();
3943 }
3944 }
3945
3946 /* Enqueue one signal in the chain of signals which need to be
3947 delivered to this process on next resume. */
3948
3949 static void
3950 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
3951 {
3952 struct pending_signals *p_sig = XNEW (struct pending_signals);
3953
3954 p_sig->prev = lwp->pending_signals;
3955 p_sig->signal = signal;
3956 if (info == NULL)
3957 memset (&p_sig->info, 0, sizeof (siginfo_t));
3958 else
3959 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3960 lwp->pending_signals = p_sig;
3961 }
3962
3963 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
3964 SIGNAL is nonzero, give it that signal. */
3965
3966 static void
3967 linux_resume_one_lwp_throw (struct lwp_info *lwp,
3968 int step, int signal, siginfo_t *info)
3969 {
3970 struct thread_info *thread = get_lwp_thread (lwp);
3971 struct thread_info *saved_thread;
3972 int fast_tp_collecting;
3973 struct process_info *proc = get_thread_process (thread);
3974
3975 /* Note that target description may not be initialised
3976 (proc->tdesc == NULL) at this point because the program hasn't
3977 stopped at the first instruction yet. It means GDBserver skips
3978 the extra traps from the wrapper program (see option --wrapper).
3979 Code in this function that requires register access should be
3980 guarded by proc->tdesc == NULL or something else. */
3981
3982 if (lwp->stopped == 0)
3983 return;
3984
3985 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
3986
3987 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3988
3989 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3990
3991 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3992 user used the "jump" command, or "set $pc = foo"). */
3993 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
3994 {
3995 /* Collecting 'while-stepping' actions doesn't make sense
3996 anymore. */
3997 release_while_stepping_state_list (thread);
3998 }
3999
4000 /* If we have pending signals or status, and a new signal, enqueue the
4001 signal. Also enqueue the signal if we are waiting to reinsert a
4002 breakpoint; it will be picked up again below. */
4003 if (signal != 0
4004 && (lwp->status_pending_p
4005 || lwp->pending_signals != NULL
4006 || lwp->bp_reinsert != 0
4007 || fast_tp_collecting))
4008 {
4009 struct pending_signals *p_sig = XNEW (struct pending_signals);
4010
4011 p_sig->prev = lwp->pending_signals;
4012 p_sig->signal = signal;
4013 if (info == NULL)
4014 memset (&p_sig->info, 0, sizeof (siginfo_t));
4015 else
4016 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4017 lwp->pending_signals = p_sig;
4018 }
4019
4020 if (lwp->status_pending_p)
4021 {
4022 if (debug_threads)
4023 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
4024 " has pending status\n",
4025 lwpid_of (thread), step ? "step" : "continue", signal,
4026 lwp->stop_expected ? "expected" : "not expected");
4027 return;
4028 }
4029
4030 saved_thread = current_thread;
4031 current_thread = thread;
4032
4033 if (debug_threads)
4034 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4035 lwpid_of (thread), step ? "step" : "continue", signal,
4036 lwp->stop_expected ? "expected" : "not expected");
4037
4038 /* This bit needs some thinking about. If we get a signal that
4039 we must report while a single-step reinsert is still pending,
4040 we often end up resuming the thread. It might be better to
4041 (ew) allow a stack of pending events; then we could be sure that
4042 the reinsert happened right away and not lose any signals.
4043
4044 Making this stack would also shrink the window in which breakpoints are
4045 uninserted (see comment in linux_wait_for_lwp) but not enough for
4046 complete correctness, so it won't solve that problem. It may be
4047 worthwhile just to solve this one, however. */
4048 if (lwp->bp_reinsert != 0)
4049 {
4050 if (debug_threads)
4051 debug_printf (" pending reinsert at 0x%s\n",
4052 paddress (lwp->bp_reinsert));
4053
4054 if (can_hardware_single_step ())
4055 {
4056 if (fast_tp_collecting == 0)
4057 {
4058 if (step == 0)
4059 fprintf (stderr, "BAD - reinserting but not stepping.\n");
4060 if (lwp->suspended)
4061 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
4062 lwp->suspended);
4063 }
4064
4065 step = 1;
4066 }
4067
4068 /* Postpone any pending signal. It was enqueued above. */
4069 signal = 0;
4070 }
4071
4072 if (fast_tp_collecting == 1)
4073 {
4074 if (debug_threads)
4075 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4076 " (exit-jump-pad-bkpt)\n",
4077 lwpid_of (thread));
4078
4079 /* Postpone any pending signal. It was enqueued above. */
4080 signal = 0;
4081 }
4082 else if (fast_tp_collecting == 2)
4083 {
4084 if (debug_threads)
4085 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4086 " single-stepping\n",
4087 lwpid_of (thread));
4088
4089 if (can_hardware_single_step ())
4090 step = 1;
4091 else
4092 {
4093 internal_error (__FILE__, __LINE__,
4094 "moving out of jump pad single-stepping"
4095 " not implemented on this target");
4096 }
4097
4098 /* Postpone any pending signal. It was enqueued above. */
4099 signal = 0;
4100 }
4101
4102 /* If we have while-stepping actions in this thread set it stepping.
4103 If we have a signal to deliver, it may or may not be set to
4104 SIG_IGN, we don't know. Assume so, and allow collecting
4105 while-stepping into a signal handler. A possible smart thing to
4106 do would be to set an internal breakpoint at the signal return
4107 address, continue, and carry on catching this while-stepping
4108 action only when that breakpoint is hit. A future
4109 enhancement. */
4110 if (thread->while_stepping != NULL
4111 && can_hardware_single_step ())
4112 {
4113 if (debug_threads)
4114 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4115 lwpid_of (thread));
4116 step = 1;
4117 }
4118
4119 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4120 {
4121 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4122
4123 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4124
4125 if (debug_threads)
4126 {
4127 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4128 (long) lwp->stop_pc);
4129 }
4130 }
4131
4132 /* If we have pending signals, consume one unless we are trying to
4133 reinsert a breakpoint or we're trying to finish a fast tracepoint
4134 collect. */
4135 if (lwp->pending_signals != NULL
4136 && lwp->bp_reinsert == 0
4137 && fast_tp_collecting == 0)
4138 {
4139 struct pending_signals **p_sig;
4140
4141 p_sig = &lwp->pending_signals;
4142 while ((*p_sig)->prev != NULL)
4143 p_sig = &(*p_sig)->prev;
4144
4145 signal = (*p_sig)->signal;
4146 if ((*p_sig)->info.si_signo != 0)
4147 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4148 &(*p_sig)->info);
4149
4150 free (*p_sig);
4151 *p_sig = NULL;
4152 }
4153
4154 if (the_low_target.prepare_to_resume != NULL)
4155 the_low_target.prepare_to_resume (lwp);
4156
4157 regcache_invalidate_thread (thread);
4158 errno = 0;
4159 lwp->stepping = step;
4160 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
4161 (PTRACE_TYPE_ARG3) 0,
4162 /* Coerce to a uintptr_t first to avoid potential gcc warning
4163 of coercing an 8 byte integer to a 4 byte pointer. */
4164 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4165
4166 current_thread = saved_thread;
4167 if (errno)
4168 perror_with_name ("resuming thread");
4169
4170 /* Successfully resumed. Clear state that no longer makes sense,
4171 and mark the LWP as running. Must not do this before resuming
4172 otherwise if that fails other code will be confused. E.g., we'd
4173 later try to stop the LWP and hang forever waiting for a stop
4174 status. Note that we must not throw after this is cleared,
4175 otherwise handle_zombie_lwp_error would get confused. */
4176 lwp->stopped = 0;
4177 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4178 }
4179
4180 /* Called when we try to resume a stopped LWP and that errors out. If
4181 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4182 or about to become), discard the error, clear any pending status
4183 the LWP may have, and return true (we'll collect the exit status
4184 soon enough). Otherwise, return false. */
4185
4186 static int
4187 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4188 {
4189 struct thread_info *thread = get_lwp_thread (lp);
4190
4191 /* If we get an error after resuming the LWP successfully, we'd
4192 confuse !T state for the LWP being gone. */
4193 gdb_assert (lp->stopped);
4194
4195 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4196 because even if ptrace failed with ESRCH, the tracee may be "not
4197 yet fully dead", but already refusing ptrace requests. In that
4198 case the tracee has 'R (Running)' state for a little bit
4199 (observed in Linux 3.18). See also the note on ESRCH in the
4200 ptrace(2) man page. Instead, check whether the LWP has any state
4201 other than ptrace-stopped. */
4202
4203 /* Don't assume anything if /proc/PID/status can't be read. */
4204 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4205 {
4206 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4207 lp->status_pending_p = 0;
4208 return 1;
4209 }
4210 return 0;
4211 }
4212
4213 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4214 disappears while we try to resume it. */
4215
4216 static void
4217 linux_resume_one_lwp (struct lwp_info *lwp,
4218 int step, int signal, siginfo_t *info)
4219 {
4220 TRY
4221 {
4222 linux_resume_one_lwp_throw (lwp, step, signal, info);
4223 }
4224 CATCH (ex, RETURN_MASK_ERROR)
4225 {
4226 if (!check_ptrace_stopped_lwp_gone (lwp))
4227 throw_exception (ex);
4228 }
4229 END_CATCH
4230 }
4231
4232 struct thread_resume_array
4233 {
4234 struct thread_resume *resume;
4235 size_t n;
4236 };
4237
4238 /* This function is called once per thread via find_inferior.
4239 ARG is a pointer to a thread_resume_array struct.
4240 We look up the thread specified by ENTRY in ARG, and mark the thread
4241 with a pointer to the appropriate resume request.
4242
4243 This algorithm is O(threads * resume elements), but resume elements
4244 is small (and will remain small at least until GDB supports thread
4245 suspension). */
4246
4247 static int
4248 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
4249 {
4250 struct thread_info *thread = (struct thread_info *) entry;
4251 struct lwp_info *lwp = get_thread_lwp (thread);
4252 int ndx;
4253 struct thread_resume_array *r;
4254
4255 r = (struct thread_resume_array *) arg;
4256
4257 for (ndx = 0; ndx < r->n; ndx++)
4258 {
4259 ptid_t ptid = r->resume[ndx].thread;
4260 if (ptid_equal (ptid, minus_one_ptid)
4261 || ptid_equal (ptid, entry->id)
4262 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4263 of PID'. */
4264 || (ptid_get_pid (ptid) == pid_of (thread)
4265 && (ptid_is_pid (ptid)
4266 || ptid_get_lwp (ptid) == -1)))
4267 {
4268 if (r->resume[ndx].kind == resume_stop
4269 && thread->last_resume_kind == resume_stop)
4270 {
4271 if (debug_threads)
4272 debug_printf ("already %s LWP %ld at GDB's request\n",
4273 (thread->last_status.kind
4274 == TARGET_WAITKIND_STOPPED)
4275 ? "stopped"
4276 : "stopping",
4277 lwpid_of (thread));
4278
4279 continue;
4280 }
4281
4282 lwp->resume = &r->resume[ndx];
4283 thread->last_resume_kind = lwp->resume->kind;
4284
4285 lwp->step_range_start = lwp->resume->step_range_start;
4286 lwp->step_range_end = lwp->resume->step_range_end;
4287
4288 /* If we had a deferred signal to report, dequeue one now.
4289 This can happen if LWP gets more than one signal while
4290 trying to get out of a jump pad. */
4291 if (lwp->stopped
4292 && !lwp->status_pending_p
4293 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4294 {
4295 lwp->status_pending_p = 1;
4296
4297 if (debug_threads)
4298 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4299 "leaving status pending.\n",
4300 WSTOPSIG (lwp->status_pending),
4301 lwpid_of (thread));
4302 }
4303
4304 return 0;
4305 }
4306 }
4307
4308 /* No resume action for this thread. */
4309 lwp->resume = NULL;
4310
4311 return 0;
4312 }
4313
4314 /* find_inferior callback for linux_resume.
