]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/spu-low.c
Fix gdbserver SPU build
[thirdparty/binutils-gdb.git] / gdb / gdbserver / spu-low.c
1 /* Low level interface to SPUs, for the remote server for GDB.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "server.h"
22
23 #include "gdb_wait.h"
24 #include <sys/ptrace.h>
25 #include <fcntl.h>
26 #include <unistd.h>
27 #include <sys/syscall.h>
28 #include "filestuff.h"
29 #include "hostio.h"
30
31 /* Some older glibc versions do not define this. */
32 #ifndef __WNOTHREAD
33 #define __WNOTHREAD 0x20000000 /* Don't wait on children of other
34 threads in this group */
35 #endif
36
37 #define PTRACE_TYPE_RET long
38 #define PTRACE_TYPE_ARG3 long
39
40 /* Number of registers. */
41 #define SPU_NUM_REGS 130
42 #define SPU_NUM_CORE_REGS 128
43
44 /* Special registers. */
45 #define SPU_ID_REGNUM 128
46 #define SPU_PC_REGNUM 129
47
48 /* PPU side system calls. */
49 #define INSTR_SC 0x44000002
50 #define NR_spu_run 0x0116
51
52 /* These are used in remote-utils.c. */
53 int using_threads = 0;
54
55 /* Defined in auto-generated file reg-spu.c. */
56 void init_registers_spu (void);
57 extern const struct target_desc *tdesc_spu;
58
59 /* Fetch PPU register REGNO. */
60 static CORE_ADDR
61 fetch_ppc_register (int regno)
62 {
63 PTRACE_TYPE_RET res;
64
65 int tid = ptid_get_lwp (current_ptid);
66
67 #ifndef __powerpc64__
68 /* If running as a 32-bit process on a 64-bit system, we attempt
69 to get the full 64-bit register content of the target process.
70 If the PPC special ptrace call fails, we're on a 32-bit system;
71 just fall through to the regular ptrace call in that case. */
72 {
73 char buf[8];
74
75 errno = 0;
76 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
77 (PTRACE_TYPE_ARG3) (regno * 8), buf);
78 if (errno == 0)
79 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
80 (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
81 if (errno == 0)
82 return (CORE_ADDR) *(unsigned long long *)buf;
83 }
84 #endif
85
86 errno = 0;
87 res = ptrace (PT_READ_U, tid,
88 (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
89 if (errno != 0)
90 {
91 char mess[128];
92 sprintf (mess, "reading PPC register #%d", regno);
93 perror_with_name (mess);
94 }
95
96 return (CORE_ADDR) (unsigned long) res;
97 }
98
99 /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
100 static int
101 fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word)
102 {
103 errno = 0;
104
105 #ifndef __powerpc64__
106 if (memaddr >> 32)
107 {
108 unsigned long long addr_8 = (unsigned long long) memaddr;
109 ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
110 }
111 else
112 #endif
113 *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
114
115 return errno;
116 }
117
118 /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
119 static int
120 store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word)
121 {
122 errno = 0;
123
124 #ifndef __powerpc64__
125 if (memaddr >> 32)
126 {
127 unsigned long long addr_8 = (unsigned long long) memaddr;
128 ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
129 }
130 else
131 #endif
132 ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
133
134 return errno;
135 }
136
137 /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
138 static int
139 fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
140 {
141 int i, ret;
142
143 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
144 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
145 / sizeof (PTRACE_TYPE_RET));
146 PTRACE_TYPE_RET *buffer;
147
148 int tid = ptid_get_lwp (current_ptid);
149
150 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
151 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
152 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0)
153 return ret;
154
155 memcpy (myaddr,
156 (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
157 len);
158
159 return 0;
160 }
161
162 /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
163 static int
164 store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
165 {
166 int i, ret;
167
168 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
169 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
170 / sizeof (PTRACE_TYPE_RET));
171 PTRACE_TYPE_RET *buffer;
172
173 int tid = ptid_get_lwp (current_ptid);
174
175 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
176
177 if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
