]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
More block constification
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* See gdbtypes.h. */
1648
1649 struct_elt
1650 lookup_struct_elt (struct type *type, const char *name, int noerr)
1651 {
1652 int i;
1653
1654 for (;;)
1655 {
1656 type = check_typedef (type);
1657 if (TYPE_CODE (type) != TYPE_CODE_PTR
1658 && TYPE_CODE (type) != TYPE_CODE_REF)
1659 break;
1660 type = TYPE_TARGET_TYPE (type);
1661 }
1662
1663 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1664 && TYPE_CODE (type) != TYPE_CODE_UNION)
1665 {
1666 std::string type_name = type_to_string (type);
1667 error (_("Type %s is not a structure or union type."),
1668 type_name.c_str ());
1669 }
1670
1671 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1672 {
1673 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1674
1675 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1676 {
1677 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1678 }
1679 else if (!t_field_name || *t_field_name == '\0')
1680 {
1681 struct_elt elt
1682 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1683 if (elt.field != NULL)
1684 {
1685 elt.offset += TYPE_FIELD_BITPOS (type, i);
1686 return elt;
1687 }
1688 }
1689 }
1690
1691 /* OK, it's not in this class. Recursively check the baseclasses. */
1692 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1693 {
1694 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1695 if (elt.field != NULL)
1696 return elt;
1697 }
1698
1699 if (noerr)
1700 return {nullptr, 0};
1701
1702 std::string type_name = type_to_string (type);
1703 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1704 }
1705
1706 /* See gdbtypes.h. */
1707
1708 struct type *
1709 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1710 {
1711 struct_elt elt = lookup_struct_elt (type, name, noerr);
1712 if (elt.field != NULL)
1713 return FIELD_TYPE (*elt.field);
1714 else
1715 return NULL;
1716 }
1717
1718 /* Store in *MAX the largest number representable by unsigned integer type
1719 TYPE. */
1720
1721 void
1722 get_unsigned_type_max (struct type *type, ULONGEST *max)
1723 {
1724 unsigned int n;
1725
1726 type = check_typedef (type);
1727 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1728 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1729
1730 /* Written this way to avoid overflow. */
1731 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1732 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1733 }
1734
1735 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1736 signed integer type TYPE. */
1737
1738 void
1739 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1740 {
1741 unsigned int n;
1742
1743 type = check_typedef (type);
1744 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1745 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1746
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *min = -((ULONGEST) 1 << (n - 1));
1749 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1750 }
1751
1752 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1753 cplus_stuff.vptr_fieldno.
1754
1755 cplus_stuff is initialized to cplus_struct_default which does not
1756 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1757 designated initializers). We cope with that here. */
1758
1759 int
1760 internal_type_vptr_fieldno (struct type *type)
1761 {
1762 type = check_typedef (type);
1763 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1764 || TYPE_CODE (type) == TYPE_CODE_UNION);
1765 if (!HAVE_CPLUS_STRUCT (type))
1766 return -1;
1767 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1768 }
1769
1770 /* Set the value of cplus_stuff.vptr_fieldno. */
1771
1772 void
1773 set_type_vptr_fieldno (struct type *type, int fieldno)
1774 {
1775 type = check_typedef (type);
1776 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1777 || TYPE_CODE (type) == TYPE_CODE_UNION);
1778 if (!HAVE_CPLUS_STRUCT (type))
1779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1780 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1781 }
1782
1783 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1784 cplus_stuff.vptr_basetype. */
1785
1786 struct type *
1787 internal_type_vptr_basetype (struct type *type)
1788 {
1789 type = check_typedef (type);
1790 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1791 || TYPE_CODE (type) == TYPE_CODE_UNION);
1792 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1793 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1794 }
1795
1796 /* Set the value of cplus_stuff.vptr_basetype. */
1797
1798 void
1799 set_type_vptr_basetype (struct type *type, struct type *basetype)
1800 {
1801 type = check_typedef (type);
1802 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1803 || TYPE_CODE (type) == TYPE_CODE_UNION);
1804 if (!HAVE_CPLUS_STRUCT (type))
1805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1806 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1807 }
1808
1809 /* Lookup the vptr basetype/fieldno values for TYPE.
1810 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1811 vptr_fieldno. Also, if found and basetype is from the same objfile,
1812 cache the results.
1813 If not found, return -1 and ignore BASETYPEP.
1814 Callers should be aware that in some cases (for example,
1815 the type or one of its baseclasses is a stub type and we are
1816 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1817 this function will not be able to find the
1818 virtual function table pointer, and vptr_fieldno will remain -1 and
1819 vptr_basetype will remain NULL or incomplete. */
1820
1821 int
1822 get_vptr_fieldno (struct type *type, struct type **basetypep)
1823 {
1824 type = check_typedef (type);
1825
1826 if (TYPE_VPTR_FIELDNO (type) < 0)
1827 {
1828 int i;
1829
1830 /* We must start at zero in case the first (and only) baseclass
1831 is virtual (and hence we cannot share the table pointer). */
1832 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1833 {
1834 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1835 int fieldno;
1836 struct type *basetype;
1837
1838 fieldno = get_vptr_fieldno (baseclass, &basetype);
1839 if (fieldno >= 0)
1840 {
1841 /* If the type comes from a different objfile we can't cache
1842 it, it may have a different lifetime. PR 2384 */
1843 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1844 {
1845 set_type_vptr_fieldno (type, fieldno);
1846 set_type_vptr_basetype (type, basetype);
1847 }
1848 if (basetypep)
1849 *basetypep = basetype;
1850 return fieldno;
1851 }
1852 }
1853
1854 /* Not found. */
1855 return -1;
1856 }
1857 else
1858 {
1859 if (basetypep)
1860 *basetypep = TYPE_VPTR_BASETYPE (type);
1861 return TYPE_VPTR_FIELDNO (type);
1862 }
1863 }
1864
1865 static void
1866 stub_noname_complaint (void)
1867 {
1868 complaint (_("stub type has NULL name"));
1869 }
1870
1871 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1872 attached to it, and that property has a non-constant value. */
1873
1874 static int
1875 array_type_has_dynamic_stride (struct type *type)
1876 {
1877 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1878
1879 return (prop != NULL && prop->kind != PROP_CONST);
1880 }
1881
1882 /* Worker for is_dynamic_type. */
1883
1884 static int
1885 is_dynamic_type_internal (struct type *type, int top_level)
1886 {
1887 type = check_typedef (type);
1888
1889 /* We only want to recognize references at the outermost level. */
1890 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1891 type = check_typedef (TYPE_TARGET_TYPE (type));
1892
1893 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1894 dynamic, even if the type itself is statically defined.
1895 From a user's point of view, this may appear counter-intuitive;
1896 but it makes sense in this context, because the point is to determine
1897 whether any part of the type needs to be resolved before it can
1898 be exploited. */
1899 if (TYPE_DATA_LOCATION (type) != NULL
1900 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1901 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1902 return 1;
1903
1904 if (TYPE_ASSOCIATED_PROP (type))
1905 return 1;
1906
1907 if (TYPE_ALLOCATED_PROP (type))
1908 return 1;
1909
1910 switch (TYPE_CODE (type))
1911 {
1912 case TYPE_CODE_RANGE:
1913 {
1914 /* A range type is obviously dynamic if it has at least one
1915 dynamic bound. But also consider the range type to be
1916 dynamic when its subtype is dynamic, even if the bounds
1917 of the range type are static. It allows us to assume that
1918 the subtype of a static range type is also static. */
1919 return (!has_static_range (TYPE_RANGE_DATA (type))
1920 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1921 }
1922
1923 case TYPE_CODE_ARRAY:
1924 {
1925 gdb_assert (TYPE_NFIELDS (type) == 1);
1926
1927 /* The array is dynamic if either the bounds are dynamic... */
1928 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1929 return 1;
1930 /* ... or the elements it contains have a dynamic contents... */
1931 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1932 return 1;
1933 /* ... or if it has a dynamic stride... */
1934 if (array_type_has_dynamic_stride (type))
1935 return 1;
1936 return 0;
1937 }
1938
1939 case TYPE_CODE_STRUCT:
1940 case TYPE_CODE_UNION:
1941 {
1942 int i;
1943
1944 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1945 if (!field_is_static (&TYPE_FIELD (type, i))
1946 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1947 return 1;
1948 }
1949 break;
1950 }
1951
1952 return 0;
1953 }
1954
1955 /* See gdbtypes.h. */
1956
1957 int
1958 is_dynamic_type (struct type *type)
1959 {
1960 return is_dynamic_type_internal (type, 1);
1961 }
1962
1963 static struct type *resolve_dynamic_type_internal
1964 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1965
1966 /* Given a dynamic range type (dyn_range_type) and a stack of
1967 struct property_addr_info elements, return a static version
1968 of that type. */
1969
1970 static struct type *
1971 resolve_dynamic_range (struct type *dyn_range_type,
1972 struct property_addr_info *addr_stack)
1973 {
1974 CORE_ADDR value;
1975 struct type *static_range_type, *static_target_type;
1976 const struct dynamic_prop *prop;
1977 struct dynamic_prop low_bound, high_bound;
1978
1979 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1980
1981 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1982 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1983 {
1984 low_bound.kind = PROP_CONST;
1985 low_bound.data.const_val = value;
1986 }
1987 else
1988 {
1989 low_bound.kind = PROP_UNDEFINED;
1990 low_bound.data.const_val = 0;
1991 }
1992
1993 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1994 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1995 {
1996 high_bound.kind = PROP_CONST;
1997 high_bound.data.const_val = value;
1998
1999 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2000 high_bound.data.const_val
2001 = low_bound.data.const_val + high_bound.data.const_val - 1;
2002 }
2003 else
2004 {
2005 high_bound.kind = PROP_UNDEFINED;
2006 high_bound.data.const_val = 0;
2007 }
2008
2009 static_target_type
2010 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2011 addr_stack, 0);
2012 static_range_type = create_range_type (copy_type (dyn_range_type),
2013 static_target_type,
2014 &low_bound, &high_bound);
2015 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2016 return static_range_type;
2017 }
2018
2019 /* Resolves dynamic bound values of an array type TYPE to static ones.
2020 ADDR_STACK is a stack of struct property_addr_info to be used
2021 if needed during the dynamic resolution. */
2022
2023 static struct type *
2024 resolve_dynamic_array (struct type *type,
2025 struct property_addr_info *addr_stack)
2026 {
2027 CORE_ADDR value;
2028 struct type *elt_type;
2029 struct type *range_type;
2030 struct type *ary_dim;
2031 struct dynamic_prop *prop;
2032 unsigned int bit_stride = 0;
2033
2034 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2035
2036 type = copy_type (type);
2037
2038 elt_type = type;
2039 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2040 range_type = resolve_dynamic_range (range_type, addr_stack);
2041
2042 /* Resolve allocated/associated here before creating a new array type, which
2043 will update the length of the array accordingly. */
2044 prop = TYPE_ALLOCATED_PROP (type);
2045 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2046 {
2047 TYPE_DYN_PROP_ADDR (prop) = value;
2048 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2049 }
2050 prop = TYPE_ASSOCIATED_PROP (type);
2051 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2052 {
2053 TYPE_DYN_PROP_ADDR (prop) = value;
2054 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2055 }
2056
2057 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2058
2059 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2060 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2061 else
2062 elt_type = TYPE_TARGET_TYPE (type);
2063
2064 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2065 if (prop != NULL)
2066 {
2067 int prop_eval_ok
2068 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2069
2070 if (prop_eval_ok)
2071 {
2072 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2073 bit_stride = (unsigned int) (value * 8);
2074 }
2075 else
2076 {
2077 /* Could be a bug in our code, but it could also happen
2078 if the DWARF info is not correct. Issue a warning,
2079 and assume no byte/bit stride (leave bit_stride = 0). */
2080 warning (_("cannot determine array stride for type %s"),
2081 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2082 }
2083 }
2084 else
2085 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2086
2087 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2088 bit_stride);
2089 }
2090
2091 /* Resolve dynamic bounds of members of the union TYPE to static
2092 bounds. ADDR_STACK is a stack of struct property_addr_info
2093 to be used if needed during the dynamic resolution. */
2094
2095 static struct type *
2096 resolve_dynamic_union (struct type *type,
2097 struct property_addr_info *addr_stack)
2098 {
2099 struct type *resolved_type;
2100 int i;
2101 unsigned int max_len = 0;
2102
2103 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2104
2105 resolved_type = copy_type (type);
2106 TYPE_FIELDS (resolved_type)
2107 = (struct field *) TYPE_ALLOC (resolved_type,
2108 TYPE_NFIELDS (resolved_type)
2109 * sizeof (struct field));
2110 memcpy (TYPE_FIELDS (resolved_type),
2111 TYPE_FIELDS (type),
2112 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2113 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2114 {
2115 struct type *t;
2116
2117 if (field_is_static (&TYPE_FIELD (type, i)))
2118 continue;
2119
2120 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2121 addr_stack, 0);
2122 TYPE_FIELD_TYPE (resolved_type, i) = t;
2123 if (TYPE_LENGTH (t) > max_len)
2124 max_len = TYPE_LENGTH (t);
2125 }
2126
2127 TYPE_LENGTH (resolved_type) = max_len;
2128 return resolved_type;
2129 }
2130
2131 /* Resolve dynamic bounds of members of the struct TYPE to static
2132 bounds. ADDR_STACK is a stack of struct property_addr_info to
2133 be used if needed during the dynamic resolution. */
2134
2135 static struct type *
2136 resolve_dynamic_struct (struct type *type,
2137 struct property_addr_info *addr_stack)
2138 {
2139 struct type *resolved_type;
2140 int i;
2141 unsigned resolved_type_bit_length = 0;
2142
2143 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2144 gdb_assert (TYPE_NFIELDS (type) > 0);
2145
2146 resolved_type = copy_type (type);
2147 TYPE_FIELDS (resolved_type)
2148 = (struct field *) TYPE_ALLOC (resolved_type,
2149 TYPE_NFIELDS (resolved_type)
2150 * sizeof (struct field));
2151 memcpy (TYPE_FIELDS (resolved_type),
2152 TYPE_FIELDS (type),
2153 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2154 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2155 {
2156 unsigned new_bit_length;
2157 struct property_addr_info pinfo;
2158
2159 if (field_is_static (&TYPE_FIELD (type, i)))
2160 continue;
2161
2162 /* As we know this field is not a static field, the field's
2163 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2164 this is the case, but only trigger a simple error rather
2165 than an internal error if that fails. While failing
2166 that verification indicates a bug in our code, the error
2167 is not severe enough to suggest to the user he stops
2168 his debugging session because of it. */
2169 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2170 error (_("Cannot determine struct field location"
2171 " (invalid location kind)"));
2172
2173 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2174 pinfo.valaddr = addr_stack->valaddr;
2175 pinfo.addr
2176 = (addr_stack->addr
2177 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2178 pinfo.next = addr_stack;
2179
2180 TYPE_FIELD_TYPE (resolved_type, i)
2181 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2182 &pinfo, 0);
2183 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2184 == FIELD_LOC_KIND_BITPOS);
2185
2186 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2187 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2188 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2189 else
2190 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2191 * TARGET_CHAR_BIT);
2192
2193 /* Normally, we would use the position and size of the last field
2194 to determine the size of the enclosing structure. But GCC seems
2195 to be encoding the position of some fields incorrectly when
2196 the struct contains a dynamic field that is not placed last.