4315 Set *FLAG_P if this lwp has an interesting status pending. */
4316
4317 static int
4318 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
4319 {
4320 struct thread_info *thread = (struct thread_info *) entry;
4321 struct lwp_info *lwp = get_thread_lwp (thread);
4322
4323 /* LWPs which will not be resumed are not interesting, because
4324 we might not wait for them next time through linux_wait. */
4325 if (lwp->resume == NULL)
4326 return 0;
4327
4328 if (thread_still_has_status_pending_p (thread))
4329 * (int *) flag_p = 1;
4330
4331 return 0;
4332 }
4333
4334 /* Return 1 if this lwp that GDB wants running is stopped at an
4335 internal breakpoint that we need to step over. It assumes that any
4336 required STOP_PC adjustment has already been propagated to the
4337 inferior's regcache. */
4338
4339 static int
4340 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
4341 {
4342 struct thread_info *thread = (struct thread_info *) entry;
4343 struct lwp_info *lwp = get_thread_lwp (thread);
4344 struct thread_info *saved_thread;
4345 CORE_ADDR pc;
4346 struct process_info *proc = get_thread_process (thread);
4347
4348 /* GDBserver is skipping the extra traps from the wrapper program,
4349 don't have to do step over. */
4350 if (proc->tdesc == NULL)
4351 return 0;
4352
4353 /* LWPs which will not be resumed are not interesting, because we
4354 might not wait for them next time through linux_wait. */
4355
4356 if (!lwp->stopped)
4357 {
4358 if (debug_threads)
4359 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4360 lwpid_of (thread));
4361 return 0;
4362 }
4363
4364 if (thread->last_resume_kind == resume_stop)
4365 {
4366 if (debug_threads)
4367 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4368 " stopped\n",
4369 lwpid_of (thread));
4370 return 0;
4371 }
4372
4373 gdb_assert (lwp->suspended >= 0);
4374
4375 if (lwp->suspended)
4376 {
4377 if (debug_threads)
4378 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4379 lwpid_of (thread));
4380 return 0;
4381 }
4382
4383 if (!lwp->need_step_over)
4384 {
4385 if (debug_threads)
4386 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
4387 }
4388
4389 if (lwp->status_pending_p)
4390 {
4391 if (debug_threads)
4392 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4393 " status.\n",
4394 lwpid_of (thread));
4395 return 0;
4396 }
4397
4398 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4399 or we have. */
4400 pc = get_pc (lwp);
4401
4402 /* If the PC has changed since we stopped, then don't do anything,
4403 and let the breakpoint/tracepoint be hit. This happens if, for
4404 instance, GDB handled the decr_pc_after_break subtraction itself,
4405 GDB is OOL stepping this thread, or the user has issued a "jump"
4406 command, or poked thread's registers herself. */
4407 if (pc != lwp->stop_pc)
4408 {
4409 if (debug_threads)
4410 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4411 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4412 lwpid_of (thread),
4413 paddress (lwp->stop_pc), paddress (pc));
4414
4415 lwp->need_step_over = 0;
4416 return 0;
4417 }
4418
4419 saved_thread = current_thread;
4420 current_thread = thread;
4421
4422 /* We can only step over breakpoints we know about. */
4423 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4424 {
4425 /* Don't step over a breakpoint that GDB expects to hit
4426 though. If the condition is being evaluated on the target's side
4427 and it evaluate to false, step over this breakpoint as well. */
4428 if (gdb_breakpoint_here (pc)
4429 && gdb_condition_true_at_breakpoint (pc)
4430 && gdb_no_commands_at_breakpoint (pc))
4431 {
4432 if (debug_threads)
4433 debug_printf ("Need step over [LWP %ld]? yes, but found"
4434 " GDB breakpoint at 0x%s; skipping step over\n",
4435 lwpid_of (thread), paddress (pc));
4436
4437 current_thread = saved_thread;
4438 return 0;
4439 }
4440 else
4441 {
4442 if (debug_threads)
4443 debug_printf ("Need step over [LWP %ld]? yes, "
4444 "found breakpoint at 0x%s\n",
4445 lwpid_of (thread), paddress (pc));
4446
4447 /* We've found an lwp that needs stepping over --- return 1 so
4448 that find_inferior stops looking. */
4449 current_thread = saved_thread;
4450
4451 /* If the step over is cancelled, this is set again. */
4452 lwp->need_step_over = 0;
4453 return 1;
4454 }
4455 }
4456
4457 current_thread = saved_thread;
4458
4459 if (debug_threads)
4460 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4461 " at 0x%s\n",
4462 lwpid_of (thread), paddress (pc));
4463
4464 return 0;
4465 }
4466
4467 /* Start a step-over operation on LWP. When LWP stopped at a
4468 breakpoint, to make progress, we need to remove the breakpoint out
4469 of the way. If we let other threads run while we do that, they may
4470 pass by the breakpoint location and miss hitting it. To avoid
4471 that, a step-over momentarily stops all threads while LWP is
4472 single-stepped while the breakpoint is temporarily uninserted from
4473 the inferior. When the single-step finishes, we reinsert the
4474 breakpoint, and let all threads that are supposed to be running,
4475 run again.
4476
4477 On targets that don't support hardware single-step, we don't
4478 currently support full software single-stepping. Instead, we only
4479 support stepping over the thread event breakpoint, by asking the
4480 low target where to place a reinsert breakpoint. Since this
4481 routine assumes the breakpoint being stepped over is a thread event
4482 breakpoint, it usually assumes the return address of the current
4483 function is a good enough place to set the reinsert breakpoint. */
4484
4485 static int
4486 start_step_over (struct lwp_info *lwp)
4487 {
4488 struct thread_info *thread = get_lwp_thread (lwp);
4489 struct thread_info *saved_thread;
4490 CORE_ADDR pc;
4491 int step;
4492
4493 if (debug_threads)
4494 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4495 lwpid_of (thread));
4496
4497 stop_all_lwps (1, lwp);
4498
4499 if (lwp->suspended != 0)
4500 {
4501 internal_error (__FILE__, __LINE__,
4502 "LWP %ld suspended=%d\n", lwpid_of (thread),
4503 lwp->suspended);
4504 }
4505
4506 if (debug_threads)
4507 debug_printf ("Done stopping all threads for step-over.\n");
4508
4509 /* Note, we should always reach here with an already adjusted PC,
4510 either by GDB (if we're resuming due to GDB's request), or by our
4511 caller, if we just finished handling an internal breakpoint GDB
4512 shouldn't care about. */
4513 pc = get_pc (lwp);
4514
4515 saved_thread = current_thread;
4516 current_thread = thread;
4517
4518 lwp->bp_reinsert = pc;
4519 uninsert_breakpoints_at (pc);
4520 uninsert_fast_tracepoint_jumps_at (pc);
4521
4522 if (can_hardware_single_step ())
4523 {
4524 step = 1;
4525 }
4526 else if (can_software_single_step ())
4527 {
4528 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
4529 set_reinsert_breakpoint (raddr);
4530 step = 0;
4531 }
4532 else
4533 {
4534 internal_error (__FILE__, __LINE__,
4535 "stepping is not implemented on this target");
4536 }
4537
4538 current_thread = saved_thread;
4539
4540 linux_resume_one_lwp (lwp, step, 0, NULL);
4541
4542 /* Require next event from this LWP. */
4543 step_over_bkpt = thread->entry.id;
4544 return 1;
4545 }
4546
4547 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4548 start_step_over, if still there, and delete any reinsert
4549 breakpoints we've set, on non hardware single-step targets. */
4550
4551 static int
4552 finish_step_over (struct lwp_info *lwp)
4553 {
4554 if (lwp->bp_reinsert != 0)
4555 {
4556 if (debug_threads)
4557 debug_printf ("Finished step over.\n");
4558
4559 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4560 may be no breakpoint to reinsert there by now. */
4561 reinsert_breakpoints_at (lwp->bp_reinsert);
4562 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4563
4564 lwp->bp_reinsert = 0;
4565
4566 /* Delete any software-single-step reinsert breakpoints. No
4567 longer needed. We don't have to worry about other threads
4568 hitting this trap, and later not being able to explain it,
4569 because we were stepping over a breakpoint, and we hold all
4570 threads but LWP stopped while doing that. */
4571 if (!can_hardware_single_step ())
4572 delete_reinsert_breakpoints ();
4573
4574 step_over_bkpt = null_ptid;
4575 return 1;
4576 }
4577 else
4578 return 0;
4579 }
4580
4581 /* If there's a step over in progress, wait until all threads stop
4582 (that is, until the stepping thread finishes its step), and
4583 unsuspend all lwps. The stepping thread ends with its status
4584 pending, which is processed later when we get back to processing
4585 events. */
4586
4587 static void
4588 complete_ongoing_step_over (void)
4589 {
4590 if (!ptid_equal (step_over_bkpt, null_ptid))
4591 {
4592 struct lwp_info *lwp;
4593 int wstat;
4594 int ret;
4595
4596 if (debug_threads)
4597 debug_printf ("detach: step over in progress, finish it first\n");
4598
4599 /* Passing NULL_PTID as filter indicates we want all events to
4600 be left pending. Eventually this returns when there are no
4601 unwaited-for children left. */
4602 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4603 &wstat, __WALL);
4604 gdb_assert (ret == -1);
4605
4606 lwp = find_lwp_pid (step_over_bkpt);
4607 if (lwp != NULL)
4608 finish_step_over (lwp);
4609 step_over_bkpt = null_ptid;
4610 unsuspend_all_lwps (lwp);
4611 }
4612 }
4613
4614 /* This function is called once per thread. We check the thread's resume
4615 request, which will tell us whether to resume, step, or leave the thread
4616 stopped; and what signal, if any, it should be sent.
4617
4618 For threads which we aren't explicitly told otherwise, we preserve
4619 the stepping flag; this is used for stepping over gdbserver-placed
4620 breakpoints.
4621
4622 If pending_flags was set in any thread, we queue any needed
4623 signals, since we won't actually resume. We already have a pending
4624 event to report, so we don't need to preserve any step requests;
4625 they should be re-issued if necessary. */
4626
4627 static int
4628 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
4629 {
4630 struct thread_info *thread = (struct thread_info *) entry;
4631 struct lwp_info *lwp = get_thread_lwp (thread);
4632 int step;
4633 int leave_all_stopped = * (int *) arg;
4634 int leave_pending;
4635
4636 if (lwp->resume == NULL)
4637 return 0;
4638
4639 if (lwp->resume->kind == resume_stop)
4640 {
4641 if (debug_threads)
4642 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4643
4644 if (!lwp->stopped)
4645 {
4646 if (debug_threads)
4647 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4648
4649 /* Stop the thread, and wait for the event asynchronously,
4650 through the event loop. */
4651 send_sigstop (lwp);
4652 }
4653 else
4654 {
4655 if (debug_threads)
4656 debug_printf ("already stopped LWP %ld\n",
4657 lwpid_of (thread));
4658
4659 /* The LWP may have been stopped in an internal event that
4660 was not meant to be notified back to GDB (e.g., gdbserver
4661 breakpoint), so we should be reporting a stop event in
4662 this case too. */
4663
4664 /* If the thread already has a pending SIGSTOP, this is a
4665 no-op. Otherwise, something later will presumably resume
4666 the thread and this will cause it to cancel any pending
4667 operation, due to last_resume_kind == resume_stop. If
4668 the thread already has a pending status to report, we
4669 will still report it the next time we wait - see
4670 status_pending_p_callback. */
4671
4672 /* If we already have a pending signal to report, then
4673 there's no need to queue a SIGSTOP, as this means we're
4674 midway through moving the LWP out of the jumppad, and we
4675 will report the pending signal as soon as that is
4676 finished. */
4677 if (lwp->pending_signals_to_report == NULL)
4678 send_sigstop (lwp);
4679 }
4680
4681 /* For stop requests, we're done. */
4682 lwp->resume = NULL;
4683 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4684 return 0;
4685 }
4686
4687 /* If this thread which is about to be resumed has a pending status,
4688 then don't resume it - we can just report the pending status.