178 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0)
179 return ret;
180
181 if (count > 1)
182 if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
183 * sizeof (PTRACE_TYPE_RET),
184 &buffer[count - 1])) != 0)
185 return ret;
186
187 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
188 myaddr, len);
189
190 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
191 if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0)
192 return ret;
193
194 return 0;
195 }
196
197
198 /* If the PPU thread is currently stopped on a spu_run system call,
199 return to FD and ADDR the file handle and NPC parameter address
200 used with the system call. Return non-zero if successful. */
201 static int
202 parse_spufs_run (int *fd, CORE_ADDR *addr)
203 {
204 unsigned int insn;
205 CORE_ADDR pc = fetch_ppc_register (32); /* nip */
206
207 /* Fetch instruction preceding current NIP. */
208 if (fetch_ppc_memory (pc-4, (char *) &insn, 4) != 0)
209 return 0;
210 /* It should be a "sc" instruction. */
211 if (insn != INSTR_SC)
212 return 0;
213 /* System call number should be NR_spu_run. */
214 if (fetch_ppc_register (0) != NR_spu_run)
215 return 0;
216
217 /* Register 3 contains fd, register 4 the NPC param pointer. */
218 *fd = fetch_ppc_register (34); /* orig_gpr3 */
219 *addr = fetch_ppc_register (4);
220 return 1;
221 }
222
223
224 /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
225 using the /proc file system. */
226 static int
227 spu_proc_xfer_spu (const char *annex, unsigned char *readbuf,
228 const unsigned char *writebuf,
229 CORE_ADDR offset, int len)
230 {
231 char buf[128];
232 int fd = 0;
233 int ret = -1;
234
235 if (!annex)
236 return 0;
237
238 sprintf (buf, "/proc/%ld/fd/%s", ptid_get_lwp (current_ptid), annex);
239 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
240 if (fd <= 0)
241 return -1;
242
243 if (offset != 0
244 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
245 {
246 close (fd);
247 return 0;
248 }
249
250 if (writebuf)
251 ret = write (fd, writebuf, (size_t) len);
252 else if (readbuf)
253 ret = read (fd, readbuf, (size_t) len);
254
255 close (fd);
256 return ret;
257 }
258
259
260 /* Start an inferior process and returns its pid.
261 ALLARGS is a vector of program-name and args. */
262 static int
263 spu_create_inferior (char *program, char **allargs)
264 {
265 int pid;
266 ptid_t ptid;
267 struct process_info *proc;
268
269 pid = fork ();
270 if (pid < 0)
271 perror_with_name ("fork");
272
273 if (pid == 0)
274 {
275 close_most_fds ();
276 ptrace (PTRACE_TRACEME, 0, 0, 0);
277
278 setpgid (0, 0);
279
280 execv (program, allargs);
281 if (errno == ENOENT)
282 execvp (program, allargs);
283
284 fprintf (stderr, "Cannot exec %s: %s.\n", program,
285 strerror (errno));
286 fflush (stderr);
287 _exit (0177);
288 }
289
290 proc = add_process (pid, 0);
291 proc->tdesc = tdesc_spu;
292
293 ptid = ptid_build (pid, pid, 0);
294 add_thread (ptid, NULL);
295 return pid;
296 }
297
298 /* Attach to an inferior process. */
299 int
300 spu_attach (unsigned long pid)
301 {
302 ptid_t ptid;
303 struct process_info *proc;
304
305 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
306 {
307 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
308 strerror (errno), errno);
309 fflush (stderr);
310 _exit (0177);
311 }
312
313 proc = add_process (pid, 1);
314 proc->tdesc = tdesc_spu;
315 ptid = ptid_build (pid, pid, 0);
316 add_thread (ptid, NULL);
317 return 0;
318 }
319
320 /* Kill the inferior process. */
321 static int
322 spu_kill (int pid)
323 {
324 int status, ret;
325 struct process_info *process = find_process_pid (pid);
326 if (process == NULL)
327 return -1;
328
329 ptrace (PTRACE_KILL, pid, 0, 0);
330
331 do {
332 ret = waitpid (pid, &status, 0);
333 if (WIFEXITED (status) || WIFSIGNALED (status))
334 break;
335 } while (ret != -1 || errno != ECHILD);
336
337 clear_inferiors ();
338 remove_process (process);
339 return 0;
340 }
341
342 /* Detach from inferior process. */
343 static int
344 spu_detach (int pid)
345 {
346 struct process_info *process = find_process_pid (pid);
347 if (process == NULL)
348 return -1;
349
350 ptrace (PTRACE_DETACH, pid, 0, 0);
351
352 clear_inferiors ();
353 remove_process (process);
354 return 0;
355 }
356
357 static void
358 spu_mourn (struct process_info *process)
359 {
360 remove_process (process);
361 }
362
363 static void
364 spu_join (int pid)
365 {
366 int status, ret;
367
368 do {
