]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
Change boolean options to bool instead of int
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static bool opaque_type_resolution = true;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static bool strict_type_checking = true;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
906
907 #undef FIELD_EQ
908 }
909
910 /* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
912
913 struct type *
914 create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
918 {
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
924 if (result_type == NULL)
925 result_type = alloc_type_copy (index_type);
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
928 if (TYPE_STUB (index_type))
929 TYPE_TARGET_STUB (result_type) = 1;
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
932
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
937 TYPE_RANGE_DATA (result_type)->bias = bias;
938
939 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
940 TYPE_UNSIGNED (result_type) = 1;
941
942 /* Ada allows the declaration of range types whose upper bound is
943 less than the lower bound, so checking the lower bound is not
944 enough. Make sure we do not mark a range type whose upper bound
945 is negative as unsigned. */
946 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
947 TYPE_UNSIGNED (result_type) = 0;
948
949 return result_type;
950 }
951
952 /* Create a range type using either a blank type supplied in
953 RESULT_TYPE, or creating a new type, inheriting the objfile from
954 INDEX_TYPE.
955
956 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
957 to HIGH_BOUND, inclusive.
958
959 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
960 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
961
962 struct type *
963 create_static_range_type (struct type *result_type, struct type *index_type,
964 LONGEST low_bound, LONGEST high_bound)
965 {
966 struct dynamic_prop low, high;
967
968 low.kind = PROP_CONST;
969 low.data.const_val = low_bound;
970
971 high.kind = PROP_CONST;
972 high.data.const_val = high_bound;
973
974 result_type = create_range_type (result_type, index_type, &low, &high, 0);
975
976 return result_type;
977 }
978
979 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
980 are static, otherwise returns 0. */
981
982 static int
983 has_static_range (const struct range_bounds *bounds)
984 {
985 return (bounds->low.kind == PROP_CONST
986 && bounds->high.kind == PROP_CONST);
987 }
988
989
990 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
991 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
992 bounds will fit in LONGEST), or -1 otherwise. */
993
994 int
995 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
996 {
997 type = check_typedef (type);
998 switch (TYPE_CODE (type))
999 {
1000 case TYPE_CODE_RANGE:
1001 *lowp = TYPE_LOW_BOUND (type);
1002 *highp = TYPE_HIGH_BOUND (type);
1003 return 1;
1004 case TYPE_CODE_ENUM:
1005 if (TYPE_NFIELDS (type) > 0)
1006 {
1007 /* The enums may not be sorted by value, so search all
1008 entries. */
1009 int i;
1010
1011 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1012 for (i = 0; i < TYPE_NFIELDS (type); i++)
1013 {
1014 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1015 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1016 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1017 *highp = TYPE_FIELD_ENUMVAL (type, i);
1018 }
1019
1020 /* Set unsigned indicator if warranted. */
1021 if (*lowp >= 0)
1022 {
1023 TYPE_UNSIGNED (type) = 1;
1024 }
1025 }
1026 else
1027 {
1028 *lowp = 0;
1029 *highp = -1;
1030 }
1031 return 0;
1032 case TYPE_CODE_BOOL:
1033 *lowp = 0;
1034 *highp = 1;
1035 return 0;
1036 case TYPE_CODE_INT:
1037 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1038 return -1;
1039 if (!TYPE_UNSIGNED (type))
1040 {
1041 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1042 *highp = -*lowp - 1;
1043 return 0;
1044 }
1045 /* fall through */
1046 case TYPE_CODE_CHAR:
1047 *lowp = 0;
1048 /* This round-about calculation is to avoid shifting by
1049 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1050 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1051 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1052 *highp = (*highp - 1) | *highp;
1053 return 0;
1054 default:
1055 return -1;
1056 }
1057 }
1058
1059 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1060 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1061 Save the high bound into HIGH_BOUND if not NULL.
1062
1063 Return 1 if the operation was successful. Return zero otherwise,
1064 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1065
1066 We now simply use get_discrete_bounds call to get the values
1067 of the low and high bounds.
1068 get_discrete_bounds can return three values:
1069 1, meaning that index is a range,
1070 0, meaning that index is a discrete type,
1071 or -1 for failure. */
1072
1073 int
1074 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1075 {
1076 struct type *index = TYPE_INDEX_TYPE (type);
1077 LONGEST low = 0;
1078 LONGEST high = 0;
1079 int res;
1080
1081 if (index == NULL)
1082 return 0;
1083
1084 res = get_discrete_bounds (index, &low, &high);
1085 if (res == -1)
1086 return 0;
1087
1088 /* Check if the array bounds are undefined. */
1089 if (res == 1
1090 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1091 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1092 return 0;
1093
1094 if (low_bound)
1095 *low_bound = low;
1096
1097 if (high_bound)
1098 *high_bound = high;
1099
1100 return 1;
1101 }
1102
1103 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1104 representation of a value of this type, save the corresponding
1105 position number in POS.
1106
1107 Its differs from VAL only in the case of enumeration types. In
1108 this case, the position number of the value of the first listed
1109 enumeration literal is zero; the position number of the value of
1110 each subsequent enumeration literal is one more than that of its
1111 predecessor in the list.
1112
1113 Return 1 if the operation was successful. Return zero otherwise,
1114 in which case the value of POS is unmodified.
1115 */
1116
1117 int
1118 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1119 {
1120 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1121 {
1122 int i;
1123
1124 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1125 {
1126 if (val == TYPE_FIELD_ENUMVAL (type, i))
1127 {
1128 *pos = i;
1129 return 1;
1130 }
1131 }
1132 /* Invalid enumeration value. */
1133 return 0;
1134 }
1135 else
1136 {
1137 *pos = val;
1138 return 1;
1139 }
1140 }
1141
1142 /* Create an array type using either a blank type supplied in
1143 RESULT_TYPE, or creating a new type, inheriting the objfile from
1144 RANGE_TYPE.
1145
1146 Elements will be of type ELEMENT_TYPE, the indices will be of type
1147 RANGE_TYPE.
1148
1149 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1150 This byte stride property is added to the resulting array type
1151 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1152 argument can only be used to create types that are objfile-owned
1153 (see add_dyn_prop), meaning that either this function must be called
1154 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1155
1156 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1157 If BIT_STRIDE is not zero, build a packed array type whose element
1158 size is BIT_STRIDE. Otherwise, ignore this parameter.
1159
1160 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1161 sure it is TYPE_CODE_UNDEF before we bash it into an array
1162 type? */
1163
1164 struct type *
1165 create_array_type_with_stride (struct type *result_type,
1166 struct type *element_type,
1167 struct type *range_type,
1168 struct dynamic_prop *byte_stride_prop,
1169 unsigned int bit_stride)
1170 {
1171 if (byte_stride_prop != NULL
1172 && byte_stride_prop->kind == PROP_CONST)
1173 {
1174 /* The byte stride is actually not dynamic. Pretend we were
1175 called with bit_stride set instead of byte_stride_prop.
1176 This will give us the same result type, while avoiding
1177 the need to handle this as a special case. */
1178 bit_stride = byte_stride_prop->data.const_val * 8;
1179 byte_stride_prop = NULL;
1180 }
1181
1182 if (result_type == NULL)
1183 result_type = alloc_type_copy (range_type);
1184
1185 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1186 TYPE_TARGET_TYPE (result_type) = element_type;
1187 if (byte_stride_prop == NULL
1188 && has_static_range (TYPE_RANGE_DATA (range_type))
1189 && (!type_not_associated (result_type)
1190 && !type_not_allocated (result_type)))
1191 {
1192 LONGEST low_bound, high_bound;
1193
1194 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1195 low_bound = high_bound = 0;
1196 element_type = check_typedef (element_type);
1197 /* Be careful when setting the array length. Ada arrays can be
1198 empty arrays with the high_bound being smaller than the low_bound.
1199 In such cases, the array length should be zero. */
1200 if (high_bound < low_bound)
1201 TYPE_LENGTH (result_type) = 0;
1202 else if (bit_stride > 0)
1203 TYPE_LENGTH (result_type) =
1204 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1205 else
1206 TYPE_LENGTH (result_type) =
1207 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1208 }
1209 else
1210 {
1211 /* This type is dynamic and its length needs to be computed
1212 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1213 undefined by setting it to zero. Although we are not expected
1214 to trust TYPE_LENGTH in this case, setting the size to zero
1215 allows us to avoid allocating objects of random sizes in case
1216 we accidently do. */
1217 TYPE_LENGTH (result_type) = 0;
1218 }
1219
1220 TYPE_NFIELDS (result_type) = 1;
1221 TYPE_FIELDS (result_type) =
1222 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1223 TYPE_INDEX_TYPE (result_type) = range_type;
1224 if (byte_stride_prop != NULL)
1225 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1226 else if (bit_stride > 0)
1227 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1228
1229 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1230 if (TYPE_LENGTH (result_type) == 0)
1231 TYPE_TARGET_STUB (result_type) = 1;
1232
1233 return result_type;
1234 }
1235
1236 /* Same as create_array_type_with_stride but with no bit_stride
1237 (BIT_STRIDE = 0), thus building an unpacked array. */
1238
1239 struct type *
1240 create_array_type (struct type *result_type,
1241 struct type *element_type,
1242 struct type *range_type)
1243 {
1244 return create_array_type_with_stride (result_type, element_type,
1245 range_type, NULL, 0);
1246 }
1247
1248 struct type *
1249 lookup_array_range_type (struct type *element_type,
1250 LONGEST low_bound, LONGEST high_bound)
1251 {
1252 struct type *index_type;
1253 struct type *range_type;
1254
1255 if (TYPE_OBJFILE_OWNED (element_type))
1256 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1257 else
1258 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1259 range_type = create_static_range_type (NULL, index_type,
1260 low_bound, high_bound);
1261
1262 return create_array_type (NULL, element_type, range_type);
1263 }
1264
1265 /* Create a string type using either a blank type supplied in
1266 RESULT_TYPE, or creating a new type. String types are similar
1267 enough to array of char types that we can use create_array_type to
1268 build the basic type and then bash it into a string type.
1269
1270 For fixed length strings, the range type contains 0 as the lower
1271 bound and the length of the string minus one as the upper bound.
1272
1273 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1274 sure it is TYPE_CODE_UNDEF before we bash it into a string
1275 type? */
1276
1277 struct type *
1278 create_string_type (struct type *result_type,
1279 struct type *string_char_type,
1280 struct type *range_type)
1281 {
1282 result_type = create_array_type (result_type,
1283 string_char_type,
1284 range_type);
1285 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1286 return result_type;
1287 }
1288
1289 struct type *
1290 lookup_string_range_type (struct type *string_char_type,
1291 LONGEST low_bound, LONGEST high_bound)
1292 {
1293 struct type *result_type;
1294
1295 result_type = lookup_array_range_type (string_char_type,
1296 low_bound, high_bound);
1297 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1298 return result_type;
1299 }
1300
1301 struct type *
1302 create_set_type (struct type *result_type, struct type *domain_type)
1303 {
1304 if (result_type == NULL)
1305 result_type = alloc_type_copy (domain_type);
1306
1307 TYPE_CODE (result_type) = TYPE_CODE_SET;
1308 TYPE_NFIELDS (result_type) = 1;
1309 TYPE_FIELDS (result_type)
1310 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1311
1312 if (!TYPE_STUB (domain_type))
1313 {
1314 LONGEST low_bound, high_bound, bit_length;
1315
1316 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1317 low_bound = high_bound = 0;
1318 bit_length = high_bound - low_bound + 1;
1319 TYPE_LENGTH (result_type)
1320 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1321 if (low_bound >= 0)
1322 TYPE_UNSIGNED (result_type) = 1;
1323 }
1324 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1325
1326 return result_type;
1327 }
1328
1329 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1330 and any array types nested inside it. */
1331
1332 void
1333 make_vector_type (struct type *array_type)
1334 {
1335 struct type *inner_array, *elt_type;
1336 int flags;
1337
1338 /* Find the innermost array type, in case the array is
1339 multi-dimensional. */
1340 inner_array = array_type;
1341 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1342 inner_array = TYPE_TARGET_TYPE (inner_array);
1343
1344 elt_type = TYPE_TARGET_TYPE (inner_array);
1345 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1346 {
1347 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1348 elt_type = make_qualified_type (elt_type, flags, NULL);
1349 TYPE_TARGET_TYPE (inner_array) = elt_type;
1350 }
1351
1352 TYPE_VECTOR (array_type) = 1;
1353 }
1354
1355 struct type *
1356 init_vector_type (struct type *elt_type, int n)
1357 {
1358 struct type *array_type;
1359
1360 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1361 make_vector_type (array_type);
1362 return array_type;
1363 }
1364
1365 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1366 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1367 confusing. "self" is a common enough replacement for "this".
1368 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1369 TYPE_CODE_METHOD. */
1370
1371 struct type *
1372 internal_type_self_type (struct type *type)
1373 {
1374 switch (TYPE_CODE (type))
1375 {
1376 case TYPE_CODE_METHODPTR:
1377 case TYPE_CODE_MEMBERPTR:
1378 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1379 return NULL;
1380 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1381 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1382 case TYPE_CODE_METHOD:
1383 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1384 return NULL;
1385 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1386 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1387 default:
1388 gdb_assert_not_reached ("bad type");
1389 }
1390 }
1391
1392 /* Set the type of the class that TYPE belongs to.
1393 In c++ this is the class of "this".
1394 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1395 TYPE_CODE_METHOD. */
1396
1397 void
1398 set_type_self_type (struct type *type, struct type *self_type)
1399 {
1400 switch (TYPE_CODE (type))
1401 {
1402 case TYPE_CODE_METHODPTR:
1403 case TYPE_CODE_MEMBERPTR:
1404 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1405 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1406 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1407 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1408 break;
1409 case TYPE_CODE_METHOD:
1410 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1411 INIT_FUNC_SPECIFIC (type);
1412 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1413 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1414 break;
1415 default:
1416 gdb_assert_not_reached ("bad type");
1417 }
1418 }
1419
1420 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1421 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1422 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1423 TYPE doesn't include the offset (that's the value of the MEMBER
1424 itself), but does include the structure type into which it points
1425 (for some reason).
1426
1427 When "smashing" the type, we preserve the objfile that the old type
1428 pointed to, since we aren't changing where the type is actually
1429 allocated. */
1430
1431 void
1432 smash_to_memberptr_type (struct type *type, struct type *self_type,
1433 struct type *to_type)
1434 {
1435 smash_type (type);
1436 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1437 TYPE_TARGET_TYPE (type) = to_type;
1438 set_type_self_type (type, self_type);
1439 /* Assume that a data member pointer is the same size as a normal
1440 pointer. */
1441 TYPE_LENGTH (type)
1442 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1443 }
1444
1445 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1446
1447 When "smashing" the type, we preserve the objfile that the old type
1448 pointed to, since we aren't changing where the type is actually
1449 allocated. */
1450
1451 void
1452 smash_to_methodptr_type (struct type *type, struct type *to_type)
1453 {
1454 smash_type (type);
1455 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1456 TYPE_TARGET_TYPE (type) = to_type;
1457 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1458 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1459 }
1460
1461 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1462 METHOD just means `function that gets an extra "this" argument'.
1463
1464 When "smashing" the type, we preserve the objfile that the old type
1465 pointed to, since we aren't changing where the type is actually
1466 allocated. */
1467
1468 void
1469 smash_to_method_type (struct type *type, struct type *self_type,
1470 struct type *to_type, struct field *args,
1471 int nargs, int varargs)
1472 {
1473 smash_type (type);
1474 TYPE_CODE (type) = TYPE_CODE_METHOD;
1475 TYPE_TARGET_TYPE (type) = to_type;
1476 set_type_self_type (type, self_type);
1477 TYPE_FIELDS (type) = args;
1478 TYPE_NFIELDS (type) = nargs;
1479 if (varargs)
1480 TYPE_VARARGS (type) = 1;
1481 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1482 }
1483
1484 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1485 Since GCC PR debug/47510 DWARF provides associated information to detect the
1486 anonymous class linkage name from its typedef.