2197 So we compute the struct size based on the field that has
2198 the highest position + size - probably the best we can do. */
2199 if (new_bit_length > resolved_type_bit_length)
2200 resolved_type_bit_length = new_bit_length;
2201 }
2202
2203 /* The length of a type won't change for fortran, but it does for C and Ada.
2204 For fortran the size of dynamic fields might change over time but not the
2205 type length of the structure. If we adapt it, we run into problems
2206 when calculating the element offset for arrays of structs. */
2207 if (current_language->la_language != language_fortran)
2208 TYPE_LENGTH (resolved_type)
2209 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2210
2211 /* The Ada language uses this field as a cache for static fixed types: reset
2212 it as RESOLVED_TYPE must have its own static fixed type. */
2213 TYPE_TARGET_TYPE (resolved_type) = NULL;
2214
2215 return resolved_type;
2216 }
2217
2218 /* Worker for resolved_dynamic_type. */
2219
2220 static struct type *
2221 resolve_dynamic_type_internal (struct type *type,
2222 struct property_addr_info *addr_stack,
2223 int top_level)
2224 {
2225 struct type *real_type = check_typedef (type);
2226 struct type *resolved_type = type;
2227 struct dynamic_prop *prop;
2228 CORE_ADDR value;
2229
2230 if (!is_dynamic_type_internal (real_type, top_level))
2231 return type;
2232
2233 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2234 {
2235 resolved_type = copy_type (type);
2236 TYPE_TARGET_TYPE (resolved_type)
2237 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2238 top_level);
2239 }
2240 else
2241 {
2242 /* Before trying to resolve TYPE, make sure it is not a stub. */
2243 type = real_type;
2244
2245 switch (TYPE_CODE (type))
2246 {
2247 case TYPE_CODE_REF:
2248 {
2249 struct property_addr_info pinfo;
2250
2251 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2252 pinfo.valaddr = NULL;
2253 if (addr_stack->valaddr != NULL)
2254 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2255 else
2256 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2257 pinfo.next = addr_stack;
2258
2259 resolved_type = copy_type (type);
2260 TYPE_TARGET_TYPE (resolved_type)
2261 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2262 &pinfo, top_level);
2263 break;
2264 }
2265
2266 case TYPE_CODE_ARRAY:
2267 resolved_type = resolve_dynamic_array (type, addr_stack);
2268 break;
2269
2270 case TYPE_CODE_RANGE:
2271 resolved_type = resolve_dynamic_range (type, addr_stack);
2272 break;
2273
2274 case TYPE_CODE_UNION:
2275 resolved_type = resolve_dynamic_union (type, addr_stack);
2276 break;
2277
2278 case TYPE_CODE_STRUCT:
2279 resolved_type = resolve_dynamic_struct (type, addr_stack);
2280 break;
2281 }
2282 }
2283
2284 /* Resolve data_location attribute. */
2285 prop = TYPE_DATA_LOCATION (resolved_type);
2286 if (prop != NULL
2287 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2288 {
2289 TYPE_DYN_PROP_ADDR (prop) = value;
2290 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2291 }
2292
2293 return resolved_type;
2294 }
2295
2296 /* See gdbtypes.h */
2297
2298 struct type *
2299 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2300 CORE_ADDR addr)
2301 {
2302 struct property_addr_info pinfo
2303 = {check_typedef (type), valaddr, addr, NULL};
2304
2305 return resolve_dynamic_type_internal (type, &pinfo, 1);
2306 }
2307
2308 /* See gdbtypes.h */
2309
2310 struct dynamic_prop *
2311 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2312 {
2313 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2314
2315 while (node != NULL)
2316 {
2317 if (node->prop_kind == prop_kind)
2318 return &node->prop;
2319 node = node->next;
2320 }
2321 return NULL;
2322 }
2323
2324 /* See gdbtypes.h */
2325
2326 void
2327 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2328 struct type *type)
2329 {
2330 struct dynamic_prop_list *temp;
2331
2332 gdb_assert (TYPE_OBJFILE_OWNED (type));
2333
2334 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2335 struct dynamic_prop_list);
2336 temp->prop_kind = prop_kind;
2337 temp->prop = prop;
2338 temp->next = TYPE_DYN_PROP_LIST (type);
2339
2340 TYPE_DYN_PROP_LIST (type) = temp;
2341 }
2342
2343 /* Remove dynamic property from TYPE in case it exists. */
2344
2345 void
2346 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2347 struct type *type)
2348 {
2349 struct dynamic_prop_list *prev_node, *curr_node;
2350
2351 curr_node = TYPE_DYN_PROP_LIST (type);
2352 prev_node = NULL;
2353
2354 while (NULL != curr_node)
2355 {
2356 if (curr_node->prop_kind == prop_kind)
2357 {
2358 /* Update the linked list but don't free anything.
2359 The property was allocated on objstack and it is not known
2360 if we are on top of it. Nevertheless, everything is released
2361 when the complete objstack is freed. */
2362 if (NULL == prev_node)
2363 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2364 else
2365 prev_node->next = curr_node->next;
2366
2367 return;
2368 }
2369
2370 prev_node = curr_node;
2371 curr_node = curr_node->next;
2372 }
2373 }
2374
2375 /* Find the real type of TYPE. This function returns the real type,
2376 after removing all layers of typedefs, and completing opaque or stub
2377 types. Completion changes the TYPE argument, but stripping of
2378 typedefs does not.
2379
2380 Instance flags (e.g. const/volatile) are preserved as typedefs are
2381 stripped. If necessary a new qualified form of the underlying type
2382 is created.
2383
2384 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2385 not been computed and we're either in the middle of reading symbols, or
2386 there was no name for the typedef in the debug info.
2387
2388 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2389 QUITs in the symbol reading code can also throw.
2390 Thus this function can throw an exception.
2391
2392 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2393 the target type.
2394
2395 If this is a stubbed struct (i.e. declared as struct foo *), see if
2396 we can find a full definition in some other file. If so, copy this
2397 definition, so we can use it in future. There used to be a comment
2398 (but not any code) that if we don't find a full definition, we'd
2399 set a flag so we don't spend time in the future checking the same
2400 type. That would be a mistake, though--we might load in more
2401 symbols which contain a full definition for the type. */
2402
2403 struct type *
2404 check_typedef (struct type *type)
2405 {
2406 struct type *orig_type = type;
2407 /* While we're removing typedefs, we don't want to lose qualifiers.
2408 E.g., const/volatile. */
2409 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2410
2411 gdb_assert (type);
2412
2413 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2414 {
2415 if (!TYPE_TARGET_TYPE (type))
2416 {
2417 const char *name;
2418 struct symbol *sym;
2419
2420 /* It is dangerous to call lookup_symbol if we are currently
2421 reading a symtab. Infinite recursion is one danger. */
2422 if (currently_reading_symtab)
2423 return make_qualified_type (type, instance_flags, NULL);
2424
2425 name = TYPE_NAME (type);
2426 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2427 VAR_DOMAIN as appropriate? */
2428 if (name == NULL)
2429 {
2430 stub_noname_complaint ();
2431 return make_qualified_type (type, instance_flags, NULL);
2432 }
2433 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2434 if (sym)
2435 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2436 else /* TYPE_CODE_UNDEF */
2437 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2438 }
2439 type = TYPE_TARGET_TYPE (type);
2440
2441 /* Preserve the instance flags as we traverse down the typedef chain.
2442
2443 Handling address spaces/classes is nasty, what do we do if there's a
2444 conflict?
2445 E.g., what if an outer typedef marks the type as class_1 and an inner
2446 typedef marks the type as class_2?
2447 This is the wrong place to do such error checking. We leave it to
2448 the code that created the typedef in the first place to flag the
2449 error. We just pick the outer address space (akin to letting the
2450 outer cast in a chain of casting win), instead of assuming
2451 "it can't happen". */
2452 {
2453 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2454 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2455 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2456 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2457
2458 /* Treat code vs data spaces and address classes separately. */
2459 if ((instance_flags & ALL_SPACES) != 0)
2460 new_instance_flags &= ~ALL_SPACES;
2461 if ((instance_flags & ALL_CLASSES) != 0)
2462 new_instance_flags &= ~ALL_CLASSES;
2463
2464 instance_flags |= new_instance_flags;
2465 }
2466 }
2467
2468 /* If this is a struct/class/union with no fields, then check
2469 whether a full definition exists somewhere else. This is for
2470 systems where a type definition with no fields is issued for such
2471 types, instead of identifying them as stub types in the first
2472 place. */
2473
2474 if (TYPE_IS_OPAQUE (type)
2475 && opaque_type_resolution
2476 && !currently_reading_symtab)
2477 {
2478 const char *name = TYPE_NAME (type);
2479 struct type *newtype;
2480
2481 if (name == NULL)
2482 {
2483 stub_noname_complaint ();
2484 return make_qualified_type (type, instance_flags, NULL);
2485 }
2486 newtype = lookup_transparent_type (name);
2487
2488 if (newtype)
2489 {
2490 /* If the resolved type and the stub are in the same
2491 objfile, then replace the stub type with the real deal.
2492 But if they're in separate objfiles, leave the stub
2493 alone; we'll just look up the transparent type every time
2494 we call check_typedef. We can't create pointers between
2495 types allocated to different objfiles, since they may
2496 have different lifetimes. Trying to copy NEWTYPE over to
2497 TYPE's objfile is pointless, too, since you'll have to
2498 move over any other types NEWTYPE refers to, which could
2499 be an unbounded amount of stuff. */
2500 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2501 type = make_qualified_type (newtype,
2502 TYPE_INSTANCE_FLAGS (type),
2503 type);
2504 else
2505 type = newtype;
2506 }
2507 }
2508 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2509 types. */
2510 else if (TYPE_STUB (type) && !currently_reading_symtab)
2511 {
2512 const char *name = TYPE_NAME (type);
2513 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2514 as appropriate? */
2515 struct symbol *sym;
2516
2517 if (name == NULL)
2518 {
2519 stub_noname_complaint ();
2520 return make_qualified_type (type, instance_flags, NULL);
2521 }
2522 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2523 if (sym)
2524 {
2525 /* Same as above for opaque types, we can replace the stub
2526 with the complete type only if they are in the same
2527 objfile. */
2528 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2529 type = make_qualified_type (SYMBOL_TYPE (sym),
2530 TYPE_INSTANCE_FLAGS (type),
2531 type);
2532 else
2533 type = SYMBOL_TYPE (sym);
2534 }
2535 }
2536
2537 if (TYPE_TARGET_STUB (type))
2538 {
2539 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2540
2541 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2542 {
2543 /* Nothing we can do. */
2544 }
2545 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2546 {
2547 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2548 TYPE_TARGET_STUB (type) = 0;
2549 }
2550 }
2551
2552 type = make_qualified_type (type, instance_flags, NULL);
2553
2554 /* Cache TYPE_LENGTH for future use. */
2555 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2556
2557 return type;
2558 }
2559
2560 /* Parse a type expression in the string [P..P+LENGTH). If an error
2561 occurs, silently return a void type. */
2562
2563 static struct type *
2564 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2565 {
2566 struct ui_file *saved_gdb_stderr;
2567 struct type *type = NULL; /* Initialize to keep gcc happy. */
2568
2569 /* Suppress error messages. */
2570 saved_gdb_stderr = gdb_stderr;
2571 gdb_stderr = &null_stream;
2572
2573 /* Call parse_and_eval_type() without fear of longjmp()s. */
2574 TRY
2575 {
2576 type = parse_and_eval_type (p, length);
2577 }
2578 CATCH (except, RETURN_MASK_ERROR)
2579 {
2580 type = builtin_type (gdbarch)->builtin_void;
2581 }
2582 END_CATCH
2583
2584 /* Stop suppressing error messages. */
2585 gdb_stderr = saved_gdb_stderr;
2586
2587 return type;
2588 }
2589
2590 /* Ugly hack to convert method stubs into method types.
2591
2592 He ain't kiddin'. This demangles the name of the method into a
2593 string including argument types, parses out each argument type,
2594 generates a string casting a zero to that type, evaluates the
2595 string, and stuffs the resulting type into an argtype vector!!!
2596 Then it knows the type of the whole function (including argument
2597 types for overloading), which info used to be in the stab's but was
2598 removed to hack back the space required for them. */
2599
2600 static void
2601 check_stub_method (struct type *type, int method_id, int signature_id)
2602 {
2603 struct gdbarch *gdbarch = get_type_arch (type);
2604 struct fn_field *f;
2605 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2606 char *demangled_name = gdb_demangle (mangled_name,
2607 DMGL_PARAMS | DMGL_ANSI);
2608 char *argtypetext, *p;
2609 int depth = 0, argcount = 1;
2610 struct field *argtypes;
2611 struct type *mtype;
2612
2613 /* Make sure we got back a function string that we can use. */
2614 if (demangled_name)
2615 p = strchr (demangled_name, '(');
2616 else
2617 p = NULL;
2618
2619 if (demangled_name == NULL || p == NULL)
2620 error (_("Internal: Cannot demangle mangled name `%s'."),
2621 mangled_name);
2622
2623 /* Now, read in the parameters that define this type. */
2624 p += 1;
2625 argtypetext = p;
2626 while (*p)
2627 {
2628 if (*p == '(' || *p == '<')
2629 {
2630 depth += 1;
2631 }
2632 else if (*p == ')' || *p == '>')
2633 {
2634 depth -= 1;
2635 }
2636 else if (*p == ',' && depth == 0)
2637 {
2638 argcount += 1;
2639 }
2640
2641 p += 1;
2642 }
2643
2644 /* If we read one argument and it was ``void'', don't count it. */
2645 if (startswith (argtypetext, "(void)"))
2646 argcount -= 1;
2647
2648 /* We need one extra slot, for the THIS pointer. */
2649
2650 argtypes = (struct field *)
2651 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2652 p = argtypetext;
2653
2654 /* Add THIS pointer for non-static methods. */
2655 f = TYPE_FN_FIELDLIST1 (type, method_id);
2656 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2657 argcount = 0;
2658 else
2659 {
2660 argtypes[0].type = lookup_pointer_type (type);
2661 argcount = 1;
2662 }
2663
2664 if (*p != ')') /* () means no args, skip while. */
2665 {
2666 depth = 0;
2667 while (*p)
2668 {
2669 if (depth <= 0 && (*p == ',' || *p == ')'))
2670 {
2671 /* Avoid parsing of ellipsis, they will be handled below.