4689 Likewise if it is suspended, because e.g., another thread is
4690 stepping past a breakpoint. Make sure to queue any signals that
4691 would otherwise be sent. In all-stop mode, we do this decision
4692 based on if *any* thread has a pending status. If there's a
4693 thread that needs the step-over-breakpoint dance, then don't
4694 resume any other thread but that particular one. */
4695 leave_pending = (lwp->suspended
4696 || lwp->status_pending_p
4697 || leave_all_stopped);
4698
4699 if (!leave_pending)
4700 {
4701 if (debug_threads)
4702 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4703
4704 step = (lwp->resume->kind == resume_step);
4705 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
4706 }
4707 else
4708 {
4709 if (debug_threads)
4710 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4711
4712 /* If we have a new signal, enqueue the signal. */
4713 if (lwp->resume->sig != 0)
4714 {
4715 struct pending_signals *p_sig = XCNEW (struct pending_signals);
4716
4717 p_sig->prev = lwp->pending_signals;
4718 p_sig->signal = lwp->resume->sig;
4719
4720 /* If this is the same signal we were previously stopped by,
4721 make sure to queue its siginfo. We can ignore the return
4722 value of ptrace; if it fails, we'll skip
4723 PTRACE_SETSIGINFO. */
4724 if (WIFSTOPPED (lwp->last_status)
4725 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
4726 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4727 &p_sig->info);
4728
4729 lwp->pending_signals = p_sig;
4730 }
4731 }
4732
4733 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4734 lwp->resume = NULL;
4735 return 0;
4736 }
4737
4738 static void
4739 linux_resume (struct thread_resume *resume_info, size_t n)
4740 {
4741 struct thread_resume_array array = { resume_info, n };
4742 struct thread_info *need_step_over = NULL;
4743 int any_pending;
4744 int leave_all_stopped;
4745
4746 if (debug_threads)
4747 {
4748 debug_enter ();
4749 debug_printf ("linux_resume:\n");
4750 }
4751
4752 find_inferior (&all_threads, linux_set_resume_request, &array);
4753
4754 /* If there is a thread which would otherwise be resumed, which has
4755 a pending status, then don't resume any threads - we can just
4756 report the pending status. Make sure to queue any signals that
4757 would otherwise be sent. In non-stop mode, we'll apply this
4758 logic to each thread individually. We consume all pending events
4759 before considering to start a step-over (in all-stop). */
4760 any_pending = 0;
4761 if (!non_stop)
4762 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4763
4764 /* If there is a thread which would otherwise be resumed, which is
4765 stopped at a breakpoint that needs stepping over, then don't
4766 resume any threads - have it step over the breakpoint with all
4767 other threads stopped, then resume all threads again. Make sure
4768 to queue any signals that would otherwise be delivered or
4769 queued. */
4770 if (!any_pending && supports_breakpoints ())
4771 need_step_over
4772 = (struct thread_info *) find_inferior (&all_threads,
4773 need_step_over_p, NULL);
4774
4775 leave_all_stopped = (need_step_over != NULL || any_pending);
4776
4777 if (debug_threads)
4778 {
4779 if (need_step_over != NULL)
4780 debug_printf ("Not resuming all, need step over\n");
4781 else if (any_pending)
4782 debug_printf ("Not resuming, all-stop and found "
4783 "an LWP with pending status\n");
4784 else
4785 debug_printf ("Resuming, no pending status or step over needed\n");
4786 }
4787
4788 /* Even if we're leaving threads stopped, queue all signals we'd
4789 otherwise deliver. */
4790 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4791
4792 if (need_step_over)
4793 start_step_over (get_thread_lwp (need_step_over));
4794
4795 if (debug_threads)
4796 {
4797 debug_printf ("linux_resume done\n");
4798 debug_exit ();
4799 }
4800
4801 /* We may have events that were pending that can/should be sent to
4802 the client now. Trigger a linux_wait call. */
4803 if (target_is_async_p ())
4804 async_file_mark ();
4805 }
4806
4807 /* This function is called once per thread. We check the thread's
4808 last resume request, which will tell us whether to resume, step, or
4809 leave the thread stopped. Any signal the client requested to be
4810 delivered has already been enqueued at this point.
4811
4812 If any thread that GDB wants running is stopped at an internal
4813 breakpoint that needs stepping over, we start a step-over operation
4814 on that particular thread, and leave all others stopped. */
4815
4816 static int
4817 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4818 {
4819 struct thread_info *thread = (struct thread_info *) entry;
4820 struct lwp_info *lwp = get_thread_lwp (thread);
4821 int step;
4822
4823 if (lwp == except)
4824 return 0;
4825
4826 if (debug_threads)
4827 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4828
4829 if (!lwp->stopped)
4830 {
4831 if (debug_threads)
4832 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4833 return 0;
4834 }
4835
4836 if (thread->last_resume_kind == resume_stop
4837 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4838 {
4839 if (debug_threads)
4840 debug_printf (" client wants LWP to remain %ld stopped\n",
4841 lwpid_of (thread));
4842 return 0;
4843 }
4844
4845 if (lwp->status_pending_p)
4846 {
4847 if (debug_threads)
4848 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4849 lwpid_of (thread));
4850 return 0;
4851 }
4852
4853 gdb_assert (lwp->suspended >= 0);
4854
4855 if (lwp->suspended)
4856 {
4857 if (debug_threads)
4858 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4859 return 0;
4860 }
4861
4862 if (thread->last_resume_kind == resume_stop
4863 && lwp->pending_signals_to_report == NULL
4864 && lwp->collecting_fast_tracepoint == 0)
4865 {
4866 /* We haven't reported this LWP as stopped yet (otherwise, the
4867 last_status.kind check above would catch it, and we wouldn't
4868 reach here. This LWP may have been momentarily paused by a
4869 stop_all_lwps call while handling for example, another LWP's
4870 step-over. In that case, the pending expected SIGSTOP signal
4871 that was queued at vCont;t handling time will have already
4872 been consumed by wait_for_sigstop, and so we need to requeue
4873 another one here. Note that if the LWP already has a SIGSTOP
4874 pending, this is a no-op. */
4875
4876 if (debug_threads)
4877 debug_printf ("Client wants LWP %ld to stop. "
4878 "Making sure it has a SIGSTOP pending\n",
4879 lwpid_of (thread));
4880
4881 send_sigstop (lwp);
4882 }
4883
4884 if (thread->last_resume_kind == resume_step)
4885 {
4886 if (debug_threads)
4887 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4888 lwpid_of (thread));
4889 step = 1;
4890 }
4891 else if (lwp->bp_reinsert != 0)
4892 {
4893 if (debug_threads)
4894 debug_printf (" stepping LWP %ld, reinsert set\n",
4895 lwpid_of (thread));
4896 step = 1;
4897 }
4898 else
4899 step = 0;
4900
4901 linux_resume_one_lwp (lwp, step, 0, NULL);
4902 return 0;
4903 }
4904
4905 static int
4906 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4907 {
4908 struct thread_info *thread = (struct thread_info *) entry;
4909 struct lwp_info *lwp = get_thread_lwp (thread);
4910
4911 if (lwp == except)
4912 return 0;
4913
4914 lwp_suspended_decr (lwp);
4915
4916 return proceed_one_lwp (entry, except);
4917 }
4918
4919 /* When we finish a step-over, set threads running again. If there's
4920 another thread that may need a step-over, now's the time to start
4921 it. Eventually, we'll move all threads past their breakpoints. */
4922
4923 static void
4924 proceed_all_lwps (void)
4925 {
4926 struct thread_info *need_step_over;
4927
4928 /* If there is a thread which would otherwise be resumed, which is
4929 stopped at a breakpoint that needs stepping over, then don't
4930 resume any threads - have it step over the breakpoint with all
4931 other threads stopped, then resume all threads again. */
4932
4933 if (supports_breakpoints ())
4934 {
4935 need_step_over
4936 = (struct thread_info *) find_inferior (&all_threads,
4937 need_step_over_p, NULL);
4938
4939 if (need_step_over != NULL)
4940 {
4941 if (debug_threads)
4942 debug_printf ("proceed_all_lwps: found "
4943 "thread %ld needing a step-over\n",
4944 lwpid_of (need_step_over));
4945
4946 start_step_over (get_thread_lwp (need_step_over));
4947 return;
4948 }
4949 }
4950
4951 if (debug_threads)
4952 debug_printf ("Proceeding, no step-over needed\n");
4953
4954 find_inferior (&all_threads, proceed_one_lwp, NULL);
4955 }
4956
4957 /* Stopped LWPs that the client wanted to be running, that don't have
4958 pending statuses, are set to run again, except for EXCEPT, if not
4959 NULL. This undoes a stop_all_lwps call. */
4960
4961 static void
4962 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4963 {
4964 if (debug_threads)
4965 {
4966 debug_enter ();
4967 if (except)
4968 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4969 lwpid_of (get_lwp_thread (except)));
4970 else
4971 debug_printf ("unstopping all lwps\n");
4972 }
4973
4974 if (unsuspend)
4975 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4976 else
4977 find_inferior (&all_threads, proceed_one_lwp, except);
4978
4979 if (debug_threads)
4980 {
4981 debug_printf ("unstop_all_lwps done\n");
4982 debug_exit ();
4983 }
4984 }
4985
4986
4987 #ifdef HAVE_LINUX_REGSETS
4988
4989 #define use_linux_regsets 1
4990
4991 /* Returns true if REGSET has been disabled. */
4992
4993 static int
4994 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4995 {
4996 return (info->disabled_regsets != NULL
4997 && info->disabled_regsets[regset - info->regsets]);
4998 }
4999
5000 /* Disable REGSET. */
5001
5002 static void
5003 disable_regset (struct regsets_info *info, struct regset_info *regset)
5004 {
5005 int dr_offset;
5006
5007 dr_offset = regset - info->regsets;
5008 if (info->disabled_regsets == NULL)
5009 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5010 info->disabled_regsets[dr_offset] = 1;
5011 }
5012
5013 static int
5014 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5015 struct regcache *regcache)
5016 {
5017 struct regset_info *regset;
5018 int saw_general_regs = 0;
5019 int pid;
5020 struct iovec iov;
5021
5022 pid = lwpid_of (current_thread);
5023 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5024 {
5025 void *buf, *data;
5026 int nt_type, res;
5027
5028 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5029 continue;
5030
5031 buf = xmalloc (regset->size);
5032
5033 nt_type = regset->nt_type;
5034 if (nt_type)
5035 {
5036 iov.iov_base = buf;
5037 iov.iov_len = regset->size;
5038 data = (void *) &iov;
5039 }
5040 else
5041 data = buf;
5042
5043 #ifndef __sparc__
5044 res = ptrace (regset->get_request, pid,
5045 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5046 #else
5047 res = ptrace (regset->get_request, pid, data, nt_type);
5048 #endif
5049 if (res < 0)
5050 {
5051 if (errno == EIO)
5052 {
5053 /* If we get EIO on a regset, do not try it again for
5054 this process mode. */
5055 disable_regset (regsets_info, regset);
5056 }
5057 else if (errno == ENODATA)
5058 {
5059 /* ENODATA may be returned if the regset is currently
5060 not "active". This can happen in normal operation,
5061 so suppress the warning in this case. */
5062 }
5063 else
5064 {
5065 char s[256];
5066 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5067 pid);
5068 perror (s);
5069 }
5070 }
5071 else
5072 {
5073 if (regset->type == GENERAL_REGS)
5074 saw_general_regs = 1;
5075 regset->store_function (regcache, buf);
5076 }
5077 free (buf);
5078 }
5079 if (saw_general_regs)
5080 return 0;
5081 else
5082 return 1;
5083 }
5084
5085 static int
5086 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5087 struct regcache *regcache)
5088 {
5089 struct regset_info *regset;
5090 int saw_general_regs = 0;
5091 int pid;
5092 struct iovec iov;
5093
5094 pid = lwpid_of (current_thread);
5095 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5096 {
5097 void *buf, *data;
5098 int nt_type, res;
5099
5100 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5101 || regset->fill_function == NULL)
5102 continue;
5103
5104 buf = xmalloc (regset->size);
5105
5106 /* First fill the buffer with the current register set contents,
5107 in case there are any items in the kernel's regset that are