1487
1488 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1489 apply it itself. */
1490
1491 const char *
1492 type_name_or_error (struct type *type)
1493 {
1494 struct type *saved_type = type;
1495 const char *name;
1496 struct objfile *objfile;
1497
1498 type = check_typedef (type);
1499
1500 name = TYPE_NAME (type);
1501 if (name != NULL)
1502 return name;
1503
1504 name = TYPE_NAME (saved_type);
1505 objfile = TYPE_OBJFILE (saved_type);
1506 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1507 name ? name : "<anonymous>",
1508 objfile ? objfile_name (objfile) : "<arch>");
1509 }
1510
1511 /* Lookup a typedef or primitive type named NAME, visible in lexical
1512 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1513 suitably defined. */
1514
1515 struct type *
1516 lookup_typename (const struct language_defn *language,
1517 struct gdbarch *gdbarch, const char *name,
1518 const struct block *block, int noerr)
1519 {
1520 struct symbol *sym;
1521
1522 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1523 language->la_language, NULL).symbol;
1524 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1525 return SYMBOL_TYPE (sym);
1526
1527 if (noerr)
1528 return NULL;
1529 error (_("No type named %s."), name);
1530 }
1531
1532 struct type *
1533 lookup_unsigned_typename (const struct language_defn *language,
1534 struct gdbarch *gdbarch, const char *name)
1535 {
1536 char *uns = (char *) alloca (strlen (name) + 10);
1537
1538 strcpy (uns, "unsigned ");
1539 strcpy (uns + 9, name);
1540 return lookup_typename (language, gdbarch, uns, NULL, 0);
1541 }
1542
1543 struct type *
1544 lookup_signed_typename (const struct language_defn *language,
1545 struct gdbarch *gdbarch, const char *name)
1546 {
1547 struct type *t;
1548 char *uns = (char *) alloca (strlen (name) + 8);
1549
1550 strcpy (uns, "signed ");
1551 strcpy (uns + 7, name);
1552 t = lookup_typename (language, gdbarch, uns, NULL, 1);
1553 /* If we don't find "signed FOO" just try again with plain "FOO". */
1554 if (t != NULL)
1555 return t;
1556 return lookup_typename (language, gdbarch, name, NULL, 0);
1557 }
1558
1559 /* Lookup a structure type named "struct NAME",
1560 visible in lexical block BLOCK. */
1561
1562 struct type *
1563 lookup_struct (const char *name, const struct block *block)
1564 {
1565 struct symbol *sym;
1566
1567 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1568
1569 if (sym == NULL)
1570 {
1571 error (_("No struct type named %s."), name);
1572 }
1573 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1574 {
1575 error (_("This context has class, union or enum %s, not a struct."),
1576 name);
1577 }
1578 return (SYMBOL_TYPE (sym));
1579 }
1580
1581 /* Lookup a union type named "union NAME",
1582 visible in lexical block BLOCK. */
1583
1584 struct type *
1585 lookup_union (const char *name, const struct block *block)
1586 {
1587 struct symbol *sym;
1588 struct type *t;
1589
1590 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1591
1592 if (sym == NULL)
1593 error (_("No union type named %s."), name);
1594
1595 t = SYMBOL_TYPE (sym);
1596
1597 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1598 return t;
1599
1600 /* If we get here, it's not a union. */
1601 error (_("This context has class, struct or enum %s, not a union."),
1602 name);
1603 }
1604
1605 /* Lookup an enum type named "enum NAME",
1606 visible in lexical block BLOCK. */
1607
1608 struct type *
1609 lookup_enum (const char *name, const struct block *block)
1610 {
1611 struct symbol *sym;
1612
1613 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1614 if (sym == NULL)
1615 {
1616 error (_("No enum type named %s."), name);
1617 }
1618 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1619 {
1620 error (_("This context has class, struct or union %s, not an enum."),
1621 name);
1622 }
1623 return (SYMBOL_TYPE (sym));
1624 }
1625
1626 /* Lookup a template type named "template NAME<TYPE>",
1627 visible in lexical block BLOCK. */
1628
1629 struct type *
1630 lookup_template_type (const char *name, struct type *type,
1631 const struct block *block)
1632 {
1633 struct symbol *sym;
1634 char *nam = (char *)
1635 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1636
1637 strcpy (nam, name);
1638 strcat (nam, "<");
1639 strcat (nam, TYPE_NAME (type));
1640 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1641
1642 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1643
1644 if (sym == NULL)
1645 {
1646 error (_("No template type named %s."), name);
1647 }
1648 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1649 {
1650 error (_("This context has class, union or enum %s, not a struct."),
1651 name);
1652 }
1653 return (SYMBOL_TYPE (sym));
1654 }
1655
1656 /* See gdbtypes.h. */
1657
1658 struct_elt
1659 lookup_struct_elt (struct type *type, const char *name, int noerr)
1660 {
1661 int i;
1662
1663 for (;;)
1664 {
1665 type = check_typedef (type);
1666 if (TYPE_CODE (type) != TYPE_CODE_PTR
1667 && TYPE_CODE (type) != TYPE_CODE_REF)
1668 break;
1669 type = TYPE_TARGET_TYPE (type);
1670 }
1671
1672 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1673 && TYPE_CODE (type) != TYPE_CODE_UNION)
1674 {
1675 std::string type_name = type_to_string (type);
1676 error (_("Type %s is not a structure or union type."),
1677 type_name.c_str ());
1678 }
1679
1680 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1681 {
1682 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1683
1684 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1685 {
1686 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1687 }
1688 else if (!t_field_name || *t_field_name == '\0')
1689 {
1690 struct_elt elt
1691 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1692 if (elt.field != NULL)
1693 {
1694 elt.offset += TYPE_FIELD_BITPOS (type, i);
1695 return elt;
1696 }
1697 }
1698 }
1699
1700 /* OK, it's not in this class. Recursively check the baseclasses. */
1701 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1702 {
1703 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1704 if (elt.field != NULL)
1705 return elt;
1706 }
1707
1708 if (noerr)
1709 return {nullptr, 0};
1710
1711 std::string type_name = type_to_string (type);
1712 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1713 }
1714
1715 /* See gdbtypes.h. */
1716
1717 struct type *
1718 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1719 {
1720 struct_elt elt = lookup_struct_elt (type, name, noerr);
1721 if (elt.field != NULL)
1722 return FIELD_TYPE (*elt.field);
1723 else
1724 return NULL;
1725 }
1726
1727 /* Store in *MAX the largest number representable by unsigned integer type
1728 TYPE. */
1729
1730 void
1731 get_unsigned_type_max (struct type *type, ULONGEST *max)
1732 {
1733 unsigned int n;
1734
1735 type = check_typedef (type);
1736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1737 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1738
1739 /* Written this way to avoid overflow. */
1740 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1741 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1742 }
1743
1744 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1745 signed integer type TYPE. */
1746
1747 void
1748 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1749 {
1750 unsigned int n;
1751
1752 type = check_typedef (type);
1753 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1754 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1755
1756 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1757 *min = -((ULONGEST) 1 << (n - 1));
1758 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1759 }
1760
1761 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1762 cplus_stuff.vptr_fieldno.
1763
1764 cplus_stuff is initialized to cplus_struct_default which does not
1765 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1766 designated initializers). We cope with that here. */
1767
1768 int
1769 internal_type_vptr_fieldno (struct type *type)
1770 {
1771 type = check_typedef (type);
1772 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1773 || TYPE_CODE (type) == TYPE_CODE_UNION);
1774 if (!HAVE_CPLUS_STRUCT (type))
1775 return -1;
1776 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1777 }
1778
1779 /* Set the value of cplus_stuff.vptr_fieldno. */
1780
1781 void
1782 set_type_vptr_fieldno (struct type *type, int fieldno)
1783 {
1784 type = check_typedef (type);
1785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1786 || TYPE_CODE (type) == TYPE_CODE_UNION);
1787 if (!HAVE_CPLUS_STRUCT (type))
1788 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1789 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1790 }
1791
1792 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1793 cplus_stuff.vptr_basetype. */
1794
1795 struct type *
1796 internal_type_vptr_basetype (struct type *type)
1797 {
1798 type = check_typedef (type);
1799 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1800 || TYPE_CODE (type) == TYPE_CODE_UNION);
1801 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1802 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1803 }
1804
1805 /* Set the value of cplus_stuff.vptr_basetype. */
1806
1807 void
1808 set_type_vptr_basetype (struct type *type, struct type *basetype)
1809 {
1810 type = check_typedef (type);
1811 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1812 || TYPE_CODE (type) == TYPE_CODE_UNION);
1813 if (!HAVE_CPLUS_STRUCT (type))
1814 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1815 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1816 }
1817
1818 /* Lookup the vptr basetype/fieldno values for TYPE.
1819 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1820 vptr_fieldno. Also, if found and basetype is from the same objfile,
1821 cache the results.
1822 If not found, return -1 and ignore BASETYPEP.
1823 Callers should be aware that in some cases (for example,
1824 the type or one of its baseclasses is a stub type and we are
1825 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1826 this function will not be able to find the
1827 virtual function table pointer, and vptr_fieldno will remain -1 and
1828 vptr_basetype will remain NULL or incomplete. */
1829
1830 int
1831 get_vptr_fieldno (struct type *type, struct type **basetypep)
1832 {
1833 type = check_typedef (type);
1834
1835 if (TYPE_VPTR_FIELDNO (type) < 0)
1836 {
1837 int i;
1838
1839 /* We must start at zero in case the first (and only) baseclass
1840 is virtual (and hence we cannot share the table pointer). */
1841 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1842 {
1843 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1844 int fieldno;
1845 struct type *basetype;
1846
1847 fieldno = get_vptr_fieldno (baseclass, &basetype);
1848 if (fieldno >= 0)
1849 {
1850 /* If the type comes from a different objfile we can't cache
1851 it, it may have a different lifetime. PR 2384 */
1852 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1853 {
1854 set_type_vptr_fieldno (type, fieldno);
1855 set_type_vptr_basetype (type, basetype);
1856 }
1857 if (basetypep)
1858 *basetypep = basetype;
1859 return fieldno;
1860 }
1861 }
1862
1863 /* Not found. */
1864 return -1;
1865 }
1866 else
1867 {
1868 if (basetypep)
1869 *basetypep = TYPE_VPTR_BASETYPE (type);
1870 return TYPE_VPTR_FIELDNO (type);
1871 }
1872 }
1873
1874 static void
1875 stub_noname_complaint (void)
1876 {
1877 complaint (_("stub type has NULL name"));
1878 }
1879
1880 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1881 attached to it, and that property has a non-constant value. */
1882
1883 static int
1884 array_type_has_dynamic_stride (struct type *type)
1885 {
1886 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1887
1888 return (prop != NULL && prop->kind != PROP_CONST);
1889 }
1890
1891 /* Worker for is_dynamic_type. */
1892
1893 static int
1894 is_dynamic_type_internal (struct type *type, int top_level)
1895 {
1896 type = check_typedef (type);
1897
1898 /* We only want to recognize references at the outermost level. */
1899 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1900 type = check_typedef (TYPE_TARGET_TYPE (type));
1901
1902 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1903 dynamic, even if the type itself is statically defined.
1904 From a user's point of view, this may appear counter-intuitive;
1905 but it makes sense in this context, because the point is to determine
1906 whether any part of the type needs to be resolved before it can
1907 be exploited. */
1908 if (TYPE_DATA_LOCATION (type) != NULL
1909 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1910 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1911 return 1;
1912
1913 if (TYPE_ASSOCIATED_PROP (type))
1914 return 1;
1915
1916 if (TYPE_ALLOCATED_PROP (type))
1917 return 1;
1918
1919 switch (TYPE_CODE (type))
1920 {
1921 case TYPE_CODE_RANGE:
1922 {
1923 /* A range type is obviously dynamic if it has at least one
1924 dynamic bound. But also consider the range type to be
1925 dynamic when its subtype is dynamic, even if the bounds
1926 of the range type are static. It allows us to assume that
1927 the subtype of a static range type is also static. */
1928 return (!has_static_range (TYPE_RANGE_DATA (type))
1929 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1930 }
1931
1932 case TYPE_CODE_ARRAY:
1933 {
1934 gdb_assert (TYPE_NFIELDS (type) == 1);
1935
1936 /* The array is dynamic if either the bounds are dynamic... */
1937 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1938 return 1;
1939 /* ... or the elements it contains have a dynamic contents... */
1940 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1941 return 1;
1942 /* ... or if it has a dynamic stride... */
1943 if (array_type_has_dynamic_stride (type))
1944 return 1;
1945 return 0;
1946 }
1947
1948 case TYPE_CODE_STRUCT:
1949 case TYPE_CODE_UNION:
1950 {
1951 int i;
1952
1953 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1954 if (!field_is_static (&TYPE_FIELD (type, i))
1955 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1956 return 1;
1957 }
1958 break;
1959 }
1960
1961 return 0;
1962 }
1963
1964 /* See gdbtypes.h. */
1965
1966 int
1967 is_dynamic_type (struct type *type)
1968 {
1969 return is_dynamic_type_internal (type, 1);
1970 }
1971
1972 static struct type *resolve_dynamic_type_internal
1973 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1974
1975 /* Given a dynamic range type (dyn_range_type) and a stack of
1976 struct property_addr_info elements, return a static version
1977 of that type. */
1978
1979 static struct type *
1980 resolve_dynamic_range (struct type *dyn_range_type,
1981 struct property_addr_info *addr_stack)
1982 {
1983 CORE_ADDR value;
1984 struct type *static_range_type, *static_target_type;
1985 const struct dynamic_prop *prop;
1986 struct dynamic_prop low_bound, high_bound;
1987
1988 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1989
1990 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1991 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1992 {
1993 low_bound.kind = PROP_CONST;
1994 low_bound.data.const_val = value;
1995 }
1996 else
1997 {
1998 low_bound.kind = PROP_UNDEFINED;
1999 low_bound.data.const_val = 0;
2000 }
2001
2002 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2003 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2004 {
2005 high_bound.kind = PROP_CONST;
2006 high_bound.data.const_val = value;
2007
2008 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2009 high_bound.data.const_val
2010 = low_bound.data.const_val + high_bound.data.const_val - 1;
2011 }
2012 else
2013 {
2014 high_bound.kind = PROP_UNDEFINED;
2015 high_bound.data.const_val = 0;
2016 }
2017
2018 static_target_type
2019 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2020 addr_stack, 0);
2021 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2022 static_range_type = create_range_type (copy_type (dyn_range_type),
2023 static_target_type,
2024 &low_bound, &high_bound, bias);
2025 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2026 return static_range_type;
2027 }
2028
2029 /* Resolves dynamic bound values of an array type TYPE to static ones.
2030 ADDR_STACK is a stack of struct property_addr_info to be used
2031 if needed during the dynamic resolution. */
2032
2033 static struct type *
2034 resolve_dynamic_array (struct type *type,
2035 struct property_addr_info *addr_stack)
2036 {
2037 CORE_ADDR value;
2038 struct type *elt_type;
2039 struct type *range_type;
2040 struct type *ary_dim;
2041 struct dynamic_prop *prop;
2042 unsigned int bit_stride = 0;
2043
2044 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2045
2046 type = copy_type (type);
2047
2048 elt_type = type;
2049 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2050 range_type = resolve_dynamic_range (range_type, addr_stack);
2051
2052 /* Resolve allocated/associated here before creating a new array type, which
2053 will update the length of the array accordingly. */
2054 prop = TYPE_ALLOCATED_PROP (type);
2055 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2056 {
2057 TYPE_DYN_PROP_ADDR (prop) = value;
2058 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2059 }
2060 prop = TYPE_ASSOCIATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066
2067 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2068
2069 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2070 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2071 else
2072 elt_type = TYPE_TARGET_TYPE (type);
2073
2074 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2075 if (prop != NULL)
2076 {
2077 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2078 {
2079 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2080 bit_stride = (unsigned int) (value * 8);
2081 }
2082 else
2083 {
2084 /* Could be a bug in our code, but it could also happen
2085 if the DWARF info is not correct. Issue a warning,
2086 and assume no byte/bit stride (leave bit_stride = 0). */
2087 warning (_("cannot determine array stride for type %s"),
2088 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2089 }
2090 }
2091 else
2092 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2093
2094 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2095 bit_stride);
2096 }
2097
2098 /* Resolve dynamic bounds of members of the union TYPE to static
2099 bounds. ADDR_STACK is a stack of struct property_addr_info
2100 to be used if needed during the dynamic resolution. */
2101
2102 static struct type *
2103 resolve_dynamic_union (struct type *type,
2104 struct property_addr_info *addr_stack)
2105 {
2106 struct type *resolved_type;
2107 int i;
2108 unsigned int max_len = 0;
2109
2110 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2111
2112 resolved_type = copy_type (type);
2113 TYPE_FIELDS (resolved_type)
2114 = (struct field *) TYPE_ALLOC (resolved_type,
2115 TYPE_NFIELDS (resolved_type)
2116 * sizeof (struct field));
2117 memcpy (TYPE_FIELDS (resolved_type),
2118 TYPE_FIELDS (type),
2119 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2120 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2121 {
2122 struct type *t;
2123
2124 if (field_is_static (&TYPE_FIELD (type, i)))
2125 continue;
2126
2127 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2128 addr_stack, 0);
2129 TYPE_FIELD_TYPE (resolved_type, i) = t;
2130 if (TYPE_LENGTH (t) > max_len)
2131 max_len = TYPE_LENGTH (t);
2132 }
2133
2134 TYPE_LENGTH (resolved_type) = max_len;
2135 return resolved_type;
2136 }
2137
2138 /* Resolve dynamic bounds of members of the struct TYPE to static
2139 bounds. ADDR_STACK is a stack of struct property_addr_info to
2140 be used if needed during the dynamic resolution. */
2141
2142 static struct type *
2143 resolve_dynamic_struct (struct type *type,
2144 struct property_addr_info *addr_stack)
2145 {
2146 struct type *resolved_type;
2147 int i;
2148 unsigned resolved_type_bit_length = 0;
2149
2150 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2151 gdb_assert (TYPE_NFIELDS (type) > 0);
2152
2153 resolved_type = copy_type (type);
2154 TYPE_FIELDS (resolved_type)
2155 = (struct field *) TYPE_ALLOC (resolved_type,
2156 TYPE_NFIELDS (resolved_type)
2157 * sizeof (struct field));
2158 memcpy (TYPE_FIELDS (resolved_type),
2159 TYPE_FIELDS (type),
2160 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2161 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2162 {
2163 unsigned new_bit_length;
2164 struct property_addr_info pinfo;
2165
2166 if (field_is_static (&TYPE_FIELD (type, i)))
2167 continue;
2168
2169 /* As we know this field is not a static field, the field's
2170 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2171 this is the case, but only trigger a simple error rather
2172 than an internal error if that fails. While failing
2173 that verification indicates a bug in our code, the error
2174 is not severe enough to suggest to the user he stops
2175 his debugging session because of it. */
2176 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2177 error (_("Cannot determine struct field location"
2178 " (invalid location kind)"));
2179
2180 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2181 pinfo.valaddr = addr_stack->valaddr;
2182 pinfo.addr
2183 = (addr_stack->addr
2184 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2185 pinfo.next = addr_stack;
2186
2187 TYPE_FIELD_TYPE (resolved_type, i)
2188 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2189 &pinfo, 0);
2190 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2191 == FIELD_LOC_KIND_BITPOS);
2192
2193 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2194 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2195 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2196 else
2197 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2198 * TARGET_CHAR_BIT);
2199
2200 /* Normally, we would use the position and size of the last field
2201 to determine the size of the enclosing structure. But GCC seems
2202 to be encoding the position of some fields incorrectly when
2203 the struct contains a dynamic field that is not placed last.
