]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
Update year range in copyright notice of all files owned by the GDB project.
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Make a type without const, volatile, or restrict. */
707
708 struct type *
709 make_unqualified_type (struct type *type)
710 {
711 return make_qualified_type (type,
712 (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE
715 | TYPE_INSTANCE_FLAG_RESTRICT)),
716 NULL);
717 }
718
719 /* Replace the contents of ntype with the type *type. This changes the
720 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
721 the changes are propogated to all types in the TYPE_CHAIN.
722
723 In order to build recursive types, it's inevitable that we'll need
724 to update types in place --- but this sort of indiscriminate
725 smashing is ugly, and needs to be replaced with something more
726 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
727 clear if more steps are needed. */
728
729 void
730 replace_type (struct type *ntype, struct type *type)
731 {
732 struct type *chain;
733
734 /* These two types had better be in the same objfile. Otherwise,
735 the assignment of one type's main type structure to the other
736 will produce a type with references to objects (names; field
737 lists; etc.) allocated on an objfile other than its own. */
738 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
739
740 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
741
742 /* The type length is not a part of the main type. Update it for
743 each type on the variant chain. */
744 chain = ntype;
745 do
746 {
747 /* Assert that this element of the chain has no address-class bits
748 set in its flags. Such type variants might have type lengths
749 which are supposed to be different from the non-address-class
750 variants. This assertion shouldn't ever be triggered because
751 symbol readers which do construct address-class variants don't
752 call replace_type(). */
753 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
754
755 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
756 chain = TYPE_CHAIN (chain);
757 }
758 while (ntype != chain);
759
760 /* Assert that the two types have equivalent instance qualifiers.
761 This should be true for at least all of our debug readers. */
762 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
763 }
764
765 /* Implement direct support for MEMBER_TYPE in GNU C++.
766 May need to construct such a type if this is the first use.
767 The TYPE is the type of the member. The DOMAIN is the type
768 of the aggregate that the member belongs to. */
769
770 struct type *
771 lookup_memberptr_type (struct type *type, struct type *domain)
772 {
773 struct type *mtype;
774
775 mtype = alloc_type_copy (type);
776 smash_to_memberptr_type (mtype, domain, type);
777 return mtype;
778 }
779
780 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
781
782 struct type *
783 lookup_methodptr_type (struct type *to_type)
784 {
785 struct type *mtype;
786
787 mtype = alloc_type_copy (to_type);
788 smash_to_methodptr_type (mtype, to_type);
789 return mtype;
790 }
791
792 /* Allocate a stub method whose return type is TYPE. This apparently
793 happens for speed of symbol reading, since parsing out the
794 arguments to the method is cpu-intensive, the way we are doing it.
795 So, we will fill in arguments later. This always returns a fresh
796 type. */
797
798 struct type *
799 allocate_stub_method (struct type *type)
800 {
801 struct type *mtype;
802
803 mtype = alloc_type_copy (type);
804 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
805 TYPE_LENGTH (mtype) = 1;
806 TYPE_STUB (mtype) = 1;
807 TYPE_TARGET_TYPE (mtype) = type;
808 /* _DOMAIN_TYPE (mtype) = unknown yet */
809 return mtype;
810 }
811
812 /* Create a range type with a dynamic range from LOW_BOUND to
813 HIGH_BOUND, inclusive. See create_range_type for further details. */
814
815 struct type *
816 create_range_type (struct type *result_type, struct type *index_type,
817 const struct dynamic_prop *low_bound,
818 const struct dynamic_prop *high_bound)
819 {
820 if (result_type == NULL)
821 result_type = alloc_type_copy (index_type);
822 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
823 TYPE_TARGET_TYPE (result_type) = index_type;
824 if (TYPE_STUB (index_type))
825 TYPE_TARGET_STUB (result_type) = 1;
826 else
827 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
828
829 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
830 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
831 TYPE_RANGE_DATA (result_type)->low = *low_bound;
832 TYPE_RANGE_DATA (result_type)->high = *high_bound;
833
834 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
835 TYPE_UNSIGNED (result_type) = 1;
836
837 /* Ada allows the declaration of range types whose upper bound is
838 less than the lower bound, so checking the lower bound is not
839 enough. Make sure we do not mark a range type whose upper bound
840 is negative as unsigned. */
841 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
842 TYPE_UNSIGNED (result_type) = 0;
843
844 return result_type;
845 }
846
847 /* Create a range type using either a blank type supplied in
848 RESULT_TYPE, or creating a new type, inheriting the objfile from
849 INDEX_TYPE.
850
851 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
852 to HIGH_BOUND, inclusive.
853
854 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
855 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
856
857 struct type *
858 create_static_range_type (struct type *result_type, struct type *index_type,
859 LONGEST low_bound, LONGEST high_bound)
860 {
861 struct dynamic_prop low, high;
862
863 low.kind = PROP_CONST;
864 low.data.const_val = low_bound;
865
866 high.kind = PROP_CONST;
867 high.data.const_val = high_bound;
868
869 result_type = create_range_type (result_type, index_type, &low, &high);
870
871 return result_type;
872 }
873
874 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
875 are static, otherwise returns 0. */
876
877 static int
878 has_static_range (const struct range_bounds *bounds)
879 {
880 return (bounds->low.kind == PROP_CONST
881 && bounds->high.kind == PROP_CONST);
882 }
883
884
885 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
886 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
887 bounds will fit in LONGEST), or -1 otherwise. */
888
889 int
890 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
891 {
892 CHECK_TYPEDEF (type);
893 switch (TYPE_CODE (type))
894 {
895 case TYPE_CODE_RANGE:
896 *lowp = TYPE_LOW_BOUND (type);
897 *highp = TYPE_HIGH_BOUND (type);
898 return 1;
899 case TYPE_CODE_ENUM:
900 if (TYPE_NFIELDS (type) > 0)
901 {
902 /* The enums may not be sorted by value, so search all
903 entries. */
904 int i;
905
906 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
907 for (i = 0; i < TYPE_NFIELDS (type); i++)
908 {
909 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
910 *lowp = TYPE_FIELD_ENUMVAL (type, i);
911 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
912 *highp = TYPE_FIELD_ENUMVAL (type, i);
913 }
914
915 /* Set unsigned indicator if warranted. */
916 if (*lowp >= 0)
917 {
918 TYPE_UNSIGNED (type) = 1;
919 }
920 }
921 else
922 {
923 *lowp = 0;
924 *highp = -1;
925 }
926 return 0;
927 case TYPE_CODE_BOOL:
928 *lowp = 0;
929 *highp = 1;
930 return 0;
931 case TYPE_CODE_INT:
932 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
933 return -1;
934 if (!TYPE_UNSIGNED (type))
935 {
936 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
937 *highp = -*lowp - 1;
938 return 0;
939 }
940 /* ... fall through for unsigned ints ... */
941 case TYPE_CODE_CHAR:
942 *lowp = 0;
943 /* This round-about calculation is to avoid shifting by
944 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
945 if TYPE_LENGTH (type) == sizeof (LONGEST). */
946 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
947 *highp = (*highp - 1) | *highp;
948 return 0;
949 default:
950 return -1;
951 }
952 }
953
954 /* Assuming TYPE is a simple, non-empty array type, compute its upper
955 and lower bound. Save the low bound into LOW_BOUND if not NULL.
956 Save the high bound into HIGH_BOUND if not NULL.
957
958 Return 1 if the operation was successful. Return zero otherwise,
959 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
960
961 We now simply use get_discrete_bounds call to get the values
962 of the low and high bounds.
963 get_discrete_bounds can return three values:
964 1, meaning that index is a range,
965 0, meaning that index is a discrete type,
966 or -1 for failure. */
967
968 int
969 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
970 {
971 struct type *index = TYPE_INDEX_TYPE (type);
972 LONGEST low = 0;
973 LONGEST high = 0;
974 int res;
975
976 if (index == NULL)
977 return 0;
978
979 res = get_discrete_bounds (index, &low, &high);
980 if (res == -1)
981 return 0;
982
983 /* Check if the array bounds are undefined. */
984 if (res == 1
985 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
986 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
987 return 0;
988
989 if (low_bound)
990 *low_bound = low;
991
992 if (high_bound)
993 *high_bound = high;
994
995 return 1;
996 }
997
998 /* Create an array type using either a blank type supplied in
999 RESULT_TYPE, or creating a new type, inheriting the objfile from
1000 RANGE_TYPE.
1001
1002 Elements will be of type ELEMENT_TYPE, the indices will be of type
1003 RANGE_TYPE.
1004
1005 If BIT_STRIDE is not zero, build a packed array type whose element
1006 size is BIT_STRIDE. Otherwise, ignore this parameter.
1007
1008 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1009 sure it is TYPE_CODE_UNDEF before we bash it into an array
1010 type? */
1011
1012 struct type *
1013 create_array_type_with_stride (struct type *result_type,
1014 struct type *element_type,
1015 struct type *range_type,
1016 unsigned int bit_stride)
1017 {
1018 if (result_type == NULL)
1019 result_type = alloc_type_copy (range_type);
1020
1021 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1022 TYPE_TARGET_TYPE (result_type) = element_type;
1023 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1024 {
1025 LONGEST low_bound, high_bound;
1026
1027 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1028 low_bound = high_bound = 0;
1029 CHECK_TYPEDEF (element_type);
1030 /* Be careful when setting the array length. Ada arrays can be
1031 empty arrays with the high_bound being smaller than the low_bound.
1032 In such cases, the array length should be zero. */
1033 if (high_bound < low_bound)
1034 TYPE_LENGTH (result_type) = 0;
1035 else if (bit_stride > 0)
1036 TYPE_LENGTH (result_type) =
1037 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1038 else
1039 TYPE_LENGTH (result_type) =
1040 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1041 }
1042 else
1043 {
1044 /* This type is dynamic and its length needs to be computed
1045 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1046 undefined by setting it to zero. Although we are not expected
1047 to trust TYPE_LENGTH in this case, setting the size to zero
1048 allows us to avoid allocating objects of random sizes in case
1049 we accidently do. */
1050 TYPE_LENGTH (result_type) = 0;
1051 }
1052
1053 TYPE_NFIELDS (result_type) = 1;
1054 TYPE_FIELDS (result_type) =
1055 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1056 TYPE_INDEX_TYPE (result_type) = range_type;
1057 TYPE_VPTR_FIELDNO (result_type) = -1;
1058 if (bit_stride > 0)
1059 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1060
1061 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1062 if (TYPE_LENGTH (result_type) == 0)
1063 TYPE_TARGET_STUB (result_type) = 1;
1064
1065 return result_type;
1066 }
1067
1068 /* Same as create_array_type_with_stride but with no bit_stride
1069 (BIT_STRIDE = 0), thus building an unpacked array. */
1070
1071 struct type *
1072 create_array_type (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type)
1075 {
1076 return create_array_type_with_stride (result_type, element_type,
1077 range_type, 0);
1078 }
1079
1080 struct type *
1081 lookup_array_range_type (struct type *element_type,
1082 LONGEST low_bound, LONGEST high_bound)
1083 {
1084 struct gdbarch *gdbarch = get_type_arch (element_type);
1085 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1086 struct type *range_type
1087 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1088
1089 return create_array_type (NULL, element_type, range_type);
1090 }
1091
1092 /* Create a string type using either a blank type supplied in
1093 RESULT_TYPE, or creating a new type. String types are similar
1094 enough to array of char types that we can use create_array_type to
1095 build the basic type and then bash it into a string type.
1096
1097 For fixed length strings, the range type contains 0 as the lower
1098 bound and the length of the string minus one as the upper bound.
1099
1100 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1101 sure it is TYPE_CODE_UNDEF before we bash it into a string
1102 type? */
1103
1104 struct type *
1105 create_string_type (struct type *result_type,
1106 struct type *string_char_type,
1107 struct type *range_type)
1108 {
1109 result_type = create_array_type (result_type,
1110 string_char_type,
1111 range_type);
1112 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1113 return result_type;
1114 }
1115
1116 struct type *
1117 lookup_string_range_type (struct type *string_char_type,
1118 LONGEST low_bound, LONGEST high_bound)
1119 {
1120 struct type *result_type;
1121
1122 result_type = lookup_array_range_type (string_char_type,
1123 low_bound, high_bound);
1124 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1125 return result_type;
1126 }
1127
1128 struct type *
1129 create_set_type (struct type *result_type, struct type *domain_type)
1130 {
1131 if (result_type == NULL)
1132 result_type = alloc_type_copy (domain_type);
1133
1134 TYPE_CODE (result_type) = TYPE_CODE_SET;
1135 TYPE_NFIELDS (result_type) = 1;
1136 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1137
1138 if (!TYPE_STUB (domain_type))
1139 {
1140 LONGEST low_bound, high_bound, bit_length;
1141
1142 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1143 low_bound = high_bound = 0;
1144 bit_length = high_bound - low_bound + 1;
1145 TYPE_LENGTH (result_type)
1146 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1147 if (low_bound >= 0)
1148 TYPE_UNSIGNED (result_type) = 1;
1149 }
1150 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1151
1152 return result_type;
1153 }
1154
1155 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1156 and any array types nested inside it. */
1157
1158 void
1159 make_vector_type (struct type *array_type)
1160 {
1161 struct type *inner_array, *elt_type;
1162 int flags;
1163
1164 /* Find the innermost array type, in case the array is
1165 multi-dimensional. */
1166 inner_array = array_type;
1167 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1168 inner_array = TYPE_TARGET_TYPE (inner_array);
1169
1170 elt_type = TYPE_TARGET_TYPE (inner_array);
1171 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1172 {
1173 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1174 elt_type = make_qualified_type (elt_type, flags, NULL);
1175 TYPE_TARGET_TYPE (inner_array) = elt_type;
1176 }
1177
1178 TYPE_VECTOR (array_type) = 1;
1179 }
1180
1181 struct type *
1182 init_vector_type (struct type *elt_type, int n)
1183 {
1184 struct type *array_type;
1185
1186 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1187 make_vector_type (array_type);
1188 return array_type;
1189 }
1190
1191 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1192 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1193 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1194 TYPE doesn't include the offset (that's the value of the MEMBER
1195 itself), but does include the structure type into which it points
1196 (for some reason).
1197
1198 When "smashing" the type, we preserve the objfile that the old type
1199 pointed to, since we aren't changing where the type is actually
1200 allocated. */
1201
1202 void
1203 smash_to_memberptr_type (struct type *type, struct type *domain,
1204 struct type *to_type)
1205 {
1206 smash_type (type);
1207 TYPE_TARGET_TYPE (type) = to_type;
1208 TYPE_DOMAIN_TYPE (type) = domain;
1209 /* Assume that a data member pointer is the same size as a normal
1210 pointer. */
1211 TYPE_LENGTH (type)
1212 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1213 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1214 }
1215
1216 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_methodptr_type (struct type *type, struct type *to_type)
1224 {
1225 smash_type (type);
1226 TYPE_TARGET_TYPE (type) = to_type;
1227 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1228 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1229 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1230 }
1231
1232 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1233 METHOD just means `function that gets an extra "this" argument'.