5108 not in gdbserver's regcache. */
5109
5110 nt_type = regset->nt_type;
5111 if (nt_type)
5112 {
5113 iov.iov_base = buf;
5114 iov.iov_len = regset->size;
5115 data = (void *) &iov;
5116 }
5117 else
5118 data = buf;
5119
5120 #ifndef __sparc__
5121 res = ptrace (regset->get_request, pid,
5122 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5123 #else
5124 res = ptrace (regset->get_request, pid, data, nt_type);
5125 #endif
5126
5127 if (res == 0)
5128 {
5129 /* Then overlay our cached registers on that. */
5130 regset->fill_function (regcache, buf);
5131
5132 /* Only now do we write the register set. */
5133 #ifndef __sparc__
5134 res = ptrace (regset->set_request, pid,
5135 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5136 #else
5137 res = ptrace (regset->set_request, pid, data, nt_type);
5138 #endif
5139 }
5140
5141 if (res < 0)
5142 {
5143 if (errno == EIO)
5144 {
5145 /* If we get EIO on a regset, do not try it again for
5146 this process mode. */
5147 disable_regset (regsets_info, regset);
5148 }
5149 else if (errno == ESRCH)
5150 {
5151 /* At this point, ESRCH should mean the process is
5152 already gone, in which case we simply ignore attempts
5153 to change its registers. See also the related
5154 comment in linux_resume_one_lwp. */
5155 free (buf);
5156 return 0;
5157 }
5158 else
5159 {
5160 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5161 }
5162 }
5163 else if (regset->type == GENERAL_REGS)
5164 saw_general_regs = 1;
5165 free (buf);
5166 }
5167 if (saw_general_regs)
5168 return 0;
5169 else
5170 return 1;
5171 }
5172
5173 #else /* !HAVE_LINUX_REGSETS */
5174
5175 #define use_linux_regsets 0
5176 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5177 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5178
5179 #endif
5180
5181 /* Return 1 if register REGNO is supported by one of the regset ptrace
5182 calls or 0 if it has to be transferred individually. */
5183
5184 static int
5185 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5186 {
5187 unsigned char mask = 1 << (regno % 8);
5188 size_t index = regno / 8;
5189
5190 return (use_linux_regsets
5191 && (regs_info->regset_bitmap == NULL
5192 || (regs_info->regset_bitmap[index] & mask) != 0));
5193 }
5194
5195 #ifdef HAVE_LINUX_USRREGS
5196
5197 int
5198 register_addr (const struct usrregs_info *usrregs, int regnum)
5199 {
5200 int addr;
5201
5202 if (regnum < 0 || regnum >= usrregs->num_regs)
5203 error ("Invalid register number %d.", regnum);
5204
5205 addr = usrregs->regmap[regnum];
5206
5207 return addr;
5208 }
5209
5210 /* Fetch one register. */
5211 static void
5212 fetch_register (const struct usrregs_info *usrregs,
5213 struct regcache *regcache, int regno)
5214 {
5215 CORE_ADDR regaddr;
5216 int i, size;
5217 char *buf;
5218 int pid;
5219
5220 if (regno >= usrregs->num_regs)
5221 return;
5222 if ((*the_low_target.cannot_fetch_register) (regno))
5223 return;
5224
5225 regaddr = register_addr (usrregs, regno);
5226 if (regaddr == -1)
5227 return;
5228
5229 size = ((register_size (regcache->tdesc, regno)
5230 + sizeof (PTRACE_XFER_TYPE) - 1)
5231 & -sizeof (PTRACE_XFER_TYPE));
5232 buf = (char *) alloca (size);
5233
5234 pid = lwpid_of (current_thread);
5235 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5236 {
5237 errno = 0;
5238 *(PTRACE_XFER_TYPE *) (buf + i) =
5239 ptrace (PTRACE_PEEKUSER, pid,
5240 /* Coerce to a uintptr_t first to avoid potential gcc warning
5241 of coercing an 8 byte integer to a 4 byte pointer. */
5242 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5243 regaddr += sizeof (PTRACE_XFER_TYPE);
5244 if (errno != 0)
5245 error ("reading register %d: %s", regno, strerror (errno));
5246 }
5247
5248 if (the_low_target.supply_ptrace_register)
5249 the_low_target.supply_ptrace_register (regcache, regno, buf);
5250 else
5251 supply_register (regcache, regno, buf);
5252 }
5253
5254 /* Store one register. */
5255 static void
5256 store_register (const struct usrregs_info *usrregs,
5257 struct regcache *regcache, int regno)
5258 {
5259 CORE_ADDR regaddr;
5260 int i, size;
5261 char *buf;
5262 int pid;
5263
5264 if (regno >= usrregs->num_regs)
5265 return;
5266 if ((*the_low_target.cannot_store_register) (regno))
5267 return;
5268
5269 regaddr = register_addr (usrregs, regno);
5270 if (regaddr == -1)
5271 return;
5272
5273 size = ((register_size (regcache->tdesc, regno)
5274 + sizeof (PTRACE_XFER_TYPE) - 1)
5275 & -sizeof (PTRACE_XFER_TYPE));
5276 buf = (char *) alloca (size);
5277 memset (buf, 0, size);
5278
5279 if (the_low_target.collect_ptrace_register)
5280 the_low_target.collect_ptrace_register (regcache, regno, buf);
5281 else
5282 collect_register (regcache, regno, buf);
5283
5284 pid = lwpid_of (current_thread);
5285 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5286 {
5287 errno = 0;
5288 ptrace (PTRACE_POKEUSER, pid,
5289 /* Coerce to a uintptr_t first to avoid potential gcc warning
5290 about coercing an 8 byte integer to a 4 byte pointer. */
5291 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5292 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5293 if (errno != 0)
5294 {
5295 /* At this point, ESRCH should mean the process is
5296 already gone, in which case we simply ignore attempts
5297 to change its registers. See also the related
5298 comment in linux_resume_one_lwp. */
5299 if (errno == ESRCH)
5300 return;
5301
5302 if ((*the_low_target.cannot_store_register) (regno) == 0)
5303 error ("writing register %d: %s", regno, strerror (errno));
5304 }
5305 regaddr += sizeof (PTRACE_XFER_TYPE);
5306 }
5307 }
5308
5309 /* Fetch all registers, or just one, from the child process.
5310 If REGNO is -1, do this for all registers, skipping any that are
5311 assumed to have been retrieved by regsets_fetch_inferior_registers,
5312 unless ALL is non-zero.
5313 Otherwise, REGNO specifies which register (so we can save time). */
5314 static void
5315 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5316 struct regcache *regcache, int regno, int all)
5317 {
5318 struct usrregs_info *usr = regs_info->usrregs;
5319
5320 if (regno == -1)
5321 {
5322 for (regno = 0; regno < usr->num_regs; regno++)
5323 if (all || !linux_register_in_regsets (regs_info, regno))
5324 fetch_register (usr, regcache, regno);
5325 }
5326 else
5327 fetch_register (usr, regcache, regno);
5328 }
5329
5330 /* Store our register values back into the inferior.
5331 If REGNO is -1, do this for all registers, skipping any that are
5332 assumed to have been saved by regsets_store_inferior_registers,
5333 unless ALL is non-zero.
5334 Otherwise, REGNO specifies which register (so we can save time). */
5335 static void
5336 usr_store_inferior_registers (const struct regs_info *regs_info,
5337 struct regcache *regcache, int regno, int all)
5338 {
5339 struct usrregs_info *usr = regs_info->usrregs;
5340
5341 if (regno == -1)
5342 {
5343 for (regno = 0; regno < usr->num_regs; regno++)
5344 if (all || !linux_register_in_regsets (regs_info, regno))
5345 store_register (usr, regcache, regno);
5346 }
5347 else
5348 store_register (usr, regcache, regno);
5349 }
5350
5351 #else /* !HAVE_LINUX_USRREGS */
5352
5353 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5354 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5355
5356 #endif
5357
5358
5359 void
5360 linux_fetch_registers (struct regcache *regcache, int regno)
5361 {
5362 int use_regsets;
5363 int all = 0;
5364 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5365
5366 if (regno == -1)
5367 {
5368 if (the_low_target.fetch_register != NULL
5369 && regs_info->usrregs != NULL)
5370 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5371 (*the_low_target.fetch_register) (regcache, regno);
5372
5373 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5374 if (regs_info->usrregs != NULL)
5375 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5376 }
5377 else
5378 {
5379 if (the_low_target.fetch_register != NULL
5380 && (*the_low_target.fetch_register) (regcache, regno))
5381 return;
5382
5383 use_regsets = linux_register_in_regsets (regs_info, regno);
5384 if (use_regsets)
5385 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5386 regcache);
5387 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5388 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5389 }
5390 }
5391
5392 void
5393 linux_store_registers (struct regcache *regcache, int regno)
5394 {
5395 int use_regsets;
5396 int all = 0;
5397 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5398
5399 if (regno == -1)
5400 {
5401 all = regsets_store_inferior_registers (regs_info->regsets_info,
5402 regcache);
5403 if (regs_info->usrregs != NULL)
5404 usr_store_inferior_registers (regs_info, regcache, regno, all);
5405 }
5406 else
5407 {
5408 use_regsets = linux_register_in_regsets (regs_info, regno);
5409 if (use_regsets)
5410 all = regsets_store_inferior_registers (regs_info->regsets_info,
5411 regcache);
5412 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5413 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5414 }
5415 }
5416
5417
5418 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5419 to debugger memory starting at MYADDR. */
5420
5421 static int
5422 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5423 {
5424 int pid = lwpid_of (current_thread);
5425 register PTRACE_XFER_TYPE *buffer;
5426 register CORE_ADDR addr;
5427 register int count;
5428 char filename[64];
5429 register int i;
5430 int ret;
5431 int fd;
5432
5433 /* Try using /proc. Don't bother for one word. */
5434 if (len >= 3 * sizeof (long))
5435 {
5436 int bytes;
5437
5438 /* We could keep this file open and cache it - possibly one per
5439 thread. That requires some juggling, but is even faster. */
5440 sprintf (filename, "/proc/%d/mem", pid);
5441 fd = open (filename, O_RDONLY | O_LARGEFILE);
5442 if (fd == -1)
5443 goto no_proc;
5444
5445 /* If pread64 is available, use it. It's faster if the kernel
5446 supports it (only one syscall), and it's 64-bit safe even on
5447 32-bit platforms (for instance, SPARC debugging a SPARC64
5448 application). */
5449 #ifdef HAVE_PREAD64
5450 bytes = pread64 (fd, myaddr, len, memaddr);
5451 #else
5452 bytes = -1;
5453 if (lseek (fd, memaddr, SEEK_SET) != -1)
5454 bytes = read (fd, myaddr, len);
5455 #endif
5456
5457 close (fd);
5458 if (bytes == len)
5459 return 0;
5460
5461 /* Some data was read, we'll try to get the rest with ptrace. */
5462 if (bytes > 0)
5463 {
5464 memaddr += bytes;
5465 myaddr += bytes;
5466 len -= bytes;
5467 }
5468 }
5469
5470 no_proc:
5471 /* Round starting address down to longword boundary. */
5472 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5473 /* Round ending address up; get number of longwords that makes. */
5474 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5475 / sizeof (PTRACE_XFER_TYPE));
5476 /* Allocate buffer of that many longwords. */
5477 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5478
5479 /* Read all the longwords */
5480 errno = 0;
5481 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5482 {
5483 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5484 about coercing an 8 byte integer to a 4 byte pointer. */
5485 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5486 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5487 (PTRACE_TYPE_ARG4) 0);
5488 if (errno)
5489 break;
5490 }
5491 ret = errno;
5492
5493 /* Copy appropriate bytes out of the buffer. */
5494 if (i > 0)
5495 {
5496 i *= sizeof (PTRACE_XFER_TYPE);
5497 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5498 memcpy (myaddr,
5499 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5500 i < len ? i : len);
5501 }
5502
5503 return ret;
5504 }
5505
5506 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5507 memory at MEMADDR. On failure (cannot write to the inferior)
5508 returns the value of errno. Always succeeds if LEN is zero. */
5509
5510 static int
5511 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5512 {
5513 register int i;
5514 /* Round starting address down to longword boundary. */
5515 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5516 /* Round ending address up; get number of longwords that makes. */
5517 register int count
5518 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5519 / sizeof (PTRACE_XFER_TYPE);
5520
5521 /* Allocate buffer of that many longwords. */