2204 So we compute the struct size based on the field that has
2205 the highest position + size - probably the best we can do. */
2206 if (new_bit_length > resolved_type_bit_length)
2207 resolved_type_bit_length = new_bit_length;
2208 }
2209
2210 /* The length of a type won't change for fortran, but it does for C and Ada.
2211 For fortran the size of dynamic fields might change over time but not the
2212 type length of the structure. If we adapt it, we run into problems
2213 when calculating the element offset for arrays of structs. */
2214 if (current_language->la_language != language_fortran)
2215 TYPE_LENGTH (resolved_type)
2216 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2217
2218 /* The Ada language uses this field as a cache for static fixed types: reset
2219 it as RESOLVED_TYPE must have its own static fixed type. */
2220 TYPE_TARGET_TYPE (resolved_type) = NULL;
2221
2222 return resolved_type;
2223 }
2224
2225 /* Worker for resolved_dynamic_type. */
2226
2227 static struct type *
2228 resolve_dynamic_type_internal (struct type *type,
2229 struct property_addr_info *addr_stack,
2230 int top_level)
2231 {
2232 struct type *real_type = check_typedef (type);
2233 struct type *resolved_type = type;
2234 struct dynamic_prop *prop;
2235 CORE_ADDR value;
2236
2237 if (!is_dynamic_type_internal (real_type, top_level))
2238 return type;
2239
2240 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2241 {
2242 resolved_type = copy_type (type);
2243 TYPE_TARGET_TYPE (resolved_type)
2244 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2245 top_level);
2246 }
2247 else
2248 {
2249 /* Before trying to resolve TYPE, make sure it is not a stub. */
2250 type = real_type;
2251
2252 switch (TYPE_CODE (type))
2253 {
2254 case TYPE_CODE_REF:
2255 {
2256 struct property_addr_info pinfo;
2257
2258 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2259 pinfo.valaddr = NULL;
2260 if (addr_stack->valaddr != NULL)
2261 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2262 else
2263 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2264 pinfo.next = addr_stack;
2265
2266 resolved_type = copy_type (type);
2267 TYPE_TARGET_TYPE (resolved_type)
2268 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2269 &pinfo, top_level);
2270 break;
2271 }
2272
2273 case TYPE_CODE_ARRAY:
2274 resolved_type = resolve_dynamic_array (type, addr_stack);
2275 break;
2276
2277 case TYPE_CODE_RANGE:
2278 resolved_type = resolve_dynamic_range (type, addr_stack);
2279 break;
2280
2281 case TYPE_CODE_UNION:
2282 resolved_type = resolve_dynamic_union (type, addr_stack);
2283 break;
2284
2285 case TYPE_CODE_STRUCT:
2286 resolved_type = resolve_dynamic_struct (type, addr_stack);
2287 break;
2288 }
2289 }
2290
2291 /* Resolve data_location attribute. */
2292 prop = TYPE_DATA_LOCATION (resolved_type);
2293 if (prop != NULL
2294 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2295 {
2296 TYPE_DYN_PROP_ADDR (prop) = value;
2297 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2298 }
2299
2300 return resolved_type;
2301 }
2302
2303 /* See gdbtypes.h */
2304
2305 struct type *
2306 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2307 CORE_ADDR addr)
2308 {
2309 struct property_addr_info pinfo
2310 = {check_typedef (type), valaddr, addr, NULL};
2311
2312 return resolve_dynamic_type_internal (type, &pinfo, 1);
2313 }
2314
2315 /* See gdbtypes.h */
2316
2317 struct dynamic_prop *
2318 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2319 {
2320 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2321
2322 while (node != NULL)
2323 {
2324 if (node->prop_kind == prop_kind)
2325 return &node->prop;
2326 node = node->next;
2327 }
2328 return NULL;
2329 }
2330
2331 /* See gdbtypes.h */
2332
2333 void
2334 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2335 struct type *type)
2336 {
2337 struct dynamic_prop_list *temp;
2338
2339 gdb_assert (TYPE_OBJFILE_OWNED (type));
2340
2341 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2342 struct dynamic_prop_list);
2343 temp->prop_kind = prop_kind;
2344 temp->prop = prop;
2345 temp->next = TYPE_DYN_PROP_LIST (type);
2346
2347 TYPE_DYN_PROP_LIST (type) = temp;
2348 }
2349
2350 /* Remove dynamic property from TYPE in case it exists. */
2351
2352 void
2353 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2354 struct type *type)
2355 {
2356 struct dynamic_prop_list *prev_node, *curr_node;
2357
2358 curr_node = TYPE_DYN_PROP_LIST (type);
2359 prev_node = NULL;
2360
2361 while (NULL != curr_node)
2362 {
2363 if (curr_node->prop_kind == prop_kind)
2364 {
2365 /* Update the linked list but don't free anything.
2366 The property was allocated on objstack and it is not known
2367 if we are on top of it. Nevertheless, everything is released
2368 when the complete objstack is freed. */
2369 if (NULL == prev_node)
2370 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2371 else
2372 prev_node->next = curr_node->next;
2373
2374 return;
2375 }
2376
2377 prev_node = curr_node;
2378 curr_node = curr_node->next;
2379 }
2380 }
2381
2382 /* Find the real type of TYPE. This function returns the real type,
2383 after removing all layers of typedefs, and completing opaque or stub
2384 types. Completion changes the TYPE argument, but stripping of
2385 typedefs does not.
2386
2387 Instance flags (e.g. const/volatile) are preserved as typedefs are
2388 stripped. If necessary a new qualified form of the underlying type
2389 is created.
2390
2391 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2392 not been computed and we're either in the middle of reading symbols, or
2393 there was no name for the typedef in the debug info.
2394
2395 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2396 QUITs in the symbol reading code can also throw.
2397 Thus this function can throw an exception.
2398
2399 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2400 the target type.
2401
2402 If this is a stubbed struct (i.e. declared as struct foo *), see if
2403 we can find a full definition in some other file. If so, copy this
2404 definition, so we can use it in future. There used to be a comment
2405 (but not any code) that if we don't find a full definition, we'd
2406 set a flag so we don't spend time in the future checking the same
2407 type. That would be a mistake, though--we might load in more
2408 symbols which contain a full definition for the type. */
2409
2410 struct type *
2411 check_typedef (struct type *type)
2412 {
2413 struct type *orig_type = type;
2414 /* While we're removing typedefs, we don't want to lose qualifiers.
2415 E.g., const/volatile. */
2416 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2417
2418 gdb_assert (type);
2419
2420 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2421 {
2422 if (!TYPE_TARGET_TYPE (type))
2423 {
2424 const char *name;
2425 struct symbol *sym;
2426
2427 /* It is dangerous to call lookup_symbol if we are currently
2428 reading a symtab. Infinite recursion is one danger. */
2429 if (currently_reading_symtab)
2430 return make_qualified_type (type, instance_flags, NULL);
2431
2432 name = TYPE_NAME (type);
2433 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2434 VAR_DOMAIN as appropriate? */
2435 if (name == NULL)
2436 {
2437 stub_noname_complaint ();
2438 return make_qualified_type (type, instance_flags, NULL);
2439 }
2440 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2441 if (sym)
2442 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2443 else /* TYPE_CODE_UNDEF */
2444 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2445 }
2446 type = TYPE_TARGET_TYPE (type);
2447
2448 /* Preserve the instance flags as we traverse down the typedef chain.
2449
2450 Handling address spaces/classes is nasty, what do we do if there's a
2451 conflict?
2452 E.g., what if an outer typedef marks the type as class_1 and an inner
2453 typedef marks the type as class_2?
2454 This is the wrong place to do such error checking. We leave it to
2455 the code that created the typedef in the first place to flag the
2456 error. We just pick the outer address space (akin to letting the
2457 outer cast in a chain of casting win), instead of assuming
2458 "it can't happen". */
2459 {
2460 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2461 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2462 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2463 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2464
2465 /* Treat code vs data spaces and address classes separately. */
2466 if ((instance_flags & ALL_SPACES) != 0)
2467 new_instance_flags &= ~ALL_SPACES;
2468 if ((instance_flags & ALL_CLASSES) != 0)
2469 new_instance_flags &= ~ALL_CLASSES;
2470
2471 instance_flags |= new_instance_flags;
2472 }
2473 }
2474
2475 /* If this is a struct/class/union with no fields, then check
2476 whether a full definition exists somewhere else. This is for
2477 systems where a type definition with no fields is issued for such
2478 types, instead of identifying them as stub types in the first
2479 place. */
2480
2481 if (TYPE_IS_OPAQUE (type)
2482 && opaque_type_resolution
2483 && !currently_reading_symtab)
2484 {
2485 const char *name = TYPE_NAME (type);
2486 struct type *newtype;
2487
2488 if (name == NULL)
2489 {
2490 stub_noname_complaint ();
2491 return make_qualified_type (type, instance_flags, NULL);
2492 }
2493 newtype = lookup_transparent_type (name);
2494
2495 if (newtype)
2496 {
2497 /* If the resolved type and the stub are in the same
2498 objfile, then replace the stub type with the real deal.
2499 But if they're in separate objfiles, leave the stub
2500 alone; we'll just look up the transparent type every time
2501 we call check_typedef. We can't create pointers between
2502 types allocated to different objfiles, since they may
2503 have different lifetimes. Trying to copy NEWTYPE over to
2504 TYPE's objfile is pointless, too, since you'll have to
2505 move over any other types NEWTYPE refers to, which could
2506 be an unbounded amount of stuff. */
2507 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2508 type = make_qualified_type (newtype,
2509 TYPE_INSTANCE_FLAGS (type),
2510 type);
2511 else
2512 type = newtype;
2513 }
2514 }
2515 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2516 types. */
2517 else if (TYPE_STUB (type) && !currently_reading_symtab)
2518 {
2519 const char *name = TYPE_NAME (type);
2520 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2521 as appropriate? */
2522 struct symbol *sym;
2523
2524 if (name == NULL)
2525 {
2526 stub_noname_complaint ();
2527 return make_qualified_type (type, instance_flags, NULL);
2528 }
2529 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2530 if (sym)
2531 {
2532 /* Same as above for opaque types, we can replace the stub
2533 with the complete type only if they are in the same
2534 objfile. */
2535 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2536 type = make_qualified_type (SYMBOL_TYPE (sym),
2537 TYPE_INSTANCE_FLAGS (type),
2538 type);
2539 else
2540 type = SYMBOL_TYPE (sym);
2541 }
2542 }
2543
2544 if (TYPE_TARGET_STUB (type))
2545 {
2546 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2547
2548 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2549 {
2550 /* Nothing we can do. */
2551 }
2552 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2553 {
2554 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2555 TYPE_TARGET_STUB (type) = 0;
2556 }
2557 }
2558
2559 type = make_qualified_type (type, instance_flags, NULL);
2560
2561 /* Cache TYPE_LENGTH for future use. */
2562 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2563
2564 return type;
2565 }
2566
2567 /* Parse a type expression in the string [P..P+LENGTH). If an error
2568 occurs, silently return a void type. */
2569
2570 static struct type *
2571 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2572 {
2573 struct ui_file *saved_gdb_stderr;
2574 struct type *type = NULL; /* Initialize to keep gcc happy. */
2575
2576 /* Suppress error messages. */
2577 saved_gdb_stderr = gdb_stderr;
2578 gdb_stderr = &null_stream;
2579
2580 /* Call parse_and_eval_type() without fear of longjmp()s. */
2581 try
2582 {
2583 type = parse_and_eval_type (p, length);
2584 }
2585 catch (const gdb_exception_error &except)
2586 {
2587 type = builtin_type (gdbarch)->builtin_void;
2588 }
2589
2590 /* Stop suppressing error messages. */
2591 gdb_stderr = saved_gdb_stderr;
2592
2593 return type;
2594 }
2595
2596 /* Ugly hack to convert method stubs into method types.
2597
2598 He ain't kiddin'. This demangles the name of the method into a
2599 string including argument types, parses out each argument type,
2600 generates a string casting a zero to that type, evaluates the
2601 string, and stuffs the resulting type into an argtype vector!!!
2602 Then it knows the type of the whole function (including argument
2603 types for overloading), which info used to be in the stab's but was
2604 removed to hack back the space required for them. */
2605
2606 static void
2607 check_stub_method (struct type *type, int method_id, int signature_id)
2608 {
2609 struct gdbarch *gdbarch = get_type_arch (type);
2610 struct fn_field *f;
2611 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2612 char *demangled_name = gdb_demangle (mangled_name,
2613 DMGL_PARAMS | DMGL_ANSI);
2614 char *argtypetext, *p;
2615 int depth = 0, argcount = 1;
2616 struct field *argtypes;
2617 struct type *mtype;
2618
2619 /* Make sure we got back a function string that we can use. */
2620 if (demangled_name)
2621 p = strchr (demangled_name, '(');
2622 else
2623 p = NULL;
2624
2625 if (demangled_name == NULL || p == NULL)
2626 error (_("Internal: Cannot demangle mangled name `%s'."),
2627 mangled_name);
2628
2629 /* Now, read in the parameters that define this type. */
2630 p += 1;
2631 argtypetext = p;
2632 while (*p)
2633 {
2634 if (*p == '(' || *p == '<')
2635 {
2636 depth += 1;
2637 }
2638 else if (*p == ')' || *p == '>')
2639 {
2640 depth -= 1;
2641 }
2642 else if (*p == ',' && depth == 0)
2643 {
2644 argcount += 1;
2645 }
2646
2647 p += 1;
2648 }
2649
2650 /* If we read one argument and it was ``void'', don't count it. */
2651 if (startswith (argtypetext, "(void)"))
2652 argcount -= 1;
2653
2654 /* We need one extra slot, for the THIS pointer. */
2655
2656 argtypes = (struct field *)
2657 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2658 p = argtypetext;
2659
2660 /* Add THIS pointer for non-static methods. */
2661 f = TYPE_FN_FIELDLIST1 (type, method_id);
2662 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2663 argcount = 0;
2664 else
2665 {
2666 argtypes[0].type = lookup_pointer_type (type);
2667 argcount = 1;
2668 }
2669
2670 if (*p != ')') /* () means no args, skip while. */
2671 {
2672 depth = 0;
2673 while (*p)
2674 {
2675 if (depth <= 0 && (*p == ',' || *p == ')'))
2676 {
2677 /* Avoid parsing of ellipsis, they will be handled below.
2678 Also avoid ``void'' as above. */
2679 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2680 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2681 {
2682 argtypes[argcount].type =
2683 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2684 argcount += 1;
2685 }
2686 argtypetext = p + 1;
2687 }
2688
2689 if (*p == '(' || *p == '<')
2690 {
2691 depth += 1;
2692 }
2693 else if (*p == ')' || *p == '>')
2694 {
2695 depth -= 1;
2696 }
2697
2698 p += 1;
2699 }
2700 }
2701
2702 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2703
2704 /* Now update the old "stub" type into a real type. */
2705 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2706 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2707 We want a method (TYPE_CODE_METHOD). */
2708 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2709 argtypes, argcount, p[-2] == '.');
2710 TYPE_STUB (mtype) = 0;
2711 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2712
2713 xfree (demangled_name);
2714 }
2715
2716 /* This is the external interface to check_stub_method, above. This
2717 function unstubs all of the signatures for TYPE's METHOD_ID method
2718 name. After calling this function TYPE_FN_FIELD_STUB will be
2719 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2720 correct.
