]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbserver/spu-low.c
gdb/gdbserver:
[thirdparty/binutils-gdb.git] / gdb / gdbserver / spu-low.c
1 /* Low level interface to SPUs, for the remote server for GDB.
2 Copyright (C) 2006-2012 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "server.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/ptrace.h>
26 #include <fcntl.h>
27 #include <string.h>
28 #include <stdlib.h>
29 #include <unistd.h>
30 #include <errno.h>
31 #include <sys/syscall.h>
32
33 /* Some older glibc versions do not define this. */
34 #ifndef __WNOTHREAD
35 #define __WNOTHREAD 0x20000000 /* Don't wait on children of other
36 threads in this group */
37 #endif
38
39 #define PTRACE_TYPE_RET long
40 #define PTRACE_TYPE_ARG3 long
41
42 /* Number of registers. */
43 #define SPU_NUM_REGS 130
44 #define SPU_NUM_CORE_REGS 128
45
46 /* Special registers. */
47 #define SPU_ID_REGNUM 128
48 #define SPU_PC_REGNUM 129
49
50 /* PPU side system calls. */
51 #define INSTR_SC 0x44000002
52 #define NR_spu_run 0x0116
53
54 /* These are used in remote-utils.c. */
55 int using_threads = 0;
56
57 /* Defined in auto-generated file reg-spu.c. */
58 void init_registers_spu (void);
59
60
61 /* Fetch PPU register REGNO. */
62 static CORE_ADDR
63 fetch_ppc_register (int regno)
64 {
65 PTRACE_TYPE_RET res;
66
67 int tid = ptid_get_lwp (current_ptid);
68
69 #ifndef __powerpc64__
70 /* If running as a 32-bit process on a 64-bit system, we attempt
71 to get the full 64-bit register content of the target process.
72 If the PPC special ptrace call fails, we're on a 32-bit system;
73 just fall through to the regular ptrace call in that case. */
74 {
75 char buf[8];
76
77 errno = 0;
78 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
79 (PTRACE_TYPE_ARG3) (regno * 8), buf);
80 if (errno == 0)
81 ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
82 (PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
83 if (errno == 0)
84 return (CORE_ADDR) *(unsigned long long *)buf;
85 }
86 #endif
87
88 errno = 0;
89 res = ptrace (PT_READ_U, tid,
90 (PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
91 if (errno != 0)
92 {
93 char mess[128];
94 sprintf (mess, "reading PPC register #%d", regno);
95 perror_with_name (mess);
96 }
97
98 return (CORE_ADDR) (unsigned long) res;
99 }
100
101 /* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
102 static int
103 fetch_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET *word)
104 {
105 errno = 0;
106
107 #ifndef __powerpc64__
108 if (memaddr >> 32)
109 {
110 unsigned long long addr_8 = (unsigned long long) memaddr;
111 ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
112 }
113 else
114 #endif
115 *word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
116
117 return errno;
118 }
119
120 /* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
121 static int
122 store_ppc_memory_1 (int tid, CORE_ADDR memaddr, PTRACE_TYPE_RET word)
123 {
124 errno = 0;
125
126 #ifndef __powerpc64__
127 if (memaddr >> 32)
128 {
129 unsigned long long addr_8 = (unsigned long long) memaddr;
130 ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
131 }
132 else
133 #endif
134 ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
135
136 return errno;
137 }
138
139 /* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
140 static int
141 fetch_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
142 {
143 int i, ret;
144
145 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
146 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
147 / sizeof (PTRACE_TYPE_RET));
148 PTRACE_TYPE_RET *buffer;
149
150 int tid = ptid_get_lwp (current_ptid);
151
152 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
153 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
154 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[i])) != 0)
155 return ret;
156
157 memcpy (myaddr,
158 (char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
159 len);
160
161 return 0;
162 }
163
164 /* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
165 static int
166 store_ppc_memory (CORE_ADDR memaddr, char *myaddr, int len)
167 {
168 int i, ret;
169
170 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_TYPE_RET);
171 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
172 / sizeof (PTRACE_TYPE_RET));
173 PTRACE_TYPE_RET *buffer;
174