2672 Also avoid ``void'' as above. */
2673 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2674 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2675 {
2676 argtypes[argcount].type =
2677 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2678 argcount += 1;
2679 }
2680 argtypetext = p + 1;
2681 }
2682
2683 if (*p == '(' || *p == '<')
2684 {
2685 depth += 1;
2686 }
2687 else if (*p == ')' || *p == '>')
2688 {
2689 depth -= 1;
2690 }
2691
2692 p += 1;
2693 }
2694 }
2695
2696 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2697
2698 /* Now update the old "stub" type into a real type. */
2699 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2700 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2701 We want a method (TYPE_CODE_METHOD). */
2702 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2703 argtypes, argcount, p[-2] == '.');
2704 TYPE_STUB (mtype) = 0;
2705 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2706
2707 xfree (demangled_name);
2708 }
2709
2710 /* This is the external interface to check_stub_method, above. This
2711 function unstubs all of the signatures for TYPE's METHOD_ID method
2712 name. After calling this function TYPE_FN_FIELD_STUB will be
2713 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2714 correct.
2715
2716 This function unfortunately can not die until stabs do. */
2717
2718 void
2719 check_stub_method_group (struct type *type, int method_id)
2720 {
2721 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2722 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2723
2724 for (int j = 0; j < len; j++)
2725 {
2726 if (TYPE_FN_FIELD_STUB (f, j))
2727 check_stub_method (type, method_id, j);
2728 }
2729 }
2730
2731 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2732 const struct cplus_struct_type cplus_struct_default = { };
2733
2734 void
2735 allocate_cplus_struct_type (struct type *type)
2736 {
2737 if (HAVE_CPLUS_STRUCT (type))
2738 /* Structure was already allocated. Nothing more to do. */
2739 return;
2740
2741 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2742 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2743 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2744 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2745 set_type_vptr_fieldno (type, -1);
2746 }
2747
2748 const struct gnat_aux_type gnat_aux_default =
2749 { NULL };
2750
2751 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2752 and allocate the associated gnat-specific data. The gnat-specific
2753 data is also initialized to gnat_aux_default. */
2754
2755 void
2756 allocate_gnat_aux_type (struct type *type)
2757 {
2758 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2759 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2760 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2761 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2762 }
2763
2764 /* Helper function to initialize a newly allocated type. Set type code
2765 to CODE and initialize the type-specific fields accordingly. */
2766
2767 static void
2768 set_type_code (struct type *type, enum type_code code)
2769 {
2770 TYPE_CODE (type) = code;
2771
2772 switch (code)
2773 {
2774 case TYPE_CODE_STRUCT:
2775 case TYPE_CODE_UNION:
2776 case TYPE_CODE_NAMESPACE:
2777 INIT_CPLUS_SPECIFIC (type);
2778 break;
2779 case TYPE_CODE_FLT:
2780 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2781 break;
2782 case TYPE_CODE_FUNC:
2783 INIT_FUNC_SPECIFIC (type);
2784 break;
2785 }
2786 }
2787
2788 /* Helper function to verify floating-point format and size.
2789 BIT is the type size in bits; if BIT equals -1, the size is
2790 determined by the floatformat. Returns size to be used. */
2791
2792 static int
2793 verify_floatformat (int bit, const struct floatformat *floatformat)
2794 {
2795 gdb_assert (floatformat != NULL);
2796
2797 if (bit == -1)
2798 bit = floatformat->totalsize;
2799
2800 gdb_assert (bit >= 0);
2801 gdb_assert (bit >= floatformat->totalsize);
2802
2803 return bit;
2804 }
2805
2806 /* Return the floating-point format for a floating-point variable of
2807 type TYPE. */
2808
2809 const struct floatformat *
2810 floatformat_from_type (const struct type *type)
2811 {
2812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2813 gdb_assert (TYPE_FLOATFORMAT (type));
2814 return TYPE_FLOATFORMAT (type);
2815 }
2816
2817 /* Helper function to initialize the standard scalar types.
2818
2819 If NAME is non-NULL, then it is used to initialize the type name.
2820 Note that NAME is not copied; it is required to have a lifetime at
2821 least as long as OBJFILE. */
2822
2823 struct type *
2824 init_type (struct objfile *objfile, enum type_code code, int bit,
2825 const char *name)
2826 {
2827 struct type *type;
2828
2829 type = alloc_type (objfile);
2830 set_type_code (type, code);
2831 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2832 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2833 TYPE_NAME (type) = name;
2834
2835 return type;
2836 }
2837
2838 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2839 to use with variables that have no debug info. NAME is the type
2840 name. */
2841
2842 static struct type *
2843 init_nodebug_var_type (struct objfile *objfile, const char *name)
2844 {
2845 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2846 }
2847
2848 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2849 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2850 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2851
2852 struct type *
2853 init_integer_type (struct objfile *objfile,
2854 int bit, int unsigned_p, const char *name)
2855 {
2856 struct type *t;
2857
2858 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2859 if (unsigned_p)
2860 TYPE_UNSIGNED (t) = 1;
2861
2862 return t;
2863 }
2864
2865 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2866 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2867 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2868
2869 struct type *
2870 init_character_type (struct objfile *objfile,
2871 int bit, int unsigned_p, const char *name)
2872 {
2873 struct type *t;
2874
2875 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2876 if (unsigned_p)
2877 TYPE_UNSIGNED (t) = 1;
2878
2879 return t;
2880 }
2881
2882 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2883 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2884 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2885
2886 struct type *
2887 init_boolean_type (struct objfile *objfile,
2888 int bit, int unsigned_p, const char *name)
2889 {
2890 struct type *t;
2891
2892 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2893 if (unsigned_p)
2894 TYPE_UNSIGNED (t) = 1;
2895
2896 return t;
2897 }
2898
2899 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2900 BIT is the type size in bits; if BIT equals -1, the size is
2901 determined by the floatformat. NAME is the type name. Set the
2902 TYPE_FLOATFORMAT from FLOATFORMATS. */
2903
2904 struct type *
2905 init_float_type (struct objfile *objfile,
2906 int bit, const char *name,
2907 const struct floatformat **floatformats)
2908 {
2909 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2910 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2911 struct type *t;
2912
2913 bit = verify_floatformat (bit, fmt);
2914 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2915 TYPE_FLOATFORMAT (t) = fmt;
2916
2917 return t;
2918 }
2919
2920 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2921 BIT is the type size in bits. NAME is the type name. */
2922
2923 struct type *
2924 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2925 {
2926 struct type *t;
2927
2928 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2929 return t;
2930 }
2931
2932 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2933 NAME is the type name. TARGET_TYPE is the component float type. */
2934
2935 struct type *
2936 init_complex_type (struct objfile *objfile,
2937 const char *name, struct type *target_type)
2938 {
2939 struct type *t;
2940
2941 t = init_type (objfile, TYPE_CODE_COMPLEX,
2942 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2943 TYPE_TARGET_TYPE (t) = target_type;
2944 return t;
2945 }
2946
2947 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2948 BIT is the pointer type size in bits. NAME is the type name.
2949 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2950 TYPE_UNSIGNED flag. */
2951
2952 struct type *
2953 init_pointer_type (struct objfile *objfile,
2954 int bit, const char *name, struct type *target_type)
2955 {
2956 struct type *t;
2957
2958 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 TYPE_UNSIGNED (t) = 1;
2961 return t;
2962 }
2963
2964 /* See gdbtypes.h. */
2965
2966 unsigned
2967 type_raw_align (struct type *type)
2968 {
2969 if (type->align_log2 != 0)
2970 return 1 << (type->align_log2 - 1);
2971 return 0;
2972 }
2973
2974 /* See gdbtypes.h. */
2975
2976 unsigned
2977 type_align (struct type *type)
2978 {
2979 /* Check alignment provided in the debug information. */
2980 unsigned raw_align = type_raw_align (type);
2981 if (raw_align != 0)
2982 return raw_align;
2983
2984 /* Allow the architecture to provide an alignment. */
2985 struct gdbarch *arch = get_type_arch (type);
2986 ULONGEST align = gdbarch_type_align (arch, type);
2987 if (align != 0)
2988 return align;
2989
2990 switch (TYPE_CODE (type))
2991 {
2992 case TYPE_CODE_PTR:
2993 case TYPE_CODE_FUNC:
2994 case TYPE_CODE_FLAGS:
2995 case TYPE_CODE_INT:
2996 case TYPE_CODE_RANGE:
2997 case TYPE_CODE_FLT:
2998 case TYPE_CODE_ENUM:
2999 case TYPE_CODE_REF:
3000 case TYPE_CODE_RVALUE_REF:
3001 case TYPE_CODE_CHAR:
3002 case TYPE_CODE_BOOL:
3003 case TYPE_CODE_DECFLOAT:
3004 case TYPE_CODE_METHODPTR:
3005 case TYPE_CODE_MEMBERPTR:
3006 align = type_length_units (check_typedef (type));
3007 break;
3008
3009 case TYPE_CODE_ARRAY:
3010 case TYPE_CODE_COMPLEX:
3011 case TYPE_CODE_TYPEDEF:
3012 align = type_align (TYPE_TARGET_TYPE (type));
3013 break;
3014
3015 case TYPE_CODE_STRUCT:
3016 case TYPE_CODE_UNION:
3017 {
3018 if (TYPE_NFIELDS (type) == 0)
3019 {
3020 /* An empty struct has alignment 1. */
3021 align = 1;
3022 break;
3023 }
3024 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3025 {
3026 if (!field_is_static (&TYPE_FIELD (type, i)))
3027 {
3028 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3029 if (f_align == 0)
3030 {
3031 /* Don't pretend we know something we don't. */
3032 align = 0;
3033 break;
3034 }
3035 if (f_align > align)
3036 align = f_align;
3037 }
3038 }
3039 }
3040 break;
3041
3042 case TYPE_CODE_SET:
3043 case TYPE_CODE_STRING:
3044 /* Not sure what to do here, and these can't appear in C or C++
3045 anyway. */
3046 break;
3047
3048 case TYPE_CODE_VOID:
3049 align = 1;
3050 break;
3051
3052 case TYPE_CODE_ERROR:
3053 case TYPE_CODE_METHOD:
3054 default:
3055 break;
3056 }
3057
3058 if ((align & (align - 1)) != 0)
3059 {
3060 /* Not a power of 2, so pass. */
3061 align = 0;
3062 }
3063
3064 return align;
3065 }
3066
3067 /* See gdbtypes.h. */
3068
3069 bool
3070 set_type_align (struct type *type, ULONGEST align)
3071 {
3072 /* Must be a power of 2. Zero is ok. */
3073 gdb_assert ((align & (align - 1)) == 0);
3074
3075 unsigned result = 0;
3076 while (align != 0)
3077 {
3078 ++result;
3079 align >>= 1;
3080 }
3081
3082 if (result >= (1 << TYPE_ALIGN_BITS))
3083 return false;
3084
3085 type->align_log2 = result;
3086 return true;
3087 }
3088
3089 \f
3090 /* Queries on types. */
3091
3092 int
3093 can_dereference (struct type *t)
3094 {
3095 /* FIXME: Should we return true for references as well as
3096 pointers? */
3097 t = check_typedef (t);
3098 return
3099 (t != NULL
3100 && TYPE_CODE (t) == TYPE_CODE_PTR
3101 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3102 }
3103
3104 int
3105 is_integral_type (struct type *t)
3106 {
3107 t = check_typedef (t);
3108 return
3109 ((t != NULL)
3110 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3111 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3112 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3113 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3114 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3115 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3116 }
3117
3118 int
3119 is_floating_type (struct type *t)
3120 {
3121 t = check_typedef (t);
3122 return
3123 ((t != NULL)
3124 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3125 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3126 }
3127
3128 /* Return true if TYPE is scalar. */
3129
3130 int
3131 is_scalar_type (struct type *type)
3132 {
3133 type = check_typedef (type);
3134
3135 switch (TYPE_CODE (type))
3136 {
3137 case TYPE_CODE_ARRAY:
3138 case TYPE_CODE_STRUCT:
3139 case TYPE_CODE_UNION:
3140 case TYPE_CODE_SET:
3141 case TYPE_CODE_STRING:
3142 return 0;
3143 default:
3144 return 1;
3145 }
3146 }
3147
3148 /* Return true if T is scalar, or a composite type which in practice has
3149 the memory layout of a scalar type. E.g., an array or struct with only
3150 one scalar element inside it, or a union with only scalar elements. */
3151
3152 int
3153 is_scalar_type_recursive (struct type *t)
3154 {
3155 t = check_typedef (t);
3156
3157 if (is_scalar_type (t))
3158 return 1;
3159 /* Are we dealing with an array or string of known dimensions? */
3160 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3161 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3162 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3163 {
3164 LONGEST low_bound, high_bound;
3165 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3166
3167 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3168
3169 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3170 }
3171 /* Are we dealing with a struct with one element? */
3172 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3173 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3174 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3175 {
3176 int i, n = TYPE_NFIELDS (t);
3177
3178 /* If all elements of the union are scalar, then the union is scalar. */
3179 for (i = 0; i < n; i++)
3180 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3181 return 0;
3182
3183 return 1;
3184 }
3185
3186 return 0;
3187 }
3188
3189 /* Return true is T is a class or a union. False otherwise. */
3190
3191 int
3192 class_or_union_p (const struct type *t)
3193 {
3194 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3195 || TYPE_CODE (t) == TYPE_CODE_UNION);
3196 }
3197
3198 /* A helper function which returns true if types A and B represent the
3199 "same" class type. This is true if the types have the same main
3200 type, or the same name. */
3201
3202 int
3203 class_types_same_p (const struct type *a, const struct type *b)
3204 {
3205 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3206 || (TYPE_NAME (a) && TYPE_NAME (b)
3207 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3208 }
3209
3210 /* If BASE is an ancestor of DCLASS return the distance between them.