2721
2722 This function unfortunately can not die until stabs do. */
2723
2724 void
2725 check_stub_method_group (struct type *type, int method_id)
2726 {
2727 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2728 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2729
2730 for (int j = 0; j < len; j++)
2731 {
2732 if (TYPE_FN_FIELD_STUB (f, j))
2733 check_stub_method (type, method_id, j);
2734 }
2735 }
2736
2737 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2738 const struct cplus_struct_type cplus_struct_default = { };
2739
2740 void
2741 allocate_cplus_struct_type (struct type *type)
2742 {
2743 if (HAVE_CPLUS_STRUCT (type))
2744 /* Structure was already allocated. Nothing more to do. */
2745 return;
2746
2747 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2748 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2749 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2750 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2751 set_type_vptr_fieldno (type, -1);
2752 }
2753
2754 const struct gnat_aux_type gnat_aux_default =
2755 { NULL };
2756
2757 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2758 and allocate the associated gnat-specific data. The gnat-specific
2759 data is also initialized to gnat_aux_default. */
2760
2761 void
2762 allocate_gnat_aux_type (struct type *type)
2763 {
2764 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2765 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2766 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2767 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2768 }
2769
2770 /* Helper function to initialize a newly allocated type. Set type code
2771 to CODE and initialize the type-specific fields accordingly. */
2772
2773 static void
2774 set_type_code (struct type *type, enum type_code code)
2775 {
2776 TYPE_CODE (type) = code;
2777
2778 switch (code)
2779 {
2780 case TYPE_CODE_STRUCT:
2781 case TYPE_CODE_UNION:
2782 case TYPE_CODE_NAMESPACE:
2783 INIT_CPLUS_SPECIFIC (type);
2784 break;
2785 case TYPE_CODE_FLT:
2786 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2787 break;
2788 case TYPE_CODE_FUNC:
2789 INIT_FUNC_SPECIFIC (type);
2790 break;
2791 }
2792 }
2793
2794 /* Helper function to verify floating-point format and size.
2795 BIT is the type size in bits; if BIT equals -1, the size is
2796 determined by the floatformat. Returns size to be used. */
2797
2798 static int
2799 verify_floatformat (int bit, const struct floatformat *floatformat)
2800 {
2801 gdb_assert (floatformat != NULL);
2802
2803 if (bit == -1)
2804 bit = floatformat->totalsize;
2805
2806 gdb_assert (bit >= 0);
2807 gdb_assert (bit >= floatformat->totalsize);
2808
2809 return bit;
2810 }
2811
2812 /* Return the floating-point format for a floating-point variable of
2813 type TYPE. */
2814
2815 const struct floatformat *
2816 floatformat_from_type (const struct type *type)
2817 {
2818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2819 gdb_assert (TYPE_FLOATFORMAT (type));
2820 return TYPE_FLOATFORMAT (type);
2821 }
2822
2823 /* Helper function to initialize the standard scalar types.
2824
2825 If NAME is non-NULL, then it is used to initialize the type name.
2826 Note that NAME is not copied; it is required to have a lifetime at
2827 least as long as OBJFILE. */
2828
2829 struct type *
2830 init_type (struct objfile *objfile, enum type_code code, int bit,
2831 const char *name)
2832 {
2833 struct type *type;
2834
2835 type = alloc_type (objfile);
2836 set_type_code (type, code);
2837 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2838 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2839 TYPE_NAME (type) = name;
2840
2841 return type;
2842 }
2843
2844 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2845 to use with variables that have no debug info. NAME is the type
2846 name. */
2847
2848 static struct type *
2849 init_nodebug_var_type (struct objfile *objfile, const char *name)
2850 {
2851 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2852 }
2853
2854 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2855 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2856 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2857
2858 struct type *
2859 init_integer_type (struct objfile *objfile,
2860 int bit, int unsigned_p, const char *name)
2861 {
2862 struct type *t;
2863
2864 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2865 if (unsigned_p)
2866 TYPE_UNSIGNED (t) = 1;
2867
2868 return t;
2869 }
2870
2871 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2872 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2873 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2874
2875 struct type *
2876 init_character_type (struct objfile *objfile,
2877 int bit, int unsigned_p, const char *name)
2878 {
2879 struct type *t;
2880
2881 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2882 if (unsigned_p)
2883 TYPE_UNSIGNED (t) = 1;
2884
2885 return t;
2886 }
2887
2888 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2889 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2890 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2891
2892 struct type *
2893 init_boolean_type (struct objfile *objfile,
2894 int bit, int unsigned_p, const char *name)
2895 {
2896 struct type *t;
2897
2898 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2899 if (unsigned_p)
2900 TYPE_UNSIGNED (t) = 1;
2901
2902 return t;
2903 }
2904
2905 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2906 BIT is the type size in bits; if BIT equals -1, the size is
2907 determined by the floatformat. NAME is the type name. Set the
2908 TYPE_FLOATFORMAT from FLOATFORMATS. */
2909
2910 struct type *
2911 init_float_type (struct objfile *objfile,
2912 int bit, const char *name,
2913 const struct floatformat **floatformats)
2914 {
2915 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2916 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2917 struct type *t;
2918
2919 bit = verify_floatformat (bit, fmt);
2920 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2921 TYPE_FLOATFORMAT (t) = fmt;
2922
2923 return t;
2924 }
2925
2926 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2927 BIT is the type size in bits. NAME is the type name. */
2928
2929 struct type *
2930 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2931 {
2932 struct type *t;
2933
2934 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2935 return t;
2936 }
2937
2938 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2939 NAME is the type name. TARGET_TYPE is the component float type. */
2940
2941 struct type *
2942 init_complex_type (struct objfile *objfile,
2943 const char *name, struct type *target_type)
2944 {
2945 struct type *t;
2946
2947 t = init_type (objfile, TYPE_CODE_COMPLEX,
2948 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2949 TYPE_TARGET_TYPE (t) = target_type;
2950 return t;
2951 }
2952
2953 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2954 BIT is the pointer type size in bits. NAME is the type name.
2955 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2956 TYPE_UNSIGNED flag. */
2957
2958 struct type *
2959 init_pointer_type (struct objfile *objfile,
2960 int bit, const char *name, struct type *target_type)
2961 {
2962 struct type *t;
2963
2964 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2965 TYPE_TARGET_TYPE (t) = target_type;
2966 TYPE_UNSIGNED (t) = 1;
2967 return t;
2968 }
2969
2970 /* See gdbtypes.h. */
2971
2972 unsigned
2973 type_raw_align (struct type *type)
2974 {
2975 if (type->align_log2 != 0)
2976 return 1 << (type->align_log2 - 1);
2977 return 0;
2978 }
2979
2980 /* See gdbtypes.h. */
2981
2982 unsigned
2983 type_align (struct type *type)
2984 {
2985 /* Check alignment provided in the debug information. */
2986 unsigned raw_align = type_raw_align (type);
2987 if (raw_align != 0)
2988 return raw_align;
2989
2990 /* Allow the architecture to provide an alignment. */
2991 struct gdbarch *arch = get_type_arch (type);
2992 ULONGEST align = gdbarch_type_align (arch, type);
2993 if (align != 0)
2994 return align;
2995
2996 switch (TYPE_CODE (type))
2997 {
2998 case TYPE_CODE_PTR:
2999 case TYPE_CODE_FUNC:
3000 case TYPE_CODE_FLAGS:
3001 case TYPE_CODE_INT:
3002 case TYPE_CODE_RANGE:
3003 case TYPE_CODE_FLT:
3004 case TYPE_CODE_ENUM:
3005 case TYPE_CODE_REF:
3006 case TYPE_CODE_RVALUE_REF:
3007 case TYPE_CODE_CHAR:
3008 case TYPE_CODE_BOOL:
3009 case TYPE_CODE_DECFLOAT:
3010 case TYPE_CODE_METHODPTR:
3011 case TYPE_CODE_MEMBERPTR:
3012 align = type_length_units (check_typedef (type));
3013 break;
3014
3015 case TYPE_CODE_ARRAY:
3016 case TYPE_CODE_COMPLEX:
3017 case TYPE_CODE_TYPEDEF:
3018 align = type_align (TYPE_TARGET_TYPE (type));
3019 break;
3020
3021 case TYPE_CODE_STRUCT:
3022 case TYPE_CODE_UNION:
3023 {
3024 int number_of_non_static_fields = 0;
3025 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3026 {
3027 if (!field_is_static (&TYPE_FIELD (type, i)))
3028 {
3029 number_of_non_static_fields++;
3030 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3031 if (f_align == 0)
3032 {
3033 /* Don't pretend we know something we don't. */
3034 align = 0;
3035 break;
3036 }
3037 if (f_align > align)
3038 align = f_align;
3039 }
3040 }
3041 /* A struct with no fields, or with only static fields has an
3042 alignment of 1. */
3043 if (number_of_non_static_fields == 0)
3044 align = 1;
3045 }
3046 break;
3047
3048 case TYPE_CODE_SET:
3049 case TYPE_CODE_STRING:
3050 /* Not sure what to do here, and these can't appear in C or C++
3051 anyway. */
3052 break;
3053
3054 case TYPE_CODE_VOID:
3055 align = 1;
3056 break;
3057
3058 case TYPE_CODE_ERROR:
3059 case TYPE_CODE_METHOD:
3060 default:
3061 break;
3062 }
3063
3064 if ((align & (align - 1)) != 0)
3065 {
3066 /* Not a power of 2, so pass. */
3067 align = 0;
3068 }
3069
3070 return align;
3071 }
3072
3073 /* See gdbtypes.h. */
3074
3075 bool
3076 set_type_align (struct type *type, ULONGEST align)
3077 {
3078 /* Must be a power of 2. Zero is ok. */
3079 gdb_assert ((align & (align - 1)) == 0);
3080
3081 unsigned result = 0;
3082 while (align != 0)
3083 {
3084 ++result;
3085 align >>= 1;
3086 }
3087
3088 if (result >= (1 << TYPE_ALIGN_BITS))
3089 return false;
3090
3091 type->align_log2 = result;
3092 return true;
3093 }
3094
3095 \f
3096 /* Queries on types. */
3097
3098 int
3099 can_dereference (struct type *t)
3100 {
3101 /* FIXME: Should we return true for references as well as
3102 pointers? */
3103 t = check_typedef (t);
3104 return
3105 (t != NULL
3106 && TYPE_CODE (t) == TYPE_CODE_PTR
3107 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3108 }
3109
3110 int
3111 is_integral_type (struct type *t)
3112 {
3113 t = check_typedef (t);
3114 return
3115 ((t != NULL)
3116 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3117 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3118 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3119 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3120 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3121 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3122 }
3123
3124 int
3125 is_floating_type (struct type *t)
3126 {
3127 t = check_typedef (t);
3128 return
3129 ((t != NULL)
3130 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3131 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3132 }
3133
3134 /* Return true if TYPE is scalar. */
3135
3136 int
3137 is_scalar_type (struct type *type)
3138 {
3139 type = check_typedef (type);
3140
3141 switch (TYPE_CODE (type))
3142 {
3143 case TYPE_CODE_ARRAY:
3144 case TYPE_CODE_STRUCT:
3145 case TYPE_CODE_UNION:
3146 case TYPE_CODE_SET:
3147 case TYPE_CODE_STRING:
3148 return 0;
3149 default:
3150 return 1;
3151 }
3152 }
3153
3154 /* Return true if T is scalar, or a composite type which in practice has
3155 the memory layout of a scalar type. E.g., an array or struct with only
3156 one scalar element inside it, or a union with only scalar elements. */
3157
3158 int
3159 is_scalar_type_recursive (struct type *t)
3160 {
3161 t = check_typedef (t);
3162
3163 if (is_scalar_type (t))
3164 return 1;
3165 /* Are we dealing with an array or string of known dimensions? */
3166 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3167 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3168 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3169 {
3170 LONGEST low_bound, high_bound;
3171 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3172
3173 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3174
3175 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3176 }
3177 /* Are we dealing with a struct with one element? */
3178 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3179 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3180 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3181 {
3182 int i, n = TYPE_NFIELDS (t);
3183
3184 /* If all elements of the union are scalar, then the union is scalar. */
3185 for (i = 0; i < n; i++)
3186 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3187 return 0;
3188
3189 return 1;
3190 }
3191
3192 return 0;
3193 }
3194
3195 /* Return true is T is a class or a union. False otherwise. */
3196
3197 int
3198 class_or_union_p (const struct type *t)
3199 {
3200 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3201 || TYPE_CODE (t) == TYPE_CODE_UNION);
3202 }
3203
3204 /* A helper function which returns true if types A and B represent the
3205 "same" class type. This is true if the types have the same main
3206 type, or the same name. */
3207
3208 int
3209 class_types_same_p (const struct type *a, const struct type *b)
3210 {
3211 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3212 || (TYPE_NAME (a) && TYPE_NAME (b)
3213 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3214 }
3215
3216 /* If BASE is an ancestor of DCLASS return the distance between them.
3217 otherwise return -1;
3218 eg:
3219
3220 class A {};
3221 class B: public A {};
3222 class C: public B {};
3223 class D: C {};
3224
3225 distance_to_ancestor (A, A, 0) = 0
3226 distance_to_ancestor (A, B, 0) = 1
3227 distance_to_ancestor (A, C, 0) = 2
3228 distance_to_ancestor (A, D, 0) = 3
3229
3230 If PUBLIC is 1 then only public ancestors are considered,
3231 and the function returns the distance only if BASE is a public ancestor
3232 of DCLASS.
3233 Eg:
3234
3235 distance_to_ancestor (A, D, 1) = -1. */
3236
3237 static int
3238 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3239 {
3240 int i;
3241 int d;
3242
3243 base = check_typedef (base);
3244 dclass = check_typedef (dclass);
3245
3246 if (class_types_same_p (base, dclass))
3247 return 0;
3248
3249 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3250 {
3251 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3252 continue;
3253
3254 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3255 if (d >= 0)
3256 return 1 + d;
3257 }
3258
3259 return -1;
3260 }
3261
3262 /* Check whether BASE is an ancestor or base class or DCLASS
3263 Return 1 if so, and 0 if not.
3264 Note: If BASE and DCLASS are of the same type, this function
3265 will return 1. So for some class A, is_ancestor (A, A) will
3266 return 1. */
3267
3268 int
3269 is_ancestor (struct type *base, struct type *dclass)
3270 {
3271 return distance_to_ancestor (base, dclass, 0) >= 0;
3272 }
3273
3274 /* Like is_ancestor, but only returns true when BASE is a public
3275 ancestor of DCLASS. */
3276
3277 int
3278 is_public_ancestor (struct type *base, struct type *dclass)
3279 {
3280 return distance_to_ancestor (base, dclass, 1) >= 0;
3281 }
3282
3283 /* A helper function for is_unique_ancestor. */
3284
3285 static int
3286 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3287 int *offset,
3288 const gdb_byte *valaddr, int embedded_offset,
3289 CORE_ADDR address, struct value *val)
3290 {
3291 int i, count = 0;
3292
3293 base = check_typedef (base);
3294 dclass = check_typedef (dclass);
3295
3296 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3297 {
3298 struct type *iter;
3299 int this_offset;
3300
3301 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3302
3303 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3304 address, val);
3305
3306 if (class_types_same_p (base, iter))
3307 {
3308 /* If this is the first subclass, set *OFFSET and set count
3309 to 1. Otherwise, if this is at the same offset as
3310 previous instances, do nothing. Otherwise, increment
3311 count. */
3312 if (*offset == -1)
3313 {
3314 *offset = this_offset;
3315 count = 1;
3316 }
3317 else if (this_offset == *offset)
3318 {
3319 /* Nothing. */
3320 }
3321 else
3322 ++count;
3323 }
3324 else
3325 count += is_unique_ancestor_worker (base, iter, offset,
3326 valaddr,
3327 embedded_offset + this_offset,
3328 address, val);
3329 }
3330
3331 return count;
3332 }
3333
3334 /* Like is_ancestor, but only returns true if BASE is a unique base
3335 class of the type of VAL. */
3336
3337 int
3338 is_unique_ancestor (struct type *base, struct value *val)
3339 {
3340 int offset = -1;
3341
3342 return is_unique_ancestor_worker (base, value_type (val), &offset,
3343 value_contents_for_printing (val),
3344 value_embedded_offset (val),
3345 value_address (val), val) == 1;
3346 }
3347
3348 \f
3349 /* Overload resolution. */
3350
3351 /* Return the sum of the rank of A with the rank of B. */
3352
3353 struct rank
3354 sum_ranks (struct rank a, struct rank b)
3355 {
3356 struct rank c;
3357 c.rank = a.rank + b.rank;
3358 c.subrank = a.subrank + b.subrank;
3359 return c;
3360 }
3361
3362 /* Compare rank A and B and return:
3363 0 if a = b
3364 1 if a is better than b
3365 -1 if b is better than a. */
3366
3367 int
3368 compare_ranks (struct rank a, struct rank b)
3369 {
3370 if (a.rank == b.rank)
3371 {
3372 if (a.subrank == b.subrank)
3373 return 0;
3374 if (a.subrank < b.subrank)
3375 return 1;
3376 if (a.subrank > b.subrank)
3377 return -1;
3378 }
3379
3380 if (a.rank < b.rank)
3381 return 1;
3382
3383 /* a.rank > b.rank */
3384 return -1;
3385 }
3386
3387 /* Functions for overload resolution begin here. */
3388
3389 /* Compare two badness vectors A and B and return the result.