5522 register PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5523
5524 int pid = lwpid_of (current_thread);
5525
5526 if (len == 0)
5527 {
5528 /* Zero length write always succeeds. */
5529 return 0;
5530 }
5531
5532 if (debug_threads)
5533 {
5534 /* Dump up to four bytes. */
5535 char str[4 * 2 + 1];
5536 char *p = str;
5537 int dump = len < 4 ? len : 4;
5538
5539 for (i = 0; i < dump; i++)
5540 {
5541 sprintf (p, "%02x", myaddr[i]);
5542 p += 2;
5543 }
5544 *p = '\0';
5545
5546 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5547 str, (long) memaddr, pid);
5548 }
5549
5550 /* Fill start and end extra bytes of buffer with existing memory data. */
5551
5552 errno = 0;
5553 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5554 about coercing an 8 byte integer to a 4 byte pointer. */
5555 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5556 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5557 (PTRACE_TYPE_ARG4) 0);
5558 if (errno)
5559 return errno;
5560
5561 if (count > 1)
5562 {
5563 errno = 0;
5564 buffer[count - 1]
5565 = ptrace (PTRACE_PEEKTEXT, pid,
5566 /* Coerce to a uintptr_t first to avoid potential gcc warning
5567 about coercing an 8 byte integer to a 4 byte pointer. */
5568 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5569 * sizeof (PTRACE_XFER_TYPE)),
5570 (PTRACE_TYPE_ARG4) 0);
5571 if (errno)
5572 return errno;
5573 }
5574
5575 /* Copy data to be written over corresponding part of buffer. */
5576
5577 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5578 myaddr, len);
5579
5580 /* Write the entire buffer. */
5581
5582 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5583 {
5584 errno = 0;
5585 ptrace (PTRACE_POKETEXT, pid,
5586 /* Coerce to a uintptr_t first to avoid potential gcc warning
5587 about coercing an 8 byte integer to a 4 byte pointer. */
5588 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5589 (PTRACE_TYPE_ARG4) buffer[i]);
5590 if (errno)
5591 return errno;
5592 }
5593
5594 return 0;
5595 }
5596
5597 static void
5598 linux_look_up_symbols (void)
5599 {
5600 #ifdef USE_THREAD_DB
5601 struct process_info *proc = current_process ();
5602
5603 if (proc->priv->thread_db != NULL)
5604 return;
5605
5606 thread_db_init ();
5607 #endif
5608 }
5609
5610 static void
5611 linux_request_interrupt (void)
5612 {
5613 extern unsigned long signal_pid;
5614
5615 /* Send a SIGINT to the process group. This acts just like the user
5616 typed a ^C on the controlling terminal. */
5617 kill (-signal_pid, SIGINT);
5618 }
5619
5620 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5621 to debugger memory starting at MYADDR. */
5622
5623 static int
5624 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5625 {
5626 char filename[PATH_MAX];
5627 int fd, n;
5628 int pid = lwpid_of (current_thread);
5629
5630 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5631
5632 fd = open (filename, O_RDONLY);
5633 if (fd < 0)
5634 return -1;
5635
5636 if (offset != (CORE_ADDR) 0
5637 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5638 n = -1;
5639 else
5640 n = read (fd, myaddr, len);
5641
5642 close (fd);
5643
5644 return n;
5645 }
5646
5647 /* These breakpoint and watchpoint related wrapper functions simply
5648 pass on the function call if the target has registered a
5649 corresponding function. */
5650
5651 static int
5652 linux_supports_z_point_type (char z_type)
5653 {
5654 return (the_low_target.supports_z_point_type != NULL
5655 && the_low_target.supports_z_point_type (z_type));
5656 }
5657
5658 static int
5659 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5660 int size, struct raw_breakpoint *bp)
5661 {
5662 if (type == raw_bkpt_type_sw)
5663 return insert_memory_breakpoint (bp);
5664 else if (the_low_target.insert_point != NULL)
5665 return the_low_target.insert_point (type, addr, size, bp);
5666 else
5667 /* Unsupported (see target.h). */
5668 return 1;
5669 }
5670
5671 static int
5672 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5673 int size, struct raw_breakpoint *bp)
5674 {
5675 if (type == raw_bkpt_type_sw)
5676 return remove_memory_breakpoint (bp);
5677 else if (the_low_target.remove_point != NULL)
5678 return the_low_target.remove_point (type, addr, size, bp);
5679 else
5680 /* Unsupported (see target.h). */
5681 return 1;
5682 }
5683
5684 /* Implement the to_stopped_by_sw_breakpoint target_ops
5685 method. */
5686
5687 static int
5688 linux_stopped_by_sw_breakpoint (void)
5689 {
5690 struct lwp_info *lwp = get_thread_lwp (current_thread);
5691
5692 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5693 }
5694
5695 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
5696 method. */
5697
5698 static int
5699 linux_supports_stopped_by_sw_breakpoint (void)
5700 {
5701 return USE_SIGTRAP_SIGINFO;
5702 }
5703
5704 /* Implement the to_stopped_by_hw_breakpoint target_ops
5705 method. */
5706
5707 static int
5708 linux_stopped_by_hw_breakpoint (void)
5709 {
5710 struct lwp_info *lwp = get_thread_lwp (current_thread);
5711
5712 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5713 }
5714
5715 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
5716 method. */
5717
5718 static int
5719 linux_supports_stopped_by_hw_breakpoint (void)
5720 {
5721 return USE_SIGTRAP_SIGINFO;
5722 }
5723
5724 /* Implement the supports_hardware_single_step target_ops method. */
5725
5726 static int
5727 linux_supports_hardware_single_step (void)
5728 {
5729 return can_hardware_single_step ();
5730 }
5731
5732 static int
5733 linux_supports_software_single_step (void)
5734 {
5735 return can_software_single_step ();
5736 }
5737
5738 static int
5739 linux_stopped_by_watchpoint (void)
5740 {
5741 struct lwp_info *lwp = get_thread_lwp (current_thread);
5742
5743 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5744 }
5745
5746 static CORE_ADDR
5747 linux_stopped_data_address (void)
5748 {
5749 struct lwp_info *lwp = get_thread_lwp (current_thread);
5750
5751 return lwp->stopped_data_address;
5752 }
5753
5754 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5755 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5756 && defined(PT_TEXT_END_ADDR)
5757
5758 /* This is only used for targets that define PT_TEXT_ADDR,
5759 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5760 the target has different ways of acquiring this information, like
5761 loadmaps. */
5762
5763 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5764 to tell gdb about. */
5765
5766 static int
5767 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5768 {
5769 unsigned long text, text_end, data;
5770 int pid = lwpid_of (current_thread);
5771
5772 errno = 0;
5773
5774 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5775 (PTRACE_TYPE_ARG4) 0);
5776 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5777 (PTRACE_TYPE_ARG4) 0);
5778 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5779 (PTRACE_TYPE_ARG4) 0);
5780
5781 if (errno == 0)
5782 {
5783 /* Both text and data offsets produced at compile-time (and so
5784 used by gdb) are relative to the beginning of the program,
5785 with the data segment immediately following the text segment.
5786 However, the actual runtime layout in memory may put the data
5787 somewhere else, so when we send gdb a data base-address, we
5788 use the real data base address and subtract the compile-time
5789 data base-address from it (which is just the length of the
5790 text segment). BSS immediately follows data in both
5791 cases. */
5792 *text_p = text;
5793 *data_p = data - (text_end - text);
5794
5795 return 1;
5796 }
5797 return 0;
5798 }
5799 #endif
5800
5801 static int
5802 linux_qxfer_osdata (const char *annex,
5803 unsigned char *readbuf, unsigned const char *writebuf,
5804 CORE_ADDR offset, int len)
5805 {
5806 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5807 }
5808
5809 /* Convert a native/host siginfo object, into/from the siginfo in the
5810 layout of the inferiors' architecture. */
5811
5812 static void
5813 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
5814 {
5815 int done = 0;
5816
5817 if (the_low_target.siginfo_fixup != NULL)
5818 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5819
5820 /* If there was no callback, or the callback didn't do anything,
5821 then just do a straight memcpy. */
5822 if (!done)
5823 {
5824 if (direction == 1)
5825 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5826 else
5827 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5828 }
5829 }
5830
5831 static int
5832 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5833 unsigned const char *writebuf, CORE_ADDR offset, int len)
5834 {
5835 int pid;
5836 siginfo_t siginfo;
5837 char inf_siginfo[sizeof (siginfo_t)];
5838
5839 if (current_thread == NULL)
5840 return -1;
5841
5842 pid = lwpid_of (current_thread);
5843
5844 if (debug_threads)
5845 debug_printf ("%s siginfo for lwp %d.\n",
5846 readbuf != NULL ? "Reading" : "Writing",
5847 pid);
5848
5849 if (offset >= sizeof (siginfo))
5850 return -1;
5851
5852 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5853 return -1;
5854
5855 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5856 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5857 inferior with a 64-bit GDBSERVER should look the same as debugging it
5858 with a 32-bit GDBSERVER, we need to convert it. */
5859 siginfo_fixup (&siginfo, inf_siginfo, 0);
5860
5861 if (offset + len > sizeof (siginfo))
5862 len = sizeof (siginfo) - offset;
5863
5864 if (readbuf != NULL)
5865 memcpy (readbuf, inf_siginfo + offset, len);
5866 else
5867 {
5868 memcpy (inf_siginfo + offset, writebuf, len);
5869
5870 /* Convert back to ptrace layout before flushing it out. */
5871 siginfo_fixup (&siginfo, inf_siginfo, 1);
5872
5873 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5874 return -1;
5875 }
5876
5877 return len;
5878 }
5879
5880 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5881 so we notice when children change state; as the handler for the
5882 sigsuspend in my_waitpid. */
5883
5884 static void
5885 sigchld_handler (int signo)
5886 {
5887 int old_errno = errno;
5888
5889 if (debug_threads)
5890 {
5891 do
5892 {
5893 /* fprintf is not async-signal-safe, so call write
5894 directly. */
5895 if (write (2, "sigchld_handler\n",
5896 sizeof ("sigchld_handler\n") - 1) < 0)
5897 break; /* just ignore */
5898 } while (0);
5899 }
5900
5901 if (target_is_async_p ())
5902 async_file_mark (); /* trigger a linux_wait */
5903
5904 errno = old_errno;
5905 }
5906
5907 static int
5908 linux_supports_non_stop (void)
5909 {
5910 return 1;
5911 }
5912
5913 static int
5914 linux_async (int enable)
5915 {
5916 int previous = target_is_async_p ();
5917
5918 if (debug_threads)
5919 debug_printf ("linux_async (%d), previous=%d\n",
5920 enable, previous);
5921
5922 if (previous != enable)
5923 {
5924 sigset_t mask;
5925 sigemptyset (&mask);
5926 sigaddset (&mask, SIGCHLD);
5927
5928 sigprocmask (SIG_BLOCK, &mask, NULL);
5929
5930 if (enable)
5931 {
5932 if (pipe (linux_event_pipe) == -1)
5933 {
5934 linux_event_pipe[0] = -1;
5935 linux_event_pipe[1] = -1;
5936 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5937
5938 warning ("creating event pipe failed.");
5939 return previous;
5940 }
5941
5942 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5943 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5944
5945 /* Register the event loop handler. */
5946 add_file_handler (linux_event_pipe[0],
5947 handle_target_event, NULL);
5948
5949 /* Always trigger a linux_wait. */
5950 async_file_mark ();
5951 }
5952 else
5953 {
5954 delete_file_handler (linux_event_pipe[0]);
5955
5956 close (linux_event_pipe[0]);
5957 close (linux_event_pipe[1]);
5958 linux_event_pipe[0] = -1;
5959 linux_event_pipe[1] = -1;
5960 }
5961
5962 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5963 }
5964
5965 return previous;
5966 }
5967
5968 static int
5969 linux_start_non_stop (int nonstop)
5970 {
5971 /* Register or unregister from event-loop accordingly. */
5972 linux_async (nonstop);
5973
5974 if (target_is_async_p () != (nonstop != 0))
5975 return -1;
5976
5977 return 0;
5978 }
5979
5980 static int
5981 linux_supports_multi_process (void)
5982 {
5983 return 1;
5984 }
5985
5986 /* Check if fork events are supported. */
5987
5988 static int
5989 linux_supports_fork_events (void)
5990 {
5991 return linux_supports_tracefork ();