1234
1235 When "smashing" the type, we preserve the objfile that the old type
1236 pointed to, since we aren't changing where the type is actually
1237 allocated. */
1238
1239 void
1240 smash_to_method_type (struct type *type, struct type *domain,
1241 struct type *to_type, struct field *args,
1242 int nargs, int varargs)
1243 {
1244 smash_type (type);
1245 TYPE_TARGET_TYPE (type) = to_type;
1246 TYPE_DOMAIN_TYPE (type) = domain;
1247 TYPE_FIELDS (type) = args;
1248 TYPE_NFIELDS (type) = nargs;
1249 if (varargs)
1250 TYPE_VARARGS (type) = 1;
1251 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1252 TYPE_CODE (type) = TYPE_CODE_METHOD;
1253 }
1254
1255 /* Return a typename for a struct/union/enum type without "struct ",
1256 "union ", or "enum ". If the type has a NULL name, return NULL. */
1257
1258 const char *
1259 type_name_no_tag (const struct type *type)
1260 {
1261 if (TYPE_TAG_NAME (type) != NULL)
1262 return TYPE_TAG_NAME (type);
1263
1264 /* Is there code which expects this to return the name if there is
1265 no tag name? My guess is that this is mainly used for C++ in
1266 cases where the two will always be the same. */
1267 return TYPE_NAME (type);
1268 }
1269
1270 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1271 Since GCC PR debug/47510 DWARF provides associated information to detect the
1272 anonymous class linkage name from its typedef.
1273
1274 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1275 apply it itself. */
1276
1277 const char *
1278 type_name_no_tag_or_error (struct type *type)
1279 {
1280 struct type *saved_type = type;
1281 const char *name;
1282 struct objfile *objfile;
1283
1284 CHECK_TYPEDEF (type);
1285
1286 name = type_name_no_tag (type);
1287 if (name != NULL)
1288 return name;
1289
1290 name = type_name_no_tag (saved_type);
1291 objfile = TYPE_OBJFILE (saved_type);
1292 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1293 name ? name : "<anonymous>",
1294 objfile ? objfile_name (objfile) : "<arch>");
1295 }
1296
1297 /* Lookup a typedef or primitive type named NAME, visible in lexical
1298 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1299 suitably defined. */
1300
1301 struct type *
1302 lookup_typename (const struct language_defn *language,
1303 struct gdbarch *gdbarch, const char *name,
1304 const struct block *block, int noerr)
1305 {
1306 struct symbol *sym;
1307 struct type *type;
1308
1309 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1310 language->la_language, NULL);
1311 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1312 return SYMBOL_TYPE (sym);
1313
1314 if (noerr)
1315 return NULL;
1316 error (_("No type named %s."), name);
1317 }
1318
1319 struct type *
1320 lookup_unsigned_typename (const struct language_defn *language,
1321 struct gdbarch *gdbarch, const char *name)
1322 {
1323 char *uns = alloca (strlen (name) + 10);
1324
1325 strcpy (uns, "unsigned ");
1326 strcpy (uns + 9, name);
1327 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1328 }
1329
1330 struct type *
1331 lookup_signed_typename (const struct language_defn *language,
1332 struct gdbarch *gdbarch, const char *name)
1333 {
1334 struct type *t;
1335 char *uns = alloca (strlen (name) + 8);
1336
1337 strcpy (uns, "signed ");
1338 strcpy (uns + 7, name);
1339 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1340 /* If we don't find "signed FOO" just try again with plain "FOO". */
1341 if (t != NULL)
1342 return t;
1343 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1344 }
1345
1346 /* Lookup a structure type named "struct NAME",
1347 visible in lexical block BLOCK. */
1348
1349 struct type *
1350 lookup_struct (const char *name, const struct block *block)
1351 {
1352 struct symbol *sym;
1353
1354 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1355
1356 if (sym == NULL)
1357 {
1358 error (_("No struct type named %s."), name);
1359 }
1360 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1361 {
1362 error (_("This context has class, union or enum %s, not a struct."),
1363 name);
1364 }
1365 return (SYMBOL_TYPE (sym));
1366 }
1367
1368 /* Lookup a union type named "union NAME",
1369 visible in lexical block BLOCK. */
1370
1371 struct type *
1372 lookup_union (const char *name, const struct block *block)
1373 {
1374 struct symbol *sym;
1375 struct type *t;
1376
1377 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1378
1379 if (sym == NULL)
1380 error (_("No union type named %s."), name);
1381
1382 t = SYMBOL_TYPE (sym);
1383
1384 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1385 return t;
1386
1387 /* If we get here, it's not a union. */
1388 error (_("This context has class, struct or enum %s, not a union."),
1389 name);
1390 }
1391
1392 /* Lookup an enum type named "enum NAME",
1393 visible in lexical block BLOCK. */
1394
1395 struct type *
1396 lookup_enum (const char *name, const struct block *block)
1397 {
1398 struct symbol *sym;
1399
1400 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1401 if (sym == NULL)
1402 {
1403 error (_("No enum type named %s."), name);
1404 }
1405 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1406 {
1407 error (_("This context has class, struct or union %s, not an enum."),
1408 name);
1409 }
1410 return (SYMBOL_TYPE (sym));
1411 }
1412
1413 /* Lookup a template type named "template NAME<TYPE>",
1414 visible in lexical block BLOCK. */
1415
1416 struct type *
1417 lookup_template_type (char *name, struct type *type,
1418 const struct block *block)
1419 {
1420 struct symbol *sym;
1421 char *nam = (char *)
1422 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1423
1424 strcpy (nam, name);
1425 strcat (nam, "<");
1426 strcat (nam, TYPE_NAME (type));
1427 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1428
1429 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1430
1431 if (sym == NULL)
1432 {
1433 error (_("No template type named %s."), name);
1434 }
1435 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1436 {
1437 error (_("This context has class, union or enum %s, not a struct."),
1438 name);
1439 }
1440 return (SYMBOL_TYPE (sym));
1441 }
1442
1443 /* Given a type TYPE, lookup the type of the component of type named
1444 NAME.
1445
1446 TYPE can be either a struct or union, or a pointer or reference to
1447 a struct or union. If it is a pointer or reference, its target
1448 type is automatically used. Thus '.' and '->' are interchangable,
1449 as specified for the definitions of the expression element types
1450 STRUCTOP_STRUCT and STRUCTOP_PTR.
1451
1452 If NOERR is nonzero, return zero if NAME is not suitably defined.
1453 If NAME is the name of a baseclass type, return that type. */
1454
1455 struct type *
1456 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1457 {
1458 int i;
1459 char *typename;
1460
1461 for (;;)
1462 {
1463 CHECK_TYPEDEF (type);
1464 if (TYPE_CODE (type) != TYPE_CODE_PTR
1465 && TYPE_CODE (type) != TYPE_CODE_REF)
1466 break;
1467 type = TYPE_TARGET_TYPE (type);
1468 }
1469
1470 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1471 && TYPE_CODE (type) != TYPE_CODE_UNION)
1472 {
1473 typename = type_to_string (type);
1474 make_cleanup (xfree, typename);
1475 error (_("Type %s is not a structure or union type."), typename);
1476 }
1477
1478 #if 0
1479 /* FIXME: This change put in by Michael seems incorrect for the case
1480 where the structure tag name is the same as the member name.
1481 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1482 foo; } bell;" Disabled by fnf. */
1483 {
1484 char *typename;
1485
1486 typename = type_name_no_tag (type);
1487 if (typename != NULL && strcmp (typename, name) == 0)
1488 return type;
1489 }
1490 #endif
1491
1492 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1493 {
1494 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1495
1496 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1497 {
1498 return TYPE_FIELD_TYPE (type, i);
1499 }
1500 else if (!t_field_name || *t_field_name == '\0')
1501 {
1502 struct type *subtype
1503 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1504
1505 if (subtype != NULL)
1506 return subtype;
1507 }
1508 }
1509
1510 /* OK, it's not in this class. Recursively check the baseclasses. */
1511 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1512 {
1513 struct type *t;
1514
1515 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1516 if (t != NULL)
1517 {
1518 return t;
1519 }
1520 }
1521
1522 if (noerr)
1523 {
1524 return NULL;
1525 }
1526
1527 typename = type_to_string (type);
1528 make_cleanup (xfree, typename);
1529 error (_("Type %s has no component named %s."), typename, name);
1530 }
1531
1532 /* Store in *MAX the largest number representable by unsigned integer type
1533 TYPE. */
1534
1535 void
1536 get_unsigned_type_max (struct type *type, ULONGEST *max)
1537 {
1538 unsigned int n;
1539
1540 CHECK_TYPEDEF (type);
1541 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1542 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1543
1544 /* Written this way to avoid overflow. */
1545 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1546 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1547 }
1548
1549 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1550 signed integer type TYPE. */
1551
1552 void
1553 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1554 {
1555 unsigned int n;
1556
1557 CHECK_TYPEDEF (type);
1558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1559 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1560
1561 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1562 *min = -((ULONGEST) 1 << (n - 1));
1563 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1564 }
1565
1566 /* Lookup the vptr basetype/fieldno values for TYPE.
1567 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1568 vptr_fieldno. Also, if found and basetype is from the same objfile,
1569 cache the results.
1570 If not found, return -1 and ignore BASETYPEP.
1571 Callers should be aware that in some cases (for example,
1572 the type or one of its baseclasses is a stub type and we are
1573 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1574 this function will not be able to find the
1575 virtual function table pointer, and vptr_fieldno will remain -1 and
1576 vptr_basetype will remain NULL or incomplete. */
1577
1578 int
1579 get_vptr_fieldno (struct type *type, struct type **basetypep)
1580 {
1581 CHECK_TYPEDEF (type);
1582
1583 if (TYPE_VPTR_FIELDNO (type) < 0)
1584 {
1585 int i;
1586
1587 /* We must start at zero in case the first (and only) baseclass
1588 is virtual (and hence we cannot share the table pointer). */
1589 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1590 {
1591 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1592 int fieldno;
1593 struct type *basetype;
1594
1595 fieldno = get_vptr_fieldno (baseclass, &basetype);
1596 if (fieldno >= 0)
1597 {
1598 /* If the type comes from a different objfile we can't cache
1599 it, it may have a different lifetime. PR 2384 */
1600 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1601 {
1602 TYPE_VPTR_FIELDNO (type) = fieldno;
1603 TYPE_VPTR_BASETYPE (type) = basetype;
1604 }
1605 if (basetypep)
1606 *basetypep = basetype;
1607 return fieldno;
1608 }
1609 }
1610
1611 /* Not found. */
1612 return -1;
1613 }
1614 else
1615 {
1616 if (basetypep)
1617 *basetypep = TYPE_VPTR_BASETYPE (type);
1618 return TYPE_VPTR_FIELDNO (type);
1619 }
1620 }
1621
1622 static void
1623 stub_noname_complaint (void)
1624 {
1625 complaint (&symfile_complaints, _("stub type has NULL name"));
1626 }
1627
1628 /* Worker for is_dynamic_type. */
1629
1630 static int
1631 is_dynamic_type_internal (struct type *type, int top_level)
1632 {
1633 type = check_typedef (type);
1634
1635 /* We only want to recognize references at the outermost level. */
1636 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1637 type = check_typedef (TYPE_TARGET_TYPE (type));
1638
1639 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1640 dynamic, even if the type itself is statically defined.
1641 From a user's point of view, this may appear counter-intuitive;
1642 but it makes sense in this context, because the point is to determine
1643 whether any part of the type needs to be resolved before it can
1644 be exploited. */
1645 if (TYPE_DATA_LOCATION (type) != NULL
1646 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1647 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1648 return 1;
1649
1650 switch (TYPE_CODE (type))
1651 {
1652 case TYPE_CODE_RANGE:
1653 return !has_static_range (TYPE_RANGE_DATA (type));
1654
1655 case TYPE_CODE_ARRAY:
1656 {
1657 gdb_assert (TYPE_NFIELDS (type) == 1);
1658
1659 /* The array is dynamic if either the bounds are dynamic,
1660 or the elements it contains have a dynamic contents. */
1661 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1662 return 1;
1663 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1664 }
1665
1666 case TYPE_CODE_STRUCT:
1667 case TYPE_CODE_UNION:
1668 {
1669 int i;
1670
1671 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1672 if (!field_is_static (&TYPE_FIELD (type, i))
1673 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1674 return 1;
1675 }
1676 break;
1677 }
1678
1679 return 0;
1680 }
1681
1682 /* See gdbtypes.h. */
1683
1684 int
1685 is_dynamic_type (struct type *type)
1686 {
1687 return is_dynamic_type_internal (type, 1);
1688 }
1689
1690 static struct type *resolve_dynamic_type_internal (struct type *type,
1691 CORE_ADDR addr,
1692 int top_level);
1693
1694 /* Given a dynamic range type (dyn_range_type) and address,
1695 return a static version of that type. */
1696
1697 static struct type *
1698 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1699 {
1700 CORE_ADDR value;
1701 struct type *static_range_type;
1702 const struct dynamic_prop *prop;
1703 const struct dwarf2_locexpr_baton *baton;
1704 struct dynamic_prop low_bound, high_bound;
1705
1706 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1707
1708 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1709 if (dwarf2_evaluate_property (prop, addr, &value))
1710 {
1711 low_bound.kind = PROP_CONST;
1712 low_bound.data.const_val = value;
1713 }
1714 else
1715 {
1716 low_bound.kind = PROP_UNDEFINED;
1717 low_bound.data.const_val = 0;
1718 }
1719
1720 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1721 if (dwarf2_evaluate_property (prop, addr, &value))
1722 {
1723 high_bound.kind = PROP_CONST;
1724 high_bound.data.const_val = value;
1725
1726 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1727 high_bound.data.const_val
1728 = low_bound.data.const_val + high_bound.data.const_val - 1;
1729 }
1730 else
1731 {
1732 high_bound.kind = PROP_UNDEFINED;
1733 high_bound.data.const_val = 0;
1734 }
1735
1736 static_range_type = create_range_type (copy_type (dyn_range_type),
1737 TYPE_TARGET_TYPE (dyn_range_type),
1738 &low_bound, &high_bound);
1739 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1740 return static_range_type;
1741 }
1742
1743 /* Resolves dynamic bound values of an array type TYPE to static ones.