3390 0 => A and B are identical
3391 1 => A and B are incomparable
3392 2 => A is better than B
3393 3 => A is worse than B */
3394
3395 int
3396 compare_badness (const badness_vector &a, const badness_vector &b)
3397 {
3398 int i;
3399 int tmp;
3400 short found_pos = 0; /* any positives in c? */
3401 short found_neg = 0; /* any negatives in c? */
3402
3403 /* differing sizes => incomparable */
3404 if (a.size () != b.size ())
3405 return 1;
3406
3407 /* Subtract b from a */
3408 for (i = 0; i < a.size (); i++)
3409 {
3410 tmp = compare_ranks (b[i], a[i]);
3411 if (tmp > 0)
3412 found_pos = 1;
3413 else if (tmp < 0)
3414 found_neg = 1;
3415 }
3416
3417 if (found_pos)
3418 {
3419 if (found_neg)
3420 return 1; /* incomparable */
3421 else
3422 return 3; /* A > B */
3423 }
3424 else
3425 /* no positives */
3426 {
3427 if (found_neg)
3428 return 2; /* A < B */
3429 else
3430 return 0; /* A == B */
3431 }
3432 }
3433
3434 /* Rank a function by comparing its parameter types (PARMS), to the
3435 types of an argument list (ARGS). Return the badness vector. This
3436 has ARGS.size() + 1 entries. */
3437
3438 badness_vector
3439 rank_function (gdb::array_view<type *> parms,
3440 gdb::array_view<value *> args)
3441 {
3442 /* add 1 for the length-match rank. */
3443 badness_vector bv;
3444 bv.reserve (1 + args.size ());
3445
3446 /* First compare the lengths of the supplied lists.
3447 If there is a mismatch, set it to a high value. */
3448
3449 /* pai/1997-06-03 FIXME: when we have debug info about default
3450 arguments and ellipsis parameter lists, we should consider those
3451 and rank the length-match more finely. */
3452
3453 bv.push_back ((args.size () != parms.size ())
3454 ? LENGTH_MISMATCH_BADNESS
3455 : EXACT_MATCH_BADNESS);
3456
3457 /* Now rank all the parameters of the candidate function. */
3458 size_t min_len = std::min (parms.size (), args.size ());
3459
3460 for (size_t i = 0; i < min_len; i++)
3461 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3462 args[i]));
3463
3464 /* If more arguments than parameters, add dummy entries. */
3465 for (size_t i = min_len; i < args.size (); i++)
3466 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3467
3468 return bv;
3469 }
3470
3471 /* Compare the names of two integer types, assuming that any sign
3472 qualifiers have been checked already. We do it this way because
3473 there may be an "int" in the name of one of the types. */
3474
3475 static int
3476 integer_types_same_name_p (const char *first, const char *second)
3477 {
3478 int first_p, second_p;
3479
3480 /* If both are shorts, return 1; if neither is a short, keep
3481 checking. */
3482 first_p = (strstr (first, "short") != NULL);
3483 second_p = (strstr (second, "short") != NULL);
3484 if (first_p && second_p)
3485 return 1;
3486 if (first_p || second_p)
3487 return 0;
3488
3489 /* Likewise for long. */
3490 first_p = (strstr (first, "long") != NULL);
3491 second_p = (strstr (second, "long") != NULL);
3492 if (first_p && second_p)
3493 return 1;
3494 if (first_p || second_p)
3495 return 0;
3496
3497 /* Likewise for char. */
3498 first_p = (strstr (first, "char") != NULL);
3499 second_p = (strstr (second, "char") != NULL);
3500 if (first_p && second_p)
3501 return 1;
3502 if (first_p || second_p)
3503 return 0;
3504
3505 /* They must both be ints. */
3506 return 1;
3507 }
3508
3509 /* Compares type A to type B. Returns true if they represent the same
3510 type, false otherwise. */
3511
3512 bool
3513 types_equal (struct type *a, struct type *b)
3514 {
3515 /* Identical type pointers. */
3516 /* However, this still doesn't catch all cases of same type for b
3517 and a. The reason is that builtin types are different from
3518 the same ones constructed from the object. */
3519 if (a == b)
3520 return true;
3521
3522 /* Resolve typedefs */
3523 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3524 a = check_typedef (a);
3525 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3526 b = check_typedef (b);
3527
3528 /* If after resolving typedefs a and b are not of the same type
3529 code then they are not equal. */
3530 if (TYPE_CODE (a) != TYPE_CODE (b))
3531 return false;
3532
3533 /* If a and b are both pointers types or both reference types then
3534 they are equal of the same type iff the objects they refer to are
3535 of the same type. */
3536 if (TYPE_CODE (a) == TYPE_CODE_PTR
3537 || TYPE_CODE (a) == TYPE_CODE_REF)
3538 return types_equal (TYPE_TARGET_TYPE (a),
3539 TYPE_TARGET_TYPE (b));
3540
3541 /* Well, damnit, if the names are exactly the same, I'll say they
3542 are exactly the same. This happens when we generate method
3543 stubs. The types won't point to the same address, but they
3544 really are the same. */
3545
3546 if (TYPE_NAME (a) && TYPE_NAME (b)
3547 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3548 return true;
3549
3550 /* Check if identical after resolving typedefs. */
3551 if (a == b)
3552 return true;
3553
3554 /* Two function types are equal if their argument and return types
3555 are equal. */
3556 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3557 {
3558 int i;
3559
3560 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3561 return false;
3562
3563 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3564 return false;
3565
3566 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3567 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3568 return false;
3569
3570 return true;
3571 }
3572
3573 return false;
3574 }
3575 \f
3576 /* Deep comparison of types. */
3577
3578 /* An entry in the type-equality bcache. */
3579
3580 struct type_equality_entry
3581 {
3582 type_equality_entry (struct type *t1, struct type *t2)
3583 : type1 (t1),
3584 type2 (t2)
3585 {
3586 }
3587
3588 struct type *type1, *type2;
3589 };
3590
3591 /* A helper function to compare two strings. Returns true if they are
3592 the same, false otherwise. Handles NULLs properly. */
3593
3594 static bool
3595 compare_maybe_null_strings (const char *s, const char *t)
3596 {
3597 if (s == NULL || t == NULL)
3598 return s == t;
3599 return strcmp (s, t) == 0;
3600 }
3601
3602 /* A helper function for check_types_worklist that checks two types for
3603 "deep" equality. Returns true if the types are considered the
3604 same, false otherwise. */
3605
3606 static bool
3607 check_types_equal (struct type *type1, struct type *type2,
3608 std::vector<type_equality_entry> *worklist)
3609 {
3610 type1 = check_typedef (type1);
3611 type2 = check_typedef (type2);
3612
3613 if (type1 == type2)
3614 return true;
3615
3616 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3617 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3618 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3619 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3620 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3621 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3622 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3623 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3624 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3625 return false;
3626
3627 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3628 return false;
3629 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3630 return false;
3631
3632 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3633 {
3634 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3635 return false;
3636 }
3637 else
3638 {
3639 int i;
3640
3641 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3642 {
3643 const struct field *field1 = &TYPE_FIELD (type1, i);
3644 const struct field *field2 = &TYPE_FIELD (type2, i);
3645
3646 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3647 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3648 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3649 return false;
3650 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3651 FIELD_NAME (*field2)))
3652 return false;
3653 switch (FIELD_LOC_KIND (*field1))
3654 {
3655 case FIELD_LOC_KIND_BITPOS:
3656 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3657 return false;
3658 break;
3659 case FIELD_LOC_KIND_ENUMVAL:
3660 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3661 return false;
3662 break;
3663 case FIELD_LOC_KIND_PHYSADDR:
3664 if (FIELD_STATIC_PHYSADDR (*field1)
3665 != FIELD_STATIC_PHYSADDR (*field2))
3666 return false;
3667 break;
3668 case FIELD_LOC_KIND_PHYSNAME:
3669 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3670 FIELD_STATIC_PHYSNAME (*field2)))
3671 return false;
3672 break;
3673 case FIELD_LOC_KIND_DWARF_BLOCK:
3674 {
3675 struct dwarf2_locexpr_baton *block1, *block2;
3676
3677 block1 = FIELD_DWARF_BLOCK (*field1);
3678 block2 = FIELD_DWARF_BLOCK (*field2);
3679 if (block1->per_cu != block2->per_cu
3680 || block1->size != block2->size
3681 || memcmp (block1->data, block2->data, block1->size) != 0)
3682 return false;
3683 }
3684 break;
3685 default:
3686 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3687 "%d by check_types_equal"),
3688 FIELD_LOC_KIND (*field1));
3689 }
3690
3691 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3692 }
3693 }
3694
3695 if (TYPE_TARGET_TYPE (type1) != NULL)
3696 {
3697 if (TYPE_TARGET_TYPE (type2) == NULL)
3698 return false;
3699
3700 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3701 TYPE_TARGET_TYPE (type2));
3702 }
3703 else if (TYPE_TARGET_TYPE (type2) != NULL)
3704 return false;
3705
3706 return true;
3707 }
3708
3709 /* Check types on a worklist for equality. Returns false if any pair
3710 is not equal, true if they are all considered equal. */
3711
3712 static bool
3713 check_types_worklist (std::vector<type_equality_entry> *worklist,
3714 struct bcache *cache)
3715 {
3716 while (!worklist->empty ())
3717 {
3718 int added;
3719
3720 struct type_equality_entry entry = std::move (worklist->back ());
3721 worklist->pop_back ();
3722
3723 /* If the type pair has already been visited, we know it is
3724 ok. */
3725 cache->insert (&entry, sizeof (entry), &added);
3726 if (!added)
3727 continue;
3728
3729 if (!check_types_equal (entry.type1, entry.type2, worklist))
3730 return false;
3731 }
3732
3733 return true;
3734 }
3735
3736 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3737 "deep comparison". Otherwise return false. */
3738
3739 bool
3740 types_deeply_equal (struct type *type1, struct type *type2)
3741 {
3742 std::vector<type_equality_entry> worklist;
3743
3744 gdb_assert (type1 != NULL && type2 != NULL);
3745
3746 /* Early exit for the simple case. */
3747 if (type1 == type2)
3748 return true;
3749
3750 struct bcache cache (nullptr, nullptr);
3751 worklist.emplace_back (type1, type2);
3752 return check_types_worklist (&worklist, &cache);
3753 }
3754
3755 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3756 Otherwise return one. */
3757
3758 int
3759 type_not_allocated (const struct type *type)
3760 {
3761 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3762
3763 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3764 && !TYPE_DYN_PROP_ADDR (prop));
3765 }
3766
3767 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3768 Otherwise return one. */
3769
3770 int
3771 type_not_associated (const struct type *type)
3772 {
3773 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3774
3775 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3776 && !TYPE_DYN_PROP_ADDR (prop));
3777 }
3778
3779 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3780
3781 static struct rank
3782 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3783 {
3784 struct rank rank = {0,0};
3785
3786 switch (TYPE_CODE (arg))
3787 {
3788 case TYPE_CODE_PTR:
3789
3790 /* Allowed pointer conversions are:
3791 (a) pointer to void-pointer conversion. */
3792 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3793 return VOID_PTR_CONVERSION_BADNESS;
3794
3795 /* (b) pointer to ancestor-pointer conversion. */
3796 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3797 TYPE_TARGET_TYPE (arg),
3798 0);
3799 if (rank.subrank >= 0)
3800 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3801
3802 return INCOMPATIBLE_TYPE_BADNESS;
3803 case TYPE_CODE_ARRAY:
3804 {
3805 struct type *t1 = TYPE_TARGET_TYPE (parm);
3806 struct type *t2 = TYPE_TARGET_TYPE (arg);
3807
3808 if (types_equal (t1, t2))
3809 {
3810 /* Make sure they are CV equal. */
3811 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3812 rank.subrank |= CV_CONVERSION_CONST;
3813 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3814 rank.subrank |= CV_CONVERSION_VOLATILE;
3815 if (rank.subrank != 0)
3816 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3817 return EXACT_MATCH_BADNESS;
3818 }
3819 return INCOMPATIBLE_TYPE_BADNESS;
3820 }
3821 case TYPE_CODE_FUNC:
3822 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3823 case TYPE_CODE_INT:
3824 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3825 {
3826 if (value_as_long (value) == 0)
3827 {
3828 /* Null pointer conversion: allow it to be cast to a pointer.