3211 otherwise return -1;
3212 eg:
3213
3214 class A {};
3215 class B: public A {};
3216 class C: public B {};
3217 class D: C {};
3218
3219 distance_to_ancestor (A, A, 0) = 0
3220 distance_to_ancestor (A, B, 0) = 1
3221 distance_to_ancestor (A, C, 0) = 2
3222 distance_to_ancestor (A, D, 0) = 3
3223
3224 If PUBLIC is 1 then only public ancestors are considered,
3225 and the function returns the distance only if BASE is a public ancestor
3226 of DCLASS.
3227 Eg:
3228
3229 distance_to_ancestor (A, D, 1) = -1. */
3230
3231 static int
3232 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3233 {
3234 int i;
3235 int d;
3236
3237 base = check_typedef (base);
3238 dclass = check_typedef (dclass);
3239
3240 if (class_types_same_p (base, dclass))
3241 return 0;
3242
3243 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3244 {
3245 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3246 continue;
3247
3248 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3249 if (d >= 0)
3250 return 1 + d;
3251 }
3252
3253 return -1;
3254 }
3255
3256 /* Check whether BASE is an ancestor or base class or DCLASS
3257 Return 1 if so, and 0 if not.
3258 Note: If BASE and DCLASS are of the same type, this function
3259 will return 1. So for some class A, is_ancestor (A, A) will
3260 return 1. */
3261
3262 int
3263 is_ancestor (struct type *base, struct type *dclass)
3264 {
3265 return distance_to_ancestor (base, dclass, 0) >= 0;
3266 }
3267
3268 /* Like is_ancestor, but only returns true when BASE is a public
3269 ancestor of DCLASS. */
3270
3271 int
3272 is_public_ancestor (struct type *base, struct type *dclass)
3273 {
3274 return distance_to_ancestor (base, dclass, 1) >= 0;
3275 }
3276
3277 /* A helper function for is_unique_ancestor. */
3278
3279 static int
3280 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3281 int *offset,
3282 const gdb_byte *valaddr, int embedded_offset,
3283 CORE_ADDR address, struct value *val)
3284 {
3285 int i, count = 0;
3286
3287 base = check_typedef (base);
3288 dclass = check_typedef (dclass);
3289
3290 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3291 {
3292 struct type *iter;
3293 int this_offset;
3294
3295 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3296
3297 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3298 address, val);
3299
3300 if (class_types_same_p (base, iter))
3301 {
3302 /* If this is the first subclass, set *OFFSET and set count
3303 to 1. Otherwise, if this is at the same offset as
3304 previous instances, do nothing. Otherwise, increment
3305 count. */
3306 if (*offset == -1)
3307 {
3308 *offset = this_offset;
3309 count = 1;
3310 }
3311 else if (this_offset == *offset)
3312 {
3313 /* Nothing. */
3314 }
3315 else
3316 ++count;
3317 }
3318 else
3319 count += is_unique_ancestor_worker (base, iter, offset,
3320 valaddr,
3321 embedded_offset + this_offset,
3322 address, val);
3323 }
3324
3325 return count;
3326 }
3327
3328 /* Like is_ancestor, but only returns true if BASE is a unique base
3329 class of the type of VAL. */
3330
3331 int
3332 is_unique_ancestor (struct type *base, struct value *val)
3333 {
3334 int offset = -1;
3335
3336 return is_unique_ancestor_worker (base, value_type (val), &offset,
3337 value_contents_for_printing (val),
3338 value_embedded_offset (val),
3339 value_address (val), val) == 1;
3340 }
3341
3342 \f
3343 /* Overload resolution. */
3344
3345 /* Return the sum of the rank of A with the rank of B. */
3346
3347 struct rank
3348 sum_ranks (struct rank a, struct rank b)
3349 {
3350 struct rank c;
3351 c.rank = a.rank + b.rank;
3352 c.subrank = a.subrank + b.subrank;
3353 return c;
3354 }
3355
3356 /* Compare rank A and B and return:
3357 0 if a = b
3358 1 if a is better than b
3359 -1 if b is better than a. */
3360
3361 int
3362 compare_ranks (struct rank a, struct rank b)
3363 {
3364 if (a.rank == b.rank)
3365 {
3366 if (a.subrank == b.subrank)
3367 return 0;
3368 if (a.subrank < b.subrank)
3369 return 1;
3370 if (a.subrank > b.subrank)
3371 return -1;
3372 }
3373
3374 if (a.rank < b.rank)
3375 return 1;
3376
3377 /* a.rank > b.rank */
3378 return -1;
3379 }
3380
3381 /* Functions for overload resolution begin here. */
3382
3383 /* Compare two badness vectors A and B and return the result.
3384 0 => A and B are identical
3385 1 => A and B are incomparable
3386 2 => A is better than B
3387 3 => A is worse than B */
3388
3389 int
3390 compare_badness (const badness_vector &a, const badness_vector &b)
3391 {
3392 int i;
3393 int tmp;
3394 short found_pos = 0; /* any positives in c? */
3395 short found_neg = 0; /* any negatives in c? */
3396
3397 /* differing sizes => incomparable */
3398 if (a.size () != b.size ())
3399 return 1;
3400
3401 /* Subtract b from a */
3402 for (i = 0; i < a.size (); i++)
3403 {
3404 tmp = compare_ranks (b[i], a[i]);
3405 if (tmp > 0)
3406 found_pos = 1;
3407 else if (tmp < 0)
3408 found_neg = 1;
3409 }
3410
3411 if (found_pos)
3412 {
3413 if (found_neg)
3414 return 1; /* incomparable */
3415 else
3416 return 3; /* A > B */
3417 }
3418 else
3419 /* no positives */
3420 {
3421 if (found_neg)
3422 return 2; /* A < B */
3423 else
3424 return 0; /* A == B */
3425 }
3426 }
3427
3428 /* Rank a function by comparing its parameter types (PARMS), to the
3429 types of an argument list (ARGS). Return the badness vector. This
3430 has ARGS.size() + 1 entries. */
3431
3432 badness_vector
3433 rank_function (gdb::array_view<type *> parms,
3434 gdb::array_view<value *> args)
3435 {
3436 /* add 1 for the length-match rank. */
3437 badness_vector bv;
3438 bv.reserve (1 + args.size ());
3439
3440 /* First compare the lengths of the supplied lists.
3441 If there is a mismatch, set it to a high value. */
3442
3443 /* pai/1997-06-03 FIXME: when we have debug info about default
3444 arguments and ellipsis parameter lists, we should consider those
3445 and rank the length-match more finely. */
3446
3447 bv.push_back ((args.size () != parms.size ())
3448 ? LENGTH_MISMATCH_BADNESS
3449 : EXACT_MATCH_BADNESS);
3450
3451 /* Now rank all the parameters of the candidate function. */
3452 size_t min_len = std::min (parms.size (), args.size ());
3453
3454 for (size_t i = 0; i < min_len; i++)
3455 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3456 args[i]));
3457
3458 /* If more arguments than parameters, add dummy entries. */
3459 for (size_t i = min_len; i < args.size (); i++)
3460 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3461
3462 return bv;
3463 }
3464
3465 /* Compare the names of two integer types, assuming that any sign
3466 qualifiers have been checked already. We do it this way because
3467 there may be an "int" in the name of one of the types. */
3468
3469 static int
3470 integer_types_same_name_p (const char *first, const char *second)
3471 {
3472 int first_p, second_p;
3473
3474 /* If both are shorts, return 1; if neither is a short, keep
3475 checking. */
3476 first_p = (strstr (first, "short") != NULL);
3477 second_p = (strstr (second, "short") != NULL);
3478 if (first_p && second_p)
3479 return 1;
3480 if (first_p || second_p)
3481 return 0;
3482
3483 /* Likewise for long. */
3484 first_p = (strstr (first, "long") != NULL);
3485 second_p = (strstr (second, "long") != NULL);
3486 if (first_p && second_p)
3487 return 1;
3488 if (first_p || second_p)
3489 return 0;
3490
3491 /* Likewise for char. */
3492 first_p = (strstr (first, "char") != NULL);
3493 second_p = (strstr (second, "char") != NULL);
3494 if (first_p && second_p)
3495 return 1;
3496 if (first_p || second_p)
3497 return 0;
3498
3499 /* They must both be ints. */
3500 return 1;
3501 }
3502
3503 /* Compares type A to type B. Returns true if they represent the same
3504 type, false otherwise. */
3505
3506 bool
3507 types_equal (struct type *a, struct type *b)
3508 {
3509 /* Identical type pointers. */
3510 /* However, this still doesn't catch all cases of same type for b
3511 and a. The reason is that builtin types are different from
3512 the same ones constructed from the object. */
3513 if (a == b)
3514 return true;
3515
3516 /* Resolve typedefs */
3517 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3518 a = check_typedef (a);
3519 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3520 b = check_typedef (b);
3521
3522 /* If after resolving typedefs a and b are not of the same type
3523 code then they are not equal. */
3524 if (TYPE_CODE (a) != TYPE_CODE (b))
3525 return false;
3526
3527 /* If a and b are both pointers types or both reference types then
3528 they are equal of the same type iff the objects they refer to are
3529 of the same type. */
3530 if (TYPE_CODE (a) == TYPE_CODE_PTR
3531 || TYPE_CODE (a) == TYPE_CODE_REF)
3532 return types_equal (TYPE_TARGET_TYPE (a),
3533 TYPE_TARGET_TYPE (b));
3534
3535 /* Well, damnit, if the names are exactly the same, I'll say they
3536 are exactly the same. This happens when we generate method
3537 stubs. The types won't point to the same address, but they
3538 really are the same. */
3539
3540 if (TYPE_NAME (a) && TYPE_NAME (b)
3541 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3542 return true;
3543
3544 /* Check if identical after resolving typedefs. */
3545 if (a == b)
3546 return true;
3547
3548 /* Two function types are equal if their argument and return types
3549 are equal. */
3550 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3551 {
3552 int i;
3553
3554 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3555 return false;
3556
3557 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3558 return false;
3559
3560 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3561 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3562 return false;
3563
3564 return true;
3565 }
3566
3567 return false;
3568 }
3569 \f
3570 /* Deep comparison of types. */
3571
3572 /* An entry in the type-equality bcache. */
3573
3574 struct type_equality_entry
3575 {
3576 type_equality_entry (struct type *t1, struct type *t2)
3577 : type1 (t1),
3578 type2 (t2)
3579 {
3580 }
3581
3582 struct type *type1, *type2;
3583 };
3584
3585 /* A helper function to compare two strings. Returns true if they are
3586 the same, false otherwise. Handles NULLs properly. */
3587
3588 static bool
3589 compare_maybe_null_strings (const char *s, const char *t)
3590 {
3591 if (s == NULL || t == NULL)
3592 return s == t;
3593 return strcmp (s, t) == 0;
3594 }
3595
3596 /* A helper function for check_types_worklist that checks two types for
3597 "deep" equality. Returns true if the types are considered the
3598 same, false otherwise. */
3599
3600 static bool
3601 check_types_equal (struct type *type1, struct type *type2,
3602 std::vector<type_equality_entry> *worklist)
3603 {
3604 type1 = check_typedef (type1);
3605 type2 = check_typedef (type2);
3606
3607 if (type1 == type2)
3608 return true;
3609
3610 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3611 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3612 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3613 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3614 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3615 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3616 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3617 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3618 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3619 return false;
3620
3621 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3622 return false;
3623 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3624 return false;
3625
3626 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3627 {
3628 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3629 return false;
3630 }
3631 else
3632 {
3633 int i;
3634
3635 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3636 {
3637 const struct field *field1 = &TYPE_FIELD (type1, i);
3638 const struct field *field2 = &TYPE_FIELD (type2, i);
3639
3640 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3641 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3642 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3643 return false;
3644 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3645 FIELD_NAME (*field2)))
3646 return false;
3647 switch (FIELD_LOC_KIND (*field1))
3648 {
3649 case FIELD_LOC_KIND_BITPOS:
3650 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3651 return false;
3652 break;
3653 case FIELD_LOC_KIND_ENUMVAL:
3654 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3655 return false;
3656 break;
3657 case FIELD_LOC_KIND_PHYSADDR:
3658 if (FIELD_STATIC_PHYSADDR (*field1)
3659 != FIELD_STATIC_PHYSADDR (*field2))
3660 return false;
3661 break;
3662 case FIELD_LOC_KIND_PHYSNAME:
3663 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3664 FIELD_STATIC_PHYSNAME (*field2)))
3665 return false;
3666 break;
3667 case FIELD_LOC_KIND_DWARF_BLOCK:
3668 {
3669 struct dwarf2_locexpr_baton *block1, *block2;
3670
3671 block1 = FIELD_DWARF_BLOCK (*field1);
3672 block2 = FIELD_DWARF_BLOCK (*field2);
3673 if (block1->per_cu != block2->per_cu
3674 || block1->size != block2->size
3675 || memcmp (block1->data, block2->data, block1->size) != 0)
3676 return false;
3677 }
3678 break;
3679 default:
3680 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3681 "%d by check_types_equal"),
3682 FIELD_LOC_KIND (*field1));
3683 }
3684
3685 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3686 }
3687 }
3688
3689 if (TYPE_TARGET_TYPE (type1) != NULL)
3690 {
3691 if (TYPE_TARGET_TYPE (type2) == NULL)
3692 return false;
3693
3694 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3695 TYPE_TARGET_TYPE (type2));
3696 }
3697 else if (TYPE_TARGET_TYPE (type2) != NULL)
3698 return false;
3699
3700 return true;
3701 }
3702
3703 /* Check types on a worklist for equality. Returns false if any pair
3704 is not equal, true if they are all considered equal. */
3705
3706 static bool
3707 check_types_worklist (std::vector<type_equality_entry> *worklist,
3708 struct bcache *cache)
3709 {
3710 while (!worklist->empty ())
3711 {
3712 int added;
3713
3714 struct type_equality_entry entry = std::move (worklist->back ());
3715 worklist->pop_back ();
3716
3717 /* If the type pair has already been visited, we know it is
3718 ok. */
3719 cache->insert (&entry, sizeof (entry), &added);
3720 if (!added)
3721 continue;
3722
3723 if (!check_types_equal (entry.type1, entry.type2, worklist))
3724 return false;
3725 }
3726
3727 return true;
3728 }
3729
3730 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3731 "deep comparison". Otherwise return false. */
3732
3733 bool
3734 types_deeply_equal (struct type *type1, struct type *type2)
3735 {
3736 std::vector<type_equality_entry> worklist;
3737
3738 gdb_assert (type1 != NULL && type2 != NULL);
3739
3740 /* Early exit for the simple case. */
3741 if (type1 == type2)
3742 return true;
3743
3744 struct bcache cache (nullptr, nullptr);
3745 worklist.emplace_back (type1, type2);
3746 return check_types_worklist (&worklist, &cache);
3747 }
3748
3749 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3750 Otherwise return one. */
3751
3752 int
3753 type_not_allocated (const struct type *type)
3754 {
3755 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3756
3757 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3758 && !TYPE_DYN_PROP_ADDR (prop));
3759 }
3760
3761 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3762 Otherwise return one. */
3763
3764 int
3765 type_not_associated (const struct type *type)
3766 {
3767 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3768
3769 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3770 && !TYPE_DYN_PROP_ADDR (prop));
3771 }
3772
3773 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3774
3775 static struct rank
3776 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3777 {
3778 struct rank rank = {0,0};
3779
3780 switch (TYPE_CODE (arg))
3781 {
3782 case TYPE_CODE_PTR:
3783
3784 /* Allowed pointer conversions are:
3785 (a) pointer to void-pointer conversion. */
3786 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3787 return VOID_PTR_CONVERSION_BADNESS;
3788
3789 /* (b) pointer to ancestor-pointer conversion. */
3790 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3791 TYPE_TARGET_TYPE (arg),
3792 0);
3793 if (rank.subrank >= 0)
3794 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3795
3796 return INCOMPATIBLE_TYPE_BADNESS;
3797 case TYPE_CODE_ARRAY:
3798 {
3799 struct type *t1 = TYPE_TARGET_TYPE (parm);
3800 struct type *t2 = TYPE_TARGET_TYPE (arg);
3801
3802 if (types_equal (t1, t2))
3803 {
3804 /* Make sure they are CV equal. */
3805 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3806 rank.subrank |= CV_CONVERSION_CONST;
3807 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3808 rank.subrank |= CV_CONVERSION_VOLATILE;
3809 if (rank.subrank != 0)
3810 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3811 return EXACT_MATCH_BADNESS;
3812 }
3813 return INCOMPATIBLE_TYPE_BADNESS;
3814 }
3815 case TYPE_CODE_FUNC:
3816 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3817 case TYPE_CODE_INT:
3818 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3819 {
3820 if (value_as_long (value) == 0)
3821 {
3822 /* Null pointer conversion: allow it to be cast to a pointer.