1744 ADDRESS might be needed to resolve the subrange bounds, it is the location
1745 of the associated array. */
1746
1747 static struct type *
1748 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1749 {
1750 CORE_ADDR value;
1751 struct type *elt_type;
1752 struct type *range_type;
1753 struct type *ary_dim;
1754
1755 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1756
1757 elt_type = type;
1758 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1759 range_type = resolve_dynamic_range (range_type, addr);
1760
1761 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1762
1763 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1764 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1765 else
1766 elt_type = TYPE_TARGET_TYPE (type);
1767
1768 return create_array_type (copy_type (type),
1769 elt_type,
1770 range_type);
1771 }
1772
1773 /* Resolve dynamic bounds of members of the union TYPE to static
1774 bounds. */
1775
1776 static struct type *
1777 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1778 {
1779 struct type *resolved_type;
1780 int i;
1781 unsigned int max_len = 0;
1782
1783 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1784
1785 resolved_type = copy_type (type);
1786 TYPE_FIELDS (resolved_type)
1787 = TYPE_ALLOC (resolved_type,
1788 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1789 memcpy (TYPE_FIELDS (resolved_type),
1790 TYPE_FIELDS (type),
1791 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1792 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1793 {
1794 struct type *t;
1795
1796 if (field_is_static (&TYPE_FIELD (type, i)))
1797 continue;
1798
1799 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1800 addr, 0);
1801 TYPE_FIELD_TYPE (resolved_type, i) = t;
1802 if (TYPE_LENGTH (t) > max_len)
1803 max_len = TYPE_LENGTH (t);
1804 }
1805
1806 TYPE_LENGTH (resolved_type) = max_len;
1807 return resolved_type;
1808 }
1809
1810 /* Resolve dynamic bounds of members of the struct TYPE to static
1811 bounds. */
1812
1813 static struct type *
1814 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1815 {
1816 struct type *resolved_type;
1817 int i;
1818 unsigned resolved_type_bit_length = 0;
1819
1820 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1821 gdb_assert (TYPE_NFIELDS (type) > 0);
1822
1823 resolved_type = copy_type (type);
1824 TYPE_FIELDS (resolved_type)
1825 = TYPE_ALLOC (resolved_type,
1826 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1827 memcpy (TYPE_FIELDS (resolved_type),
1828 TYPE_FIELDS (type),
1829 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1830 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1831 {
1832 unsigned new_bit_length;
1833
1834 if (field_is_static (&TYPE_FIELD (type, i)))
1835 continue;
1836
1837 TYPE_FIELD_TYPE (resolved_type, i)
1838 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1839 addr, 0);
1840
1841 /* As we know this field is not a static field, the field's
1842 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1843 this is the case, but only trigger a simple error rather
1844 than an internal error if that fails. While failing
1845 that verification indicates a bug in our code, the error
1846 is not severe enough to suggest to the user he stops
1847 his debugging session because of it. */
1848 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1849 error (_("Cannot determine struct field location"
1850 " (invalid location kind)"));
1851 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1852 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1853 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1854 else
1855 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1856 * TARGET_CHAR_BIT);
1857
1858 /* Normally, we would use the position and size of the last field
1859 to determine the size of the enclosing structure. But GCC seems
1860 to be encoding the position of some fields incorrectly when
1861 the struct contains a dynamic field that is not placed last.
1862 So we compute the struct size based on the field that has
1863 the highest position + size - probably the best we can do. */
1864 if (new_bit_length > resolved_type_bit_length)
1865 resolved_type_bit_length = new_bit_length;
1866 }
1867
1868 TYPE_LENGTH (resolved_type)
1869 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1870
1871 return resolved_type;
1872 }
1873
1874 /* Worker for resolved_dynamic_type. */
1875
1876 static struct type *
1877 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1878 int top_level)
1879 {
1880 struct type *real_type = check_typedef (type);
1881 struct type *resolved_type = type;
1882 const struct dynamic_prop *prop;
1883 CORE_ADDR value;
1884
1885 if (!is_dynamic_type_internal (real_type, top_level))
1886 return type;
1887
1888 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1889 {
1890 resolved_type = copy_type (type);
1891 TYPE_TARGET_TYPE (resolved_type)
1892 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1893 top_level);
1894 }
1895 else
1896 {
1897 /* Before trying to resolve TYPE, make sure it is not a stub. */
1898 type = real_type;
1899
1900 switch (TYPE_CODE (type))
1901 {
1902 case TYPE_CODE_REF:
1903 {
1904 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1905
1906 resolved_type = copy_type (type);
1907 TYPE_TARGET_TYPE (resolved_type)
1908 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1909 target_addr, top_level);
1910 break;
1911 }
1912
1913 case TYPE_CODE_ARRAY:
1914 resolved_type = resolve_dynamic_array (type, addr);
1915 break;
1916
1917 case TYPE_CODE_RANGE:
1918 resolved_type = resolve_dynamic_range (type, addr);
1919 break;
1920
1921 case TYPE_CODE_UNION:
1922 resolved_type = resolve_dynamic_union (type, addr);
1923 break;
1924
1925 case TYPE_CODE_STRUCT:
1926 resolved_type = resolve_dynamic_struct (type, addr);
1927 break;
1928 }
1929 }
1930
1931 /* Resolve data_location attribute. */
1932 prop = TYPE_DATA_LOCATION (resolved_type);
1933 if (dwarf2_evaluate_property (prop, addr, &value))
1934 {
1935 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1936 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1937 }
1938 else
1939 TYPE_DATA_LOCATION (resolved_type) = NULL;
1940
1941 return resolved_type;
1942 }
1943
1944 /* See gdbtypes.h */
1945
1946 struct type *
1947 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1948 {
1949 return resolve_dynamic_type_internal (type, addr, 1);
1950 }
1951
1952 /* Find the real type of TYPE. This function returns the real type,
1953 after removing all layers of typedefs, and completing opaque or stub
1954 types. Completion changes the TYPE argument, but stripping of
1955 typedefs does not.
1956
1957 Instance flags (e.g. const/volatile) are preserved as typedefs are
1958 stripped. If necessary a new qualified form of the underlying type
1959 is created.
1960
1961 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1962 not been computed and we're either in the middle of reading symbols, or
1963 there was no name for the typedef in the debug info.
1964
1965 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1966 QUITs in the symbol reading code can also throw.
1967 Thus this function can throw an exception.
1968
1969 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1970 the target type.
1971
1972 If this is a stubbed struct (i.e. declared as struct foo *), see if
1973 we can find a full definition in some other file. If so, copy this
1974 definition, so we can use it in future. There used to be a comment
1975 (but not any code) that if we don't find a full definition, we'd
1976 set a flag so we don't spend time in the future checking the same
1977 type. That would be a mistake, though--we might load in more
1978 symbols which contain a full definition for the type. */
1979
1980 struct type *
1981 check_typedef (struct type *type)
1982 {
1983 struct type *orig_type = type;
1984 /* While we're removing typedefs, we don't want to lose qualifiers.
1985 E.g., const/volatile. */
1986 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1987
1988 gdb_assert (type);
1989
1990 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1991 {
1992 if (!TYPE_TARGET_TYPE (type))
1993 {
1994 const char *name;
1995 struct symbol *sym;
1996
1997 /* It is dangerous to call lookup_symbol if we are currently
1998 reading a symtab. Infinite recursion is one danger. */
1999 if (currently_reading_symtab)
2000 return make_qualified_type (type, instance_flags, NULL);
2001
2002 name = type_name_no_tag (type);
2003 /* FIXME: shouldn't we separately check the TYPE_NAME and
2004 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2005 VAR_DOMAIN as appropriate? (this code was written before
2006 TYPE_NAME and TYPE_TAG_NAME were separate). */
2007 if (name == NULL)
2008 {
2009 stub_noname_complaint ();
2010 return make_qualified_type (type, instance_flags, NULL);
2011 }
2012 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2013 if (sym)
2014 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2015 else /* TYPE_CODE_UNDEF */
2016 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2017 }
2018 type = TYPE_TARGET_TYPE (type);
2019
2020 /* Preserve the instance flags as we traverse down the typedef chain.
2021
2022 Handling address spaces/classes is nasty, what do we do if there's a
2023 conflict?
2024 E.g., what if an outer typedef marks the type as class_1 and an inner
2025 typedef marks the type as class_2?
2026 This is the wrong place to do such error checking. We leave it to
2027 the code that created the typedef in the first place to flag the
2028 error. We just pick the outer address space (akin to letting the
2029 outer cast in a chain of casting win), instead of assuming
2030 "it can't happen". */
2031 {
2032 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2033 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2034 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2035 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2036
2037 /* Treat code vs data spaces and address classes separately. */
2038 if ((instance_flags & ALL_SPACES) != 0)
2039 new_instance_flags &= ~ALL_SPACES;
2040 if ((instance_flags & ALL_CLASSES) != 0)
2041 new_instance_flags &= ~ALL_CLASSES;
2042
2043 instance_flags |= new_instance_flags;
2044 }
2045 }
2046
2047 /* If this is a struct/class/union with no fields, then check
2048 whether a full definition exists somewhere else. This is for
2049 systems where a type definition with no fields is issued for such
2050 types, instead of identifying them as stub types in the first
2051 place. */
2052
2053 if (TYPE_IS_OPAQUE (type)
2054 && opaque_type_resolution
2055 && !currently_reading_symtab)
2056 {
2057 const char *name = type_name_no_tag (type);
2058 struct type *newtype;
2059
2060 if (name == NULL)
2061 {
2062 stub_noname_complaint ();
2063 return make_qualified_type (type, instance_flags, NULL);
2064 }
2065 newtype = lookup_transparent_type (name);
2066
2067 if (newtype)
2068 {
2069 /* If the resolved type and the stub are in the same
2070 objfile, then replace the stub type with the real deal.
2071 But if they're in separate objfiles, leave the stub
2072 alone; we'll just look up the transparent type every time
2073 we call check_typedef. We can't create pointers between
2074 types allocated to different objfiles, since they may
2075 have different lifetimes. Trying to copy NEWTYPE over to
2076 TYPE's objfile is pointless, too, since you'll have to
2077 move over any other types NEWTYPE refers to, which could
2078 be an unbounded amount of stuff. */
2079 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2080 type = make_qualified_type (newtype,
2081 TYPE_INSTANCE_FLAGS (type),
2082 type);
2083 else
2084 type = newtype;
2085 }
2086 }
2087 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2088 types. */
2089 else if (TYPE_STUB (type) && !currently_reading_symtab)
2090 {
2091 const char *name = type_name_no_tag (type);
2092 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2093 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2094 as appropriate? (this code was written before TYPE_NAME and
2095 TYPE_TAG_NAME were separate). */
2096 struct symbol *sym;
2097
2098 if (name == NULL)
2099 {
2100 stub_noname_complaint ();
2101 return make_qualified_type (type, instance_flags, NULL);
2102 }
2103 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2104 if (sym)
2105 {
2106 /* Same as above for opaque types, we can replace the stub
2107 with the complete type only if they are in the same
2108 objfile. */
2109 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2110 type = make_qualified_type (SYMBOL_TYPE (sym),
2111 TYPE_INSTANCE_FLAGS (type),
2112 type);
2113 else
2114 type = SYMBOL_TYPE (sym);
2115 }
2116 }
2117
2118 if (TYPE_TARGET_STUB (type))
2119 {
2120 struct type *range_type;
2121 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2122
2123 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2124 {
2125 /* Nothing we can do. */
2126 }
2127 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2128 {
2129 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2130 TYPE_TARGET_STUB (type) = 0;
2131 }
2132 }
2133
2134 type = make_qualified_type (type, instance_flags, NULL);
2135
2136 /* Cache TYPE_LENGTH for future use. */
2137 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2138
2139 return type;
2140 }
2141
2142 /* Parse a type expression in the string [P..P+LENGTH). If an error
2143 occurs, silently return a void type. */
2144
2145 static struct type *
2146 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2147 {
2148 struct ui_file *saved_gdb_stderr;
2149 struct type *type = NULL; /* Initialize to keep gcc happy. */
2150 volatile struct gdb_exception except;
2151
2152 /* Suppress error messages. */
2153 saved_gdb_stderr = gdb_stderr;
2154 gdb_stderr = ui_file_new ();
2155
2156 /* Call parse_and_eval_type() without fear of longjmp()s. */
2157 TRY_CATCH (except, RETURN_MASK_ERROR)
2158 {
2159 type = parse_and_eval_type (p, length);
2160 }
2161
2162 if (except.reason < 0)
2163 type = builtin_type (gdbarch)->builtin_void;
2164
2165 /* Stop suppressing error messages. */
2166 ui_file_delete (gdb_stderr);
2167 gdb_stderr = saved_gdb_stderr;
2168
2169 return type;
2170 }
2171
2172 /* Ugly hack to convert method stubs into method types.
2173
2174 He ain't kiddin'. This demangles the name of the method into a
2175 string including argument types, parses out each argument type,
2176 generates a string casting a zero to that type, evaluates the
2177 string, and stuffs the resulting type into an argtype vector!!!
2178 Then it knows the type of the whole function (including argument
2179 types for overloading), which info used to be in the stab's but was
2180 removed to hack back the space required for them. */
2181
2182 static void
2183 check_stub_method (struct type *type, int method_id, int signature_id)
2184 {
2185 struct gdbarch *gdbarch = get_type_arch (type);
2186 struct fn_field *f;
2187 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2188 char *demangled_name = gdb_demangle (mangled_name,
2189 DMGL_PARAMS | DMGL_ANSI);
2190 char *argtypetext, *p;
2191 int depth = 0, argcount = 1;
2192 struct field *argtypes;
2193 struct type *mtype;
2194
2195 /* Make sure we got back a function string that we can use. */
2196 if (demangled_name)
2197 p = strchr (demangled_name, '(');
2198 else
2199 p = NULL;
2200
2201 if (demangled_name == NULL || p == NULL)
2202 error (_("Internal: Cannot demangle mangled name `%s'."),
2203 mangled_name);
2204
2205 /* Now, read in the parameters that define this type. */
2206 p += 1;
2207 argtypetext = p;
2208 while (*p)
2209 {
2210 if (*p == '(' || *p == '<')
2211 {
2212 depth += 1;
2213 }
2214 else if (*p == ')' || *p == '>')
2215 {
2216 depth -= 1;
2217 }
2218 else if (*p == ',' && depth == 0)
2219 {
2220 argcount += 1;
2221 }
2222
2223 p += 1;
2224 }
2225
2226 /* If we read one argument and it was ``void'', don't count it. */
2227 if (strncmp (argtypetext, "(void)", 6) == 0)
2228 argcount -= 1;
2229
2230 /* We need one extra slot, for the THIS pointer. */
2231
2232 argtypes = (struct field *)
2233 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2234 p = argtypetext;
2235
2236 /* Add THIS pointer for non-static methods. */
2237 f = TYPE_FN_FIELDLIST1 (type, method_id);
2238 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2239 argcount = 0;
2240 else
2241 {
2242 argtypes[0].type = lookup_pointer_type (type);
2243 argcount = 1;
2244 }
2245
2246 if (*p != ')') /* () means no args, skip while. */
2247 {
2248 depth = 0;
2249 while (*p)
2250 {
2251 if (depth <= 0 && (*p == ',' || *p == ')'))
2252 {
2253 /* Avoid parsing of ellipsis, they will be handled below.
2254 Also avoid ``void'' as above. */
2255 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2256 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2257 {
2258 argtypes[argcount].type =
2259 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2260 argcount += 1;
2261 }
2262 argtypetext = p + 1;
2263 }
2264
2265 if (*p == '(' || *p == '<')
2266 {
2267 depth += 1;
2268 }
2269 else if (*p == ')' || *p == '>')
2270 {
2271 depth -= 1;
2272 }
2273
2274 p += 1;
2275 }
2276 }
2277
2278 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2279
2280 /* Now update the old "stub" type into a real type. */
2281 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2282 TYPE_DOMAIN_TYPE (mtype) = type;
2283 TYPE_FIELDS (mtype) = argtypes;
2284 TYPE_NFIELDS (mtype) = argcount;
2285 TYPE_STUB (mtype) = 0;
2286 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2287 if (p[-2] == '.')
2288 TYPE_VARARGS (mtype) = 1;
2289
2290 xfree (demangled_name);
2291 }
2292
2293 /* This is the external interface to check_stub_method, above. This
2294 function unstubs all of the signatures for TYPE's METHOD_ID method
2295 name. After calling this function TYPE_FN_FIELD_STUB will be
2296 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2297 correct.