3829 [4.10.1 of C++ standard draft n3290] */
3830 return NULL_POINTER_CONVERSION_BADNESS;
3831 }
3832 else
3833 {
3834 /* If type checking is disabled, allow the conversion. */
3835 if (!strict_type_checking)
3836 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3837 }
3838 }
3839 /* fall through */
3840 case TYPE_CODE_ENUM:
3841 case TYPE_CODE_FLAGS:
3842 case TYPE_CODE_CHAR:
3843 case TYPE_CODE_RANGE:
3844 case TYPE_CODE_BOOL:
3845 default:
3846 return INCOMPATIBLE_TYPE_BADNESS;
3847 }
3848 }
3849
3850 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3851
3852 static struct rank
3853 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3854 {
3855 switch (TYPE_CODE (arg))
3856 {
3857 case TYPE_CODE_PTR:
3858 case TYPE_CODE_ARRAY:
3859 return rank_one_type (TYPE_TARGET_TYPE (parm),
3860 TYPE_TARGET_TYPE (arg), NULL);
3861 default:
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 }
3864 }
3865
3866 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3867
3868 static struct rank
3869 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3870 {
3871 switch (TYPE_CODE (arg))
3872 {
3873 case TYPE_CODE_PTR: /* funcptr -> func */
3874 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3875 default:
3876 return INCOMPATIBLE_TYPE_BADNESS;
3877 }
3878 }
3879
3880 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3881
3882 static struct rank
3883 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3884 {
3885 switch (TYPE_CODE (arg))
3886 {
3887 case TYPE_CODE_INT:
3888 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3889 {
3890 /* Deal with signed, unsigned, and plain chars and
3891 signed and unsigned ints. */
3892 if (TYPE_NOSIGN (parm))
3893 {
3894 /* This case only for character types. */
3895 if (TYPE_NOSIGN (arg))
3896 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3897 else /* signed/unsigned char -> plain char */
3898 return INTEGER_CONVERSION_BADNESS;
3899 }
3900 else if (TYPE_UNSIGNED (parm))
3901 {
3902 if (TYPE_UNSIGNED (arg))
3903 {
3904 /* unsigned int -> unsigned int, or
3905 unsigned long -> unsigned long */
3906 if (integer_types_same_name_p (TYPE_NAME (parm),
3907 TYPE_NAME (arg)))
3908 return EXACT_MATCH_BADNESS;
3909 else if (integer_types_same_name_p (TYPE_NAME (arg),
3910 "int")
3911 && integer_types_same_name_p (TYPE_NAME (parm),
3912 "long"))
3913 /* unsigned int -> unsigned long */
3914 return INTEGER_PROMOTION_BADNESS;
3915 else
3916 /* unsigned long -> unsigned int */
3917 return INTEGER_CONVERSION_BADNESS;
3918 }
3919 else
3920 {
3921 if (integer_types_same_name_p (TYPE_NAME (arg),
3922 "long")
3923 && integer_types_same_name_p (TYPE_NAME (parm),
3924 "int"))
3925 /* signed long -> unsigned int */
3926 return INTEGER_CONVERSION_BADNESS;
3927 else
3928 /* signed int/long -> unsigned int/long */
3929 return INTEGER_CONVERSION_BADNESS;
3930 }
3931 }
3932 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3933 {
3934 if (integer_types_same_name_p (TYPE_NAME (parm),
3935 TYPE_NAME (arg)))
3936 return EXACT_MATCH_BADNESS;
3937 else if (integer_types_same_name_p (TYPE_NAME (arg),
3938 "int")
3939 && integer_types_same_name_p (TYPE_NAME (parm),
3940 "long"))
3941 return INTEGER_PROMOTION_BADNESS;
3942 else
3943 return INTEGER_CONVERSION_BADNESS;
3944 }
3945 else
3946 return INTEGER_CONVERSION_BADNESS;
3947 }
3948 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3949 return INTEGER_PROMOTION_BADNESS;
3950 else
3951 return INTEGER_CONVERSION_BADNESS;
3952 case TYPE_CODE_ENUM:
3953 case TYPE_CODE_FLAGS:
3954 case TYPE_CODE_CHAR:
3955 case TYPE_CODE_RANGE:
3956 case TYPE_CODE_BOOL:
3957 if (TYPE_DECLARED_CLASS (arg))
3958 return INCOMPATIBLE_TYPE_BADNESS;
3959 return INTEGER_PROMOTION_BADNESS;
3960 case TYPE_CODE_FLT:
3961 return INT_FLOAT_CONVERSION_BADNESS;
3962 case TYPE_CODE_PTR:
3963 return NS_POINTER_CONVERSION_BADNESS;
3964 default:
3965 return INCOMPATIBLE_TYPE_BADNESS;
3966 }
3967 }
3968
3969 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
3970
3971 static struct rank
3972 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
3973 {
3974 switch (TYPE_CODE (arg))
3975 {
3976 case TYPE_CODE_INT:
3977 case TYPE_CODE_CHAR:
3978 case TYPE_CODE_RANGE:
3979 case TYPE_CODE_BOOL:
3980 case TYPE_CODE_ENUM:
3981 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3982 return INCOMPATIBLE_TYPE_BADNESS;
3983 return INTEGER_CONVERSION_BADNESS;
3984 case TYPE_CODE_FLT:
3985 return INT_FLOAT_CONVERSION_BADNESS;
3986 default:
3987 return INCOMPATIBLE_TYPE_BADNESS;
3988 }
3989 }
3990
3991 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
3992
3993 static struct rank
3994 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
3995 {
3996 switch (TYPE_CODE (arg))
3997 {
3998 case TYPE_CODE_RANGE:
3999 case TYPE_CODE_BOOL:
4000 case TYPE_CODE_ENUM:
4001 if (TYPE_DECLARED_CLASS (arg))
4002 return INCOMPATIBLE_TYPE_BADNESS;
4003 return INTEGER_CONVERSION_BADNESS;
4004 case TYPE_CODE_FLT:
4005 return INT_FLOAT_CONVERSION_BADNESS;
4006 case TYPE_CODE_INT:
4007 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4008 return INTEGER_CONVERSION_BADNESS;
4009 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4010 return INTEGER_PROMOTION_BADNESS;
4011 /* fall through */
4012 case TYPE_CODE_CHAR:
4013 /* Deal with signed, unsigned, and plain chars for C++ and
4014 with int cases falling through from previous case. */
4015 if (TYPE_NOSIGN (parm))
4016 {
4017 if (TYPE_NOSIGN (arg))
4018 return EXACT_MATCH_BADNESS;
4019 else
4020 return INTEGER_CONVERSION_BADNESS;
4021 }
4022 else if (TYPE_UNSIGNED (parm))
4023 {
4024 if (TYPE_UNSIGNED (arg))
4025 return EXACT_MATCH_BADNESS;
4026 else
4027 return INTEGER_PROMOTION_BADNESS;
4028 }
4029 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4030 return EXACT_MATCH_BADNESS;
4031 else
4032 return INTEGER_CONVERSION_BADNESS;
4033 default:
4034 return INCOMPATIBLE_TYPE_BADNESS;
4035 }
4036 }
4037
4038 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4039
4040 static struct rank
4041 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4042 {
4043 switch (TYPE_CODE (arg))
4044 {
4045 case TYPE_CODE_INT:
4046 case TYPE_CODE_CHAR:
4047 case TYPE_CODE_RANGE:
4048 case TYPE_CODE_BOOL:
4049 case TYPE_CODE_ENUM:
4050 return INTEGER_CONVERSION_BADNESS;
4051 case TYPE_CODE_FLT:
4052 return INT_FLOAT_CONVERSION_BADNESS;
4053 default:
4054 return INCOMPATIBLE_TYPE_BADNESS;
4055 }
4056 }
4057
4058 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4059
4060 static struct rank
4061 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4062 {
4063 switch (TYPE_CODE (arg))
4064 {
4065 /* n3290 draft, section 4.12.1 (conv.bool):
4066
4067 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4068 pointer to member type can be converted to a prvalue of type
4069 bool. A zero value, null pointer value, or null member pointer
4070 value is converted to false; any other value is converted to
4071 true. A prvalue of type std::nullptr_t can be converted to a
4072 prvalue of type bool; the resulting value is false." */
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_CHAR:
4075 case TYPE_CODE_ENUM:
4076 case TYPE_CODE_FLT:
4077 case TYPE_CODE_MEMBERPTR:
4078 case TYPE_CODE_PTR:
4079 return BOOL_CONVERSION_BADNESS;
4080 case TYPE_CODE_RANGE:
4081 return INCOMPATIBLE_TYPE_BADNESS;
4082 case TYPE_CODE_BOOL:
4083 return EXACT_MATCH_BADNESS;
4084 default:
4085 return INCOMPATIBLE_TYPE_BADNESS;
4086 }
4087 }
4088
4089 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4090
4091 static struct rank
4092 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4093 {
4094 switch (TYPE_CODE (arg))
4095 {
4096 case TYPE_CODE_FLT:
4097 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4098 return FLOAT_PROMOTION_BADNESS;
4099 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4100 return EXACT_MATCH_BADNESS;
4101 else
4102 return FLOAT_CONVERSION_BADNESS;
4103 case TYPE_CODE_INT:
4104 case TYPE_CODE_BOOL:
4105 case TYPE_CODE_ENUM:
4106 case TYPE_CODE_RANGE:
4107 case TYPE_CODE_CHAR:
4108 return INT_FLOAT_CONVERSION_BADNESS;
4109 default:
4110 return INCOMPATIBLE_TYPE_BADNESS;
4111 }
4112 }
4113
4114 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4115
4116 static struct rank
4117 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4118 {
4119 switch (TYPE_CODE (arg))
4120 { /* Strictly not needed for C++, but... */
4121 case TYPE_CODE_FLT:
4122 return FLOAT_PROMOTION_BADNESS;
4123 case TYPE_CODE_COMPLEX:
4124 return EXACT_MATCH_BADNESS;
4125 default:
4126 return INCOMPATIBLE_TYPE_BADNESS;
4127 }
4128 }
4129
4130 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4131
4132 static struct rank
4133 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4134 {
4135 struct rank rank = {0, 0};
4136
4137 switch (TYPE_CODE (arg))
4138 {
4139 case TYPE_CODE_STRUCT:
4140 /* Check for derivation */
4141 rank.subrank = distance_to_ancestor (parm, arg, 0);
4142 if (rank.subrank >= 0)
4143 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4144 /* fall through */
4145 default:
4146 return INCOMPATIBLE_TYPE_BADNESS;
4147 }
4148 }
4149
4150 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4151
4152 static struct rank
4153 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4154 {
4155 switch (TYPE_CODE (arg))
4156 {
4157 /* Not in C++ */
4158 case TYPE_CODE_SET:
4159 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4160 TYPE_FIELD_TYPE (arg, 0), NULL);
4161 default:
4162 return INCOMPATIBLE_TYPE_BADNESS;
4163 }
4164 }
4165
4166 /* Compare one type (PARM) for compatibility with another (ARG).
4167 * PARM is intended to be the parameter type of a function; and
4168 * ARG is the supplied argument's type. This function tests if
4169 * the latter can be converted to the former.
4170 * VALUE is the argument's value or NULL if none (or called recursively)
4171 *
4172 * Return 0 if they are identical types;
4173 * Otherwise, return an integer which corresponds to how compatible
4174 * PARM is to ARG. The higher the return value, the worse the match.
4175 * Generally the "bad" conversions are all uniformly assigned a 100. */
4176
4177 struct rank
4178 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4179 {
4180 struct rank rank = {0,0};
4181
4182 /* Resolve typedefs */
4183 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4184 parm = check_typedef (parm);
4185 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4186 arg = check_typedef (arg);
4187
4188 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4189 {
4190 if (VALUE_LVAL (value) == not_lval)
4191 {
4192 /* Rvalues should preferably bind to rvalue references or const
4193 lvalue references. */
4194 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4195 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4196 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4197 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4198 else
4199 return INCOMPATIBLE_TYPE_BADNESS;
4200 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4201 }
4202 else
4203 {
4204 /* Lvalues should prefer lvalue overloads. */
4205 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4206 {
4207 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4208 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4209 }
4210 }
4211 }
4212
4213 if (types_equal (parm, arg))
4214 {
4215 struct type *t1 = parm;
4216 struct type *t2 = arg;
4217
4218 /* For pointers and references, compare target type. */
4219 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4220 {
4221 t1 = TYPE_TARGET_TYPE (parm);
4222 t2 = TYPE_TARGET_TYPE (arg);
4223 }
4224
4225 /* Make sure they are CV equal, too. */
4226 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4227 rank.subrank |= CV_CONVERSION_CONST;
4228 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4229 rank.subrank |= CV_CONVERSION_VOLATILE;
4230 if (rank.subrank != 0)
4231 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4232 return EXACT_MATCH_BADNESS;
4233 }
4234
4235 /* See through references, since we can almost make non-references
4236 references. */
4237
4238 if (TYPE_IS_REFERENCE (arg))
4239 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4240 REFERENCE_CONVERSION_BADNESS));
4241 if (TYPE_IS_REFERENCE (parm))
4242 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4243 REFERENCE_CONVERSION_BADNESS));
4244 if (overload_debug)
4245 /* Debugging only. */
4246 fprintf_filtered (gdb_stderr,
4247 "------ Arg is %s [%d], parm is %s [%d]\n",
4248 TYPE_NAME (arg), TYPE_CODE (arg),
4249 TYPE_NAME (parm), TYPE_CODE (parm));
4250
4251 /* x -> y means arg of type x being supplied for parameter of type y. */
4252
4253 switch (TYPE_CODE (parm))
4254 {
4255 case TYPE_CODE_PTR:
4256 return rank_one_type_parm_ptr (parm, arg, value);
4257 case TYPE_CODE_ARRAY:
4258 return rank_one_type_parm_array (parm, arg, value);
4259 case TYPE_CODE_FUNC:
4260 return rank_one_type_parm_func (parm, arg, value);
4261 case TYPE_CODE_INT:
4262 return rank_one_type_parm_int (parm, arg, value);
4263 case TYPE_CODE_ENUM:
4264 return rank_one_type_parm_enum (parm, arg, value);
4265 case TYPE_CODE_CHAR:
4266 return rank_one_type_parm_char (parm, arg, value);
4267 case TYPE_CODE_RANGE:
4268 return rank_one_type_parm_range (parm, arg, value);
4269 case TYPE_CODE_BOOL:
4270 return rank_one_type_parm_bool (parm, arg, value);
4271 case TYPE_CODE_FLT:
4272 return rank_one_type_parm_float (parm, arg, value);
4273 case TYPE_CODE_COMPLEX:
4274 return rank_one_type_parm_complex (parm, arg, value);
4275 case TYPE_CODE_STRUCT:
4276 return rank_one_type_parm_struct (parm, arg, value);
4277 case TYPE_CODE_SET:
4278 return rank_one_type_parm_set (parm, arg, value);
4279 default:
4280 return INCOMPATIBLE_TYPE_BADNESS;
4281 } /* switch (TYPE_CODE (arg)) */
4282 }
4283
4284 /* End of functions for overload resolution. */
4285 \f
4286 /* Routines to pretty-print types. */
4287
4288 static void
4289 print_bit_vector (B_TYPE *bits, int nbits)
4290 {
4291 int bitno;
4292
4293 for (bitno = 0; bitno < nbits; bitno++)
4294 {
4295 if ((bitno % 8) == 0)
4296 {
4297 puts_filtered (" ");
4298 }
4299 if (B_TST (bits, bitno))
4300 printf_filtered (("1"));
4301 else
4302 printf_filtered (("0"));
4303 }
4304 }
4305
4306 /* Note the first arg should be the "this" pointer, we may not want to
4307 include it since we may get into a infinitely recursive
4308 situation. */
4309
4310 static void
4311 print_args (struct field *args, int nargs, int spaces)
4312 {
4313 if (args != NULL)
4314 {
4315 int i;
4316
4317 for (i = 0; i < nargs; i++)
4318 {
4319 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4320 args[i].name != NULL ? args[i].name : "<NULL>");
4321 recursive_dump_type (args[i].type, spaces + 2);
4322 }
4323 }
4324 }
4325
4326 int
4327 field_is_static (struct field *f)
4328 {
4329 /* "static" fields are the fields whose location is not relative
4330 to the address of the enclosing struct. It would be nice to
4331 have a dedicated flag that would be set for static fields when
4332 the type is being created. But in practice, checking the field
4333 loc_kind should give us an accurate answer. */
4334 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4335 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4336 }
4337
4338 static void
4339 dump_fn_fieldlists (struct type *type, int spaces)
4340 {
4341 int method_idx;
4342 int overload_idx;
4343 struct fn_field *f;
4344
4345 printfi_filtered (spaces, "fn_fieldlists ");
4346 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4347 printf_filtered ("\n");
4348 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4349 {
4350 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4351 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4352 method_idx,
4353 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4354 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4355 gdb_stdout);
4356 printf_filtered (_(") length %d\n"),
4357 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4358 for (overload_idx = 0;
4359 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4360 overload_idx++)
4361 {
4362 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4363 overload_idx,
4364 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4365 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4366 gdb_stdout);
4367 printf_filtered (")\n");
4368 printfi_filtered (spaces + 8, "type ");
4369 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4370 gdb_stdout);
4371 printf_filtered ("\n");
4372
4373 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4374 spaces + 8 + 2);
4375
4376 printfi_filtered (spaces + 8, "args ");
4377 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4378 gdb_stdout);
4379 printf_filtered ("\n");
4380 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4381 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4382 spaces + 8 + 2);
4383 printfi_filtered (spaces + 8, "fcontext ");
4384 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4385 gdb_stdout);
4386 printf_filtered ("\n");
4387
4388 printfi_filtered (spaces + 8, "is_const %d\n",
4389 TYPE_FN_FIELD_CONST (f, overload_idx));
4390 printfi_filtered (spaces + 8, "is_volatile %d\n",
4391 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4392 printfi_filtered (spaces + 8, "is_private %d\n",
4393 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4394 printfi_filtered (spaces + 8, "is_protected %d\n",
4395 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4396 printfi_filtered (spaces + 8, "is_stub %d\n",
4397 TYPE_FN_FIELD_STUB (f, overload_idx));
4398 printfi_filtered (spaces + 8, "voffset %u\n",
4399 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4400 }
4401 }
4402 }
4403
4404 static void
4405 print_cplus_stuff (struct type *type, int spaces)
4406 {
4407 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4408 printfi_filtered (spaces, "vptr_basetype ");
4409 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4410 puts_filtered ("\n");
4411 if (TYPE_VPTR_BASETYPE (type) != NULL)
4412 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4413
4414 printfi_filtered (spaces, "n_baseclasses %d\n",