3823 [4.10.1 of C++ standard draft n3290] */
3824 return NULL_POINTER_CONVERSION_BADNESS;
3825 }
3826 else
3827 {
3828 /* If type checking is disabled, allow the conversion. */
3829 if (!strict_type_checking)
3830 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3831 }
3832 }
3833 /* fall through */
3834 case TYPE_CODE_ENUM:
3835 case TYPE_CODE_FLAGS:
3836 case TYPE_CODE_CHAR:
3837 case TYPE_CODE_RANGE:
3838 case TYPE_CODE_BOOL:
3839 default:
3840 return INCOMPATIBLE_TYPE_BADNESS;
3841 }
3842 }
3843
3844 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3845
3846 static struct rank
3847 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3848 {
3849 switch (TYPE_CODE (arg))
3850 {
3851 case TYPE_CODE_PTR:
3852 case TYPE_CODE_ARRAY:
3853 return rank_one_type (TYPE_TARGET_TYPE (parm),
3854 TYPE_TARGET_TYPE (arg), NULL);
3855 default:
3856 return INCOMPATIBLE_TYPE_BADNESS;
3857 }
3858 }
3859
3860 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3861
3862 static struct rank
3863 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3864 {
3865 switch (TYPE_CODE (arg))
3866 {
3867 case TYPE_CODE_PTR: /* funcptr -> func */
3868 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3869 default:
3870 return INCOMPATIBLE_TYPE_BADNESS;
3871 }
3872 }
3873
3874 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3875
3876 static struct rank
3877 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3878 {
3879 switch (TYPE_CODE (arg))
3880 {
3881 case TYPE_CODE_INT:
3882 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3883 {
3884 /* Deal with signed, unsigned, and plain chars and
3885 signed and unsigned ints. */
3886 if (TYPE_NOSIGN (parm))
3887 {
3888 /* This case only for character types. */
3889 if (TYPE_NOSIGN (arg))
3890 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3891 else /* signed/unsigned char -> plain char */
3892 return INTEGER_CONVERSION_BADNESS;
3893 }
3894 else if (TYPE_UNSIGNED (parm))
3895 {
3896 if (TYPE_UNSIGNED (arg))
3897 {
3898 /* unsigned int -> unsigned int, or
3899 unsigned long -> unsigned long */
3900 if (integer_types_same_name_p (TYPE_NAME (parm),
3901 TYPE_NAME (arg)))
3902 return EXACT_MATCH_BADNESS;
3903 else if (integer_types_same_name_p (TYPE_NAME (arg),
3904 "int")
3905 && integer_types_same_name_p (TYPE_NAME (parm),
3906 "long"))
3907 /* unsigned int -> unsigned long */
3908 return INTEGER_PROMOTION_BADNESS;
3909 else
3910 /* unsigned long -> unsigned int */
3911 return INTEGER_CONVERSION_BADNESS;
3912 }
3913 else
3914 {
3915 if (integer_types_same_name_p (TYPE_NAME (arg),
3916 "long")
3917 && integer_types_same_name_p (TYPE_NAME (parm),
3918 "int"))
3919 /* signed long -> unsigned int */
3920 return INTEGER_CONVERSION_BADNESS;
3921 else
3922 /* signed int/long -> unsigned int/long */
3923 return INTEGER_CONVERSION_BADNESS;
3924 }
3925 }
3926 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3927 {
3928 if (integer_types_same_name_p (TYPE_NAME (parm),
3929 TYPE_NAME (arg)))
3930 return EXACT_MATCH_BADNESS;
3931 else if (integer_types_same_name_p (TYPE_NAME (arg),
3932 "int")
3933 && integer_types_same_name_p (TYPE_NAME (parm),
3934 "long"))
3935 return INTEGER_PROMOTION_BADNESS;
3936 else
3937 return INTEGER_CONVERSION_BADNESS;
3938 }
3939 else
3940 return INTEGER_CONVERSION_BADNESS;
3941 }
3942 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3943 return INTEGER_PROMOTION_BADNESS;
3944 else
3945 return INTEGER_CONVERSION_BADNESS;
3946 case TYPE_CODE_ENUM:
3947 case TYPE_CODE_FLAGS:
3948 case TYPE_CODE_CHAR:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_BOOL:
3951 if (TYPE_DECLARED_CLASS (arg))
3952 return INCOMPATIBLE_TYPE_BADNESS;
3953 return INTEGER_PROMOTION_BADNESS;
3954 case TYPE_CODE_FLT:
3955 return INT_FLOAT_CONVERSION_BADNESS;
3956 case TYPE_CODE_PTR:
3957 return NS_POINTER_CONVERSION_BADNESS;
3958 default:
3959 return INCOMPATIBLE_TYPE_BADNESS;
3960 }
3961 }
3962
3963 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3964
3965 static struct rank
3966 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3967 {
3968 switch (TYPE_CODE (arg))
3969 {
3970 case TYPE_CODE_INT:
3971 case TYPE_CODE_CHAR:
3972 case TYPE_CODE_RANGE:
3973 case TYPE_CODE_BOOL:
3974 case TYPE_CODE_ENUM:
3975 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3976 return INCOMPATIBLE_TYPE_BADNESS;
3977 return INTEGER_CONVERSION_BADNESS;
3978 case TYPE_CODE_FLT:
3979 return INT_FLOAT_CONVERSION_BADNESS;
3980 default:
3981 return INCOMPATIBLE_TYPE_BADNESS;
3982 }
3983 }
3984
3985 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3986
3987 static struct rank
3988 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3989 {
3990 switch (TYPE_CODE (arg))
3991 {
3992 case TYPE_CODE_RANGE:
3993 case TYPE_CODE_BOOL:
3994 case TYPE_CODE_ENUM:
3995 if (TYPE_DECLARED_CLASS (arg))
3996 return INCOMPATIBLE_TYPE_BADNESS;
3997 return INTEGER_CONVERSION_BADNESS;
3998 case TYPE_CODE_FLT:
3999 return INT_FLOAT_CONVERSION_BADNESS;
4000 case TYPE_CODE_INT:
4001 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4002 return INTEGER_CONVERSION_BADNESS;
4003 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4004 return INTEGER_PROMOTION_BADNESS;
4005 /* fall through */
4006 case TYPE_CODE_CHAR:
4007 /* Deal with signed, unsigned, and plain chars for C++ and
4008 with int cases falling through from previous case. */
4009 if (TYPE_NOSIGN (parm))
4010 {
4011 if (TYPE_NOSIGN (arg))
4012 return EXACT_MATCH_BADNESS;
4013 else
4014 return INTEGER_CONVERSION_BADNESS;
4015 }
4016 else if (TYPE_UNSIGNED (parm))
4017 {
4018 if (TYPE_UNSIGNED (arg))
4019 return EXACT_MATCH_BADNESS;
4020 else
4021 return INTEGER_PROMOTION_BADNESS;
4022 }
4023 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4024 return EXACT_MATCH_BADNESS;
4025 else
4026 return INTEGER_CONVERSION_BADNESS;
4027 default:
4028 return INCOMPATIBLE_TYPE_BADNESS;
4029 }
4030 }
4031
4032 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4033
4034 static struct rank
4035 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4036 {
4037 switch (TYPE_CODE (arg))
4038 {
4039 case TYPE_CODE_INT:
4040 case TYPE_CODE_CHAR:
4041 case TYPE_CODE_RANGE:
4042 case TYPE_CODE_BOOL:
4043 case TYPE_CODE_ENUM:
4044 return INTEGER_CONVERSION_BADNESS;
4045 case TYPE_CODE_FLT:
4046 return INT_FLOAT_CONVERSION_BADNESS;
4047 default:
4048 return INCOMPATIBLE_TYPE_BADNESS;
4049 }
4050 }
4051
4052 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4053
4054 static struct rank
4055 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4056 {
4057 switch (TYPE_CODE (arg))
4058 {
4059 /* n3290 draft, section 4.12.1 (conv.bool):
4060
4061 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4062 pointer to member type can be converted to a prvalue of type
4063 bool. A zero value, null pointer value, or null member pointer
4064 value is converted to false; any other value is converted to
4065 true. A prvalue of type std::nullptr_t can be converted to a
4066 prvalue of type bool; the resulting value is false." */
4067 case TYPE_CODE_INT:
4068 case TYPE_CODE_CHAR:
4069 case TYPE_CODE_ENUM:
4070 case TYPE_CODE_FLT:
4071 case TYPE_CODE_MEMBERPTR:
4072 case TYPE_CODE_PTR:
4073 return BOOL_CONVERSION_BADNESS;
4074 case TYPE_CODE_RANGE:
4075 return INCOMPATIBLE_TYPE_BADNESS;
4076 case TYPE_CODE_BOOL:
4077 return EXACT_MATCH_BADNESS;
4078 default:
4079 return INCOMPATIBLE_TYPE_BADNESS;
4080 }
4081 }
4082
4083 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4084
4085 static struct rank
4086 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4087 {
4088 switch (TYPE_CODE (arg))
4089 {
4090 case TYPE_CODE_FLT:
4091 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4092 return FLOAT_PROMOTION_BADNESS;
4093 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4094 return EXACT_MATCH_BADNESS;
4095 else
4096 return FLOAT_CONVERSION_BADNESS;
4097 case TYPE_CODE_INT:
4098 case TYPE_CODE_BOOL:
4099 case TYPE_CODE_ENUM:
4100 case TYPE_CODE_RANGE:
4101 case TYPE_CODE_CHAR:
4102 return INT_FLOAT_CONVERSION_BADNESS;
4103 default:
4104 return INCOMPATIBLE_TYPE_BADNESS;
4105 }
4106 }
4107
4108 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4109
4110 static struct rank
4111 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4112 {
4113 switch (TYPE_CODE (arg))
4114 { /* Strictly not needed for C++, but... */
4115 case TYPE_CODE_FLT:
4116 return FLOAT_PROMOTION_BADNESS;
4117 case TYPE_CODE_COMPLEX:
4118 return EXACT_MATCH_BADNESS;
4119 default:
4120 return INCOMPATIBLE_TYPE_BADNESS;
4121 }
4122 }
4123
4124 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4125
4126 static struct rank
4127 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4128 {
4129 struct rank rank = {0, 0};
4130
4131 switch (TYPE_CODE (arg))
4132 {
4133 case TYPE_CODE_STRUCT:
4134 /* Check for derivation */
4135 rank.subrank = distance_to_ancestor (parm, arg, 0);
4136 if (rank.subrank >= 0)
4137 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4138 /* fall through */
4139 default:
4140 return INCOMPATIBLE_TYPE_BADNESS;
4141 }
4142 }
4143
4144 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4145
4146 static struct rank
4147 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4148 {
4149 switch (TYPE_CODE (arg))
4150 {
4151 /* Not in C++ */
4152 case TYPE_CODE_SET:
4153 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4154 TYPE_FIELD_TYPE (arg, 0), NULL);
4155 default:
4156 return INCOMPATIBLE_TYPE_BADNESS;
4157 }
4158 }
4159
4160 /* Compare one type (PARM) for compatibility with another (ARG).
4161 * PARM is intended to be the parameter type of a function; and
4162 * ARG is the supplied argument's type. This function tests if
4163 * the latter can be converted to the former.
4164 * VALUE is the argument's value or NULL if none (or called recursively)
4165 *
4166 * Return 0 if they are identical types;
4167 * Otherwise, return an integer which corresponds to how compatible
4168 * PARM is to ARG. The higher the return value, the worse the match.