2298
2299 This function unfortunately can not die until stabs do. */
2300
2301 void
2302 check_stub_method_group (struct type *type, int method_id)
2303 {
2304 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2305 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2306 int j, found_stub = 0;
2307
2308 for (j = 0; j < len; j++)
2309 if (TYPE_FN_FIELD_STUB (f, j))
2310 {
2311 found_stub = 1;
2312 check_stub_method (type, method_id, j);
2313 }
2314
2315 /* GNU v3 methods with incorrect names were corrected when we read
2316 in type information, because it was cheaper to do it then. The
2317 only GNU v2 methods with incorrect method names are operators and
2318 destructors; destructors were also corrected when we read in type
2319 information.
2320
2321 Therefore the only thing we need to handle here are v2 operator
2322 names. */
2323 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2324 {
2325 int ret;
2326 char dem_opname[256];
2327
2328 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2329 method_id),
2330 dem_opname, DMGL_ANSI);
2331 if (!ret)
2332 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2333 method_id),
2334 dem_opname, 0);
2335 if (ret)
2336 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2337 }
2338 }
2339
2340 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2341 const struct cplus_struct_type cplus_struct_default = { };
2342
2343 void
2344 allocate_cplus_struct_type (struct type *type)
2345 {
2346 if (HAVE_CPLUS_STRUCT (type))
2347 /* Structure was already allocated. Nothing more to do. */
2348 return;
2349
2350 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2351 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2352 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2353 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2354 }
2355
2356 const struct gnat_aux_type gnat_aux_default =
2357 { NULL };
2358
2359 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2360 and allocate the associated gnat-specific data. The gnat-specific
2361 data is also initialized to gnat_aux_default. */
2362
2363 void
2364 allocate_gnat_aux_type (struct type *type)
2365 {
2366 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2367 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2368 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2369 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2370 }
2371
2372 /* Helper function to initialize the standard scalar types.
2373
2374 If NAME is non-NULL, then it is used to initialize the type name.
2375 Note that NAME is not copied; it is required to have a lifetime at
2376 least as long as OBJFILE. */
2377
2378 struct type *
2379 init_type (enum type_code code, int length, int flags,
2380 const char *name, struct objfile *objfile)
2381 {
2382 struct type *type;
2383
2384 type = alloc_type (objfile);
2385 TYPE_CODE (type) = code;
2386 TYPE_LENGTH (type) = length;
2387
2388 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2389 if (flags & TYPE_FLAG_UNSIGNED)
2390 TYPE_UNSIGNED (type) = 1;
2391 if (flags & TYPE_FLAG_NOSIGN)
2392 TYPE_NOSIGN (type) = 1;
2393 if (flags & TYPE_FLAG_STUB)
2394 TYPE_STUB (type) = 1;
2395 if (flags & TYPE_FLAG_TARGET_STUB)
2396 TYPE_TARGET_STUB (type) = 1;
2397 if (flags & TYPE_FLAG_STATIC)
2398 TYPE_STATIC (type) = 1;
2399 if (flags & TYPE_FLAG_PROTOTYPED)
2400 TYPE_PROTOTYPED (type) = 1;
2401 if (flags & TYPE_FLAG_INCOMPLETE)
2402 TYPE_INCOMPLETE (type) = 1;
2403 if (flags & TYPE_FLAG_VARARGS)
2404 TYPE_VARARGS (type) = 1;
2405 if (flags & TYPE_FLAG_VECTOR)
2406 TYPE_VECTOR (type) = 1;
2407 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2408 TYPE_STUB_SUPPORTED (type) = 1;
2409 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2410 TYPE_FIXED_INSTANCE (type) = 1;
2411 if (flags & TYPE_FLAG_GNU_IFUNC)
2412 TYPE_GNU_IFUNC (type) = 1;
2413
2414 TYPE_NAME (type) = name;
2415
2416 /* C++ fancies. */
2417
2418 if (name && strcmp (name, "char") == 0)
2419 TYPE_NOSIGN (type) = 1;
2420
2421 switch (code)
2422 {
2423 case TYPE_CODE_STRUCT:
2424 case TYPE_CODE_UNION:
2425 case TYPE_CODE_NAMESPACE:
2426 INIT_CPLUS_SPECIFIC (type);
2427 break;
2428 case TYPE_CODE_FLT:
2429 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2430 break;
2431 case TYPE_CODE_FUNC:
2432 INIT_FUNC_SPECIFIC (type);
2433 break;
2434 }
2435 return type;
2436 }
2437 \f
2438 /* Queries on types. */
2439
2440 int
2441 can_dereference (struct type *t)
2442 {
2443 /* FIXME: Should we return true for references as well as
2444 pointers? */
2445 CHECK_TYPEDEF (t);
2446 return
2447 (t != NULL
2448 && TYPE_CODE (t) == TYPE_CODE_PTR
2449 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2450 }
2451
2452 int
2453 is_integral_type (struct type *t)
2454 {
2455 CHECK_TYPEDEF (t);
2456 return
2457 ((t != NULL)
2458 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2459 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2460 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2461 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2462 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2463 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2464 }
2465
2466 /* Return true if TYPE is scalar. */
2467
2468 static int
2469 is_scalar_type (struct type *type)
2470 {
2471 CHECK_TYPEDEF (type);
2472
2473 switch (TYPE_CODE (type))
2474 {
2475 case TYPE_CODE_ARRAY:
2476 case TYPE_CODE_STRUCT:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_SET:
2479 case TYPE_CODE_STRING:
2480 return 0;
2481 default:
2482 return 1;
2483 }
2484 }
2485
2486 /* Return true if T is scalar, or a composite type which in practice has
2487 the memory layout of a scalar type. E.g., an array or struct with only
2488 one scalar element inside it, or a union with only scalar elements. */
2489
2490 int
2491 is_scalar_type_recursive (struct type *t)
2492 {
2493 CHECK_TYPEDEF (t);
2494
2495 if (is_scalar_type (t))
2496 return 1;
2497 /* Are we dealing with an array or string of known dimensions? */
2498 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2499 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2500 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2501 {
2502 LONGEST low_bound, high_bound;
2503 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2504
2505 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2506
2507 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2508 }
2509 /* Are we dealing with a struct with one element? */
2510 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2511 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2512 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2513 {
2514 int i, n = TYPE_NFIELDS (t);
2515
2516 /* If all elements of the union are scalar, then the union is scalar. */
2517 for (i = 0; i < n; i++)
2518 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2519 return 0;
2520
2521 return 1;
2522 }
2523
2524 return 0;
2525 }
2526
2527 /* Return true is T is a class or a union. False otherwise. */
2528
2529 int
2530 class_or_union_p (const struct type *t)
2531 {
2532 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2533 || TYPE_CODE (t) == TYPE_CODE_UNION);
2534 }
2535
2536 /* A helper function which returns true if types A and B represent the
2537 "same" class type. This is true if the types have the same main
2538 type, or the same name. */
2539
2540 int
2541 class_types_same_p (const struct type *a, const struct type *b)
2542 {
2543 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2544 || (TYPE_NAME (a) && TYPE_NAME (b)
2545 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2546 }
2547
2548 /* If BASE is an ancestor of DCLASS return the distance between them.
2549 otherwise return -1;
2550 eg:
2551
2552 class A {};
2553 class B: public A {};
2554 class C: public B {};
2555 class D: C {};
2556
2557 distance_to_ancestor (A, A, 0) = 0
2558 distance_to_ancestor (A, B, 0) = 1
2559 distance_to_ancestor (A, C, 0) = 2
2560 distance_to_ancestor (A, D, 0) = 3
2561
2562 If PUBLIC is 1 then only public ancestors are considered,
2563 and the function returns the distance only if BASE is a public ancestor
2564 of DCLASS.
2565 Eg:
2566
2567 distance_to_ancestor (A, D, 1) = -1. */
2568
2569 static int
2570 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2571 {
2572 int i;
2573 int d;
2574
2575 CHECK_TYPEDEF (base);
2576 CHECK_TYPEDEF (dclass);
2577
2578 if (class_types_same_p (base, dclass))
2579 return 0;
2580
2581 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2582 {
2583 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2584 continue;
2585
2586 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2587 if (d >= 0)
2588 return 1 + d;
2589 }
2590
2591 return -1;
2592 }
2593
2594 /* Check whether BASE is an ancestor or base class or DCLASS
2595 Return 1 if so, and 0 if not.
2596 Note: If BASE and DCLASS are of the same type, this function
2597 will return 1. So for some class A, is_ancestor (A, A) will
2598 return 1. */
2599
2600 int
2601 is_ancestor (struct type *base, struct type *dclass)
2602 {
2603 return distance_to_ancestor (base, dclass, 0) >= 0;
2604 }
2605
2606 /* Like is_ancestor, but only returns true when BASE is a public
2607 ancestor of DCLASS. */
2608
2609 int
2610 is_public_ancestor (struct type *base, struct type *dclass)
2611 {
2612 return distance_to_ancestor (base, dclass, 1) >= 0;
2613 }
2614
2615 /* A helper function for is_unique_ancestor. */
2616
2617 static int
2618 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2619 int *offset,
2620 const gdb_byte *valaddr, int embedded_offset,
2621 CORE_ADDR address, struct value *val)
2622 {
2623 int i, count = 0;
2624
2625 CHECK_TYPEDEF (base);
2626 CHECK_TYPEDEF (dclass);
2627
2628 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2629 {
2630 struct type *iter;
2631 int this_offset;
2632
2633 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2634
2635 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2636 address, val);
2637
2638 if (class_types_same_p (base, iter))
2639 {
2640 /* If this is the first subclass, set *OFFSET and set count
2641 to 1. Otherwise, if this is at the same offset as
2642 previous instances, do nothing. Otherwise, increment
2643 count. */
2644 if (*offset == -1)
2645 {
2646 *offset = this_offset;
2647 count = 1;
2648 }
2649 else if (this_offset == *offset)
2650 {
2651 /* Nothing. */
2652 }
2653 else
2654 ++count;
2655 }
2656 else
2657 count += is_unique_ancestor_worker (base, iter, offset,
2658 valaddr,
2659 embedded_offset + this_offset,
2660 address, val);
2661 }
2662
2663 return count;
2664 }
2665
2666 /* Like is_ancestor, but only returns true if BASE is a unique base
2667 class of the type of VAL. */
2668
2669 int
2670 is_unique_ancestor (struct type *base, struct value *val)
2671 {
2672 int offset = -1;
2673
2674 return is_unique_ancestor_worker (base, value_type (val), &offset,
2675 value_contents_for_printing (val),
2676 value_embedded_offset (val),
2677 value_address (val), val) == 1;
2678 }
2679
2680 \f
2681 /* Overload resolution. */
2682
2683 /* Return the sum of the rank of A with the rank of B. */
2684
2685 struct rank
2686 sum_ranks (struct rank a, struct rank b)
2687 {
2688 struct rank c;
2689 c.rank = a.rank + b.rank;
2690 c.subrank = a.subrank + b.subrank;
2691 return c;
2692 }
2693
2694 /* Compare rank A and B and return:
2695 0 if a = b
2696 1 if a is better than b
2697 -1 if b is better than a. */
2698
2699 int
2700 compare_ranks (struct rank a, struct rank b)
2701 {
2702 if (a.rank == b.rank)
2703 {
2704 if (a.subrank == b.subrank)
2705 return 0;
2706 if (a.subrank < b.subrank)
2707 return 1;
2708 if (a.subrank > b.subrank)
2709 return -1;
2710 }
2711
2712 if (a.rank < b.rank)
2713 return 1;
2714
2715 /* a.rank > b.rank */
2716 return -1;
2717 }
2718
2719 /* Functions for overload resolution begin here. */
2720
2721 /* Compare two badness vectors A and B and return the result.
2722 0 => A and B are identical
2723 1 => A and B are incomparable
2724 2 => A is better than B
2725 3 => A is worse than B */
2726
2727 int
2728 compare_badness (struct badness_vector *a, struct badness_vector *b)
2729 {
2730 int i;
2731 int tmp;
2732 short found_pos = 0; /* any positives in c? */
2733 short found_neg = 0; /* any negatives in c? */
2734
2735 /* differing lengths => incomparable */
2736 if (a->length != b->length)
2737 return 1;
2738
2739 /* Subtract b from a */
2740 for (i = 0; i < a->length; i++)
2741 {
2742 tmp = compare_ranks (b->rank[i], a->rank[i]);
2743 if (tmp > 0)
2744 found_pos = 1;
2745 else if (tmp < 0)
2746 found_neg = 1;
2747 }
2748
2749 if (found_pos)
2750 {
2751 if (found_neg)
2752 return 1; /* incomparable */
2753 else
2754 return 3; /* A > B */
2755 }
2756 else
2757 /* no positives */
2758 {
2759 if (found_neg)
2760 return 2; /* A < B */
2761 else
2762 return 0; /* A == B */
2763 }
2764 }
2765
2766 /* Rank a function by comparing its parameter types (PARMS, length
2767 NPARMS), to the types of an argument list (ARGS, length NARGS).
2768 Return a pointer to a badness vector. This has NARGS + 1
2769 entries. */
2770
2771 struct badness_vector *
2772 rank_function (struct type **parms, int nparms,
2773 struct value **args, int nargs)
2774 {
2775 int i;
2776 struct badness_vector *bv;
2777 int min_len = nparms < nargs ? nparms : nargs;
2778
2779 bv = xmalloc (sizeof (struct badness_vector));
2780 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2781 bv->rank = XNEWVEC (struct rank, nargs + 1);
2782
2783 /* First compare the lengths of the supplied lists.