369 ret = waitpid (pid, &status, 0);
370 if (WIFEXITED (status) || WIFSIGNALED (status))
371 break;
372 } while (ret != -1 || errno != ECHILD);
373 }
374
375 /* Return nonzero if the given thread is still alive. */
376 static int
377 spu_thread_alive (ptid_t ptid)
378 {
379 return ptid_equal (ptid, current_ptid);
380 }
381
382 /* Resume process. */
383 static void
384 spu_resume (struct thread_resume *resume_info, size_t n)
385 {
386 struct thread_info *thr = get_first_thread ();
387 size_t i;
388
389 for (i = 0; i < n; i++)
390 if (ptid_equal (resume_info[i].thread, minus_one_ptid)
391 || ptid_equal (resume_info[i].thread, ptid_of (thr)))
392 break;
393
394 if (i == n)
395 return;
396
397 /* We don't support hardware single-stepping right now, assume
398 GDB knows to use software single-stepping. */
399 if (resume_info[i].kind == resume_step)
400 fprintf (stderr, "Hardware single-step not supported.\n");
401
402 regcache_invalidate ();
403
404 errno = 0;
405 ptrace (PTRACE_CONT, ptid_get_lwp (ptid_of (thr)), 0, resume_info[i].sig);
406 if (errno)
407 perror_with_name ("ptrace");
408 }
409
410 /* Wait for process, returns status. */
411 static ptid_t
412 spu_wait (ptid_t ptid, struct target_waitstatus *ourstatus, int options)
413 {
414 int pid = ptid_get_pid (ptid);
415 int w;
416 int ret;
417
418 while (1)
419 {
420 ret = waitpid (pid, &w, WNOHANG | __WALL | __WNOTHREAD);
421
422 if (ret == -1)
423 {
424 if (errno != ECHILD)
425 perror_with_name ("waitpid");
426 }
427 else if (ret > 0)
428 break;
429
430 usleep (1000);
431 }
432
433 /* On the first wait, continue running the inferior until we are
434 blocked inside an spu_run system call. */
435 if (!server_waiting)
436 {
437 int fd;
438 CORE_ADDR addr;
439
440 while (!parse_spufs_run (&fd, &addr))
441 {
442 ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
443 waitpid (pid, NULL, __WALL | __WNOTHREAD);
444 }
445 }
446
447 if (WIFEXITED (w))
448 {
449 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
450 ourstatus->kind = TARGET_WAITKIND_EXITED;
451 ourstatus->value.integer = WEXITSTATUS (w);
452 clear_inferiors ();
453 return pid_to_ptid (ret);
454 }
455 else if (!WIFSTOPPED (w))
456 {
457 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
458 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
459 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
460 clear_inferiors ();
461 return pid_to_ptid (ret);
462 }
463
464 /* After attach, we may have received a SIGSTOP. Do not return this
465 as signal to GDB, or else it will try to continue with SIGSTOP ... */
466 if (!server_waiting)
467 {
468 ourstatus->kind = TARGET_WAITKIND_STOPPED;
469 ourstatus->value.sig = GDB_SIGNAL_0;
470 return ptid_build (ret, ret, 0);
471 }
472
473 ourstatus->kind = TARGET_WAITKIND_STOPPED;
474 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
475 return ptid_build (ret, ret, 0);
476 }
477
478 /* Fetch inferior registers. */
479 static void
480 spu_fetch_registers (struct regcache *regcache, int regno)
481 {
482 int fd;
483 CORE_ADDR addr;
484
485 /* We must be stopped on a spu_run system call. */
486 if (!parse_spufs_run (&fd, &addr))
487 return;
488
489 /* The ID register holds the spufs file handle. */
490 if (regno == -1 || regno == SPU_ID_REGNUM)
491 supply_register (regcache, SPU_ID_REGNUM, (char *)&fd);
492
493 /* The NPC register is found at ADDR. */
494 if (regno == -1 || regno == SPU_PC_REGNUM)
495 {
496 char buf[4];
497 if (fetch_ppc_memory (addr, buf, 4) == 0)
498 supply_register (regcache, SPU_PC_REGNUM, buf);
499 }
500
501 /* The GPRs are found in the "regs" spufs file. */
502 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
503 {
504 unsigned char buf[16*SPU_NUM_CORE_REGS];
505 char annex[32];
506 int i;
507
508 sprintf (annex, "%d/regs", fd);
509 if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
510 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
511 supply_register (regcache, i, buf + i*16);
512 }
513 }
514
515 /* Store inferior registers. */
516 static void
517 spu_store_registers (struct regcache *regcache, int regno)
518 {
519 int fd;
520 CORE_ADDR addr;
521
522 /* ??? Some callers use 0 to mean all registers. */
523 if (regno == 0)
524 regno = -1;
525
526 /* We must be stopped on a spu_run system call. */
527 if (!parse_spufs_run (&fd, &addr))
528 return;
529
530 /* The NPC register is found at ADDR. */
531 if (regno == -1 || regno == SPU_PC_REGNUM)
532 {
533 char buf[4];