4169 * Generally the "bad" conversions are all uniformly assigned a 100. */
4170
4171 struct rank
4172 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4173 {
4174 struct rank rank = {0,0};
4175
4176 /* Resolve typedefs */
4177 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4178 parm = check_typedef (parm);
4179 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4180 arg = check_typedef (arg);
4181
4182 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4183 {
4184 if (VALUE_LVAL (value) == not_lval)
4185 {
4186 /* Rvalues should preferably bind to rvalue references or const
4187 lvalue references. */
4188 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4189 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4190 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4191 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4192 else
4193 return INCOMPATIBLE_TYPE_BADNESS;
4194 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4195 }
4196 else
4197 {
4198 /* Lvalues should prefer lvalue overloads. */
4199 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4200 {
4201 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4202 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4203 }
4204 }
4205 }
4206
4207 if (types_equal (parm, arg))
4208 {
4209 struct type *t1 = parm;
4210 struct type *t2 = arg;
4211
4212 /* For pointers and references, compare target type. */
4213 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4214 {
4215 t1 = TYPE_TARGET_TYPE (parm);
4216 t2 = TYPE_TARGET_TYPE (arg);
4217 }
4218
4219 /* Make sure they are CV equal, too. */
4220 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4221 rank.subrank |= CV_CONVERSION_CONST;
4222 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4223 rank.subrank |= CV_CONVERSION_VOLATILE;
4224 if (rank.subrank != 0)
4225 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4226 return EXACT_MATCH_BADNESS;
4227 }
4228
4229 /* See through references, since we can almost make non-references
4230 references. */
4231
4232 if (TYPE_IS_REFERENCE (arg))
4233 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4234 REFERENCE_CONVERSION_BADNESS));
4235 if (TYPE_IS_REFERENCE (parm))
4236 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4237 REFERENCE_CONVERSION_BADNESS));
4238 if (overload_debug)
4239 /* Debugging only. */
4240 fprintf_filtered (gdb_stderr,
4241 "------ Arg is %s [%d], parm is %s [%d]\n",
4242 TYPE_NAME (arg), TYPE_CODE (arg),
4243 TYPE_NAME (parm), TYPE_CODE (parm));
4244
4245 /* x -> y means arg of type x being supplied for parameter of type y. */
4246
4247 switch (TYPE_CODE (parm))
4248 {
4249 case TYPE_CODE_PTR:
4250 return rank_one_type_parm_ptr (parm, arg, value);
4251 case TYPE_CODE_ARRAY:
4252 return rank_one_type_parm_array (parm, arg, value);
4253 case TYPE_CODE_FUNC:
4254 return rank_one_type_parm_func (parm, arg, value);
4255 case TYPE_CODE_INT:
4256 return rank_one_type_parm_int (parm, arg, value);
4257 case TYPE_CODE_ENUM:
4258 return rank_one_type_parm_enum (parm, arg, value);
4259 case TYPE_CODE_CHAR:
4260 return rank_one_type_parm_char (parm, arg, value);
4261 case TYPE_CODE_RANGE:
4262 return rank_one_type_parm_range (parm, arg, value);
4263 case TYPE_CODE_BOOL:
4264 return rank_one_type_parm_bool (parm, arg, value);
4265 case TYPE_CODE_FLT:
4266 return rank_one_type_parm_float (parm, arg, value);
4267 case TYPE_CODE_COMPLEX:
4268 return rank_one_type_parm_complex (parm, arg, value);
4269 case TYPE_CODE_STRUCT:
4270 return rank_one_type_parm_struct (parm, arg, value);
4271 case TYPE_CODE_SET:
4272 return rank_one_type_parm_set (parm, arg, value);
4273 default:
4274 return INCOMPATIBLE_TYPE_BADNESS;
4275 } /* switch (TYPE_CODE (arg)) */
4276 }
4277
4278 /* End of functions for overload resolution. */
4279 \f
4280 /* Routines to pretty-print types. */
4281
4282 static void
4283 print_bit_vector (B_TYPE *bits, int nbits)
4284 {
4285 int bitno;
4286
4287 for (bitno = 0; bitno < nbits; bitno++)
4288 {
4289 if ((bitno % 8) == 0)
4290 {
4291 puts_filtered (" ");
4292 }
4293 if (B_TST (bits, bitno))
4294 printf_filtered (("1"));
4295 else
4296 printf_filtered (("0"));
4297 }
4298 }
4299
4300 /* Note the first arg should be the "this" pointer, we may not want to
4301 include it since we may get into a infinitely recursive
4302 situation. */
4303
4304 static void
4305 print_args (struct field *args, int nargs, int spaces)
4306 {
4307 if (args != NULL)
4308 {
4309 int i;
4310
4311 for (i = 0; i < nargs; i++)
4312 {
4313 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4314 args[i].name != NULL ? args[i].name : "<NULL>");
4315 recursive_dump_type (args[i].type, spaces + 2);
4316 }
4317 }
4318 }
4319
4320 int
4321 field_is_static (struct field *f)
4322 {
4323 /* "static" fields are the fields whose location is not relative
4324 to the address of the enclosing struct. It would be nice to
4325 have a dedicated flag that would be set for static fields when
4326 the type is being created. But in practice, checking the field
4327 loc_kind should give us an accurate answer. */
4328 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4329 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4330 }
4331
4332 static void
4333 dump_fn_fieldlists (struct type *type, int spaces)
4334 {
4335 int method_idx;
4336 int overload_idx;
4337 struct fn_field *f;
4338
4339 printfi_filtered (spaces, "fn_fieldlists ");
4340 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4341 printf_filtered ("\n");
4342 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4343 {
4344 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4345 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4346 method_idx,
4347 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4348 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4349 gdb_stdout);
4350 printf_filtered (_(") length %d\n"),
4351 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4352 for (overload_idx = 0;
4353 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4354 overload_idx++)
4355 {
4356 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4357 overload_idx,
4358 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4359 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4360 gdb_stdout);
4361 printf_filtered (")\n");
4362 printfi_filtered (spaces + 8, "type ");
4363 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4364 gdb_stdout);
4365 printf_filtered ("\n");
4366
4367 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4368 spaces + 8 + 2);
4369
4370 printfi_filtered (spaces + 8, "args ");
4371 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4372 gdb_stdout);
4373 printf_filtered ("\n");
4374 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4375 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4376 spaces + 8 + 2);
4377 printfi_filtered (spaces + 8, "fcontext ");
4378 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4379 gdb_stdout);
4380 printf_filtered ("\n");
4381
4382 printfi_filtered (spaces + 8, "is_const %d\n",
4383 TYPE_FN_FIELD_CONST (f, overload_idx));
4384 printfi_filtered (spaces + 8, "is_volatile %d\n",
4385 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4386 printfi_filtered (spaces + 8, "is_private %d\n",
4387 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4388 printfi_filtered (spaces + 8, "is_protected %d\n",
4389 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_stub %d\n",
4391 TYPE_FN_FIELD_STUB (f, overload_idx));
4392 printfi_filtered (spaces + 8, "voffset %u\n",
4393 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4394 }
4395 }
4396 }
4397
4398 static void
4399 print_cplus_stuff (struct type *type, int spaces)
4400 {
4401 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4402 printfi_filtered (spaces, "vptr_basetype ");
4403 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4404 puts_filtered ("\n");
4405 if (TYPE_VPTR_BASETYPE (type) != NULL)
4406 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4407
4408 printfi_filtered (spaces, "n_baseclasses %d\n",
4409 TYPE_N_BASECLASSES (type));
4410 printfi_filtered (spaces, "nfn_fields %d\n",
4411 TYPE_NFN_FIELDS (type));
4412 if (TYPE_N_BASECLASSES (type) > 0)
4413 {
4414 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4415 TYPE_N_BASECLASSES (type));
4416 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4417 gdb_stdout);
4418 printf_filtered (")");
4419
4420 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4421 TYPE_N_BASECLASSES (type));
4422 puts_filtered ("\n");
4423 }
4424 if (TYPE_NFIELDS (type) > 0)
4425 {
4426 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4427 {
4428 printfi_filtered (spaces,
4429 "private_field_bits (%d bits at *",
4430 TYPE_NFIELDS (type));
4431 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4432 gdb_stdout);
4433 printf_filtered (")");
4434 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4435 TYPE_NFIELDS (type));
4436 puts_filtered ("\n");
4437 }
4438 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4439 {
4440 printfi_filtered (spaces,
4441 "protected_field_bits (%d bits at *",
4442 TYPE_NFIELDS (type));
4443 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4444 gdb_stdout);
4445 printf_filtered (")");
4446 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4447 TYPE_NFIELDS (type));
4448 puts_filtered ("\n");
4449 }
4450 }
4451 if (TYPE_NFN_FIELDS (type) > 0)
4452 {
4453 dump_fn_fieldlists (type, spaces);
4454 }
4455 }
4456
4457 /* Print the contents of the TYPE's type_specific union, assuming that
4458 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4459
4460 static void
4461 print_gnat_stuff (struct type *type, int spaces)
4462 {
4463 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4464
4465 if (descriptive_type == NULL)
4466 printfi_filtered (spaces + 2, "no descriptive type\n");
4467 else
4468 {
4469 printfi_filtered (spaces + 2, "descriptive type\n");
4470 recursive_dump_type (descriptive_type, spaces + 4);
4471 }
4472 }
4473
4474 static struct obstack dont_print_type_obstack;
4475
4476 void
4477 recursive_dump_type (struct type *type, int spaces)
4478 {
4479 int idx;
4480
4481 if (spaces == 0)
4482 obstack_begin (&dont_print_type_obstack, 0);
4483
4484 if (TYPE_NFIELDS (type) > 0
4485 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4486 {
4487 struct type **first_dont_print
4488 = (struct type **) obstack_base (&dont_print_type_obstack);
4489
4490 int i = (struct type **)
4491 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4492
4493 while (--i >= 0)
4494 {
4495 if (type == first_dont_print[i])
4496 {
4497 printfi_filtered (spaces, "type node ");
4498 gdb_print_host_address (type, gdb_stdout);
4499 printf_filtered (_(" <same as already seen type>\n"));
4500 return;
4501 }
4502 }
4503
4504 obstack_ptr_grow (&dont_print_type_obstack, type);
4505 }
4506
4507 printfi_filtered (spaces, "type node ");
4508 gdb_print_host_address (type, gdb_stdout);
4509 printf_filtered ("\n");
4510 printfi_filtered (spaces, "name '%s' (",
4511 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4512 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4513 printf_filtered (")\n");
4514 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4515 switch (TYPE_CODE (type))
4516 {
4517 case TYPE_CODE_UNDEF:
4518 printf_filtered ("(TYPE_CODE_UNDEF)");
4519 break;
4520 case TYPE_CODE_PTR:
4521 printf_filtered ("(TYPE_CODE_PTR)");
4522 break;
4523 case TYPE_CODE_ARRAY:
4524 printf_filtered ("(TYPE_CODE_ARRAY)");
4525 break;
4526 case TYPE_CODE_STRUCT:
4527 printf_filtered ("(TYPE_CODE_STRUCT)");
4528 break;
4529 case TYPE_CODE_UNION:
4530 printf_filtered ("(TYPE_CODE_UNION)");
4531 break;
4532 case TYPE_CODE_ENUM:
4533 printf_filtered ("(TYPE_CODE_ENUM)");
4534 break;
4535 case TYPE_CODE_FLAGS:
4536 printf_filtered ("(TYPE_CODE_FLAGS)");
4537 break;
4538 case TYPE_CODE_FUNC:
4539 printf_filtered ("(TYPE_CODE_FUNC)");
4540 break;
4541 case TYPE_CODE_INT:
4542 printf_filtered ("(TYPE_CODE_INT)");
4543 break;
4544 case TYPE_CODE_FLT:
4545 printf_filtered ("(TYPE_CODE_FLT)");
4546 break;
4547 case TYPE_CODE_VOID:
4548 printf_filtered ("(TYPE_CODE_VOID)");
4549 break;
4550 case TYPE_CODE_SET:
4551 printf_filtered ("(TYPE_CODE_SET)");
4552 break;
4553 case TYPE_CODE_RANGE:
4554 printf_filtered ("(TYPE_CODE_RANGE)");
4555 break;
4556 case TYPE_CODE_STRING:
4557 printf_filtered ("(TYPE_CODE_STRING)");
4558 break;
4559 case TYPE_CODE_ERROR:
4560 printf_filtered ("(TYPE_CODE_ERROR)");
4561 break;
4562 case TYPE_CODE_MEMBERPTR:
4563 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4564 break;
4565 case TYPE_CODE_METHODPTR:
4566 printf_filtered ("(TYPE_CODE_METHODPTR)");
4567 break;
4568 case TYPE_CODE_METHOD:
4569 printf_filtered ("(TYPE_CODE_METHOD)");
4570 break;
4571 case TYPE_CODE_REF:
4572 printf_filtered ("(TYPE_CODE_REF)");
4573 break;
4574 case TYPE_CODE_CHAR:
4575 printf_filtered ("(TYPE_CODE_CHAR)");
4576 break;
4577 case TYPE_CODE_BOOL:
4578 printf_filtered ("(TYPE_CODE_BOOL)");
4579 break;
4580 case TYPE_CODE_COMPLEX:
4581 printf_filtered ("(TYPE_CODE_COMPLEX)");
4582 break;
4583 case TYPE_CODE_TYPEDEF:
4584 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4585 break;
4586 case TYPE_CODE_NAMESPACE:
4587 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4588 break;
4589 default:
4590 printf_filtered ("(UNKNOWN TYPE CODE)");
4591 break;
4592 }
4593 puts_filtered ("\n");
4594 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4595 if (TYPE_OBJFILE_OWNED (type))
4596 {
4597 printfi_filtered (spaces, "objfile ");
4598 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4599 }
4600 else
4601 {
4602 printfi_filtered (spaces, "gdbarch ");
4603 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4604 }
4605 printf_filtered ("\n");
4606 printfi_filtered (spaces, "target_type ");
4607 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4608 printf_filtered ("\n");
4609 if (TYPE_TARGET_TYPE (type) != NULL)
4610 {
4611 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4612 }
4613 printfi_filtered (spaces, "pointer_type ");
4614 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4615 printf_filtered ("\n");
4616 printfi_filtered (spaces, "reference_type ");
4617 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4618 printf_filtered ("\n");
4619 printfi_filtered (spaces, "type_chain ");
4620 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4621 printf_filtered ("\n");
4622 printfi_filtered (spaces, "instance_flags 0x%x",
4623 TYPE_INSTANCE_FLAGS (type));
4624 if (TYPE_CONST (type))
4625 {
4626 puts_filtered (" TYPE_CONST");
4627 }
4628 if (TYPE_VOLATILE (type))
4629 {
4630 puts_filtered (" TYPE_VOLATILE");
4631 }
4632 if (TYPE_CODE_SPACE (type))
4633 {
4634 puts_filtered (" TYPE_CODE_SPACE");
4635 }
4636 if (TYPE_DATA_SPACE (type))
4637 {
4638 puts_filtered (" TYPE_DATA_SPACE");
4639 }
4640 if (TYPE_ADDRESS_CLASS_1 (type))
4641 {
4642 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4643 }
4644 if (TYPE_ADDRESS_CLASS_2 (type))
4645 {
4646 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4647 }
4648 if (TYPE_RESTRICT (type))
4649 {
4650 puts_filtered (" TYPE_RESTRICT");
4651 }
4652 if (TYPE_ATOMIC (type))
4653 {
4654 puts_filtered (" TYPE_ATOMIC");
4655 }