2784 If there is a mismatch, set it to a high value. */
2785
2786 /* pai/1997-06-03 FIXME: when we have debug info about default
2787 arguments and ellipsis parameter lists, we should consider those
2788 and rank the length-match more finely. */
2789
2790 LENGTH_MATCH (bv) = (nargs != nparms)
2791 ? LENGTH_MISMATCH_BADNESS
2792 : EXACT_MATCH_BADNESS;
2793
2794 /* Now rank all the parameters of the candidate function. */
2795 for (i = 1; i <= min_len; i++)
2796 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2797 args[i - 1]);
2798
2799 /* If more arguments than parameters, add dummy entries. */
2800 for (i = min_len + 1; i <= nargs; i++)
2801 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2802
2803 return bv;
2804 }
2805
2806 /* Compare the names of two integer types, assuming that any sign
2807 qualifiers have been checked already. We do it this way because
2808 there may be an "int" in the name of one of the types. */
2809
2810 static int
2811 integer_types_same_name_p (const char *first, const char *second)
2812 {
2813 int first_p, second_p;
2814
2815 /* If both are shorts, return 1; if neither is a short, keep
2816 checking. */
2817 first_p = (strstr (first, "short") != NULL);
2818 second_p = (strstr (second, "short") != NULL);
2819 if (first_p && second_p)
2820 return 1;
2821 if (first_p || second_p)
2822 return 0;
2823
2824 /* Likewise for long. */
2825 first_p = (strstr (first, "long") != NULL);
2826 second_p = (strstr (second, "long") != NULL);
2827 if (first_p && second_p)
2828 return 1;
2829 if (first_p || second_p)
2830 return 0;
2831
2832 /* Likewise for char. */
2833 first_p = (strstr (first, "char") != NULL);
2834 second_p = (strstr (second, "char") != NULL);
2835 if (first_p && second_p)
2836 return 1;
2837 if (first_p || second_p)
2838 return 0;
2839
2840 /* They must both be ints. */
2841 return 1;
2842 }
2843
2844 /* Compares type A to type B returns 1 if the represent the same type
2845 0 otherwise. */
2846
2847 int
2848 types_equal (struct type *a, struct type *b)
2849 {
2850 /* Identical type pointers. */
2851 /* However, this still doesn't catch all cases of same type for b
2852 and a. The reason is that builtin types are different from
2853 the same ones constructed from the object. */
2854 if (a == b)
2855 return 1;
2856
2857 /* Resolve typedefs */
2858 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2859 a = check_typedef (a);
2860 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2861 b = check_typedef (b);
2862
2863 /* If after resolving typedefs a and b are not of the same type
2864 code then they are not equal. */
2865 if (TYPE_CODE (a) != TYPE_CODE (b))
2866 return 0;
2867
2868 /* If a and b are both pointers types or both reference types then
2869 they are equal of the same type iff the objects they refer to are
2870 of the same type. */
2871 if (TYPE_CODE (a) == TYPE_CODE_PTR
2872 || TYPE_CODE (a) == TYPE_CODE_REF)
2873 return types_equal (TYPE_TARGET_TYPE (a),
2874 TYPE_TARGET_TYPE (b));
2875
2876 /* Well, damnit, if the names are exactly the same, I'll say they
2877 are exactly the same. This happens when we generate method
2878 stubs. The types won't point to the same address, but they
2879 really are the same. */
2880
2881 if (TYPE_NAME (a) && TYPE_NAME (b)
2882 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2883 return 1;
2884
2885 /* Check if identical after resolving typedefs. */
2886 if (a == b)
2887 return 1;
2888
2889 /* Two function types are equal if their argument and return types
2890 are equal. */
2891 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2892 {
2893 int i;
2894
2895 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2896 return 0;
2897
2898 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2899 return 0;
2900
2901 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2902 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2903 return 0;
2904
2905 return 1;
2906 }
2907
2908 return 0;
2909 }
2910 \f
2911 /* Deep comparison of types. */
2912
2913 /* An entry in the type-equality bcache. */
2914
2915 typedef struct type_equality_entry
2916 {
2917 struct type *type1, *type2;
2918 } type_equality_entry_d;
2919
2920 DEF_VEC_O (type_equality_entry_d);
2921
2922 /* A helper function to compare two strings. Returns 1 if they are
2923 the same, 0 otherwise. Handles NULLs properly. */
2924
2925 static int
2926 compare_maybe_null_strings (const char *s, const char *t)
2927 {
2928 if (s == NULL && t != NULL)
2929 return 0;
2930 else if (s != NULL && t == NULL)
2931 return 0;
2932 else if (s == NULL && t== NULL)
2933 return 1;
2934 return strcmp (s, t) == 0;
2935 }
2936
2937 /* A helper function for check_types_worklist that checks two types for
2938 "deep" equality. Returns non-zero if the types are considered the
2939 same, zero otherwise. */
2940
2941 static int
2942 check_types_equal (struct type *type1, struct type *type2,
2943 VEC (type_equality_entry_d) **worklist)
2944 {
2945 CHECK_TYPEDEF (type1);
2946 CHECK_TYPEDEF (type2);
2947
2948 if (type1 == type2)
2949 return 1;
2950
2951 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2952 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2953 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2954 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2955 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2956 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2957 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2958 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2959 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2960 return 0;
2961
2962 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2963 TYPE_TAG_NAME (type2)))
2964 return 0;
2965 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2966 return 0;
2967
2968 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2969 {
2970 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2971 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2972 return 0;
2973 }
2974 else
2975 {
2976 int i;
2977
2978 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2979 {
2980 const struct field *field1 = &TYPE_FIELD (type1, i);
2981 const struct field *field2 = &TYPE_FIELD (type2, i);
2982 struct type_equality_entry entry;
2983
2984 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2985 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2986 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2987 return 0;
2988 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2989 FIELD_NAME (*field2)))
2990 return 0;
2991 switch (FIELD_LOC_KIND (*field1))
2992 {
2993 case FIELD_LOC_KIND_BITPOS:
2994 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2995 return 0;
2996 break;
2997 case FIELD_LOC_KIND_ENUMVAL:
2998 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2999 return 0;
3000 break;
3001 case FIELD_LOC_KIND_PHYSADDR:
3002 if (FIELD_STATIC_PHYSADDR (*field1)
3003 != FIELD_STATIC_PHYSADDR (*field2))
3004 return 0;
3005 break;
3006 case FIELD_LOC_KIND_PHYSNAME:
3007 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3008 FIELD_STATIC_PHYSNAME (*field2)))
3009 return 0;
3010 break;
3011 case FIELD_LOC_KIND_DWARF_BLOCK:
3012 {
3013 struct dwarf2_locexpr_baton *block1, *block2;
3014
3015 block1 = FIELD_DWARF_BLOCK (*field1);
3016 block2 = FIELD_DWARF_BLOCK (*field2);
3017 if (block1->per_cu != block2->per_cu
3018 || block1->size != block2->size
3019 || memcmp (block1->data, block2->data, block1->size) != 0)
3020 return 0;
3021 }
3022 break;
3023 default:
3024 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3025 "%d by check_types_equal"),
3026 FIELD_LOC_KIND (*field1));
3027 }
3028
3029 entry.type1 = FIELD_TYPE (*field1);
3030 entry.type2 = FIELD_TYPE (*field2);
3031 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3032 }
3033 }
3034
3035 if (TYPE_TARGET_TYPE (type1) != NULL)
3036 {
3037 struct type_equality_entry entry;
3038
3039 if (TYPE_TARGET_TYPE (type2) == NULL)
3040 return 0;
3041
3042 entry.type1 = TYPE_TARGET_TYPE (type1);
3043 entry.type2 = TYPE_TARGET_TYPE (type2);
3044 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3045 }
3046 else if (TYPE_TARGET_TYPE (type2) != NULL)
3047 return 0;
3048
3049 return 1;
3050 }
3051
3052 /* Check types on a worklist for equality. Returns zero if any pair
3053 is not equal, non-zero if they are all considered equal. */
3054
3055 static int
3056 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3057 struct bcache *cache)
3058 {
3059 while (!VEC_empty (type_equality_entry_d, *worklist))
3060 {
3061 struct type_equality_entry entry;
3062 int added;
3063
3064 entry = *VEC_last (type_equality_entry_d, *worklist);
3065 VEC_pop (type_equality_entry_d, *worklist);
3066
3067 /* If the type pair has already been visited, we know it is
3068 ok. */
3069 bcache_full (&entry, sizeof (entry), cache, &added);
3070 if (!added)
3071 continue;
3072
3073 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3074 return 0;
3075 }
3076
3077 return 1;
3078 }
3079
3080 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3081 "deep comparison". Otherwise return zero. */
3082
3083 int
3084 types_deeply_equal (struct type *type1, struct type *type2)
3085 {
3086 volatile struct gdb_exception except;
3087 int result = 0;
3088 struct bcache *cache;
3089 VEC (type_equality_entry_d) *worklist = NULL;
3090 struct type_equality_entry entry;
3091
3092 gdb_assert (type1 != NULL && type2 != NULL);
3093
3094 /* Early exit for the simple case. */
3095 if (type1 == type2)
3096 return 1;
3097
3098 cache = bcache_xmalloc (NULL, NULL);
3099
3100 entry.type1 = type1;
3101 entry.type2 = type2;
3102 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3103
3104 TRY_CATCH (except, RETURN_MASK_ALL)
3105 {
3106 result = check_types_worklist (&worklist, cache);
3107 }
3108 /* check_types_worklist calls several nested helper functions,
3109 some of which can raise a GDB Exception, so we just check
3110 and rethrow here. If there is a GDB exception, a comparison
3111 is not capable (or trusted), so exit. */
3112 bcache_xfree (cache);
3113 VEC_free (type_equality_entry_d, worklist);
3114 /* Rethrow if there was a problem. */
3115 if (except.reason < 0)
3116 throw_exception (except);
3117
3118 return result;
3119 }
3120 \f
3121 /* Compare one type (PARM) for compatibility with another (ARG).
3122 * PARM is intended to be the parameter type of a function; and
3123 * ARG is the supplied argument's type. This function tests if
3124 * the latter can be converted to the former.
3125 * VALUE is the argument's value or NULL if none (or called recursively)
3126 *
3127 * Return 0 if they are identical types;
3128 * Otherwise, return an integer which corresponds to how compatible
3129 * PARM is to ARG. The higher the return value, the worse the match.
3130 * Generally the "bad" conversions are all uniformly assigned a 100. */
3131
3132 struct rank
3133 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3134 {
3135 struct rank rank = {0,0};
3136
3137 if (types_equal (parm, arg))
3138 return EXACT_MATCH_BADNESS;
3139
3140 /* Resolve typedefs */
3141 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3142 parm = check_typedef (parm);
3143 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3144 arg = check_typedef (arg);
3145
3146 /* See through references, since we can almost make non-references
3147 references. */
3148 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3149 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3150 REFERENCE_CONVERSION_BADNESS));
3151 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3152 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3153 REFERENCE_CONVERSION_BADNESS));
3154 if (overload_debug)
3155 /* Debugging only. */
3156 fprintf_filtered (gdb_stderr,
3157 "------ Arg is %s [%d], parm is %s [%d]\n",
3158 TYPE_NAME (arg), TYPE_CODE (arg),
3159 TYPE_NAME (parm), TYPE_CODE (parm));
3160
3161 /* x -> y means arg of type x being supplied for parameter of type y. */
3162
3163 switch (TYPE_CODE (parm))
3164 {
3165 case TYPE_CODE_PTR:
3166 switch (TYPE_CODE (arg))
3167 {
3168 case TYPE_CODE_PTR:
3169
3170 /* Allowed pointer conversions are:
3171 (a) pointer to void-pointer conversion. */
3172 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3173 return VOID_PTR_CONVERSION_BADNESS;
3174
3175 /* (b) pointer to ancestor-pointer conversion. */
3176 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3177 TYPE_TARGET_TYPE (arg),
3178 0);
3179 if (rank.subrank >= 0)
3180 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3181
3182 return INCOMPATIBLE_TYPE_BADNESS;
3183 case TYPE_CODE_ARRAY:
3184 if (types_equal (TYPE_TARGET_TYPE (parm),
3185 TYPE_TARGET_TYPE (arg)))
3186 return EXACT_MATCH_BADNESS;
3187 return INCOMPATIBLE_TYPE_BADNESS;
3188 case TYPE_CODE_FUNC:
3189 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3190 case TYPE_CODE_INT:
3191 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3192 {
3193 if (value_as_long (value) == 0)
3194 {
3195 /* Null pointer conversion: allow it to be cast to a pointer.
3196 [4.10.1 of C++ standard draft n3290] */
3197 return NULL_POINTER_CONVERSION_BADNESS;
3198 }
3199 else
3200 {
3201 /* If type checking is disabled, allow the conversion. */
3202 if (!strict_type_checking)
3203 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3204 }
3205 }
3206 /* fall through */
3207 case TYPE_CODE_ENUM:
3208 case TYPE_CODE_FLAGS:
3209 case TYPE_CODE_CHAR:
3210 case TYPE_CODE_RANGE:
3211 case TYPE_CODE_BOOL:
3212 default:
3213 return INCOMPATIBLE_TYPE_BADNESS;
3214 }
3215 case TYPE_CODE_ARRAY:
3216 switch (TYPE_CODE (arg))
3217 {
3218 case TYPE_CODE_PTR:
3219 case TYPE_CODE_ARRAY:
3220 return rank_one_type (TYPE_TARGET_TYPE (parm),
3221 TYPE_TARGET_TYPE (arg), NULL);
3222 default:
3223 return INCOMPATIBLE_TYPE_BADNESS;
3224 }
3225 case TYPE_CODE_FUNC:
3226 switch (TYPE_CODE (arg))
3227 {
3228 case TYPE_CODE_PTR: /* funcptr -> func */
3229 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3230 default:
3231 return INCOMPATIBLE_TYPE_BADNESS;
3232 }
3233 case TYPE_CODE_INT:
3234 switch (TYPE_CODE (arg))
3235 {
3236 case TYPE_CODE_INT:
3237 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3238 {
3239 /* Deal with signed, unsigned, and plain chars and
3240 signed and unsigned ints. */
3241 if (TYPE_NOSIGN (parm))
3242 {
3243 /* This case only for character types. */
3244 if (TYPE_NOSIGN (arg))
3245 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3246 else /* signed/unsigned char -> plain char */