5992 }
5993
5994 /* Check if vfork events are supported. */
5995
5996 static int
5997 linux_supports_vfork_events (void)
5998 {
5999 return linux_supports_tracefork ();
6000 }
6001
6002 /* Check if exec events are supported. */
6003
6004 static int
6005 linux_supports_exec_events (void)
6006 {
6007 return linux_supports_traceexec ();
6008 }
6009
6010 /* Callback for 'find_inferior'. Set the (possibly changed) ptrace
6011 options for the specified lwp. */
6012
6013 static int
6014 reset_lwp_ptrace_options_callback (struct inferior_list_entry *entry,
6015 void *args)
6016 {
6017 struct thread_info *thread = (struct thread_info *) entry;
6018 struct lwp_info *lwp = get_thread_lwp (thread);
6019
6020 if (!lwp->stopped)
6021 {
6022 /* Stop the lwp so we can modify its ptrace options. */
6023 lwp->must_set_ptrace_flags = 1;
6024 linux_stop_lwp (lwp);
6025 }
6026 else
6027 {
6028 /* Already stopped; go ahead and set the ptrace options. */
6029 struct process_info *proc = find_process_pid (pid_of (thread));
6030 int options = linux_low_ptrace_options (proc->attached);
6031
6032 linux_enable_event_reporting (lwpid_of (thread), options);
6033 lwp->must_set_ptrace_flags = 0;
6034 }
6035
6036 return 0;
6037 }
6038
6039 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6040 ptrace flags for all inferiors. This is in case the new GDB connection
6041 doesn't support the same set of events that the previous one did. */
6042
6043 static void
6044 linux_handle_new_gdb_connection (void)
6045 {
6046 pid_t pid;
6047
6048 /* Request that all the lwps reset their ptrace options. */
6049 find_inferior (&all_threads, reset_lwp_ptrace_options_callback , &pid);
6050 }
6051
6052 static int
6053 linux_supports_disable_randomization (void)
6054 {
6055 #ifdef HAVE_PERSONALITY
6056 return 1;
6057 #else
6058 return 0;
6059 #endif
6060 }
6061
6062 static int
6063 linux_supports_agent (void)
6064 {
6065 return 1;
6066 }
6067
6068 static int
6069 linux_supports_range_stepping (void)
6070 {
6071 if (*the_low_target.supports_range_stepping == NULL)
6072 return 0;
6073
6074 return (*the_low_target.supports_range_stepping) ();
6075 }
6076
6077 /* Enumerate spufs IDs for process PID. */
6078 static int
6079 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6080 {
6081 int pos = 0;
6082 int written = 0;
6083 char path[128];
6084 DIR *dir;
6085 struct dirent *entry;
6086
6087 sprintf (path, "/proc/%ld/fd", pid);
6088 dir = opendir (path);
6089 if (!dir)
6090 return -1;
6091
6092 rewinddir (dir);
6093 while ((entry = readdir (dir)) != NULL)
6094 {
6095 struct stat st;
6096 struct statfs stfs;
6097 int fd;
6098
6099 fd = atoi (entry->d_name);
6100 if (!fd)
6101 continue;
6102
6103 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6104 if (stat (path, &st) != 0)
6105 continue;
6106 if (!S_ISDIR (st.st_mode))
6107 continue;
6108
6109 if (statfs (path, &stfs) != 0)
6110 continue;
6111 if (stfs.f_type != SPUFS_MAGIC)
6112 continue;
6113
6114 if (pos >= offset && pos + 4 <= offset + len)
6115 {
6116 *(unsigned int *)(buf + pos - offset) = fd;
6117 written += 4;
6118 }
6119 pos += 4;
6120 }
6121
6122 closedir (dir);
6123 return written;
6124 }
6125
6126 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6127 object type, using the /proc file system. */
6128 static int
6129 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6130 unsigned const char *writebuf,
6131 CORE_ADDR offset, int len)
6132 {
6133 long pid = lwpid_of (current_thread);
6134 char buf[128];
6135 int fd = 0;
6136 int ret = 0;
6137
6138 if (!writebuf && !readbuf)
6139 return -1;
6140
6141 if (!*annex)
6142 {
6143 if (!readbuf)
6144 return -1;
6145 else
6146 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6147 }
6148
6149 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6150 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6151 if (fd <= 0)
6152 return -1;
6153
6154 if (offset != 0
6155 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6156 {
6157 close (fd);
6158 return 0;
6159 }
6160
6161 if (writebuf)
6162 ret = write (fd, writebuf, (size_t) len);
6163 else
6164 ret = read (fd, readbuf, (size_t) len);
6165
6166 close (fd);
6167 return ret;
6168 }
6169
6170 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6171 struct target_loadseg
6172 {
6173 /* Core address to which the segment is mapped. */
6174 Elf32_Addr addr;
6175 /* VMA recorded in the program header. */
6176 Elf32_Addr p_vaddr;
6177 /* Size of this segment in memory. */
6178 Elf32_Word p_memsz;
6179 };
6180
6181 # if defined PT_GETDSBT
6182 struct target_loadmap
6183 {
6184 /* Protocol version number, must be zero. */
6185 Elf32_Word version;
6186 /* Pointer to the DSBT table, its size, and the DSBT index. */
6187 unsigned *dsbt_table;
6188 unsigned dsbt_size, dsbt_index;
6189 /* Number of segments in this map. */
6190 Elf32_Word nsegs;
6191 /* The actual memory map. */
6192 struct target_loadseg segs[/*nsegs*/];
6193 };
6194 # define LINUX_LOADMAP PT_GETDSBT
6195 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6196 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6197 # else
6198 struct target_loadmap
6199 {
6200 /* Protocol version number, must be zero. */
6201 Elf32_Half version;
6202 /* Number of segments in this map. */
6203 Elf32_Half nsegs;
6204 /* The actual memory map. */
6205 struct target_loadseg segs[/*nsegs*/];
6206 };
6207 # define LINUX_LOADMAP PTRACE_GETFDPIC
6208 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6209 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6210 # endif
6211
6212 static int
6213 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6214 unsigned char *myaddr, unsigned int len)
6215 {
6216 int pid = lwpid_of (current_thread);
6217 int addr = -1;
6218 struct target_loadmap *data = NULL;
6219 unsigned int actual_length, copy_length;
6220
6221 if (strcmp (annex, "exec") == 0)
6222 addr = (int) LINUX_LOADMAP_EXEC;
6223 else if (strcmp (annex, "interp") == 0)
6224 addr = (int) LINUX_LOADMAP_INTERP;
6225 else
6226 return -1;
6227
6228 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6229 return -1;
6230
6231 if (data == NULL)
6232 return -1;
6233
6234 actual_length = sizeof (struct target_loadmap)
6235 + sizeof (struct target_loadseg) * data->nsegs;
6236
6237 if (offset < 0 || offset > actual_length)
6238 return -1;
6239
6240 copy_length = actual_length - offset < len ? actual_length - offset : len;
6241 memcpy (myaddr, (char *) data + offset, copy_length);
6242 return copy_length;
6243 }
6244 #else
6245 # define linux_read_loadmap NULL
6246 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6247
6248 static void
6249 linux_process_qsupported (char **features, int count)
6250 {
6251 if (the_low_target.process_qsupported != NULL)
6252 the_low_target.process_qsupported (features, count);
6253 }
6254
6255 static int
6256 linux_supports_tracepoints (void)
6257 {
6258 if (*the_low_target.supports_tracepoints == NULL)
6259 return 0;
6260
6261 return (*the_low_target.supports_tracepoints) ();
6262 }
6263
6264 static CORE_ADDR
6265 linux_read_pc (struct regcache *regcache)
6266 {
6267 if (the_low_target.get_pc == NULL)
6268 return 0;
6269
6270 return (*the_low_target.get_pc) (regcache);
6271 }
6272
6273 static void
6274 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6275 {
6276 gdb_assert (the_low_target.set_pc != NULL);
6277
6278 (*the_low_target.set_pc) (regcache, pc);
6279 }
6280
6281 static int
6282 linux_thread_stopped (struct thread_info *thread)
6283 {
6284 return get_thread_lwp (thread)->stopped;
6285 }
6286
6287 /* This exposes stop-all-threads functionality to other modules. */
6288
6289 static void
6290 linux_pause_all (int freeze)
6291 {
6292 stop_all_lwps (freeze, NULL);
6293 }
6294
6295 /* This exposes unstop-all-threads functionality to other gdbserver
6296 modules. */
6297
6298 static void
6299 linux_unpause_all (int unfreeze)
6300 {
6301 unstop_all_lwps (unfreeze, NULL);
6302 }
6303
6304 static int
6305 linux_prepare_to_access_memory (void)
6306 {
6307 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6308 running LWP. */
6309 if (non_stop)
6310 linux_pause_all (1);
6311 return 0;
6312 }
6313
6314 static void
6315 linux_done_accessing_memory (void)
6316 {
6317 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6318 running LWP. */
6319 if (non_stop)
6320 linux_unpause_all (1);
6321 }
6322
6323 static int
6324 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6325 CORE_ADDR collector,
6326 CORE_ADDR lockaddr,
6327 ULONGEST orig_size,
6328 CORE_ADDR *jump_entry,
6329 CORE_ADDR *trampoline,
6330 ULONGEST *trampoline_size,
6331 unsigned char *jjump_pad_insn,
6332 ULONGEST *jjump_pad_insn_size,
6333 CORE_ADDR *adjusted_insn_addr,
6334 CORE_ADDR *adjusted_insn_addr_end,
6335 char *err)
6336 {
6337 return (*the_low_target.install_fast_tracepoint_jump_pad)
6338 (tpoint, tpaddr, collector, lockaddr, orig_size,
6339 jump_entry, trampoline, trampoline_size,
6340 jjump_pad_insn, jjump_pad_insn_size,
6341 adjusted_insn_addr, adjusted_insn_addr_end,
6342 err);
6343 }
6344
6345 static struct emit_ops *
6346 linux_emit_ops (void)
6347 {
6348 if (the_low_target.emit_ops != NULL)
6349 return (*the_low_target.emit_ops) ();
6350 else
6351 return NULL;
6352 }
6353
6354 static int
6355 linux_get_min_fast_tracepoint_insn_len (void)
6356 {
6357 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6358 }
6359
6360 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6361
6362 static int
6363 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6364 CORE_ADDR *phdr_memaddr, int *num_phdr)
6365 {
6366 char filename[PATH_MAX];
6367 int fd;
6368 const int auxv_size = is_elf64
6369 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6370 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6371
6372 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6373
6374 fd = open (filename, O_RDONLY);
6375 if (fd < 0)
6376 return 1;
6377
6378 *phdr_memaddr = 0;
6379 *num_phdr = 0;
6380 while (read (fd, buf, auxv_size) == auxv_size
6381 && (*phdr_memaddr == 0 || *num_phdr == 0))
6382 {
6383 if (is_elf64)
6384 {
6385 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6386
6387 switch (aux->a_type)
6388 {
6389 case AT_PHDR:
6390 *phdr_memaddr = aux->a_un.a_val;
6391 break;
6392 case AT_PHNUM:
6393 *num_phdr = aux->a_un.a_val;
6394 break;
6395 }
6396 }
6397 else
6398 {
6399 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6400
6401 switch (aux->a_type)
6402 {
6403 case AT_PHDR:
6404 *phdr_memaddr = aux->a_un.a_val;
6405 break;
6406 case AT_PHNUM:
6407 *num_phdr = aux->a_un.a_val;
6408 break;
6409 }
6410 }
6411 }
6412
6413 close (fd);
6414
6415 if (*phdr_memaddr == 0 || *num_phdr == 0)
6416 {
6417 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6418 "phdr_memaddr = %ld, phdr_num = %d",
6419 (long) *phdr_memaddr, *num_phdr);
6420 return 2;
6421 }
6422
6423 return 0;
6424 }
6425
6426 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6427
6428 static CORE_ADDR
6429 get_dynamic (const int pid, const int is_elf64)
6430 {
6431 CORE_ADDR phdr_memaddr, relocation;
6432 int num_phdr, i;
6433 unsigned char *phdr_buf;
6434 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6435
6436 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6437 return 0;
6438
6439 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6440 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6441
6442 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6443 return 0;
6444
6445 /* Compute relocation: it is expected to be 0 for "regular" executables,
6446 non-zero for PIE ones. */
6447 relocation = -1;
6448 for (i = 0; relocation == -1 && i < num_phdr; i++)
6449 if (is_elf64)
6450 {
6451 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6452
6453 if (p->p_type == PT_PHDR)
6454 relocation = phdr_memaddr - p->p_vaddr;
6455 }
6456 else
6457 {
6458 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6459
6460 if (p->p_type == PT_PHDR)
6461 relocation = phdr_memaddr - p->p_vaddr;
6462 }
6463
6464 if (relocation == -1)
6465 {
6466 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6467 any real world executables, including PIE executables, have always
6468 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6469 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6470 or present DT_DEBUG anyway (fpc binaries are statically linked).