4656 puts_filtered ("\n");
4657
4658 printfi_filtered (spaces, "flags");
4659 if (TYPE_UNSIGNED (type))
4660 {
4661 puts_filtered (" TYPE_UNSIGNED");
4662 }
4663 if (TYPE_NOSIGN (type))
4664 {
4665 puts_filtered (" TYPE_NOSIGN");
4666 }
4667 if (TYPE_STUB (type))
4668 {
4669 puts_filtered (" TYPE_STUB");
4670 }
4671 if (TYPE_TARGET_STUB (type))
4672 {
4673 puts_filtered (" TYPE_TARGET_STUB");
4674 }
4675 if (TYPE_PROTOTYPED (type))
4676 {
4677 puts_filtered (" TYPE_PROTOTYPED");
4678 }
4679 if (TYPE_INCOMPLETE (type))
4680 {
4681 puts_filtered (" TYPE_INCOMPLETE");
4682 }
4683 if (TYPE_VARARGS (type))
4684 {
4685 puts_filtered (" TYPE_VARARGS");
4686 }
4687 /* This is used for things like AltiVec registers on ppc. Gcc emits
4688 an attribute for the array type, which tells whether or not we
4689 have a vector, instead of a regular array. */
4690 if (TYPE_VECTOR (type))
4691 {
4692 puts_filtered (" TYPE_VECTOR");
4693 }
4694 if (TYPE_FIXED_INSTANCE (type))
4695 {
4696 puts_filtered (" TYPE_FIXED_INSTANCE");
4697 }
4698 if (TYPE_STUB_SUPPORTED (type))
4699 {
4700 puts_filtered (" TYPE_STUB_SUPPORTED");
4701 }
4702 if (TYPE_NOTTEXT (type))
4703 {
4704 puts_filtered (" TYPE_NOTTEXT");
4705 }
4706 puts_filtered ("\n");
4707 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4708 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4709 puts_filtered ("\n");
4710 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4711 {
4712 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4713 printfi_filtered (spaces + 2,
4714 "[%d] enumval %s type ",
4715 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4716 else
4717 printfi_filtered (spaces + 2,
4718 "[%d] bitpos %s bitsize %d type ",
4719 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4720 TYPE_FIELD_BITSIZE (type, idx));
4721 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4722 printf_filtered (" name '%s' (",
4723 TYPE_FIELD_NAME (type, idx) != NULL
4724 ? TYPE_FIELD_NAME (type, idx)
4725 : "<NULL>");
4726 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4727 printf_filtered (")\n");
4728 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4729 {
4730 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4731 }
4732 }
4733 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4734 {
4735 printfi_filtered (spaces, "low %s%s high %s%s\n",
4736 plongest (TYPE_LOW_BOUND (type)),
4737 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4738 plongest (TYPE_HIGH_BOUND (type)),
4739 TYPE_HIGH_BOUND_UNDEFINED (type)
4740 ? " (undefined)" : "");
4741 }
4742
4743 switch (TYPE_SPECIFIC_FIELD (type))
4744 {
4745 case TYPE_SPECIFIC_CPLUS_STUFF:
4746 printfi_filtered (spaces, "cplus_stuff ");
4747 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4748 gdb_stdout);
4749 puts_filtered ("\n");
4750 print_cplus_stuff (type, spaces);
4751 break;
4752
4753 case TYPE_SPECIFIC_GNAT_STUFF:
4754 printfi_filtered (spaces, "gnat_stuff ");
4755 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4756 puts_filtered ("\n");
4757 print_gnat_stuff (type, spaces);
4758 break;
4759
4760 case TYPE_SPECIFIC_FLOATFORMAT:
4761 printfi_filtered (spaces, "floatformat ");
4762 if (TYPE_FLOATFORMAT (type) == NULL
4763 || TYPE_FLOATFORMAT (type)->name == NULL)
4764 puts_filtered ("(null)");
4765 else
4766 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4767 puts_filtered ("\n");
4768 break;
4769
4770 case TYPE_SPECIFIC_FUNC:
4771 printfi_filtered (spaces, "calling_convention %d\n",
4772 TYPE_CALLING_CONVENTION (type));
4773 /* tail_call_list is not printed. */
4774 break;
4775
4776 case TYPE_SPECIFIC_SELF_TYPE:
4777 printfi_filtered (spaces, "self_type ");
4778 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4779 puts_filtered ("\n");
4780 break;
4781 }
4782
4783 if (spaces == 0)
4784 obstack_free (&dont_print_type_obstack, NULL);
4785 }
4786 \f
4787 /* Trivial helpers for the libiberty hash table, for mapping one
4788 type to another. */
4789
4790 struct type_pair : public allocate_on_obstack
4791 {
4792 type_pair (struct type *old_, struct type *newobj_)
4793 : old (old_), newobj (newobj_)
4794 {}
4795
4796 struct type * const old, * const newobj;
4797 };
4798
4799 static hashval_t
4800 type_pair_hash (const void *item)
4801 {
4802 const struct type_pair *pair = (const struct type_pair *) item;
4803
4804 return htab_hash_pointer (pair->old);
4805 }
4806
4807 static int
4808 type_pair_eq (const void *item_lhs, const void *item_rhs)
4809 {
4810 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4811 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4812
4813 return lhs->old == rhs->old;
4814 }
4815
4816 /* Allocate the hash table used by copy_type_recursive to walk
4817 types without duplicates. We use OBJFILE's obstack, because
4818 OBJFILE is about to be deleted. */
4819
4820 htab_t
4821 create_copied_types_hash (struct objfile *objfile)
4822 {
4823 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4824 NULL, &objfile->objfile_obstack,
4825 hashtab_obstack_allocate,
4826 dummy_obstack_deallocate);
4827 }
4828
4829 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4830
4831 static struct dynamic_prop_list *
4832 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4833 struct dynamic_prop_list *list)
4834 {
4835 struct dynamic_prop_list *copy = list;
4836 struct dynamic_prop_list **node_ptr = &copy;
4837
4838 while (*node_ptr != NULL)
4839 {
4840 struct dynamic_prop_list *node_copy;
4841
4842 node_copy = ((struct dynamic_prop_list *)
4843 obstack_copy (objfile_obstack, *node_ptr,
4844 sizeof (struct dynamic_prop_list)));
4845 node_copy->prop = (*node_ptr)->prop;
4846 *node_ptr = node_copy;
4847
4848 node_ptr = &node_copy->next;
4849 }
4850
4851 return copy;
4852 }
4853
4854 /* Recursively copy (deep copy) TYPE, if it is associated with
4855 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4856 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4857 it is not associated with OBJFILE. */
4858
4859 struct type *
4860 copy_type_recursive (struct objfile *objfile,
4861 struct type *type,
4862 htab_t copied_types)
4863 {
4864 void **slot;
4865 struct type *new_type;
4866
4867 if (! TYPE_OBJFILE_OWNED (type))
4868 return type;
4869
4870 /* This type shouldn't be pointing to any types in other objfiles;
4871 if it did, the type might disappear unexpectedly. */
4872 gdb_assert (TYPE_OBJFILE (type) == objfile);
4873
4874 struct type_pair pair (type, nullptr);
4875
4876 slot = htab_find_slot (copied_types, &pair, INSERT);
4877 if (*slot != NULL)
4878 return ((struct type_pair *) *slot)->newobj;
4879
4880 new_type = alloc_type_arch (get_type_arch (type));
4881
4882 /* We must add the new type to the hash table immediately, in case
4883 we encounter this type again during a recursive call below. */
4884 struct type_pair *stored
4885 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4886
4887 *slot = stored;
4888
4889 /* Copy the common fields of types. For the main type, we simply
4890 copy the entire thing and then update specific fields as needed. */
4891 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4892 TYPE_OBJFILE_OWNED (new_type) = 0;
4893 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4894
4895 if (TYPE_NAME (type))
4896 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4897
4898 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4899 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4900
4901 /* Copy the fields. */
4902 if (TYPE_NFIELDS (type))
4903 {
4904 int i, nfields;
4905
4906 nfields = TYPE_NFIELDS (type);
4907 TYPE_FIELDS (new_type) = (struct field *)
4908 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4909 for (i = 0; i < nfields; i++)
4910 {
4911 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4912 TYPE_FIELD_ARTIFICIAL (type, i);
4913 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4914 if (TYPE_FIELD_TYPE (type, i))
4915 TYPE_FIELD_TYPE (new_type, i)
4916 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4917 copied_types);
4918 if (TYPE_FIELD_NAME (type, i))
4919 TYPE_FIELD_NAME (new_type, i) =
4920 xstrdup (TYPE_FIELD_NAME (type, i));
4921 switch (TYPE_FIELD_LOC_KIND (type, i))
4922 {
4923 case FIELD_LOC_KIND_BITPOS:
4924 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4925 TYPE_FIELD_BITPOS (type, i));
4926 break;
4927 case FIELD_LOC_KIND_ENUMVAL:
4928 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4929 TYPE_FIELD_ENUMVAL (type, i));
4930 break;
4931 case FIELD_LOC_KIND_PHYSADDR:
4932 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4933 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4934 break;
4935 case FIELD_LOC_KIND_PHYSNAME:
4936 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4937 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4938 i)));
4939 break;
4940 default:
4941 internal_error (__FILE__, __LINE__,
4942 _("Unexpected type field location kind: %d"),
4943 TYPE_FIELD_LOC_KIND (type, i));
4944 }
4945 }
4946 }
4947
4948 /* For range types, copy the bounds information. */
4949 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4950 {
4951 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4952 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4953 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4954 }
4955
4956 if (TYPE_DYN_PROP_LIST (type) != NULL)
4957 TYPE_DYN_PROP_LIST (new_type)
4958 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4959 TYPE_DYN_PROP_LIST (type));
4960
4961
4962 /* Copy pointers to other types. */
4963 if (TYPE_TARGET_TYPE (type))
4964 TYPE_TARGET_TYPE (new_type) =
4965 copy_type_recursive (objfile,
4966 TYPE_TARGET_TYPE (type),
4967 copied_types);
4968
4969 /* Maybe copy the type_specific bits.
4970
4971 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4972 base classes and methods. There's no fundamental reason why we
4973 can't, but at the moment it is not needed. */
4974
4975 switch (TYPE_SPECIFIC_FIELD (type))
4976 {
4977 case TYPE_SPECIFIC_NONE:
4978 break;
4979 case TYPE_SPECIFIC_FUNC:
4980 INIT_FUNC_SPECIFIC (new_type);
4981 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4982 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4983 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4984 break;
4985 case TYPE_SPECIFIC_FLOATFORMAT:
4986 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4987 break;
4988 case TYPE_SPECIFIC_CPLUS_STUFF:
4989 INIT_CPLUS_SPECIFIC (new_type);
4990 break;
4991 case TYPE_SPECIFIC_GNAT_STUFF:
4992 INIT_GNAT_SPECIFIC (new_type);
4993 break;
4994 case TYPE_SPECIFIC_SELF_TYPE:
4995 set_type_self_type (new_type,
4996 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4997 copied_types));
4998 break;
4999 default:
5000 gdb_assert_not_reached ("bad type_specific_kind");
5001 }
5002
5003 return new_type;
5004 }
5005
5006 /* Make a copy of the given TYPE, except that the pointer & reference
5007 types are not preserved.
5008
5009 This function assumes that the given type has an associated objfile.
5010 This objfile is used to allocate the new type. */
5011
5012 struct type *
5013 copy_type (const struct type *type)
5014 {
5015 struct type *new_type;
5016
5017 gdb_assert (TYPE_OBJFILE_OWNED (type));
5018
5019 new_type = alloc_type_copy (type);
5020 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5021 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5022 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5023 sizeof (struct main_type));
5024 if (TYPE_DYN_PROP_LIST (type) != NULL)
5025 TYPE_DYN_PROP_LIST (new_type)
5026 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5027 TYPE_DYN_PROP_LIST (type));
5028
5029 return new_type;
5030 }
5031 \f
5032 /* Helper functions to initialize architecture-specific types. */
5033
5034 /* Allocate a type structure associated with GDBARCH and set its
5035 CODE, LENGTH, and NAME fields. */
5036
5037 struct type *
5038 arch_type (struct gdbarch *gdbarch,
5039 enum type_code code, int bit, const char *name)
5040 {
5041 struct type *type;
5042
5043 type = alloc_type_arch (gdbarch);
5044 set_type_code (type, code);
5045 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5046 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5047
5048 if (name)
5049 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5050
5051 return type;
5052 }
5053
5054 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5055 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5056 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5057
5058 struct type *
5059 arch_integer_type (struct gdbarch *gdbarch,
5060 int bit, int unsigned_p, const char *name)
5061 {
5062 struct type *t;
5063
5064 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5065 if (unsigned_p)
5066 TYPE_UNSIGNED (t) = 1;
5067
5068 return t;
5069 }
5070
5071 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5072 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5073 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5074
5075 struct type *
5076 arch_character_type (struct gdbarch *gdbarch,
5077 int bit, int unsigned_p, const char *name)
5078 {
5079 struct type *t;
5080
5081 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5082 if (unsigned_p)
5083 TYPE_UNSIGNED (t) = 1;
5084
5085 return t;
5086 }
5087
5088 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5089 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5090 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5091
5092 struct type *
5093 arch_boolean_type (struct gdbarch *gdbarch,
5094 int bit, int unsigned_p, const char *name)
5095 {
5096 struct type *t;
5097
5098 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5099 if (unsigned_p)
5100 TYPE_UNSIGNED (t) = 1;
5101
5102 return t;
5103 }
5104
5105 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5106 BIT is the type size in bits; if BIT equals -1, the size is
5107 determined by the floatformat. NAME is the type name. Set the
5108 TYPE_FLOATFORMAT from FLOATFORMATS. */
5109
5110 struct type *
5111 arch_float_type (struct gdbarch *gdbarch,
5112 int bit, const char *name,
5113 const struct floatformat **floatformats)
5114 {
5115 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5116 struct type *t;
5117
5118 bit = verify_floatformat (bit, fmt);
5119 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5120 TYPE_FLOATFORMAT (t) = fmt;
5121
5122 return t;
5123 }
5124
5125 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5126 BIT is the type size in bits. NAME is the type name. */
5127
5128 struct type *
5129 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5130 {
5131 struct type *t;
5132
5133 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5134 return t;
5135 }
5136
5137 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5138 NAME is the type name. TARGET_TYPE is the component float type. */
5139
5140 struct type *
5141 arch_complex_type (struct gdbarch *gdbarch,
5142 const char *name, struct type *target_type)
5143 {
5144 struct type *t;
5145
5146 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5147 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5148 TYPE_TARGET_TYPE (t) = target_type;
5149 return t;
5150 }
5151
5152 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5153 BIT is the pointer type size in bits. NAME is the type name.