175 int tid = ptid_get_lwp (current_ptid);
176
177 buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
178
179 if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
180 if ((ret = fetch_ppc_memory_1 (tid, addr, &buffer[0])) != 0)
181 return ret;
182
183 if (count > 1)
184 if ((ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
185 * sizeof (PTRACE_TYPE_RET),
186 &buffer[count - 1])) != 0)
187 return ret;
188
189 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
190 myaddr, len);
191
192 for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
193 if ((ret = store_ppc_memory_1 (tid, addr, buffer[i])) != 0)
194 return ret;
195
196 return 0;
197 }
198
199
200 /* If the PPU thread is currently stopped on a spu_run system call,
201 return to FD and ADDR the file handle and NPC parameter address
202 used with the system call. Return non-zero if successful. */
203 static int
204 parse_spufs_run (int *fd, CORE_ADDR *addr)
205 {
206 unsigned int insn;
207 CORE_ADDR pc = fetch_ppc_register (32); /* nip */
208
209 /* Fetch instruction preceding current NIP. */
210 if (fetch_ppc_memory (pc-4, (char *) &insn, 4) != 0)
211 return 0;
212 /* It should be a "sc" instruction. */
213 if (insn != INSTR_SC)
214 return 0;
215 /* System call number should be NR_spu_run. */
216 if (fetch_ppc_register (0) != NR_spu_run)
217 return 0;
218
219 /* Register 3 contains fd, register 4 the NPC param pointer. */
220 *fd = fetch_ppc_register (34); /* orig_gpr3 */
221 *addr = fetch_ppc_register (4);
222 return 1;
223 }
224
225
226 /* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
227 using the /proc file system. */
228 static int
229 spu_proc_xfer_spu (const char *annex, unsigned char *readbuf,
230 const unsigned char *writebuf,
231 CORE_ADDR offset, int len)
232 {
233 char buf[128];
234 int fd = 0;
235 int ret = -1;
236
237 if (!annex)
238 return 0;
239
240 sprintf (buf, "/proc/%ld/fd/%s", ptid_get_lwp (current_ptid), annex);
241 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
242 if (fd <= 0)
243 return -1;
244
245 if (offset != 0
246 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
247 {
248 close (fd);
249 return 0;
250 }
251
252 if (writebuf)
253 ret = write (fd, writebuf, (size_t) len);
254 else if (readbuf)
255 ret = read (fd, readbuf, (size_t) len);
256
257 close (fd);
258 return ret;
259 }
260
261
262 /* Start an inferior process and returns its pid.
263 ALLARGS is a vector of program-name and args. */
264 static int
265 spu_create_inferior (char *program, char **allargs)
266 {
267 int pid;
268 ptid_t ptid;
269
270 pid = fork ();
271 if (pid < 0)
272 perror_with_name ("fork");
273
274 if (pid == 0)
275 {
276 ptrace (PTRACE_TRACEME, 0, 0, 0);
277
278 setpgid (0, 0);
279
280 execv (program, allargs);
281 if (errno == ENOENT)
282 execvp (program, allargs);
283
284 fprintf (stderr, "Cannot exec %s: %s.\n", program,
285 strerror (errno));
286 fflush (stderr);
287 _exit (0177);
288 }
289
290 add_process (pid, 0);
291
292 ptid = ptid_build (pid, pid, 0);
293 add_thread (ptid, NULL);
294 return pid;
295 }
296
297 /* Attach to an inferior process. */
298 int
299 spu_attach (unsigned long pid)
300 {
301 ptid_t ptid;
302
303 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
304 {
305 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
306 strerror (errno), errno);
307 fflush (stderr);
308 _exit (0177);
309 }
310
311 add_process (pid, 1);
312 ptid = ptid_build (pid, pid, 0);
313 add_thread (ptid, NULL);
314 return 0;
315 }
316
317 /* Kill the inferior process. */
318 static int
319 spu_kill (int pid)
320 {
321 int status, ret;
322 struct process_info *process = find_process_pid (pid);
323 if (process == NULL)
324 return -1;
325
326 ptrace (PTRACE_KILL, pid, 0, 0);
327
328 do {
329 ret = waitpid (pid, &status, 0);
330 if (WIFEXITED (status) || WIFSIGNALED (status))
331 break;
332 } while (ret != -1 || errno != ECHILD);
333
334 clear_inferiors ();
335 remove_process (process);
336 return 0;
337 }
338
339 /* Detach from inferior process. */
340 static int
341 spu_detach (int pid)
342 {
343 struct process_info *process = find_process_pid (pid);
344 if (process == NULL)
345 return -1;
346
347 ptrace (PTRACE_DETACH, pid, 0, 0);
348
349 clear_inferiors ();
350 remove_process (process);
351 return 0;
352 }
353
354 static void
355 spu_mourn (struct process_info *process)