3247 return INTEGER_CONVERSION_BADNESS;
3248 }
3249 else if (TYPE_UNSIGNED (parm))
3250 {
3251 if (TYPE_UNSIGNED (arg))
3252 {
3253 /* unsigned int -> unsigned int, or
3254 unsigned long -> unsigned long */
3255 if (integer_types_same_name_p (TYPE_NAME (parm),
3256 TYPE_NAME (arg)))
3257 return EXACT_MATCH_BADNESS;
3258 else if (integer_types_same_name_p (TYPE_NAME (arg),
3259 "int")
3260 && integer_types_same_name_p (TYPE_NAME (parm),
3261 "long"))
3262 /* unsigned int -> unsigned long */
3263 return INTEGER_PROMOTION_BADNESS;
3264 else
3265 /* unsigned long -> unsigned int */
3266 return INTEGER_CONVERSION_BADNESS;
3267 }
3268 else
3269 {
3270 if (integer_types_same_name_p (TYPE_NAME (arg),
3271 "long")
3272 && integer_types_same_name_p (TYPE_NAME (parm),
3273 "int"))
3274 /* signed long -> unsigned int */
3275 return INTEGER_CONVERSION_BADNESS;
3276 else
3277 /* signed int/long -> unsigned int/long */
3278 return INTEGER_CONVERSION_BADNESS;
3279 }
3280 }
3281 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3282 {
3283 if (integer_types_same_name_p (TYPE_NAME (parm),
3284 TYPE_NAME (arg)))
3285 return EXACT_MATCH_BADNESS;
3286 else if (integer_types_same_name_p (TYPE_NAME (arg),
3287 "int")
3288 && integer_types_same_name_p (TYPE_NAME (parm),
3289 "long"))
3290 return INTEGER_PROMOTION_BADNESS;
3291 else
3292 return INTEGER_CONVERSION_BADNESS;
3293 }
3294 else
3295 return INTEGER_CONVERSION_BADNESS;
3296 }
3297 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3298 return INTEGER_PROMOTION_BADNESS;
3299 else
3300 return INTEGER_CONVERSION_BADNESS;
3301 case TYPE_CODE_ENUM:
3302 case TYPE_CODE_FLAGS:
3303 case TYPE_CODE_CHAR:
3304 case TYPE_CODE_RANGE:
3305 case TYPE_CODE_BOOL:
3306 if (TYPE_DECLARED_CLASS (arg))
3307 return INCOMPATIBLE_TYPE_BADNESS;
3308 return INTEGER_PROMOTION_BADNESS;
3309 case TYPE_CODE_FLT:
3310 return INT_FLOAT_CONVERSION_BADNESS;
3311 case TYPE_CODE_PTR:
3312 return NS_POINTER_CONVERSION_BADNESS;
3313 default:
3314 return INCOMPATIBLE_TYPE_BADNESS;
3315 }
3316 break;
3317 case TYPE_CODE_ENUM:
3318 switch (TYPE_CODE (arg))
3319 {
3320 case TYPE_CODE_INT:
3321 case TYPE_CODE_CHAR:
3322 case TYPE_CODE_RANGE:
3323 case TYPE_CODE_BOOL:
3324 case TYPE_CODE_ENUM:
3325 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3326 return INCOMPATIBLE_TYPE_BADNESS;
3327 return INTEGER_CONVERSION_BADNESS;
3328 case TYPE_CODE_FLT:
3329 return INT_FLOAT_CONVERSION_BADNESS;
3330 default:
3331 return INCOMPATIBLE_TYPE_BADNESS;
3332 }
3333 break;
3334 case TYPE_CODE_CHAR:
3335 switch (TYPE_CODE (arg))
3336 {
3337 case TYPE_CODE_RANGE:
3338 case TYPE_CODE_BOOL:
3339 case TYPE_CODE_ENUM:
3340 if (TYPE_DECLARED_CLASS (arg))
3341 return INCOMPATIBLE_TYPE_BADNESS;
3342 return INTEGER_CONVERSION_BADNESS;
3343 case TYPE_CODE_FLT:
3344 return INT_FLOAT_CONVERSION_BADNESS;
3345 case TYPE_CODE_INT:
3346 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3347 return INTEGER_CONVERSION_BADNESS;
3348 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3349 return INTEGER_PROMOTION_BADNESS;
3350 /* >>> !! else fall through !! <<< */
3351 case TYPE_CODE_CHAR:
3352 /* Deal with signed, unsigned, and plain chars for C++ and
3353 with int cases falling through from previous case. */
3354 if (TYPE_NOSIGN (parm))
3355 {
3356 if (TYPE_NOSIGN (arg))
3357 return EXACT_MATCH_BADNESS;
3358 else
3359 return INTEGER_CONVERSION_BADNESS;
3360 }
3361 else if (TYPE_UNSIGNED (parm))
3362 {
3363 if (TYPE_UNSIGNED (arg))
3364 return EXACT_MATCH_BADNESS;
3365 else
3366 return INTEGER_PROMOTION_BADNESS;
3367 }
3368 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3369 return EXACT_MATCH_BADNESS;
3370 else
3371 return INTEGER_CONVERSION_BADNESS;
3372 default:
3373 return INCOMPATIBLE_TYPE_BADNESS;
3374 }
3375 break;
3376 case TYPE_CODE_RANGE:
3377 switch (TYPE_CODE (arg))
3378 {
3379 case TYPE_CODE_INT:
3380 case TYPE_CODE_CHAR:
3381 case TYPE_CODE_RANGE:
3382 case TYPE_CODE_BOOL:
3383 case TYPE_CODE_ENUM:
3384 return INTEGER_CONVERSION_BADNESS;
3385 case TYPE_CODE_FLT:
3386 return INT_FLOAT_CONVERSION_BADNESS;
3387 default:
3388 return INCOMPATIBLE_TYPE_BADNESS;
3389 }
3390 break;
3391 case TYPE_CODE_BOOL:
3392 switch (TYPE_CODE (arg))
3393 {
3394 /* n3290 draft, section 4.12.1 (conv.bool):
3395
3396 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3397 pointer to member type can be converted to a prvalue of type
3398 bool. A zero value, null pointer value, or null member pointer
3399 value is converted to false; any other value is converted to
3400 true. A prvalue of type std::nullptr_t can be converted to a
3401 prvalue of type bool; the resulting value is false." */
3402 case TYPE_CODE_INT:
3403 case TYPE_CODE_CHAR:
3404 case TYPE_CODE_ENUM:
3405 case TYPE_CODE_FLT:
3406 case TYPE_CODE_MEMBERPTR:
3407 case TYPE_CODE_PTR:
3408 return BOOL_CONVERSION_BADNESS;
3409 case TYPE_CODE_RANGE:
3410 return INCOMPATIBLE_TYPE_BADNESS;
3411 case TYPE_CODE_BOOL:
3412 return EXACT_MATCH_BADNESS;
3413 default:
3414 return INCOMPATIBLE_TYPE_BADNESS;
3415 }
3416 break;
3417 case TYPE_CODE_FLT:
3418 switch (TYPE_CODE (arg))
3419 {
3420 case TYPE_CODE_FLT:
3421 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3422 return FLOAT_PROMOTION_BADNESS;
3423 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3424 return EXACT_MATCH_BADNESS;
3425 else
3426 return FLOAT_CONVERSION_BADNESS;
3427 case TYPE_CODE_INT:
3428 case TYPE_CODE_BOOL:
3429 case TYPE_CODE_ENUM:
3430 case TYPE_CODE_RANGE:
3431 case TYPE_CODE_CHAR:
3432 return INT_FLOAT_CONVERSION_BADNESS;
3433 default:
3434 return INCOMPATIBLE_TYPE_BADNESS;
3435 }
3436 break;
3437 case TYPE_CODE_COMPLEX:
3438 switch (TYPE_CODE (arg))
3439 { /* Strictly not needed for C++, but... */
3440 case TYPE_CODE_FLT:
3441 return FLOAT_PROMOTION_BADNESS;
3442 case TYPE_CODE_COMPLEX:
3443 return EXACT_MATCH_BADNESS;
3444 default:
3445 return INCOMPATIBLE_TYPE_BADNESS;
3446 }
3447 break;
3448 case TYPE_CODE_STRUCT:
3449 switch (TYPE_CODE (arg))
3450 {
3451 case TYPE_CODE_STRUCT:
3452 /* Check for derivation */
3453 rank.subrank = distance_to_ancestor (parm, arg, 0);
3454 if (rank.subrank >= 0)
3455 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3456 /* else fall through */
3457 default:
3458 return INCOMPATIBLE_TYPE_BADNESS;
3459 }
3460 break;
3461 case TYPE_CODE_UNION:
3462 switch (TYPE_CODE (arg))
3463 {
3464 case TYPE_CODE_UNION:
3465 default:
3466 return INCOMPATIBLE_TYPE_BADNESS;
3467 }
3468 break;
3469 case TYPE_CODE_MEMBERPTR:
3470 switch (TYPE_CODE (arg))
3471 {
3472 default:
3473 return INCOMPATIBLE_TYPE_BADNESS;
3474 }
3475 break;
3476 case TYPE_CODE_METHOD:
3477 switch (TYPE_CODE (arg))
3478 {
3479
3480 default:
3481 return INCOMPATIBLE_TYPE_BADNESS;
3482 }
3483 break;
3484 case TYPE_CODE_REF:
3485 switch (TYPE_CODE (arg))
3486 {
3487
3488 default:
3489 return INCOMPATIBLE_TYPE_BADNESS;
3490 }
3491
3492 break;
3493 case TYPE_CODE_SET:
3494 switch (TYPE_CODE (arg))
3495 {
3496 /* Not in C++ */
3497 case TYPE_CODE_SET:
3498 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3499 TYPE_FIELD_TYPE (arg, 0), NULL);
3500 default:
3501 return INCOMPATIBLE_TYPE_BADNESS;
3502 }
3503 break;
3504 case TYPE_CODE_VOID:
3505 default:
3506 return INCOMPATIBLE_TYPE_BADNESS;
3507 } /* switch (TYPE_CODE (arg)) */
3508 }
3509
3510 /* End of functions for overload resolution. */
3511 \f
3512 /* Routines to pretty-print types. */
3513
3514 static void
3515 print_bit_vector (B_TYPE *bits, int nbits)
3516 {
3517 int bitno;
3518
3519 for (bitno = 0; bitno < nbits; bitno++)
3520 {
3521 if ((bitno % 8) == 0)
3522 {
3523 puts_filtered (" ");
3524 }
3525 if (B_TST (bits, bitno))
3526 printf_filtered (("1"));
3527 else
3528 printf_filtered (("0"));
3529 }
3530 }
3531
3532 /* Note the first arg should be the "this" pointer, we may not want to
3533 include it since we may get into a infinitely recursive
3534 situation. */
3535
3536 static void
3537 print_args (struct field *args, int nargs, int spaces)
3538 {
3539 if (args != NULL)
3540 {
3541 int i;
3542
3543 for (i = 0; i < nargs; i++)
3544 {
3545 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3546 args[i].name != NULL ? args[i].name : "<NULL>");
3547 recursive_dump_type (args[i].type, spaces + 2);
3548 }
3549 }
3550 }
3551
3552 int
3553 field_is_static (struct field *f)
3554 {
3555 /* "static" fields are the fields whose location is not relative
3556 to the address of the enclosing struct. It would be nice to
3557 have a dedicated flag that would be set for static fields when
3558 the type is being created. But in practice, checking the field
3559 loc_kind should give us an accurate answer. */
3560 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3561 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3562 }
3563
3564 static void
3565 dump_fn_fieldlists (struct type *type, int spaces)
3566 {
3567 int method_idx;
3568 int overload_idx;
3569 struct fn_field *f;
3570
3571 printfi_filtered (spaces, "fn_fieldlists ");
3572 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3573 printf_filtered ("\n");
3574 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3575 {
3576 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3577 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3578 method_idx,
3579 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3580 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3581 gdb_stdout);
3582 printf_filtered (_(") length %d\n"),
3583 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3584 for (overload_idx = 0;
3585 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3586 overload_idx++)
3587 {
3588 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3589 overload_idx,
3590 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3591 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3592 gdb_stdout);
3593 printf_filtered (")\n");
3594 printfi_filtered (spaces + 8, "type ");
3595 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3596 gdb_stdout);
3597 printf_filtered ("\n");
3598
3599 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3600 spaces + 8 + 2);
3601
3602 printfi_filtered (spaces + 8, "args ");
3603 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3604 gdb_stdout);
3605 printf_filtered ("\n");
3606 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3607 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3608 spaces + 8 + 2);
3609 printfi_filtered (spaces + 8, "fcontext ");
3610 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3611 gdb_stdout);
3612 printf_filtered ("\n");
3613
3614 printfi_filtered (spaces + 8, "is_const %d\n",
3615 TYPE_FN_FIELD_CONST (f, overload_idx));
3616 printfi_filtered (spaces + 8, "is_volatile %d\n",
3617 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3618 printfi_filtered (spaces + 8, "is_private %d\n",
3619 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3620 printfi_filtered (spaces + 8, "is_protected %d\n",
3621 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3622 printfi_filtered (spaces + 8, "is_stub %d\n",
3623 TYPE_FN_FIELD_STUB (f, overload_idx));
3624 printfi_filtered (spaces + 8, "voffset %u\n",
3625 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3626 }
3627 }
3628 }
3629
3630 static void
3631 print_cplus_stuff (struct type *type, int spaces)
3632 {
3633 printfi_filtered (spaces, "n_baseclasses %d\n",
3634 TYPE_N_BASECLASSES (type));
3635 printfi_filtered (spaces, "nfn_fields %d\n",
3636 TYPE_NFN_FIELDS (type));
3637 if (TYPE_N_BASECLASSES (type) > 0)
3638 {
3639 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3640 TYPE_N_BASECLASSES (type));
3641 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3642 gdb_stdout);
3643 printf_filtered (")");
3644
3645 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3646 TYPE_N_BASECLASSES (type));
3647 puts_filtered ("\n");
3648 }
3649 if (TYPE_NFIELDS (type) > 0)
3650 {
3651 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3652 {
3653 printfi_filtered (spaces,
3654 "private_field_bits (%d bits at *",
3655 TYPE_NFIELDS (type));
3656 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3657 gdb_stdout);
3658 printf_filtered (")");
3659 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3660 TYPE_NFIELDS (type));
3661 puts_filtered ("\n");
3662 }
3663 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3664 {
3665 printfi_filtered (spaces,
3666 "protected_field_bits (%d bits at *",
3667 TYPE_NFIELDS (type));
3668 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3669 gdb_stdout);
3670 printf_filtered (")");
3671 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3672 TYPE_NFIELDS (type));
3673 puts_filtered ("\n");
3674 }
3675 }
3676 if (TYPE_NFN_FIELDS (type) > 0)
3677 {
3678 dump_fn_fieldlists (type, spaces);
3679 }
3680 }
3681
3682 /* Print the contents of the TYPE's type_specific union, assuming that
3683 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3684
3685 static void
3686 print_gnat_stuff (struct type *type, int spaces)
3687 {
3688 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3689
3690 recursive_dump_type (descriptive_type, spaces + 2);
3691 }
3692
3693 static struct obstack dont_print_type_obstack;
3694
3695 void
3696 recursive_dump_type (struct type *type, int spaces)
3697 {
3698 int idx;
3699
3700 if (spaces == 0)
3701 obstack_begin (&dont_print_type_obstack, 0);
3702
3703 if (TYPE_NFIELDS (type) > 0
3704 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3705 {
3706 struct type **first_dont_print
3707 = (struct type **) obstack_base (&dont_print_type_obstack);
3708
3709 int i = (struct type **)
3710 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3711
3712 while (--i >= 0)
3713 {
3714 if (type == first_dont_print[i])
3715 {
3716 printfi_filtered (spaces, "type node ");
3717 gdb_print_host_address (type, gdb_stdout);
3718 printf_filtered (_(" <same as already seen type>\n"));
3719 return;
3720 }
3721 }
3722
3723 obstack_ptr_grow (&dont_print_type_obstack, type);
3724 }
3725
3726 printfi_filtered (spaces, "type node ");
3727 gdb_print_host_address (type, gdb_stdout);
3728 printf_filtered ("\n");
3729 printfi_filtered (spaces, "name '%s' (",
3730 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3731 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3732 printf_filtered (")\n");
3733 printfi_filtered (spaces, "tagname '%s' (",
3734 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3735 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3736 printf_filtered (")\n");