6471
6472 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6473
6474 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6475
6476 return 0;
6477 }
6478
6479 for (i = 0; i < num_phdr; i++)
6480 {
6481 if (is_elf64)
6482 {
6483 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6484
6485 if (p->p_type == PT_DYNAMIC)
6486 return p->p_vaddr + relocation;
6487 }
6488 else
6489 {
6490 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6491
6492 if (p->p_type == PT_DYNAMIC)
6493 return p->p_vaddr + relocation;
6494 }
6495 }
6496
6497 return 0;
6498 }
6499
6500 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6501 can be 0 if the inferior does not yet have the library list initialized.
6502 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6503 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6504
6505 static CORE_ADDR
6506 get_r_debug (const int pid, const int is_elf64)
6507 {
6508 CORE_ADDR dynamic_memaddr;
6509 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6510 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6511 CORE_ADDR map = -1;
6512
6513 dynamic_memaddr = get_dynamic (pid, is_elf64);
6514 if (dynamic_memaddr == 0)
6515 return map;
6516
6517 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6518 {
6519 if (is_elf64)
6520 {
6521 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6522 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6523 union
6524 {
6525 Elf64_Xword map;
6526 unsigned char buf[sizeof (Elf64_Xword)];
6527 }
6528 rld_map;
6529 #endif
6530 #ifdef DT_MIPS_RLD_MAP
6531 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6532 {
6533 if (linux_read_memory (dyn->d_un.d_val,
6534 rld_map.buf, sizeof (rld_map.buf)) == 0)
6535 return rld_map.map;
6536 else
6537 break;
6538 }
6539 #endif /* DT_MIPS_RLD_MAP */
6540 #ifdef DT_MIPS_RLD_MAP_REL
6541 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6542 {
6543 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6544 rld_map.buf, sizeof (rld_map.buf)) == 0)
6545 return rld_map.map;
6546 else
6547 break;
6548 }
6549 #endif /* DT_MIPS_RLD_MAP_REL */
6550
6551 if (dyn->d_tag == DT_DEBUG && map == -1)
6552 map = dyn->d_un.d_val;
6553
6554 if (dyn->d_tag == DT_NULL)
6555 break;
6556 }
6557 else
6558 {
6559 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6560 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6561 union
6562 {
6563 Elf32_Word map;
6564 unsigned char buf[sizeof (Elf32_Word)];
6565 }
6566 rld_map;
6567 #endif
6568 #ifdef DT_MIPS_RLD_MAP
6569 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6570 {
6571 if (linux_read_memory (dyn->d_un.d_val,
6572 rld_map.buf, sizeof (rld_map.buf)) == 0)
6573 return rld_map.map;
6574 else
6575 break;
6576 }
6577 #endif /* DT_MIPS_RLD_MAP */
6578 #ifdef DT_MIPS_RLD_MAP_REL
6579 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6580 {
6581 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6582 rld_map.buf, sizeof (rld_map.buf)) == 0)
6583 return rld_map.map;
6584 else
6585 break;
6586 }
6587 #endif /* DT_MIPS_RLD_MAP_REL */
6588
6589 if (dyn->d_tag == DT_DEBUG && map == -1)
6590 map = dyn->d_un.d_val;
6591
6592 if (dyn->d_tag == DT_NULL)
6593 break;
6594 }
6595
6596 dynamic_memaddr += dyn_size;
6597 }
6598
6599 return map;
6600 }
6601
6602 /* Read one pointer from MEMADDR in the inferior. */
6603
6604 static int
6605 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6606 {
6607 int ret;
6608
6609 /* Go through a union so this works on either big or little endian
6610 hosts, when the inferior's pointer size is smaller than the size
6611 of CORE_ADDR. It is assumed the inferior's endianness is the
6612 same of the superior's. */
6613 union
6614 {
6615 CORE_ADDR core_addr;
6616 unsigned int ui;
6617 unsigned char uc;
6618 } addr;
6619
6620 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6621 if (ret == 0)
6622 {
6623 if (ptr_size == sizeof (CORE_ADDR))
6624 *ptr = addr.core_addr;
6625 else if (ptr_size == sizeof (unsigned int))
6626 *ptr = addr.ui;
6627 else
6628 gdb_assert_not_reached ("unhandled pointer size");
6629 }
6630 return ret;
6631 }
6632
6633 struct link_map_offsets
6634 {
6635 /* Offset and size of r_debug.r_version. */
6636 int r_version_offset;
6637
6638 /* Offset and size of r_debug.r_map. */
6639 int r_map_offset;
6640
6641 /* Offset to l_addr field in struct link_map. */
6642 int l_addr_offset;
6643
6644 /* Offset to l_name field in struct link_map. */
6645 int l_name_offset;
6646
6647 /* Offset to l_ld field in struct link_map. */
6648 int l_ld_offset;
6649
6650 /* Offset to l_next field in struct link_map. */
6651 int l_next_offset;
6652
6653 /* Offset to l_prev field in struct link_map. */
6654 int l_prev_offset;
6655 };
6656
6657 /* Construct qXfer:libraries-svr4:read reply. */
6658
6659 static int
6660 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6661 unsigned const char *writebuf,
6662 CORE_ADDR offset, int len)
6663 {
6664 char *document;
6665 unsigned document_len;
6666 struct process_info_private *const priv = current_process ()->priv;
6667 char filename[PATH_MAX];
6668 int pid, is_elf64;
6669
6670 static const struct link_map_offsets lmo_32bit_offsets =
6671 {
6672 0, /* r_version offset. */
6673 4, /* r_debug.r_map offset. */
6674 0, /* l_addr offset in link_map. */
6675 4, /* l_name offset in link_map. */
6676 8, /* l_ld offset in link_map. */
6677 12, /* l_next offset in link_map. */
6678 16 /* l_prev offset in link_map. */
6679 };
6680
6681 static const struct link_map_offsets lmo_64bit_offsets =
6682 {
6683 0, /* r_version offset. */
6684 8, /* r_debug.r_map offset. */
6685 0, /* l_addr offset in link_map. */
6686 8, /* l_name offset in link_map. */
6687 16, /* l_ld offset in link_map. */
6688 24, /* l_next offset in link_map. */
6689 32 /* l_prev offset in link_map. */
6690 };
6691 const struct link_map_offsets *lmo;
6692 unsigned int machine;
6693 int ptr_size;
6694 CORE_ADDR lm_addr = 0, lm_prev = 0;
6695 int allocated = 1024;
6696 char *p;
6697 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6698 int header_done = 0;
6699
6700 if (writebuf != NULL)
6701 return -2;
6702 if (readbuf == NULL)
6703 return -1;
6704
6705 pid = lwpid_of (current_thread);
6706 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6707 is_elf64 = elf_64_file_p (filename, &machine);
6708 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6709 ptr_size = is_elf64 ? 8 : 4;
6710
6711 while (annex[0] != '\0')
6712 {
6713 const char *sep;
6714 CORE_ADDR *addrp;
6715 int len;
6716
6717 sep = strchr (annex, '=');
6718 if (sep == NULL)
6719 break;
6720
6721 len = sep - annex;
6722 if (len == 5 && startswith (annex, "start"))
6723 addrp = &lm_addr;
6724 else if (len == 4 && startswith (annex, "prev"))
6725 addrp = &lm_prev;
6726 else
6727 {
6728 annex = strchr (sep, ';');
6729 if (annex == NULL)
6730 break;
6731 annex++;
6732 continue;
6733 }
6734
6735 annex = decode_address_to_semicolon (addrp, sep + 1);
6736 }
6737
6738 if (lm_addr == 0)
6739 {
6740 int r_version = 0;
6741
6742 if (priv->r_debug == 0)
6743 priv->r_debug = get_r_debug (pid, is_elf64);
6744
6745 /* We failed to find DT_DEBUG. Such situation will not change
6746 for this inferior - do not retry it. Report it to GDB as
6747 E01, see for the reasons at the GDB solib-svr4.c side. */
6748 if (priv->r_debug == (CORE_ADDR) -1)
6749 return -1;
6750
6751 if (priv->r_debug != 0)
6752 {
6753 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6754 (unsigned char *) &r_version,
6755 sizeof (r_version)) != 0
6756 || r_version != 1)
6757 {
6758 warning ("unexpected r_debug version %d", r_version);
6759 }
6760 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6761 &lm_addr, ptr_size) != 0)
6762 {
6763 warning ("unable to read r_map from 0x%lx",
6764 (long) priv->r_debug + lmo->r_map_offset);
6765 }
6766 }
6767 }
6768
6769 document = (char *) xmalloc (allocated);
6770 strcpy (document, "<library-list-svr4 version=\"1.0\"");
6771 p = document + strlen (document);
6772
6773 while (lm_addr
6774 && read_one_ptr (lm_addr + lmo->l_name_offset,
6775 &l_name, ptr_size) == 0
6776 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6777 &l_addr, ptr_size) == 0
6778 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6779 &l_ld, ptr_size) == 0
6780 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6781 &l_prev, ptr_size) == 0
6782 && read_one_ptr (lm_addr + lmo->l_next_offset,
6783 &l_next, ptr_size) == 0)
6784 {
6785 unsigned char libname[PATH_MAX];
6786
6787 if (lm_prev != l_prev)
6788 {
6789 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6790 (long) lm_prev, (long) l_prev);
6791 break;
6792 }
6793
6794 /* Ignore the first entry even if it has valid name as the first entry
6795 corresponds to the main executable. The first entry should not be
6796 skipped if the dynamic loader was loaded late by a static executable
6797 (see solib-svr4.c parameter ignore_first). But in such case the main
6798 executable does not have PT_DYNAMIC present and this function already
6799 exited above due to failed get_r_debug. */
6800 if (lm_prev == 0)
6801 {
6802 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6803 p = p + strlen (p);
6804 }
6805 else
6806 {
6807 /* Not checking for error because reading may stop before
6808 we've got PATH_MAX worth of characters. */
6809 libname[0] = '\0';
6810 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6811 libname[sizeof (libname) - 1] = '\0';
6812 if (libname[0] != '\0')
6813 {
6814 /* 6x the size for xml_escape_text below. */
6815 size_t len = 6 * strlen ((char *) libname);
6816 char *name;
6817
6818 if (!header_done)
6819 {
6820 /* Terminate `<library-list-svr4'. */
6821 *p++ = '>';
6822 header_done = 1;
6823 }
6824
6825 while (allocated < p - document + len + 200)
6826 {
6827 /* Expand to guarantee sufficient storage. */
6828 uintptr_t document_len = p - document;