356 {
357 remove_process (process);
358 }
359
360 static void
361 spu_join (int pid)
362 {
363 int status, ret;
364
365 do {
366 ret = waitpid (pid, &status, 0);
367 if (WIFEXITED (status) || WIFSIGNALED (status))
368 break;
369 } while (ret != -1 || errno != ECHILD);
370 }
371
372 /* Return nonzero if the given thread is still alive. */
373 static int
374 spu_thread_alive (ptid_t ptid)
375 {
376 return ptid_equal (ptid, current_ptid);
377 }
378
379 /* Resume process. */
380 static void
381 spu_resume (struct thread_resume *resume_info, size_t n)
382 {
383 size_t i;
384
385 for (i = 0; i < n; i++)
386 if (ptid_equal (resume_info[i].thread, minus_one_ptid)
387 || ptid_equal (resume_info[i].thread, current_ptid))
388 break;
389
390 if (i == n)
391 return;
392
393 /* We don't support hardware single-stepping right now, assume
394 GDB knows to use software single-stepping. */
395 if (resume_info[i].kind == resume_step)
396 fprintf (stderr, "Hardware single-step not supported.\n");
397
398 regcache_invalidate ();
399
400 errno = 0;
401 ptrace (PTRACE_CONT, ptid_get_lwp (current_ptid), 0, resume_info[i].sig);
402 if (errno)
403 perror_with_name ("ptrace");
404 }
405
406 /* Wait for process, returns status. */
407 static ptid_t
408 spu_wait (ptid_t ptid, struct target_waitstatus *ourstatus, int options)
409 {
410 int pid = ptid_get_pid (ptid);
411 int w;
412 int ret;
413
414 while (1)
415 {
416 ret = waitpid (pid, &w, WNOHANG | __WALL | __WNOTHREAD);
417
418 if (ret == -1)
419 {
420 if (errno != ECHILD)
421 perror_with_name ("waitpid");
422 }
423 else if (ret > 0)
424 break;
425
426 usleep (1000);
427 }
428
429 /* On the first wait, continue running the inferior until we are
430 blocked inside an spu_run system call. */
431 if (!server_waiting)
432 {
433 int fd;
434 CORE_ADDR addr;
435
436 while (!parse_spufs_run (&fd, &addr))
437 {
438 ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
439 waitpid (pid, NULL, __WALL | __WNOTHREAD);
440 }
441 }
442
443 if (WIFEXITED (w))
444 {
445 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
446 ourstatus->kind = TARGET_WAITKIND_EXITED;
447 ourstatus->value.integer = WEXITSTATUS (w);
448 clear_inferiors ();
449 return pid_to_ptid (ret);
450 }
451 else if (!WIFSTOPPED (w))
452 {
453 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
454 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
455 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
456 clear_inferiors ();
457 return pid_to_ptid (ret);
458 }
459
460 /* After attach, we may have received a SIGSTOP. Do not return this
461 as signal to GDB, or else it will try to continue with SIGSTOP ... */
462 if (!server_waiting)
463 {
464 ourstatus->kind = TARGET_WAITKIND_STOPPED;
465 ourstatus->value.sig = GDB_SIGNAL_0;
466 return ptid_build (ret, ret, 0);
467 }
468
469 ourstatus->kind = TARGET_WAITKIND_STOPPED;
470 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
471 return ptid_build (ret, ret, 0);
472 }
473
474 /* Fetch inferior registers. */
475 static void
476 spu_fetch_registers (struct regcache *regcache, int regno)
477 {
478 int fd;
479 CORE_ADDR addr;
480
481 /* We must be stopped on a spu_run system call. */
482 if (!parse_spufs_run (&fd, &addr))
483 return;
484
485 /* The ID register holds the spufs file handle. */
486 if (regno == -1 || regno == SPU_ID_REGNUM)
487 supply_register (regcache, SPU_ID_REGNUM, (char *)&fd);
488
489 /* The NPC register is found at ADDR. */
490 if (regno == -1 || regno == SPU_PC_REGNUM)
491 {
492 char buf[4];
493 if (fetch_ppc_memory (addr, buf, 4) == 0)
494 supply_register (regcache, SPU_PC_REGNUM, buf);
495 }
496
497 /* The GPRs are found in the "regs" spufs file. */
498 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
499 {
500 unsigned char buf[16*SPU_NUM_CORE_REGS];
501 char annex[32];
502 int i;
503
504 sprintf (annex, "%d/regs", fd);
505 if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
506 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
507 supply_register (regcache, i, buf + i*16);
508 }
509 }
510
511 /* Store inferior registers. */
512 static void
513 spu_store_registers (struct regcache *regcache, int regno)
514 {
515 int fd;
516 CORE_ADDR addr;
517
518 /* ??? Some callers use 0 to mean all registers. */
519 if (regno == 0)
520 regno = -1;
521