3737 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3738 switch (TYPE_CODE (type))
3739 {
3740 case TYPE_CODE_UNDEF:
3741 printf_filtered ("(TYPE_CODE_UNDEF)");
3742 break;
3743 case TYPE_CODE_PTR:
3744 printf_filtered ("(TYPE_CODE_PTR)");
3745 break;
3746 case TYPE_CODE_ARRAY:
3747 printf_filtered ("(TYPE_CODE_ARRAY)");
3748 break;
3749 case TYPE_CODE_STRUCT:
3750 printf_filtered ("(TYPE_CODE_STRUCT)");
3751 break;
3752 case TYPE_CODE_UNION:
3753 printf_filtered ("(TYPE_CODE_UNION)");
3754 break;
3755 case TYPE_CODE_ENUM:
3756 printf_filtered ("(TYPE_CODE_ENUM)");
3757 break;
3758 case TYPE_CODE_FLAGS:
3759 printf_filtered ("(TYPE_CODE_FLAGS)");
3760 break;
3761 case TYPE_CODE_FUNC:
3762 printf_filtered ("(TYPE_CODE_FUNC)");
3763 break;
3764 case TYPE_CODE_INT:
3765 printf_filtered ("(TYPE_CODE_INT)");
3766 break;
3767 case TYPE_CODE_FLT:
3768 printf_filtered ("(TYPE_CODE_FLT)");
3769 break;
3770 case TYPE_CODE_VOID:
3771 printf_filtered ("(TYPE_CODE_VOID)");
3772 break;
3773 case TYPE_CODE_SET:
3774 printf_filtered ("(TYPE_CODE_SET)");
3775 break;
3776 case TYPE_CODE_RANGE:
3777 printf_filtered ("(TYPE_CODE_RANGE)");
3778 break;
3779 case TYPE_CODE_STRING:
3780 printf_filtered ("(TYPE_CODE_STRING)");
3781 break;
3782 case TYPE_CODE_ERROR:
3783 printf_filtered ("(TYPE_CODE_ERROR)");
3784 break;
3785 case TYPE_CODE_MEMBERPTR:
3786 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3787 break;
3788 case TYPE_CODE_METHODPTR:
3789 printf_filtered ("(TYPE_CODE_METHODPTR)");
3790 break;
3791 case TYPE_CODE_METHOD:
3792 printf_filtered ("(TYPE_CODE_METHOD)");
3793 break;
3794 case TYPE_CODE_REF:
3795 printf_filtered ("(TYPE_CODE_REF)");
3796 break;
3797 case TYPE_CODE_CHAR:
3798 printf_filtered ("(TYPE_CODE_CHAR)");
3799 break;
3800 case TYPE_CODE_BOOL:
3801 printf_filtered ("(TYPE_CODE_BOOL)");
3802 break;
3803 case TYPE_CODE_COMPLEX:
3804 printf_filtered ("(TYPE_CODE_COMPLEX)");
3805 break;
3806 case TYPE_CODE_TYPEDEF:
3807 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3808 break;
3809 case TYPE_CODE_NAMESPACE:
3810 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3811 break;
3812 default:
3813 printf_filtered ("(UNKNOWN TYPE CODE)");
3814 break;
3815 }
3816 puts_filtered ("\n");
3817 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3818 if (TYPE_OBJFILE_OWNED (type))
3819 {
3820 printfi_filtered (spaces, "objfile ");
3821 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3822 }
3823 else
3824 {
3825 printfi_filtered (spaces, "gdbarch ");
3826 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3827 }
3828 printf_filtered ("\n");
3829 printfi_filtered (spaces, "target_type ");
3830 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3831 printf_filtered ("\n");
3832 if (TYPE_TARGET_TYPE (type) != NULL)
3833 {
3834 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3835 }
3836 printfi_filtered (spaces, "pointer_type ");
3837 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3838 printf_filtered ("\n");
3839 printfi_filtered (spaces, "reference_type ");
3840 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3841 printf_filtered ("\n");
3842 printfi_filtered (spaces, "type_chain ");
3843 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3844 printf_filtered ("\n");
3845 printfi_filtered (spaces, "instance_flags 0x%x",
3846 TYPE_INSTANCE_FLAGS (type));
3847 if (TYPE_CONST (type))
3848 {
3849 puts_filtered (" TYPE_FLAG_CONST");
3850 }
3851 if (TYPE_VOLATILE (type))
3852 {
3853 puts_filtered (" TYPE_FLAG_VOLATILE");
3854 }
3855 if (TYPE_CODE_SPACE (type))
3856 {
3857 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3858 }
3859 if (TYPE_DATA_SPACE (type))
3860 {
3861 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3862 }
3863 if (TYPE_ADDRESS_CLASS_1 (type))
3864 {
3865 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3866 }
3867 if (TYPE_ADDRESS_CLASS_2 (type))
3868 {
3869 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3870 }
3871 if (TYPE_RESTRICT (type))
3872 {
3873 puts_filtered (" TYPE_FLAG_RESTRICT");
3874 }
3875 puts_filtered ("\n");
3876
3877 printfi_filtered (spaces, "flags");
3878 if (TYPE_UNSIGNED (type))
3879 {
3880 puts_filtered (" TYPE_FLAG_UNSIGNED");
3881 }
3882 if (TYPE_NOSIGN (type))
3883 {
3884 puts_filtered (" TYPE_FLAG_NOSIGN");
3885 }
3886 if (TYPE_STUB (type))
3887 {
3888 puts_filtered (" TYPE_FLAG_STUB");
3889 }
3890 if (TYPE_TARGET_STUB (type))
3891 {
3892 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3893 }
3894 if (TYPE_STATIC (type))
3895 {
3896 puts_filtered (" TYPE_FLAG_STATIC");
3897 }
3898 if (TYPE_PROTOTYPED (type))
3899 {
3900 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3901 }
3902 if (TYPE_INCOMPLETE (type))
3903 {
3904 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3905 }
3906 if (TYPE_VARARGS (type))
3907 {
3908 puts_filtered (" TYPE_FLAG_VARARGS");
3909 }
3910 /* This is used for things like AltiVec registers on ppc. Gcc emits
3911 an attribute for the array type, which tells whether or not we
3912 have a vector, instead of a regular array. */
3913 if (TYPE_VECTOR (type))
3914 {
3915 puts_filtered (" TYPE_FLAG_VECTOR");
3916 }
3917 if (TYPE_FIXED_INSTANCE (type))
3918 {
3919 puts_filtered (" TYPE_FIXED_INSTANCE");
3920 }
3921 if (TYPE_STUB_SUPPORTED (type))
3922 {
3923 puts_filtered (" TYPE_STUB_SUPPORTED");
3924 }
3925 if (TYPE_NOTTEXT (type))
3926 {
3927 puts_filtered (" TYPE_NOTTEXT");
3928 }
3929 puts_filtered ("\n");
3930 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3931 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3932 puts_filtered ("\n");
3933 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3934 {
3935 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3936 printfi_filtered (spaces + 2,
3937 "[%d] enumval %s type ",
3938 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3939 else
3940 printfi_filtered (spaces + 2,
3941 "[%d] bitpos %d bitsize %d type ",
3942 idx, TYPE_FIELD_BITPOS (type, idx),
3943 TYPE_FIELD_BITSIZE (type, idx));
3944 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3945 printf_filtered (" name '%s' (",
3946 TYPE_FIELD_NAME (type, idx) != NULL
3947 ? TYPE_FIELD_NAME (type, idx)
3948 : "<NULL>");
3949 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3950 printf_filtered (")\n");
3951 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3952 {
3953 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3954 }
3955 }
3956 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3957 {
3958 printfi_filtered (spaces, "low %s%s high %s%s\n",
3959 plongest (TYPE_LOW_BOUND (type)),
3960 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3961 plongest (TYPE_HIGH_BOUND (type)),
3962 TYPE_HIGH_BOUND_UNDEFINED (type)
3963 ? " (undefined)" : "");
3964 }
3965 printfi_filtered (spaces, "vptr_basetype ");
3966 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3967 puts_filtered ("\n");
3968 if (TYPE_VPTR_BASETYPE (type) != NULL)
3969 {
3970 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3971 }
3972 printfi_filtered (spaces, "vptr_fieldno %d\n",
3973 TYPE_VPTR_FIELDNO (type));
3974
3975 switch (TYPE_SPECIFIC_FIELD (type))
3976 {
3977 case TYPE_SPECIFIC_CPLUS_STUFF:
3978 printfi_filtered (spaces, "cplus_stuff ");
3979 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3980 gdb_stdout);
3981 puts_filtered ("\n");
3982 print_cplus_stuff (type, spaces);
3983 break;
3984
3985 case TYPE_SPECIFIC_GNAT_STUFF:
3986 printfi_filtered (spaces, "gnat_stuff ");
3987 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3988 puts_filtered ("\n");
3989 print_gnat_stuff (type, spaces);
3990 break;
3991
3992 case TYPE_SPECIFIC_FLOATFORMAT:
3993 printfi_filtered (spaces, "floatformat ");
3994 if (TYPE_FLOATFORMAT (type) == NULL)
3995 puts_filtered ("(null)");
3996 else
3997 {
3998 puts_filtered ("{ ");
3999 if (TYPE_FLOATFORMAT (type)[0] == NULL
4000 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4001 puts_filtered ("(null)");
4002 else
4003 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4004
4005 puts_filtered (", ");
4006 if (TYPE_FLOATFORMAT (type)[1] == NULL
4007 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4008 puts_filtered ("(null)");
4009 else
4010 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4011
4012 puts_filtered (" }");
4013 }
4014 puts_filtered ("\n");
4015 break;
4016
4017 case TYPE_SPECIFIC_FUNC:
4018 printfi_filtered (spaces, "calling_convention %d\n",
4019 TYPE_CALLING_CONVENTION (type));
4020 /* tail_call_list is not printed. */
4021 break;
4022 }
4023
4024 if (spaces == 0)
4025 obstack_free (&dont_print_type_obstack, NULL);
4026 }
4027 \f
4028 /* Trivial helpers for the libiberty hash table, for mapping one
4029 type to another. */
4030
4031 struct type_pair
4032 {
4033 struct type *old, *new;
4034 };
4035
4036 static hashval_t
4037 type_pair_hash (const void *item)
4038 {
4039 const struct type_pair *pair = item;
4040
4041 return htab_hash_pointer (pair->old);
4042 }
4043
4044 static int
4045 type_pair_eq (const void *item_lhs, const void *item_rhs)
4046 {
4047 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4048
4049 return lhs->old == rhs->old;
4050 }
4051
4052 /* Allocate the hash table used by copy_type_recursive to walk
4053 types without duplicates. We use OBJFILE's obstack, because
4054 OBJFILE is about to be deleted. */
4055
4056 htab_t
4057 create_copied_types_hash (struct objfile *objfile)
4058 {
4059 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4060 NULL, &objfile->objfile_obstack,
4061 hashtab_obstack_allocate,
4062 dummy_obstack_deallocate);
4063 }
4064
4065 /* Recursively copy (deep copy) TYPE, if it is associated with
4066 OBJFILE. Return a new type allocated using malloc, a saved type if
4067 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4068 not associated with OBJFILE. */
4069
4070 struct type *
4071 copy_type_recursive (struct objfile *objfile,
4072 struct type *type,
4073 htab_t copied_types)
4074 {
4075 struct type_pair *stored, pair;
4076 void **slot;
4077 struct type *new_type;
4078
4079 if (! TYPE_OBJFILE_OWNED (type))
4080 return type;
4081
4082 /* This type shouldn't be pointing to any types in other objfiles;
4083 if it did, the type might disappear unexpectedly. */
4084 gdb_assert (TYPE_OBJFILE (type) == objfile);
4085
4086 pair.old = type;
4087 slot = htab_find_slot (copied_types, &pair, INSERT);
4088 if (*slot != NULL)
4089 return ((struct type_pair *) *slot)->new;
4090
4091 new_type = alloc_type_arch (get_type_arch (type));
4092
4093 /* We must add the new type to the hash table immediately, in case
4094 we encounter this type again during a recursive call below. */
4095 stored
4096 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4097 stored->old = type;
4098 stored->new = new_type;
4099 *slot = stored;
4100
4101 /* Copy the common fields of types. For the main type, we simply
4102 copy the entire thing and then update specific fields as needed. */
4103 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4104 TYPE_OBJFILE_OWNED (new_type) = 0;
4105 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4106
4107 if (TYPE_NAME (type))
4108 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4109 if (TYPE_TAG_NAME (type))
4110 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4111
4112 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4113 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4114
4115 /* Copy the fields. */
4116 if (TYPE_NFIELDS (type))
4117 {
4118 int i, nfields;
4119
4120 nfields = TYPE_NFIELDS (type);
4121 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4122 for (i = 0; i < nfields; i++)
4123 {
4124 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4125 TYPE_FIELD_ARTIFICIAL (type, i);
4126 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4127 if (TYPE_FIELD_TYPE (type, i))
4128 TYPE_FIELD_TYPE (new_type, i)
4129 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4130 copied_types);
4131 if (TYPE_FIELD_NAME (type, i))
4132 TYPE_FIELD_NAME (new_type, i) =
4133 xstrdup (TYPE_FIELD_NAME (type, i));
4134 switch (TYPE_FIELD_LOC_KIND (type, i))
4135 {
4136 case FIELD_LOC_KIND_BITPOS:
4137 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4138 TYPE_FIELD_BITPOS (type, i));
4139 break;
4140 case FIELD_LOC_KIND_ENUMVAL:
4141 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4142 TYPE_FIELD_ENUMVAL (type, i));
4143 break;
4144 case FIELD_LOC_KIND_PHYSADDR:
4145 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4146 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4147 break;
4148 case FIELD_LOC_KIND_PHYSNAME:
4149 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4150 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4151 i)));
4152 break;
4153 default:
4154 internal_error (__FILE__, __LINE__,
4155 _("Unexpected type field location kind: %d"),
4156 TYPE_FIELD_LOC_KIND (type, i));
4157 }
4158 }
4159 }
4160
4161 /* For range types, copy the bounds information. */
4162 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4163 {
4164 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4165 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4166 }
4167
4168 /* Copy the data location information. */
4169 if (TYPE_DATA_LOCATION (type) != NULL)
4170 {
4171 TYPE_DATA_LOCATION (new_type)
4172 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4173 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4174 sizeof (struct dynamic_prop));
4175 }
4176
4177 /* Copy pointers to other types. */
4178 if (TYPE_TARGET_TYPE (type))
4179 TYPE_TARGET_TYPE (new_type) =
4180 copy_type_recursive (objfile,
4181 TYPE_TARGET_TYPE (type),
4182 copied_types);
4183 if (TYPE_VPTR_BASETYPE (type))
4184 TYPE_VPTR_BASETYPE (new_type) =
4185 copy_type_recursive (objfile,
4186 TYPE_VPTR_BASETYPE (type),
4187 copied_types);
4188 /* Maybe copy the type_specific bits.
4189
4190 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4191 base classes and methods. There's no fundamental reason why we
4192 can't, but at the moment it is not needed. */
4193
4194 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4195 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4196 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4197 || TYPE_CODE (type) == TYPE_CODE_UNION
4198 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4199 INIT_CPLUS_SPECIFIC (new_type);
4200
4201 return new_type;
4202 }
4203
4204 /* Make a copy of the given TYPE, except that the pointer & reference
4205 types are not preserved.