534 collect_register (regcache, SPU_PC_REGNUM, buf);
535 store_ppc_memory (addr, buf, 4);
536 }
537
538 /* The GPRs are found in the "regs" spufs file. */
539 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
540 {
541 unsigned char buf[16*SPU_NUM_CORE_REGS];
542 char annex[32];
543 int i;
544
545 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
546 collect_register (regcache, i, buf + i*16);
547
548 sprintf (annex, "%d/regs", fd);
549 spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
550 }
551 }
552
553 /* Copy LEN bytes from inferior's memory starting at MEMADDR
554 to debugger memory starting at MYADDR. */
555 static int
556 spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
557 {
558 int fd, ret;
559 CORE_ADDR addr;
560 char annex[32], lslr_annex[32], buf[32];
561 CORE_ADDR lslr;
562
563 /* We must be stopped on a spu_run system call. */
564 if (!parse_spufs_run (&fd, &addr))
565 return 0;
566
567 /* Use the "mem" spufs file to access SPU local store. */
568 sprintf (annex, "%d/mem", fd);
569 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len);
570 if (ret > 0)
571 return ret == len ? 0 : EIO;
572
573 /* SPU local store access wraps the address around at the
574 local store limit. We emulate this here. To avoid needing
575 an extra access to retrieve the LSLR, we only do that after
576 trying the original address first, and getting end-of-file. */
577 sprintf (lslr_annex, "%d/lslr", fd);
578 memset (buf, 0, sizeof buf);
579 if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
580 0, sizeof buf) <= 0)
581 return ret;
582
583 lslr = strtoul (buf, NULL, 16);
584 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr & lslr, len);
585
586 return ret == len ? 0 : EIO;
587 }
588
589 /* Copy LEN bytes of data from debugger memory at MYADDR
590 to inferior's memory at MEMADDR.
591 On failure (cannot write the inferior)
592 returns the value of errno. */
593 static int
594 spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
595 {
596 int fd, ret;
597 CORE_ADDR addr;
598 char annex[32], lslr_annex[32], buf[32];
599 CORE_ADDR lslr;
600
601 /* We must be stopped on a spu_run system call. */
602 if (!parse_spufs_run (&fd, &addr))
603 return 0;
604
605 /* Use the "mem" spufs file to access SPU local store. */
606 sprintf (annex, "%d/mem", fd);
607 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len);
608 if (ret > 0)
609 return ret == len ? 0 : EIO;
610
611 /* SPU local store access wraps the address around at the
612 local store limit. We emulate this here. To avoid needing
613 an extra access to retrieve the LSLR, we only do that after
614 trying the original address first, and getting end-of-file. */
615 sprintf (lslr_annex, "%d/lslr", fd);
616 memset (buf, 0, sizeof buf);
617 if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
618 0, sizeof buf) <= 0)
619 return ret;
620
621 lslr = strtoul (buf, NULL, 16);
622 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr & lslr, len);
623
624 return ret == len ? 0 : EIO;
625 }
626
627 /* Look up special symbols -- unneded here. */
628 static void
629 spu_look_up_symbols (void)
630 {
631 }
632
633 /* Send signal to inferior. */
634 static void
635 spu_request_interrupt (void)
636 {
637 struct thread_info *thr = get_first_thread ();
638
639 syscall (SYS_tkill, lwpid_of (thr), SIGINT);
640 }
641
642 static struct target_ops spu_target_ops = {
643 spu_create_inferior,
644 NULL, /* arch_setup */
645 spu_attach,
646 spu_kill,
647 spu_detach,
648 spu_mourn,
649 spu_join,
650 spu_thread_alive,
651 spu_resume,
652 spu_wait,
653 spu_fetch_registers,
654 spu_store_registers,
655 NULL, /* prepare_to_access_memory */
656 NULL, /* done_accessing_memory */
657 spu_read_memory,
658 spu_write_memory,
659 spu_look_up_symbols,
660 spu_request_interrupt,
661 NULL,
662 NULL, /* supports_z_point_type */
663 NULL,
664 NULL,
665 NULL, /* stopped_by_sw_breakpoint */
666 NULL, /* supports_stopped_by_sw_breakpoint */
667 NULL, /* stopped_by_hw_breakpoint */
668 NULL, /* supports_stopped_by_hw_breakpoint */
669 NULL, /* supports_conditional_breakpoints */
670 NULL,
671 NULL,
672 NULL,
673 NULL,
674 spu_proc_xfer_spu,
675 hostio_last_error_from_errno,
676 };
677
678 void
679 initialize_low (void)
680 {
681 static const unsigned char breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
682
683 set_target_ops (&spu_target_ops);
684 set_breakpoint_data (breakpoint, sizeof breakpoint);
685 init_registers_spu ();
686 }