4415 TYPE_N_BASECLASSES (type));
4416 printfi_filtered (spaces, "nfn_fields %d\n",
4417 TYPE_NFN_FIELDS (type));
4418 if (TYPE_N_BASECLASSES (type) > 0)
4419 {
4420 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4421 TYPE_N_BASECLASSES (type));
4422 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4423 gdb_stdout);
4424 printf_filtered (")");
4425
4426 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4427 TYPE_N_BASECLASSES (type));
4428 puts_filtered ("\n");
4429 }
4430 if (TYPE_NFIELDS (type) > 0)
4431 {
4432 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4433 {
4434 printfi_filtered (spaces,
4435 "private_field_bits (%d bits at *",
4436 TYPE_NFIELDS (type));
4437 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4438 gdb_stdout);
4439 printf_filtered (")");
4440 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4441 TYPE_NFIELDS (type));
4442 puts_filtered ("\n");
4443 }
4444 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4445 {
4446 printfi_filtered (spaces,
4447 "protected_field_bits (%d bits at *",
4448 TYPE_NFIELDS (type));
4449 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4450 gdb_stdout);
4451 printf_filtered (")");
4452 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4453 TYPE_NFIELDS (type));
4454 puts_filtered ("\n");
4455 }
4456 }
4457 if (TYPE_NFN_FIELDS (type) > 0)
4458 {
4459 dump_fn_fieldlists (type, spaces);
4460 }
4461 }
4462
4463 /* Print the contents of the TYPE's type_specific union, assuming that
4464 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4465
4466 static void
4467 print_gnat_stuff (struct type *type, int spaces)
4468 {
4469 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4470
4471 if (descriptive_type == NULL)
4472 printfi_filtered (spaces + 2, "no descriptive type\n");
4473 else
4474 {
4475 printfi_filtered (spaces + 2, "descriptive type\n");
4476 recursive_dump_type (descriptive_type, spaces + 4);
4477 }
4478 }
4479
4480 static struct obstack dont_print_type_obstack;
4481
4482 void
4483 recursive_dump_type (struct type *type, int spaces)
4484 {
4485 int idx;
4486
4487 if (spaces == 0)
4488 obstack_begin (&dont_print_type_obstack, 0);
4489
4490 if (TYPE_NFIELDS (type) > 0
4491 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4492 {
4493 struct type **first_dont_print
4494 = (struct type **) obstack_base (&dont_print_type_obstack);
4495
4496 int i = (struct type **)
4497 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4498
4499 while (--i >= 0)
4500 {
4501 if (type == first_dont_print[i])
4502 {
4503 printfi_filtered (spaces, "type node ");
4504 gdb_print_host_address (type, gdb_stdout);
4505 printf_filtered (_(" <same as already seen type>\n"));
4506 return;
4507 }
4508 }
4509
4510 obstack_ptr_grow (&dont_print_type_obstack, type);
4511 }
4512
4513 printfi_filtered (spaces, "type node ");
4514 gdb_print_host_address (type, gdb_stdout);
4515 printf_filtered ("\n");
4516 printfi_filtered (spaces, "name '%s' (",
4517 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4518 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4519 printf_filtered (")\n");
4520 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4521 switch (TYPE_CODE (type))
4522 {
4523 case TYPE_CODE_UNDEF:
4524 printf_filtered ("(TYPE_CODE_UNDEF)");
4525 break;
4526 case TYPE_CODE_PTR:
4527 printf_filtered ("(TYPE_CODE_PTR)");
4528 break;
4529 case TYPE_CODE_ARRAY:
4530 printf_filtered ("(TYPE_CODE_ARRAY)");
4531 break;
4532 case TYPE_CODE_STRUCT:
4533 printf_filtered ("(TYPE_CODE_STRUCT)");
4534 break;
4535 case TYPE_CODE_UNION:
4536 printf_filtered ("(TYPE_CODE_UNION)");
4537 break;
4538 case TYPE_CODE_ENUM:
4539 printf_filtered ("(TYPE_CODE_ENUM)");
4540 break;
4541 case TYPE_CODE_FLAGS:
4542 printf_filtered ("(TYPE_CODE_FLAGS)");
4543 break;
4544 case TYPE_CODE_FUNC:
4545 printf_filtered ("(TYPE_CODE_FUNC)");
4546 break;
4547 case TYPE_CODE_INT:
4548 printf_filtered ("(TYPE_CODE_INT)");
4549 break;
4550 case TYPE_CODE_FLT:
4551 printf_filtered ("(TYPE_CODE_FLT)");
4552 break;
4553 case TYPE_CODE_VOID:
4554 printf_filtered ("(TYPE_CODE_VOID)");
4555 break;
4556 case TYPE_CODE_SET:
4557 printf_filtered ("(TYPE_CODE_SET)");
4558 break;
4559 case TYPE_CODE_RANGE:
4560 printf_filtered ("(TYPE_CODE_RANGE)");
4561 break;
4562 case TYPE_CODE_STRING:
4563 printf_filtered ("(TYPE_CODE_STRING)");
4564 break;
4565 case TYPE_CODE_ERROR:
4566 printf_filtered ("(TYPE_CODE_ERROR)");
4567 break;
4568 case TYPE_CODE_MEMBERPTR:
4569 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4570 break;
4571 case TYPE_CODE_METHODPTR:
4572 printf_filtered ("(TYPE_CODE_METHODPTR)");
4573 break;
4574 case TYPE_CODE_METHOD:
4575 printf_filtered ("(TYPE_CODE_METHOD)");
4576 break;
4577 case TYPE_CODE_REF:
4578 printf_filtered ("(TYPE_CODE_REF)");
4579 break;
4580 case TYPE_CODE_CHAR:
4581 printf_filtered ("(TYPE_CODE_CHAR)");
4582 break;
4583 case TYPE_CODE_BOOL:
4584 printf_filtered ("(TYPE_CODE_BOOL)");
4585 break;
4586 case TYPE_CODE_COMPLEX:
4587 printf_filtered ("(TYPE_CODE_COMPLEX)");
4588 break;
4589 case TYPE_CODE_TYPEDEF:
4590 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4591 break;
4592 case TYPE_CODE_NAMESPACE:
4593 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4594 break;
4595 default:
4596 printf_filtered ("(UNKNOWN TYPE CODE)");
4597 break;
4598 }
4599 puts_filtered ("\n");
4600 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4601 if (TYPE_OBJFILE_OWNED (type))
4602 {
4603 printfi_filtered (spaces, "objfile ");
4604 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4605 }
4606 else
4607 {
4608 printfi_filtered (spaces, "gdbarch ");
4609 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4610 }
4611 printf_filtered ("\n");
4612 printfi_filtered (spaces, "target_type ");
4613 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4614 printf_filtered ("\n");
4615 if (TYPE_TARGET_TYPE (type) != NULL)
4616 {
4617 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4618 }
4619 printfi_filtered (spaces, "pointer_type ");
4620 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4621 printf_filtered ("\n");
4622 printfi_filtered (spaces, "reference_type ");
4623 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4624 printf_filtered ("\n");
4625 printfi_filtered (spaces, "type_chain ");
4626 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4627 printf_filtered ("\n");
4628 printfi_filtered (spaces, "instance_flags 0x%x",
4629 TYPE_INSTANCE_FLAGS (type));
4630 if (TYPE_CONST (type))
4631 {
4632 puts_filtered (" TYPE_CONST");
4633 }
4634 if (TYPE_VOLATILE (type))
4635 {
4636 puts_filtered (" TYPE_VOLATILE");
4637 }
4638 if (TYPE_CODE_SPACE (type))
4639 {
4640 puts_filtered (" TYPE_CODE_SPACE");
4641 }
4642 if (TYPE_DATA_SPACE (type))
4643 {
4644 puts_filtered (" TYPE_DATA_SPACE");
4645 }
4646 if (TYPE_ADDRESS_CLASS_1 (type))
4647 {
4648 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4649 }
4650 if (TYPE_ADDRESS_CLASS_2 (type))
4651 {
4652 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4653 }
4654 if (TYPE_RESTRICT (type))
4655 {
4656 puts_filtered (" TYPE_RESTRICT");
4657 }
4658 if (TYPE_ATOMIC (type))
4659 {
4660 puts_filtered (" TYPE_ATOMIC");
4661 }
4662 puts_filtered ("\n");
4663
4664 printfi_filtered (spaces, "flags");
4665 if (TYPE_UNSIGNED (type))
4666 {
4667 puts_filtered (" TYPE_UNSIGNED");
4668 }
4669 if (TYPE_NOSIGN (type))
4670 {
4671 puts_filtered (" TYPE_NOSIGN");
4672 }
4673 if (TYPE_STUB (type))
4674 {
4675 puts_filtered (" TYPE_STUB");
4676 }
4677 if (TYPE_TARGET_STUB (type))
4678 {
4679 puts_filtered (" TYPE_TARGET_STUB");
4680 }
4681 if (TYPE_PROTOTYPED (type))
4682 {
4683 puts_filtered (" TYPE_PROTOTYPED");
4684 }
4685 if (TYPE_INCOMPLETE (type))
4686 {
4687 puts_filtered (" TYPE_INCOMPLETE");
4688 }
4689 if (TYPE_VARARGS (type))
4690 {
4691 puts_filtered (" TYPE_VARARGS");
4692 }
4693 /* This is used for things like AltiVec registers on ppc. Gcc emits
4694 an attribute for the array type, which tells whether or not we
4695 have a vector, instead of a regular array. */
4696 if (TYPE_VECTOR (type))
4697 {
4698 puts_filtered (" TYPE_VECTOR");
4699 }
4700 if (TYPE_FIXED_INSTANCE (type))
4701 {
4702 puts_filtered (" TYPE_FIXED_INSTANCE");
4703 }
4704 if (TYPE_STUB_SUPPORTED (type))
4705 {
4706 puts_filtered (" TYPE_STUB_SUPPORTED");
4707 }
4708 if (TYPE_NOTTEXT (type))
4709 {
4710 puts_filtered (" TYPE_NOTTEXT");
4711 }
4712 puts_filtered ("\n");
4713 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4714 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4715 puts_filtered ("\n");
4716 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4717 {
4718 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4719 printfi_filtered (spaces + 2,
4720 "[%d] enumval %s type ",
4721 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4722 else
4723 printfi_filtered (spaces + 2,
4724 "[%d] bitpos %s bitsize %d type ",
4725 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4726 TYPE_FIELD_BITSIZE (type, idx));
4727 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4728 printf_filtered (" name '%s' (",
4729 TYPE_FIELD_NAME (type, idx) != NULL
4730 ? TYPE_FIELD_NAME (type, idx)
4731 : "<NULL>");
4732 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4733 printf_filtered (")\n");
4734 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4735 {
4736 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4737 }
4738 }
4739 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4740 {
4741 printfi_filtered (spaces, "low %s%s high %s%s\n",
4742 plongest (TYPE_LOW_BOUND (type)),
4743 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4744 plongest (TYPE_HIGH_BOUND (type)),
4745 TYPE_HIGH_BOUND_UNDEFINED (type)
4746 ? " (undefined)" : "");
4747 }
4748
4749 switch (TYPE_SPECIFIC_FIELD (type))
4750 {
4751 case TYPE_SPECIFIC_CPLUS_STUFF:
4752 printfi_filtered (spaces, "cplus_stuff ");
4753 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4754 gdb_stdout);
4755 puts_filtered ("\n");
4756 print_cplus_stuff (type, spaces);
4757 break;
4758
4759 case TYPE_SPECIFIC_GNAT_STUFF:
4760 printfi_filtered (spaces, "gnat_stuff ");
4761 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4762 puts_filtered ("\n");
4763 print_gnat_stuff (type, spaces);
4764 break;
4765
4766 case TYPE_SPECIFIC_FLOATFORMAT:
4767 printfi_filtered (spaces, "floatformat ");
4768 if (TYPE_FLOATFORMAT (type) == NULL
4769 || TYPE_FLOATFORMAT (type)->name == NULL)
4770 puts_filtered ("(null)");
4771 else
4772 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4773 puts_filtered ("\n");
4774 break;
4775
4776 case TYPE_SPECIFIC_FUNC:
4777 printfi_filtered (spaces, "calling_convention %d\n",
4778 TYPE_CALLING_CONVENTION (type));
4779 /* tail_call_list is not printed. */
4780 break;
4781
4782 case TYPE_SPECIFIC_SELF_TYPE:
4783 printfi_filtered (spaces, "self_type ");
4784 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4785 puts_filtered ("\n");
4786 break;
4787 }
4788
4789 if (spaces == 0)
4790 obstack_free (&dont_print_type_obstack, NULL);
4791 }
4792 \f
4793 /* Trivial helpers for the libiberty hash table, for mapping one
4794 type to another. */
4795
4796 struct type_pair : public allocate_on_obstack
4797 {
4798 type_pair (struct type *old_, struct type *newobj_)
4799 : old (old_), newobj (newobj_)
4800 {}
4801
4802 struct type * const old, * const newobj;
4803 };
4804
4805 static hashval_t
4806 type_pair_hash (const void *item)
4807 {
4808 const struct type_pair *pair = (const struct type_pair *) item;
4809
4810 return htab_hash_pointer (pair->old);
4811 }
4812
4813 static int
4814 type_pair_eq (const void *item_lhs, const void *item_rhs)
4815 {
4816 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4817 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4818
4819 return lhs->old == rhs->old;
4820 }
4821
4822 /* Allocate the hash table used by copy_type_recursive to walk
4823 types without duplicates. We use OBJFILE's obstack, because
4824 OBJFILE is about to be deleted. */
4825
4826 htab_t
4827 create_copied_types_hash (struct objfile *objfile)
4828 {
4829 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4830 NULL, &objfile->objfile_obstack,
4831 hashtab_obstack_allocate,
4832 dummy_obstack_deallocate);
4833 }
4834
4835 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4836
4837 static struct dynamic_prop_list *
4838 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4839 struct dynamic_prop_list *list)
4840 {
4841 struct dynamic_prop_list *copy = list;
4842 struct dynamic_prop_list **node_ptr = &copy;
4843
4844 while (*node_ptr != NULL)
4845 {
4846 struct dynamic_prop_list *node_copy;
4847
4848 node_copy = ((struct dynamic_prop_list *)
4849 obstack_copy (objfile_obstack, *node_ptr,
4850 sizeof (struct dynamic_prop_list)));
4851 node_copy->prop = (*node_ptr)->prop;
4852 *node_ptr = node_copy;
4853
4854 node_ptr = &node_copy->next;
4855 }
4856
4857 return copy;
4858 }
4859
4860 /* Recursively copy (deep copy) TYPE, if it is associated with
4861 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4862 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4863 it is not associated with OBJFILE. */
4864
4865 struct type *
4866 copy_type_recursive (struct objfile *objfile,
4867 struct type *type,
4868 htab_t copied_types)
4869 {
4870 void **slot;
4871 struct type *new_type;
4872
4873 if (! TYPE_OBJFILE_OWNED (type))
4874 return type;
4875
4876 /* This type shouldn't be pointing to any types in other objfiles;
4877 if it did, the type might disappear unexpectedly. */
4878 gdb_assert (TYPE_OBJFILE (type) == objfile);
4879
4880 struct type_pair pair (type, nullptr);
4881
4882 slot = htab_find_slot (copied_types, &pair, INSERT);
4883 if (*slot != NULL)
4884 return ((struct type_pair *) *slot)->newobj;
4885
4886 new_type = alloc_type_arch (get_type_arch (type));
4887
4888 /* We must add the new type to the hash table immediately, in case
4889 we encounter this type again during a recursive call below. */
4890 struct type_pair *stored
4891 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4892
4893 *slot = stored;
4894
4895 /* Copy the common fields of types. For the main type, we simply
4896 copy the entire thing and then update specific fields as needed. */
4897 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4898 TYPE_OBJFILE_OWNED (new_type) = 0;
4899 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4900
4901 if (TYPE_NAME (type))
4902 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4903
4904 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4905 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4906
4907 /* Copy the fields. */
4908 if (TYPE_NFIELDS (type))
4909 {
4910 int i, nfields;
4911
4912 nfields = TYPE_NFIELDS (type);
4913 TYPE_FIELDS (new_type) = (struct field *)
4914 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4915 for (i = 0; i < nfields; i++)
4916 {
4917 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4918 TYPE_FIELD_ARTIFICIAL (type, i);
4919 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4920 if (TYPE_FIELD_TYPE (type, i))
4921 TYPE_FIELD_TYPE (new_type, i)
4922 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4923 copied_types);
4924 if (TYPE_FIELD_NAME (type, i))
4925 TYPE_FIELD_NAME (new_type, i) =
4926 xstrdup (TYPE_FIELD_NAME (type, i));
4927 switch (TYPE_FIELD_LOC_KIND (type, i))
4928 {
4929 case FIELD_LOC_KIND_BITPOS:
4930 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4931 TYPE_FIELD_BITPOS (type, i));
4932 break;
4933 case FIELD_LOC_KIND_ENUMVAL:
4934 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4935 TYPE_FIELD_ENUMVAL (type, i));
4936 break;
4937 case FIELD_LOC_KIND_PHYSADDR:
4938 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4939 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4940 break;
4941 case FIELD_LOC_KIND_PHYSNAME:
4942 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4943 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4944 i)));
4945 break;
4946 default:
4947 internal_error (__FILE__, __LINE__,
4948 _("Unexpected type field location kind: %d"),
4949 TYPE_FIELD_LOC_KIND (type, i));
4950 }
4951 }
4952 }
4953
4954 /* For range types, copy the bounds information. */
4955 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4956 {
4957 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4958 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4959 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4960 }
4961
4962 if (TYPE_DYN_PROP_LIST (type) != NULL)
4963 TYPE_DYN_PROP_LIST (new_type)
4964 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4965 TYPE_DYN_PROP_LIST (type));
4966
4967
4968 /* Copy pointers to other types. */
4969 if (TYPE_TARGET_TYPE (type))
4970 TYPE_TARGET_TYPE (new_type) =
4971 copy_type_recursive (objfile,
4972 TYPE_TARGET_TYPE (type),
4973 copied_types);
4974
4975 /* Maybe copy the type_specific bits.
4976
4977 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4978 base classes and methods. There's no fundamental reason why we
4979 can't, but at the moment it is not needed. */
4980
4981 switch (TYPE_SPECIFIC_FIELD (type))
4982 {
4983 case TYPE_SPECIFIC_NONE:
4984 break;
4985 case TYPE_SPECIFIC_FUNC:
4986 INIT_FUNC_SPECIFIC (new_type);
4987 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4988 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4989 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4990 break;
4991 case TYPE_SPECIFIC_FLOATFORMAT:
4992 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4993 break;
4994 case TYPE_SPECIFIC_CPLUS_STUFF:
4995 INIT_CPLUS_SPECIFIC (new_type);
4996 break;
4997 case TYPE_SPECIFIC_GNAT_STUFF:
4998 INIT_GNAT_SPECIFIC (new_type);
4999 break;
5000 case TYPE_SPECIFIC_SELF_TYPE:
5001 set_type_self_type (new_type,
5002 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5003 copied_types));
5004 break;
5005 default:
5006 gdb_assert_not_reached ("bad type_specific_kind");
5007 }
5008
5009 return new_type;
5010 }
5011
5012 /* Make a copy of the given TYPE, except that the pointer & reference
5013 types are not preserved.