4206
4207 This function assumes that the given type has an associated objfile.
4208 This objfile is used to allocate the new type. */
4209
4210 struct type *
4211 copy_type (const struct type *type)
4212 {
4213 struct type *new_type;
4214
4215 gdb_assert (TYPE_OBJFILE_OWNED (type));
4216
4217 new_type = alloc_type_copy (type);
4218 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4219 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4220 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4221 sizeof (struct main_type));
4222 if (TYPE_DATA_LOCATION (type) != NULL)
4223 {
4224 TYPE_DATA_LOCATION (new_type)
4225 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4226 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4227 sizeof (struct dynamic_prop));
4228 }
4229
4230 return new_type;
4231 }
4232 \f
4233 /* Helper functions to initialize architecture-specific types. */
4234
4235 /* Allocate a type structure associated with GDBARCH and set its
4236 CODE, LENGTH, and NAME fields. */
4237
4238 struct type *
4239 arch_type (struct gdbarch *gdbarch,
4240 enum type_code code, int length, char *name)
4241 {
4242 struct type *type;
4243
4244 type = alloc_type_arch (gdbarch);
4245 TYPE_CODE (type) = code;
4246 TYPE_LENGTH (type) = length;
4247
4248 if (name)
4249 TYPE_NAME (type) = xstrdup (name);
4250
4251 return type;
4252 }
4253
4254 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4255 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4256 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4257
4258 struct type *
4259 arch_integer_type (struct gdbarch *gdbarch,
4260 int bit, int unsigned_p, char *name)
4261 {
4262 struct type *t;
4263
4264 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4265 if (unsigned_p)
4266 TYPE_UNSIGNED (t) = 1;
4267 if (name && strcmp (name, "char") == 0)
4268 TYPE_NOSIGN (t) = 1;
4269
4270 return t;
4271 }
4272
4273 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4274 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4275 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4276
4277 struct type *
4278 arch_character_type (struct gdbarch *gdbarch,
4279 int bit, int unsigned_p, char *name)
4280 {
4281 struct type *t;
4282
4283 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4284 if (unsigned_p)
4285 TYPE_UNSIGNED (t) = 1;
4286
4287 return t;
4288 }
4289
4290 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4291 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4292 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4293
4294 struct type *
4295 arch_boolean_type (struct gdbarch *gdbarch,
4296 int bit, int unsigned_p, char *name)
4297 {
4298 struct type *t;
4299
4300 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4301 if (unsigned_p)
4302 TYPE_UNSIGNED (t) = 1;
4303
4304 return t;
4305 }
4306
4307 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4308 BIT is the type size in bits; if BIT equals -1, the size is
4309 determined by the floatformat. NAME is the type name. Set the
4310 TYPE_FLOATFORMAT from FLOATFORMATS. */
4311
4312 struct type *
4313 arch_float_type (struct gdbarch *gdbarch,
4314 int bit, char *name, const struct floatformat **floatformats)
4315 {
4316 struct type *t;
4317
4318 if (bit == -1)
4319 {
4320 gdb_assert (floatformats != NULL);
4321 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4322 bit = floatformats[0]->totalsize;
4323 }
4324 gdb_assert (bit >= 0);
4325
4326 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4327 TYPE_FLOATFORMAT (t) = floatformats;
4328 return t;
4329 }
4330
4331 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4332 NAME is the type name. TARGET_TYPE is the component float type. */
4333
4334 struct type *
4335 arch_complex_type (struct gdbarch *gdbarch,
4336 char *name, struct type *target_type)
4337 {
4338 struct type *t;
4339
4340 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4341 2 * TYPE_LENGTH (target_type), name);
4342 TYPE_TARGET_TYPE (t) = target_type;
4343 return t;
4344 }
4345
4346 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4347 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4348
4349 struct type *
4350 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4351 {
4352 int nfields = length * TARGET_CHAR_BIT;
4353 struct type *type;
4354
4355 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4356 TYPE_UNSIGNED (type) = 1;
4357 TYPE_NFIELDS (type) = nfields;
4358 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4359
4360 return type;
4361 }
4362
4363 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4364 position BITPOS is called NAME. */
4365
4366 void
4367 append_flags_type_flag (struct type *type, int bitpos, char *name)
4368 {
4369 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4370 gdb_assert (bitpos < TYPE_NFIELDS (type));
4371 gdb_assert (bitpos >= 0);
4372
4373 if (name)
4374 {
4375 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4376 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4377 }
4378 else
4379 {
4380 /* Don't show this field to the user. */
4381 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4382 }
4383 }
4384
4385 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4386 specified by CODE) associated with GDBARCH. NAME is the type name. */
4387
4388 struct type *
4389 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4390 {
4391 struct type *t;
4392
4393 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4394 t = arch_type (gdbarch, code, 0, NULL);
4395 TYPE_TAG_NAME (t) = name;
4396 INIT_CPLUS_SPECIFIC (t);
4397 return t;
4398 }
4399
4400 /* Add new field with name NAME and type FIELD to composite type T.
4401 Do not set the field's position or adjust the type's length;
4402 the caller should do so. Return the new field. */
4403
4404 struct field *
4405 append_composite_type_field_raw (struct type *t, char *name,
4406 struct type *field)
4407 {
4408 struct field *f;
4409
4410 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4411 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4412 sizeof (struct field) * TYPE_NFIELDS (t));
4413 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4414 memset (f, 0, sizeof f[0]);
4415 FIELD_TYPE (f[0]) = field;
4416 FIELD_NAME (f[0]) = name;
4417 return f;
4418 }
4419
4420 /* Add new field with name NAME and type FIELD to composite type T.
4421 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4422
4423 void
4424 append_composite_type_field_aligned (struct type *t, char *name,
4425 struct type *field, int alignment)
4426 {
4427 struct field *f = append_composite_type_field_raw (t, name, field);
4428
4429 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4430 {
4431 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4432 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4433 }
4434 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4435 {
4436 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4437 if (TYPE_NFIELDS (t) > 1)
4438 {
4439 SET_FIELD_BITPOS (f[0],
4440 (FIELD_BITPOS (f[-1])
4441 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4442 * TARGET_CHAR_BIT)));
4443
4444 if (alignment)
4445 {
4446 int left;
4447
4448 alignment *= TARGET_CHAR_BIT;
4449 left = FIELD_BITPOS (f[0]) % alignment;
4450
4451 if (left)
4452 {
4453 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4454 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4455 }
4456 }
4457 }
4458 }
4459 }
4460
4461 /* Add new field with name NAME and type FIELD to composite type T. */
4462
4463 void
4464 append_composite_type_field (struct type *t, char *name,
4465 struct type *field)
4466 {
4467 append_composite_type_field_aligned (t, name, field, 0);
4468 }
4469
4470 static struct gdbarch_data *gdbtypes_data;
4471
4472 const struct builtin_type *
4473 builtin_type (struct gdbarch *gdbarch)
4474 {
4475 return gdbarch_data (gdbarch, gdbtypes_data);
4476 }
4477
4478 static void *
4479 gdbtypes_post_init (struct gdbarch *gdbarch)
4480 {
4481 struct builtin_type *builtin_type
4482 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4483
4484 /* Basic types. */
4485 builtin_type->builtin_void
4486 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4487 builtin_type->builtin_char
4488 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4489 !gdbarch_char_signed (gdbarch), "char");
4490 builtin_type->builtin_signed_char
4491 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4492 0, "signed char");
4493 builtin_type->builtin_unsigned_char
4494 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4495 1, "unsigned char");
4496 builtin_type->builtin_short
4497 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4498 0, "short");
4499 builtin_type->builtin_unsigned_short
4500 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4501 1, "unsigned short");
4502 builtin_type->builtin_int
4503 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4504 0, "int");
4505 builtin_type->builtin_unsigned_int
4506 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4507 1, "unsigned int");
4508 builtin_type->builtin_long
4509 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4510 0, "long");
4511 builtin_type->builtin_unsigned_long
4512 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4513 1, "unsigned long");
4514 builtin_type->builtin_long_long
4515 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4516 0, "long long");
4517 builtin_type->builtin_unsigned_long_long
4518 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4519 1, "unsigned long long");
4520 builtin_type->builtin_float
4521 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4522 "float", gdbarch_float_format (gdbarch));
4523 builtin_type->builtin_double
4524 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4525 "double", gdbarch_double_format (gdbarch));
4526 builtin_type->builtin_long_double
4527 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4528 "long double", gdbarch_long_double_format (gdbarch));
4529 builtin_type->builtin_complex
4530 = arch_complex_type (gdbarch, "complex",
4531 builtin_type->builtin_float);
4532 builtin_type->builtin_double_complex
4533 = arch_complex_type (gdbarch, "double complex",
4534 builtin_type->builtin_double);
4535 builtin_type->builtin_string
4536 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4537 builtin_type->builtin_bool
4538 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4539
4540 /* The following three are about decimal floating point types, which
4541 are 32-bits, 64-bits and 128-bits respectively. */
4542 builtin_type->builtin_decfloat
4543 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4544 builtin_type->builtin_decdouble
4545 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4546 builtin_type->builtin_declong
4547 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4548
4549 /* "True" character types. */
4550 builtin_type->builtin_true_char
4551 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4552 builtin_type->builtin_true_unsigned_char
4553 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4554
4555 /* Fixed-size integer types. */
4556 builtin_type->builtin_int0
4557 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4558 builtin_type->builtin_int8
4559 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4560 builtin_type->builtin_uint8
4561 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4562 builtin_type->builtin_int16
4563 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4564 builtin_type->builtin_uint16
4565 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4566 builtin_type->builtin_int32
4567 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4568 builtin_type->builtin_uint32
4569 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4570 builtin_type->builtin_int64
4571 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4572 builtin_type->builtin_uint64
4573 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4574 builtin_type->builtin_int128
4575 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4576 builtin_type->builtin_uint128
4577 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4578 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4579 TYPE_INSTANCE_FLAG_NOTTEXT;
4580 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4581 TYPE_INSTANCE_FLAG_NOTTEXT;
4582
4583 /* Wide character types. */
4584 builtin_type->builtin_char16
4585 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4586 builtin_type->builtin_char32
4587 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4588
4589
4590 /* Default data/code pointer types. */
4591 builtin_type->builtin_data_ptr
4592 = lookup_pointer_type (builtin_type->builtin_void);
4593 builtin_type->builtin_func_ptr
4594 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4595 builtin_type->builtin_func_func
4596 = lookup_function_type (builtin_type->builtin_func_ptr);
4597
4598 /* This type represents a GDB internal function. */
4599 builtin_type->internal_fn
4600 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4601 "<internal function>");
4602
4603 /* This type represents an xmethod. */
4604 builtin_type->xmethod
4605 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4606
4607 return builtin_type;
4608 }
4609
4610 /* This set of objfile-based types is intended to be used by symbol
4611 readers as basic types. */
4612
4613 static const struct objfile_data *objfile_type_data;
4614
4615 const struct objfile_type *
4616 objfile_type (struct objfile *objfile)
4617 {
4618 struct gdbarch *gdbarch;
4619 struct objfile_type *objfile_type
4620 = objfile_data (objfile, objfile_type_data);
4621
4622 if (objfile_type)
4623 return objfile_type;
4624
4625 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4626 1, struct objfile_type);
4627
4628 /* Use the objfile architecture to determine basic type properties. */
4629 gdbarch = get_objfile_arch (objfile);
4630
4631 /* Basic types. */
4632 objfile_type->builtin_void
4633 = init_type (TYPE_CODE_VOID, 1,
4634 0,
4635 "void", objfile);
4636
4637 objfile_type->builtin_char
4638 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4639 (TYPE_FLAG_NOSIGN
4640 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4641 "char", objfile);
4642 objfile_type->builtin_signed_char
4643 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4644 0,
4645 "signed char", objfile);
4646 objfile_type->builtin_unsigned_char
4647 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4648 TYPE_FLAG_UNSIGNED,
4649 "unsigned char", objfile);
4650 objfile_type->builtin_short
4651 = init_type (TYPE_CODE_INT,
4652 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4653 0, "short", objfile);
4654 objfile_type->builtin_unsigned_short
4655 = init_type (TYPE_CODE_INT,
4656 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4657 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4658 objfile_type->builtin_int
4659 = init_type (TYPE_CODE_INT,
4660 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4661 0, "int", objfile);
4662 objfile_type->builtin_unsigned_int
4663 = init_type (TYPE_CODE_INT,
4664 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4665 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4666 objfile_type->builtin_long
4667 = init_type (TYPE_CODE_INT,
4668 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4669 0, "long", objfile);
4670 objfile_type->builtin_unsigned_long
4671 = init_type (TYPE_CODE_INT,
4672 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4673 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4674 objfile_type->builtin_long_long
4675 = init_type (TYPE_CODE_INT,
4676 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4677 0, "long long", objfile);
4678 objfile_type->builtin_unsigned_long_long
4679 = init_type (TYPE_CODE_INT,
4680 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4681 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4682
4683 objfile_type->builtin_float
4684 = init_type (TYPE_CODE_FLT,
4685 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4686 0, "float", objfile);
4687 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4688 = gdbarch_float_format (gdbarch);
4689 objfile_type->builtin_double
4690 = init_type (TYPE_CODE_FLT,
4691 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4692 0, "double", objfile);
4693 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4694 = gdbarch_double_format (gdbarch);
4695 objfile_type->builtin_long_double
4696 = init_type (TYPE_CODE_FLT,
4697 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4698 0, "long double", objfile);
4699 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4700 = gdbarch_long_double_format (gdbarch);
4701
4702 /* This type represents a type that was unrecognized in symbol read-in. */
4703 objfile_type->builtin_error
4704 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4705
4706 /* The following set of types is used for symbols with no
4707 debug information. */
4708 objfile_type->nodebug_text_symbol
4709 = init_type (TYPE_CODE_FUNC, 1, 0,
4710 "<text variable, no debug info>", objfile);
4711 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4712 = objfile_type->builtin_int;
4713 objfile_type->nodebug_text_gnu_ifunc_symbol
4714 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4715 "<text gnu-indirect-function variable, no debug info>",
4716 objfile);
4717 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4718 = objfile_type->nodebug_text_symbol;
4719 objfile_type->nodebug_got_plt_symbol
4720 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4721 "<text from jump slot in .got.plt, no debug info>",
4722 objfile);
4723 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4724 = objfile_type->nodebug_text_symbol;
4725 objfile_type->nodebug_data_symbol
4726 = init_type (TYPE_CODE_INT,
4727 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4728 "<data variable, no debug info>", objfile);
4729 objfile_type->nodebug_unknown_symbol
4730 = init_type (TYPE_CODE_INT, 1, 0,
4731 "<variable (not text or data), no debug info>", objfile);
4732 objfile_type->nodebug_tls_symbol
4733 = init_type (TYPE_CODE_INT,
4734 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4735 "<thread local variable, no debug info>", objfile);
4736
4737 /* NOTE: on some targets, addresses and pointers are not necessarily
4738 the same.
4739
4740 The upshot is:
4741 - gdb's `struct type' always describes the target's
4742 representation.
4743 - gdb's `struct value' objects should always hold values in
4744 target form.
4745 - gdb's CORE_ADDR values are addresses in the unified virtual
4746 address space that the assembler and linker work with. Thus,
4747 since target_read_memory takes a CORE_ADDR as an argument, it
4748 can access any memory on the target, even if the processor has
4749 separate code and data address spaces.
4750
4751 In this context, objfile_type->builtin_core_addr is a bit odd:
4752 it's a target type for a value the target will never see. It's
4753 only used to hold the values of (typeless) linker symbols, which
4754 are indeed in the unified virtual address space. */
4755
4756 objfile_type->builtin_core_addr
4757 = init_type (TYPE_CODE_INT,
4758 gdbarch_addr_bit (gdbarch) / 8,
4759 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4760
4761 set_objfile_data (objfile, objfile_type_data, objfile_type);
4762 return objfile_type;
4763 }
4764
4765 extern initialize_file_ftype _initialize_gdbtypes;
4766
4767 void
4768 _initialize_gdbtypes (void)
4769 {
4770 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4771 objfile_type_data = register_objfile_data ();
4772
4773 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4774 _("Set debugging of C++ overloading."),
4775 _("Show debugging of C++ overloading."),
4776 _("When enabled, ranking of the "
4777 "functions is displayed."),
4778 NULL,
4779 show_overload_debug,
4780 &setdebuglist, &showdebuglist);
4781
4782 /* Add user knob for controlling resolution of opaque types. */
4783 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4784 &opaque_type_resolution,
4785 _("Set resolution of opaque struct/class/union"
4786 " types (if set before loading symbols)."),
4787 _("Show resolution of opaque struct/class/union"
4788 " types (if set before loading symbols)."),
4789 NULL, NULL,
4790 show_opaque_type_resolution,
4791 &setlist, &showlist);
4792
4793 /* Add an option to permit non-strict type checking. */
4794 add_setshow_boolean_cmd ("type", class_support,
4795 &strict_type_checking,
4796 _("Set strict type checking."),
4797 _("Show strict type checking."),
4798 NULL, NULL,
4799 show_strict_type_checking,
4800 &setchecklist, &showchecklist);
4801 }