6829
6830 document = (char *) xrealloc (document, 2 * allocated);
6831 allocated *= 2;
6832 p = document + document_len;
6833 }
6834
6835 name = xml_escape_text ((char *) libname);
6836 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
6837 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6838 name, (unsigned long) lm_addr,
6839 (unsigned long) l_addr, (unsigned long) l_ld);
6840 free (name);
6841 }
6842 }
6843
6844 lm_prev = lm_addr;
6845 lm_addr = l_next;
6846 }
6847
6848 if (!header_done)
6849 {
6850 /* Empty list; terminate `<library-list-svr4'. */
6851 strcpy (p, "/>");
6852 }
6853 else
6854 strcpy (p, "</library-list-svr4>");
6855
6856 document_len = strlen (document);
6857 if (offset < document_len)
6858 document_len -= offset;
6859 else
6860 document_len = 0;
6861 if (len > document_len)
6862 len = document_len;
6863
6864 memcpy (readbuf, document + offset, len);
6865 xfree (document);
6866
6867 return len;
6868 }
6869
6870 #ifdef HAVE_LINUX_BTRACE
6871
6872 /* See to_disable_btrace target method. */
6873
6874 static int
6875 linux_low_disable_btrace (struct btrace_target_info *tinfo)
6876 {
6877 enum btrace_error err;
6878
6879 err = linux_disable_btrace (tinfo);
6880 return (err == BTRACE_ERR_NONE ? 0 : -1);
6881 }
6882
6883 /* Encode an Intel(R) Processor Trace configuration. */
6884
6885 static void
6886 linux_low_encode_pt_config (struct buffer *buffer,
6887 const struct btrace_data_pt_config *config)
6888 {
6889 buffer_grow_str (buffer, "<pt-config>\n");
6890
6891 switch (config->cpu.vendor)
6892 {
6893 case CV_INTEL:
6894 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6895 "model=\"%u\" stepping=\"%u\"/>\n",
6896 config->cpu.family, config->cpu.model,
6897 config->cpu.stepping);
6898 break;
6899
6900 default:
6901 break;
6902 }
6903
6904 buffer_grow_str (buffer, "</pt-config>\n");
6905 }
6906
6907 /* Encode a raw buffer. */
6908
6909 static void
6910 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6911 unsigned int size)
6912 {
6913 if (size == 0)
6914 return;
6915
6916 /* We use hex encoding - see common/rsp-low.h. */
6917 buffer_grow_str (buffer, "<raw>\n");
6918
6919 while (size-- > 0)
6920 {
6921 char elem[2];
6922
6923 elem[0] = tohex ((*data >> 4) & 0xf);
6924 elem[1] = tohex (*data++ & 0xf);
6925
6926 buffer_grow (buffer, elem, 2);
6927 }
6928
6929 buffer_grow_str (buffer, "</raw>\n");
6930 }
6931
6932 /* See to_read_btrace target method. */
6933
6934 static int
6935 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6936 enum btrace_read_type type)
6937 {
6938 struct btrace_data btrace;
6939 struct btrace_block *block;
6940 enum btrace_error err;
6941 int i;
6942
6943 btrace_data_init (&btrace);
6944
6945 err = linux_read_btrace (&btrace, tinfo, type);
6946 if (err != BTRACE_ERR_NONE)
6947 {
6948 if (err == BTRACE_ERR_OVERFLOW)
6949 buffer_grow_str0 (buffer, "E.Overflow.");
6950 else
6951 buffer_grow_str0 (buffer, "E.Generic Error.");
6952
6953 goto err;
6954 }
6955
6956 switch (btrace.format)
6957 {
6958 case BTRACE_FORMAT_NONE:
6959 buffer_grow_str0 (buffer, "E.No Trace.");
6960 goto err;
6961
6962 case BTRACE_FORMAT_BTS:
6963 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6964 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6965
6966 for (i = 0;
6967 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
6968 i++)
6969 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6970 paddress (block->begin), paddress (block->end));
6971
6972 buffer_grow_str0 (buffer, "</btrace>\n");
6973 break;
6974
6975 case BTRACE_FORMAT_PT:
6976 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6977 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6978 buffer_grow_str (buffer, "<pt>\n");
6979
6980 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
6981
6982 linux_low_encode_raw (buffer, btrace.variant.pt.data,
6983 btrace.variant.pt.size);
6984
6985 buffer_grow_str (buffer, "</pt>\n");
6986 buffer_grow_str0 (buffer, "</btrace>\n");
6987 break;
6988
6989 default:
6990 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
6991 goto err;
6992 }
6993
6994 btrace_data_fini (&btrace);
6995 return 0;
6996
6997 err:
6998 btrace_data_fini (&btrace);
6999 return -1;
7000 }
7001
7002 /* See to_btrace_conf target method. */
7003
7004 static int
7005 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7006 struct buffer *buffer)
7007 {
7008 const struct btrace_config *conf;
7009
7010 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7011 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7012
7013 conf = linux_btrace_conf (tinfo);
7014 if (conf != NULL)
7015 {
7016 switch (conf->format)
7017 {
7018 case BTRACE_FORMAT_NONE:
7019 break;
7020
7021 case BTRACE_FORMAT_BTS:
7022 buffer_xml_printf (buffer, "<bts");
7023 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7024 buffer_xml_printf (buffer, " />\n");
7025 break;
7026
7027 case BTRACE_FORMAT_PT:
7028 buffer_xml_printf (buffer, "<pt");
7029 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7030 buffer_xml_printf (buffer, "/>\n");
7031 break;
7032 }
7033 }
7034
7035 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7036 return 0;
7037 }
7038 #endif /* HAVE_LINUX_BTRACE */
7039
7040 /* See nat/linux-nat.h. */
7041
7042 ptid_t
7043 current_lwp_ptid (void)
7044 {
7045 return ptid_of (current_thread);
7046 }
7047
7048 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7049
7050 static int
7051 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7052 {
7053 if (the_low_target.breakpoint_kind_from_pc != NULL)
7054 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7055 else
7056 return default_breakpoint_kind_from_pc (pcptr);
7057 }
7058
7059 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7060
7061 static const gdb_byte *
7062 linux_sw_breakpoint_from_kind (int kind, int *size)
7063 {
7064 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7065
7066 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7067 }
7068
7069 /* Implementation of the target_ops method
7070 "breakpoint_kind_from_current_state". */
7071
7072 static int
7073 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7074 {
7075 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7076 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7077 else
7078 return linux_breakpoint_kind_from_pc (pcptr);
7079 }
7080
7081 static struct target_ops linux_target_ops = {
7082 linux_create_inferior,
7083 linux_post_create_inferior,
7084 linux_attach,
7085 linux_kill,
7086 linux_detach,
7087 linux_mourn,
7088 linux_join,
7089 linux_thread_alive,
7090 linux_resume,
7091 linux_wait,
7092 linux_fetch_registers,
7093 linux_store_registers,
7094 linux_prepare_to_access_memory,
7095 linux_done_accessing_memory,
7096 linux_read_memory,
7097 linux_write_memory,
7098 linux_look_up_symbols,
7099 linux_request_interrupt,
7100 linux_read_auxv,
7101 linux_supports_z_point_type,
7102 linux_insert_point,
7103 linux_remove_point,
7104 linux_stopped_by_sw_breakpoint,
7105 linux_supports_stopped_by_sw_breakpoint,
7106 linux_stopped_by_hw_breakpoint,
7107 linux_supports_stopped_by_hw_breakpoint,
7108 linux_supports_hardware_single_step,
7109 linux_stopped_by_watchpoint,
7110 linux_stopped_data_address,
7111 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7112 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7113 && defined(PT_TEXT_END_ADDR)
7114 linux_read_offsets,
7115 #else
7116 NULL,
7117 #endif
7118 #ifdef USE_THREAD_DB
7119 thread_db_get_tls_address,
7120 #else
7121 NULL,
7122 #endif
7123 linux_qxfer_spu,
7124 hostio_last_error_from_errno,
7125 linux_qxfer_osdata,
7126 linux_xfer_siginfo,
7127 linux_supports_non_stop,
7128 linux_async,
7129 linux_start_non_stop,
7130 linux_supports_multi_process,
7131 linux_supports_fork_events,
7132 linux_supports_vfork_events,
7133 linux_supports_exec_events,
7134 linux_handle_new_gdb_connection,
7135 #ifdef USE_THREAD_DB
7136 thread_db_handle_monitor_command,
7137 #else
7138 NULL,
7139 #endif
7140 linux_common_core_of_thread,
7141 linux_read_loadmap,
7142 linux_process_qsupported,
7143 linux_supports_tracepoints,
7144 linux_read_pc,
7145 linux_write_pc,
7146 linux_thread_stopped,
7147 NULL,
7148 linux_pause_all,
7149 linux_unpause_all,
7150 linux_stabilize_threads,
7151 linux_install_fast_tracepoint_jump_pad,
7152 linux_emit_ops,
7153 linux_supports_disable_randomization,
7154 linux_get_min_fast_tracepoint_insn_len,
7155 linux_qxfer_libraries_svr4,
7156 linux_supports_agent,
7157 #ifdef HAVE_LINUX_BTRACE
7158 linux_supports_btrace,
7159 linux_enable_btrace,
7160 linux_low_disable_btrace,
7161 linux_low_read_btrace,
7162 linux_low_btrace_conf,
7163 #else
7164 NULL,
7165 NULL,
7166 NULL,
7167 NULL,
7168 NULL,
7169 #endif
7170 linux_supports_range_stepping,
7171 linux_proc_pid_to_exec_file,
7172 linux_mntns_open_cloexec,
7173 linux_mntns_unlink,
7174 linux_mntns_readlink,
7175 linux_breakpoint_kind_from_pc,
7176 linux_sw_breakpoint_from_kind,
7177 linux_proc_tid_get_name,
7178 linux_breakpoint_kind_from_current_state,
7179 linux_supports_software_single_step
7180 };
7181
7182 #ifdef HAVE_LINUX_REGSETS
7183 void
7184 initialize_regsets_info (struct regsets_info *info)
7185 {
7186 for (info->num_regsets = 0;
7187 info->regsets[info->num_regsets].size >= 0;
7188 info->num_regsets++)
7189 ;
7190 }
7191 #endif
7192
7193 void
7194 initialize_low (void)
7195 {
7196 struct sigaction sigchld_action;
7197
7198 memset (&sigchld_action, 0, sizeof (sigchld_action));
7199 set_target_ops (&linux_target_ops);
7200
7201 linux_ptrace_init_warnings ();
7202
7203 sigchld_action.sa_handler = sigchld_handler;
7204 sigemptyset (&sigchld_action.sa_mask);
7205 sigchld_action.sa_flags = SA_RESTART;
7206 sigaction (SIGCHLD, &sigchld_action, NULL);
7207
7208 initialize_low_arch ();
7209
7210 linux_check_ptrace_features ();
7211 }