522 /* We must be stopped on a spu_run system call. */
523 if (!parse_spufs_run (&fd, &addr))
524 return;
525
526 /* The NPC register is found at ADDR. */
527 if (regno == -1 || regno == SPU_PC_REGNUM)
528 {
529 char buf[4];
530 collect_register (regcache, SPU_PC_REGNUM, buf);
531 store_ppc_memory (addr, buf, 4);
532 }
533
534 /* The GPRs are found in the "regs" spufs file. */
535 if (regno == -1 || (regno >= 0 && regno < SPU_NUM_CORE_REGS))
536 {
537 unsigned char buf[16*SPU_NUM_CORE_REGS];
538 char annex[32];
539 int i;
540
541 for (i = 0; i < SPU_NUM_CORE_REGS; i++)
542 collect_register (regcache, i, buf + i*16);
543
544 sprintf (annex, "%d/regs", fd);
545 spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
546 }
547 }
548
549 /* Copy LEN bytes from inferior's memory starting at MEMADDR
550 to debugger memory starting at MYADDR. */
551 static int
552 spu_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
553 {
554 int fd, ret;
555 CORE_ADDR addr;
556 char annex[32], lslr_annex[32], buf[32];
557 CORE_ADDR lslr;
558
559 /* We must be stopped on a spu_run system call. */
560 if (!parse_spufs_run (&fd, &addr))
561 return 0;
562
563 /* Use the "mem" spufs file to access SPU local store. */
564 sprintf (annex, "%d/mem", fd);
565 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr, len);
566 if (ret > 0)
567 return ret == len ? 0 : EIO;
568
569 /* SPU local store access wraps the address around at the
570 local store limit. We emulate this here. To avoid needing
571 an extra access to retrieve the LSLR, we only do that after
572 trying the original address first, and getting end-of-file. */
573 sprintf (lslr_annex, "%d/lslr", fd);
574 memset (buf, 0, sizeof buf);
575 if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
576 0, sizeof buf) <= 0)
577 return ret;
578
579 lslr = strtoul (buf, NULL, 16);
580 ret = spu_proc_xfer_spu (annex, myaddr, NULL, memaddr & lslr, len);
581
582 return ret == len ? 0 : EIO;
583 }
584
585 /* Copy LEN bytes of data from debugger memory at MYADDR
586 to inferior's memory at MEMADDR.
587 On failure (cannot write the inferior)
588 returns the value of errno. */
589 static int
590 spu_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
591 {
592 int fd, ret;
593 CORE_ADDR addr;
594 char annex[32], lslr_annex[32], buf[32];
595 CORE_ADDR lslr;
596
597 /* We must be stopped on a spu_run system call. */
598 if (!parse_spufs_run (&fd, &addr))
599 return 0;
600
601 /* Use the "mem" spufs file to access SPU local store. */
602 sprintf (annex, "%d/mem", fd);
603 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr, len);
604 if (ret > 0)
605 return ret == len ? 0 : EIO;
606
607 /* SPU local store access wraps the address around at the
608 local store limit. We emulate this here. To avoid needing
609 an extra access to retrieve the LSLR, we only do that after
610 trying the original address first, and getting end-of-file. */
611 sprintf (lslr_annex, "%d/lslr", fd);
612 memset (buf, 0, sizeof buf);
613 if (spu_proc_xfer_spu (lslr_annex, (unsigned char *)buf, NULL,
614 0, sizeof buf) <= 0)
615 return ret;
616
617 lslr = strtoul (buf, NULL, 16);
618 ret = spu_proc_xfer_spu (annex, NULL, myaddr, memaddr & lslr, len);
619
620 return ret == len ? 0 : EIO;
621 }
622
623 /* Look up special symbols -- unneded here. */
624 static void
625 spu_look_up_symbols (void)
626 {
627 }
628
629 /* Send signal to inferior. */
630 static void
631 spu_request_interrupt (void)
632 {
633 syscall (SYS_tkill, ptid_get_lwp (current_ptid), SIGINT);
634 }
635
636 static struct target_ops spu_target_ops = {
637 spu_create_inferior,
638 spu_attach,
639 spu_kill,
640 spu_detach,
641 spu_mourn,
642 spu_join,
643 spu_thread_alive,
644 spu_resume,
645 spu_wait,
646 spu_fetch_registers,
647 spu_store_registers,
648 NULL, /* prepare_to_access_memory */
649 NULL, /* done_accessing_memory */
650 spu_read_memory,
651 spu_write_memory,
652 spu_look_up_symbols,
653 spu_request_interrupt,
654 NULL,
655 NULL,
656 NULL,
657 NULL,
658 NULL,
659 NULL,
660 NULL,
661 spu_proc_xfer_spu,
662 hostio_last_error_from_errno,
663 };
664
665 void
666 initialize_low (void)
667 {
668 static const unsigned char breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
669
670 set_target_ops (&spu_target_ops);
671 set_breakpoint_data (breakpoint, sizeof breakpoint);
672 init_registers_spu ();
673 }