5154 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5155 TYPE_UNSIGNED flag. */
5156
5157 struct type *
5158 arch_pointer_type (struct gdbarch *gdbarch,
5159 int bit, const char *name, struct type *target_type)
5160 {
5161 struct type *t;
5162
5163 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5164 TYPE_TARGET_TYPE (t) = target_type;
5165 TYPE_UNSIGNED (t) = 1;
5166 return t;
5167 }
5168
5169 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5170 NAME is the type name. BIT is the size of the flag word in bits. */
5171
5172 struct type *
5173 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5174 {
5175 struct type *type;
5176
5177 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5178 TYPE_UNSIGNED (type) = 1;
5179 TYPE_NFIELDS (type) = 0;
5180 /* Pre-allocate enough space assuming every field is one bit. */
5181 TYPE_FIELDS (type)
5182 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5183
5184 return type;
5185 }
5186
5187 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5188 position BITPOS is called NAME. Pass NAME as "" for fields that
5189 should not be printed. */
5190
5191 void
5192 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5193 struct type *field_type, const char *name)
5194 {
5195 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5196 int field_nr = TYPE_NFIELDS (type);
5197
5198 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5199 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5200 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5201 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5202 gdb_assert (name != NULL);
5203
5204 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5205 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5206 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5207 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5208 ++TYPE_NFIELDS (type);
5209 }
5210
5211 /* Special version of append_flags_type_field to add a flag field.
5212 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5213 position BITPOS is called NAME. */
5214
5215 void
5216 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5217 {
5218 struct gdbarch *gdbarch = get_type_arch (type);
5219
5220 append_flags_type_field (type, bitpos, 1,
5221 builtin_type (gdbarch)->builtin_bool,
5222 name);
5223 }
5224
5225 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5226 specified by CODE) associated with GDBARCH. NAME is the type name. */
5227
5228 struct type *
5229 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5230 enum type_code code)
5231 {
5232 struct type *t;
5233
5234 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5235 t = arch_type (gdbarch, code, 0, NULL);
5236 TYPE_NAME (t) = name;
5237 INIT_CPLUS_SPECIFIC (t);
5238 return t;
5239 }
5240
5241 /* Add new field with name NAME and type FIELD to composite type T.
5242 Do not set the field's position or adjust the type's length;
5243 the caller should do so. Return the new field. */
5244
5245 struct field *
5246 append_composite_type_field_raw (struct type *t, const char *name,
5247 struct type *field)
5248 {
5249 struct field *f;
5250
5251 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5252 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5253 TYPE_NFIELDS (t));
5254 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5255 memset (f, 0, sizeof f[0]);
5256 FIELD_TYPE (f[0]) = field;
5257 FIELD_NAME (f[0]) = name;
5258 return f;
5259 }
5260
5261 /* Add new field with name NAME and type FIELD to composite type T.
5262 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5263
5264 void
5265 append_composite_type_field_aligned (struct type *t, const char *name,
5266 struct type *field, int alignment)
5267 {
5268 struct field *f = append_composite_type_field_raw (t, name, field);
5269
5270 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5271 {
5272 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5273 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5274 }
5275 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5276 {
5277 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5278 if (TYPE_NFIELDS (t) > 1)
5279 {
5280 SET_FIELD_BITPOS (f[0],
5281 (FIELD_BITPOS (f[-1])
5282 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5283 * TARGET_CHAR_BIT)));
5284
5285 if (alignment)
5286 {
5287 int left;
5288
5289 alignment *= TARGET_CHAR_BIT;
5290 left = FIELD_BITPOS (f[0]) % alignment;
5291
5292 if (left)
5293 {
5294 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5295 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5296 }
5297 }
5298 }
5299 }
5300 }
5301
5302 /* Add new field with name NAME and type FIELD to composite type T. */
5303
5304 void
5305 append_composite_type_field (struct type *t, const char *name,
5306 struct type *field)
5307 {
5308 append_composite_type_field_aligned (t, name, field, 0);
5309 }
5310
5311 static struct gdbarch_data *gdbtypes_data;
5312
5313 const struct builtin_type *
5314 builtin_type (struct gdbarch *gdbarch)
5315 {
5316 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5317 }
5318
5319 static void *
5320 gdbtypes_post_init (struct gdbarch *gdbarch)
5321 {
5322 struct builtin_type *builtin_type
5323 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5324
5325 /* Basic types. */
5326 builtin_type->builtin_void
5327 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5328 builtin_type->builtin_char
5329 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5330 !gdbarch_char_signed (gdbarch), "char");
5331 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5332 builtin_type->builtin_signed_char
5333 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5334 0, "signed char");
5335 builtin_type->builtin_unsigned_char
5336 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5337 1, "unsigned char");
5338 builtin_type->builtin_short
5339 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5340 0, "short");
5341 builtin_type->builtin_unsigned_short
5342 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5343 1, "unsigned short");
5344 builtin_type->builtin_int
5345 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5346 0, "int");
5347 builtin_type->builtin_unsigned_int
5348 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5349 1, "unsigned int");
5350 builtin_type->builtin_long
5351 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5352 0, "long");
5353 builtin_type->builtin_unsigned_long
5354 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5355 1, "unsigned long");
5356 builtin_type->builtin_long_long
5357 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5358 0, "long long");
5359 builtin_type->builtin_unsigned_long_long
5360 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5361 1, "unsigned long long");
5362 builtin_type->builtin_float
5363 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5364 "float", gdbarch_float_format (gdbarch));
5365 builtin_type->builtin_double
5366 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5367 "double", gdbarch_double_format (gdbarch));
5368 builtin_type->builtin_long_double
5369 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5370 "long double", gdbarch_long_double_format (gdbarch));
5371 builtin_type->builtin_complex
5372 = arch_complex_type (gdbarch, "complex",
5373 builtin_type->builtin_float);
5374 builtin_type->builtin_double_complex
5375 = arch_complex_type (gdbarch, "double complex",
5376 builtin_type->builtin_double);
5377 builtin_type->builtin_string
5378 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5379 builtin_type->builtin_bool
5380 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5381
5382 /* The following three are about decimal floating point types, which
5383 are 32-bits, 64-bits and 128-bits respectively. */
5384 builtin_type->builtin_decfloat
5385 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5386 builtin_type->builtin_decdouble
5387 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5388 builtin_type->builtin_declong
5389 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5390
5391 /* "True" character types. */
5392 builtin_type->builtin_true_char
5393 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5394 builtin_type->builtin_true_unsigned_char
5395 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5396
5397 /* Fixed-size integer types. */
5398 builtin_type->builtin_int0
5399 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5400 builtin_type->builtin_int8
5401 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5402 builtin_type->builtin_uint8
5403 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5404 builtin_type->builtin_int16
5405 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5406 builtin_type->builtin_uint16
5407 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5408 builtin_type->builtin_int24
5409 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5410 builtin_type->builtin_uint24
5411 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5412 builtin_type->builtin_int32
5413 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5414 builtin_type->builtin_uint32
5415 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5416 builtin_type->builtin_int64
5417 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5418 builtin_type->builtin_uint64
5419 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5420 builtin_type->builtin_int128
5421 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5422 builtin_type->builtin_uint128
5423 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5424 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5425 TYPE_INSTANCE_FLAG_NOTTEXT;
5426 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5427 TYPE_INSTANCE_FLAG_NOTTEXT;
5428
5429 /* Wide character types. */
5430 builtin_type->builtin_char16
5431 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5432 builtin_type->builtin_char32
5433 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5434 builtin_type->builtin_wchar
5435 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5436 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5437
5438 /* Default data/code pointer types. */
5439 builtin_type->builtin_data_ptr
5440 = lookup_pointer_type (builtin_type->builtin_void);
5441 builtin_type->builtin_func_ptr
5442 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5443 builtin_type->builtin_func_func
5444 = lookup_function_type (builtin_type->builtin_func_ptr);
5445
5446 /* This type represents a GDB internal function. */
5447 builtin_type->internal_fn
5448 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5449 "<internal function>");
5450
5451 /* This type represents an xmethod. */
5452 builtin_type->xmethod
5453 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5454
5455 return builtin_type;
5456 }
5457
5458 /* This set of objfile-based types is intended to be used by symbol
5459 readers as basic types. */
5460
5461 static const struct objfile_data *objfile_type_data;
5462
5463 const struct objfile_type *
5464 objfile_type (struct objfile *objfile)
5465 {
5466 struct gdbarch *gdbarch;
5467 struct objfile_type *objfile_type
5468 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5469
5470 if (objfile_type)
5471 return objfile_type;
5472
5473 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5474 1, struct objfile_type);
5475
5476 /* Use the objfile architecture to determine basic type properties. */
5477 gdbarch = get_objfile_arch (objfile);
5478
5479 /* Basic types. */
5480 objfile_type->builtin_void
5481 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5482 objfile_type->builtin_char
5483 = init_integer_type (objfile, TARGET_CHAR_BIT,
5484 !gdbarch_char_signed (gdbarch), "char");
5485 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5486 objfile_type->builtin_signed_char
5487 = init_integer_type (objfile, TARGET_CHAR_BIT,
5488 0, "signed char");
5489 objfile_type->builtin_unsigned_char
5490 = init_integer_type (objfile, TARGET_CHAR_BIT,
5491 1, "unsigned char");
5492 objfile_type->builtin_short
5493 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5494 0, "short");
5495 objfile_type->builtin_unsigned_short
5496 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5497 1, "unsigned short");
5498 objfile_type->builtin_int
5499 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5500 0, "int");
5501 objfile_type->builtin_unsigned_int
5502 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5503 1, "unsigned int");
5504 objfile_type->builtin_long
5505 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5506 0, "long");
5507 objfile_type->builtin_unsigned_long
5508 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5509 1, "unsigned long");
5510 objfile_type->builtin_long_long
5511 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5512 0, "long long");
5513 objfile_type->builtin_unsigned_long_long
5514 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5515 1, "unsigned long long");
5516 objfile_type->builtin_float
5517 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5518 "float", gdbarch_float_format (gdbarch));
5519 objfile_type->builtin_double
5520 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5521 "double", gdbarch_double_format (gdbarch));
5522 objfile_type->builtin_long_double
5523 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5524 "long double", gdbarch_long_double_format (gdbarch));
5525
5526 /* This type represents a type that was unrecognized in symbol read-in. */
5527 objfile_type->builtin_error
5528 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5529
5530 /* The following set of types is used for symbols with no
5531 debug information. */
5532 objfile_type->nodebug_text_symbol
5533 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5534 "<text variable, no debug info>");
5535 objfile_type->nodebug_text_gnu_ifunc_symbol
5536 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5537 "<text gnu-indirect-function variable, no debug info>");
5538 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5539 objfile_type->nodebug_got_plt_symbol
5540 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5541 "<text from jump slot in .got.plt, no debug info>",
5542 objfile_type->nodebug_text_symbol);
5543 objfile_type->nodebug_data_symbol
5544 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5545 objfile_type->nodebug_unknown_symbol
5546 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5547 objfile_type->nodebug_tls_symbol
5548 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5549
5550 /* NOTE: on some targets, addresses and pointers are not necessarily
5551 the same.
5552
5553 The upshot is:
5554 - gdb's `struct type' always describes the target's
5555 representation.
5556 - gdb's `struct value' objects should always hold values in
5557 target form.
5558 - gdb's CORE_ADDR values are addresses in the unified virtual
5559 address space that the assembler and linker work with. Thus,
5560 since target_read_memory takes a CORE_ADDR as an argument, it
5561 can access any memory on the target, even if the processor has
5562 separate code and data address spaces.
5563
5564 In this context, objfile_type->builtin_core_addr is a bit odd:
5565 it's a target type for a value the target will never see. It's
5566 only used to hold the values of (typeless) linker symbols, which
5567 are indeed in the unified virtual address space. */
5568
5569 objfile_type->builtin_core_addr
5570 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5571 "__CORE_ADDR");
5572
5573 set_objfile_data (objfile, objfile_type_data, objfile_type);
5574 return objfile_type;
5575 }
5576
5577 void
5578 _initialize_gdbtypes (void)
5579 {
5580 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5581 objfile_type_data = register_objfile_data ();
5582
5583 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5584 _("Set debugging of C++ overloading."),
5585 _("Show debugging of C++ overloading."),
5586 _("When enabled, ranking of the "
5587 "functions is displayed."),
5588 NULL,
5589 show_overload_debug,
5590 &setdebuglist, &showdebuglist);
5591
5592 /* Add user knob for controlling resolution of opaque types. */
5593 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5594 &opaque_type_resolution,
5595 _("Set resolution of opaque struct/class/union"
5596 " types (if set before loading symbols)."),
5597 _("Show resolution of opaque struct/class/union"
5598 " types (if set before loading symbols)."),
5599 NULL, NULL,
5600 show_opaque_type_resolution,
5601 &setlist, &showlist);
5602
5603 /* Add an option to permit non-strict type checking. */
5604 add_setshow_boolean_cmd ("type", class_support,
5605 &strict_type_checking,
5606 _("Set strict type checking."),
5607 _("Show strict type checking."),
5608 NULL, NULL,
5609 show_strict_type_checking,
5610 &setchecklist, &showchecklist);
5611 }