5014
5015 This function assumes that the given type has an associated objfile.
5016 This objfile is used to allocate the new type. */
5017
5018 struct type *
5019 copy_type (const struct type *type)
5020 {
5021 struct type *new_type;
5022
5023 gdb_assert (TYPE_OBJFILE_OWNED (type));
5024
5025 new_type = alloc_type_copy (type);
5026 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5027 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5028 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5029 sizeof (struct main_type));
5030 if (TYPE_DYN_PROP_LIST (type) != NULL)
5031 TYPE_DYN_PROP_LIST (new_type)
5032 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5033 TYPE_DYN_PROP_LIST (type));
5034
5035 return new_type;
5036 }
5037 \f
5038 /* Helper functions to initialize architecture-specific types. */
5039
5040 /* Allocate a type structure associated with GDBARCH and set its
5041 CODE, LENGTH, and NAME fields. */
5042
5043 struct type *
5044 arch_type (struct gdbarch *gdbarch,
5045 enum type_code code, int bit, const char *name)
5046 {
5047 struct type *type;
5048
5049 type = alloc_type_arch (gdbarch);
5050 set_type_code (type, code);
5051 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5052 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5053
5054 if (name)
5055 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5056
5057 return type;
5058 }
5059
5060 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5061 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5062 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5063
5064 struct type *
5065 arch_integer_type (struct gdbarch *gdbarch,
5066 int bit, int unsigned_p, const char *name)
5067 {
5068 struct type *t;
5069
5070 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5071 if (unsigned_p)
5072 TYPE_UNSIGNED (t) = 1;
5073
5074 return t;
5075 }
5076
5077 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5078 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5079 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5080
5081 struct type *
5082 arch_character_type (struct gdbarch *gdbarch,
5083 int bit, int unsigned_p, const char *name)
5084 {
5085 struct type *t;
5086
5087 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5088 if (unsigned_p)
5089 TYPE_UNSIGNED (t) = 1;
5090
5091 return t;
5092 }
5093
5094 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5095 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5096 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5097
5098 struct type *
5099 arch_boolean_type (struct gdbarch *gdbarch,
5100 int bit, int unsigned_p, const char *name)
5101 {
5102 struct type *t;
5103
5104 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5105 if (unsigned_p)
5106 TYPE_UNSIGNED (t) = 1;
5107
5108 return t;
5109 }
5110
5111 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5112 BIT is the type size in bits; if BIT equals -1, the size is
5113 determined by the floatformat. NAME is the type name. Set the
5114 TYPE_FLOATFORMAT from FLOATFORMATS. */
5115
5116 struct type *
5117 arch_float_type (struct gdbarch *gdbarch,
5118 int bit, const char *name,
5119 const struct floatformat **floatformats)
5120 {
5121 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5122 struct type *t;
5123
5124 bit = verify_floatformat (bit, fmt);
5125 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5126 TYPE_FLOATFORMAT (t) = fmt;
5127
5128 return t;
5129 }
5130
5131 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5132 BIT is the type size in bits. NAME is the type name. */
5133
5134 struct type *
5135 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5136 {
5137 struct type *t;
5138
5139 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5140 return t;
5141 }
5142
5143 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5144 NAME is the type name. TARGET_TYPE is the component float type. */
5145
5146 struct type *
5147 arch_complex_type (struct gdbarch *gdbarch,
5148 const char *name, struct type *target_type)
5149 {
5150 struct type *t;
5151
5152 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5153 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5154 TYPE_TARGET_TYPE (t) = target_type;
5155 return t;
5156 }
5157
5158 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5159 BIT is the pointer type size in bits. NAME is the type name.
5160 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5161 TYPE_UNSIGNED flag. */
5162
5163 struct type *
5164 arch_pointer_type (struct gdbarch *gdbarch,
5165 int bit, const char *name, struct type *target_type)
5166 {
5167 struct type *t;
5168
5169 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5170 TYPE_TARGET_TYPE (t) = target_type;
5171 TYPE_UNSIGNED (t) = 1;
5172 return t;
5173 }
5174
5175 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5176 NAME is the type name. BIT is the size of the flag word in bits. */
5177
5178 struct type *
5179 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5180 {
5181 struct type *type;
5182
5183 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5184 TYPE_UNSIGNED (type) = 1;
5185 TYPE_NFIELDS (type) = 0;
5186 /* Pre-allocate enough space assuming every field is one bit. */
5187 TYPE_FIELDS (type)
5188 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5189
5190 return type;
5191 }
5192
5193 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5194 position BITPOS is called NAME. Pass NAME as "" for fields that
5195 should not be printed. */
5196
5197 void
5198 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5199 struct type *field_type, const char *name)
5200 {
5201 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5202 int field_nr = TYPE_NFIELDS (type);
5203
5204 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5205 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5206 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5207 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5208 gdb_assert (name != NULL);
5209
5210 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5211 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5212 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5213 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5214 ++TYPE_NFIELDS (type);
5215 }
5216
5217 /* Special version of append_flags_type_field to add a flag field.
5218 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5219 position BITPOS is called NAME. */
5220
5221 void
5222 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5223 {
5224 struct gdbarch *gdbarch = get_type_arch (type);
5225
5226 append_flags_type_field (type, bitpos, 1,
5227 builtin_type (gdbarch)->builtin_bool,
5228 name);
5229 }
5230
5231 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5232 specified by CODE) associated with GDBARCH. NAME is the type name. */
5233
5234 struct type *
5235 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5236 enum type_code code)
5237 {
5238 struct type *t;
5239
5240 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5241 t = arch_type (gdbarch, code, 0, NULL);
5242 TYPE_NAME (t) = name;
5243 INIT_CPLUS_SPECIFIC (t);
5244 return t;
5245 }
5246
5247 /* Add new field with name NAME and type FIELD to composite type T.
5248 Do not set the field's position or adjust the type's length;
5249 the caller should do so. Return the new field. */
5250
5251 struct field *
5252 append_composite_type_field_raw (struct type *t, const char *name,
5253 struct type *field)
5254 {
5255 struct field *f;
5256
5257 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5258 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5259 TYPE_NFIELDS (t));
5260 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5261 memset (f, 0, sizeof f[0]);
5262 FIELD_TYPE (f[0]) = field;
5263 FIELD_NAME (f[0]) = name;
5264 return f;
5265 }
5266
5267 /* Add new field with name NAME and type FIELD to composite type T.
5268 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5269
5270 void
5271 append_composite_type_field_aligned (struct type *t, const char *name,
5272 struct type *field, int alignment)
5273 {
5274 struct field *f = append_composite_type_field_raw (t, name, field);
5275
5276 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5277 {
5278 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5279 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5280 }
5281 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5282 {
5283 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5284 if (TYPE_NFIELDS (t) > 1)
5285 {
5286 SET_FIELD_BITPOS (f[0],
5287 (FIELD_BITPOS (f[-1])
5288 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5289 * TARGET_CHAR_BIT)));
5290
5291 if (alignment)
5292 {
5293 int left;
5294
5295 alignment *= TARGET_CHAR_BIT;
5296 left = FIELD_BITPOS (f[0]) % alignment;
5297
5298 if (left)
5299 {
5300 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5301 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5302 }
5303 }
5304 }
5305 }
5306 }
5307
5308 /* Add new field with name NAME and type FIELD to composite type T. */
5309
5310 void
5311 append_composite_type_field (struct type *t, const char *name,
5312 struct type *field)
5313 {
5314 append_composite_type_field_aligned (t, name, field, 0);
5315 }
5316
5317 static struct gdbarch_data *gdbtypes_data;
5318
5319 const struct builtin_type *
5320 builtin_type (struct gdbarch *gdbarch)
5321 {
5322 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5323 }
5324
5325 static void *
5326 gdbtypes_post_init (struct gdbarch *gdbarch)
5327 {
5328 struct builtin_type *builtin_type
5329 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5330
5331 /* Basic types. */
5332 builtin_type->builtin_void
5333 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5334 builtin_type->builtin_char
5335 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5336 !gdbarch_char_signed (gdbarch), "char");
5337 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5338 builtin_type->builtin_signed_char
5339 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5340 0, "signed char");
5341 builtin_type->builtin_unsigned_char
5342 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5343 1, "unsigned char");
5344 builtin_type->builtin_short
5345 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5346 0, "short");
5347 builtin_type->builtin_unsigned_short
5348 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5349 1, "unsigned short");
5350 builtin_type->builtin_int
5351 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5352 0, "int");
5353 builtin_type->builtin_unsigned_int
5354 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5355 1, "unsigned int");
5356 builtin_type->builtin_long
5357 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5358 0, "long");
5359 builtin_type->builtin_unsigned_long
5360 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5361 1, "unsigned long");
5362 builtin_type->builtin_long_long
5363 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5364 0, "long long");
5365 builtin_type->builtin_unsigned_long_long
5366 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5367 1, "unsigned long long");
5368 builtin_type->builtin_half
5369 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5370 "half", gdbarch_half_format (gdbarch));
5371 builtin_type->builtin_float
5372 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5373 "float", gdbarch_float_format (gdbarch));
5374 builtin_type->builtin_double
5375 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5376 "double", gdbarch_double_format (gdbarch));
5377 builtin_type->builtin_long_double
5378 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5379 "long double", gdbarch_long_double_format (gdbarch));
5380 builtin_type->builtin_complex
5381 = arch_complex_type (gdbarch, "complex",
5382 builtin_type->builtin_float);
5383 builtin_type->builtin_double_complex
5384 = arch_complex_type (gdbarch, "double complex",
5385 builtin_type->builtin_double);
5386 builtin_type->builtin_string
5387 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5388 builtin_type->builtin_bool
5389 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5390
5391 /* The following three are about decimal floating point types, which
5392 are 32-bits, 64-bits and 128-bits respectively. */
5393 builtin_type->builtin_decfloat
5394 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5395 builtin_type->builtin_decdouble
5396 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5397 builtin_type->builtin_declong
5398 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5399
5400 /* "True" character types. */
5401 builtin_type->builtin_true_char
5402 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5403 builtin_type->builtin_true_unsigned_char
5404 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5405
5406 /* Fixed-size integer types. */
5407 builtin_type->builtin_int0
5408 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5409 builtin_type->builtin_int8
5410 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5411 builtin_type->builtin_uint8
5412 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5413 builtin_type->builtin_int16
5414 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5415 builtin_type->builtin_uint16
5416 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5417 builtin_type->builtin_int24
5418 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5419 builtin_type->builtin_uint24
5420 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5421 builtin_type->builtin_int32
5422 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5423 builtin_type->builtin_uint32
5424 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5425 builtin_type->builtin_int64
5426 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5427 builtin_type->builtin_uint64
5428 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5429 builtin_type->builtin_int128
5430 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5431 builtin_type->builtin_uint128
5432 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5433 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5434 TYPE_INSTANCE_FLAG_NOTTEXT;
5435 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5436 TYPE_INSTANCE_FLAG_NOTTEXT;
5437
5438 /* Wide character types. */
5439 builtin_type->builtin_char16
5440 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5441 builtin_type->builtin_char32
5442 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5443 builtin_type->builtin_wchar
5444 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5445 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5446
5447 /* Default data/code pointer types. */
5448 builtin_type->builtin_data_ptr
5449 = lookup_pointer_type (builtin_type->builtin_void);
5450 builtin_type->builtin_func_ptr
5451 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5452 builtin_type->builtin_func_func
5453 = lookup_function_type (builtin_type->builtin_func_ptr);
5454
5455 /* This type represents a GDB internal function. */
5456 builtin_type->internal_fn
5457 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5458 "<internal function>");
5459
5460 /* This type represents an xmethod. */
5461 builtin_type->xmethod
5462 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5463
5464 return builtin_type;
5465 }
5466
5467 /* This set of objfile-based types is intended to be used by symbol
5468 readers as basic types. */
5469
5470 static const struct objfile_key<struct objfile_type,
5471 gdb::noop_deleter<struct objfile_type>>
5472 objfile_type_data;
5473
5474 const struct objfile_type *
5475 objfile_type (struct objfile *objfile)
5476 {
5477 struct gdbarch *gdbarch;
5478 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5479
5480 if (objfile_type)
5481 return objfile_type;
5482
5483 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5484 1, struct objfile_type);
5485
5486 /* Use the objfile architecture to determine basic type properties. */
5487 gdbarch = get_objfile_arch (objfile);
5488
5489 /* Basic types. */
5490 objfile_type->builtin_void
5491 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5492 objfile_type->builtin_char
5493 = init_integer_type (objfile, TARGET_CHAR_BIT,
5494 !gdbarch_char_signed (gdbarch), "char");
5495 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5496 objfile_type->builtin_signed_char
5497 = init_integer_type (objfile, TARGET_CHAR_BIT,
5498 0, "signed char");
5499 objfile_type->builtin_unsigned_char
5500 = init_integer_type (objfile, TARGET_CHAR_BIT,
5501 1, "unsigned char");
5502 objfile_type->builtin_short
5503 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5504 0, "short");
5505 objfile_type->builtin_unsigned_short
5506 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5507 1, "unsigned short");
5508 objfile_type->builtin_int
5509 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5510 0, "int");
5511 objfile_type->builtin_unsigned_int
5512 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5513 1, "unsigned int");
5514 objfile_type->builtin_long
5515 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5516 0, "long");
5517 objfile_type->builtin_unsigned_long
5518 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5519 1, "unsigned long");
5520 objfile_type->builtin_long_long
5521 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5522 0, "long long");
5523 objfile_type->builtin_unsigned_long_long
5524 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5525 1, "unsigned long long");
5526 objfile_type->builtin_float
5527 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5528 "float", gdbarch_float_format (gdbarch));
5529 objfile_type->builtin_double
5530 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5531 "double", gdbarch_double_format (gdbarch));
5532 objfile_type->builtin_long_double
5533 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5534 "long double", gdbarch_long_double_format (gdbarch));
5535
5536 /* This type represents a type that was unrecognized in symbol read-in. */
5537 objfile_type->builtin_error
5538 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5539
5540 /* The following set of types is used for symbols with no
5541 debug information. */
5542 objfile_type->nodebug_text_symbol
5543 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5544 "<text variable, no debug info>");
5545 objfile_type->nodebug_text_gnu_ifunc_symbol
5546 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5547 "<text gnu-indirect-function variable, no debug info>");
5548 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5549 objfile_type->nodebug_got_plt_symbol
5550 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5551 "<text from jump slot in .got.plt, no debug info>",
5552 objfile_type->nodebug_text_symbol);
5553 objfile_type->nodebug_data_symbol
5554 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5555 objfile_type->nodebug_unknown_symbol
5556 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5557 objfile_type->nodebug_tls_symbol
5558 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5559
5560 /* NOTE: on some targets, addresses and pointers are not necessarily
5561 the same.
5562
5563 The upshot is:
5564 - gdb's `struct type' always describes the target's
5565 representation.
5566 - gdb's `struct value' objects should always hold values in
5567 target form.
5568 - gdb's CORE_ADDR values are addresses in the unified virtual
5569 address space that the assembler and linker work with. Thus,
5570 since target_read_memory takes a CORE_ADDR as an argument, it
5571 can access any memory on the target, even if the processor has
5572 separate code and data address spaces.
5573
5574 In this context, objfile_type->builtin_core_addr is a bit odd:
5575 it's a target type for a value the target will never see. It's
5576 only used to hold the values of (typeless) linker symbols, which
5577 are indeed in the unified virtual address space. */
5578
5579 objfile_type->builtin_core_addr
5580 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5581 "__CORE_ADDR");
5582
5583 objfile_type_data.set (objfile, objfile_type);
5584 return objfile_type;
5585 }
5586
5587 void
5588 _initialize_gdbtypes (void)
5589 {
5590 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5591
5592 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5593 _("Set debugging of C++ overloading."),
5594 _("Show debugging of C++ overloading."),
5595 _("When enabled, ranking of the "
5596 "functions is displayed."),
5597 NULL,
5598 show_overload_debug,
5599 &setdebuglist, &showdebuglist);
5600
5601 /* Add user knob for controlling resolution of opaque types. */
5602 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5603 &opaque_type_resolution,
5604 _("Set resolution of opaque struct/class/union"
5605 " types (if set before loading symbols)."),
5606 _("Show resolution of opaque struct/class/union"
5607 " types (if set before loading symbols)."),
5608 NULL, NULL,
5609 show_opaque_type_resolution,
5610 &setlist, &showlist);
5611
5612 /* Add an option to permit non-strict type checking. */
5613 add_setshow_boolean_cmd ("type", class_support,
5614 &strict_type_checking,
5615 _("Set strict type checking."),
5616 _("Show strict type checking."),
5617 NULL, NULL,
5618 show_strict_type_checking,
5619 &setchecklist, &showchecklist);
5620 }