]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
New common function "startswith"
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type, int top_level)
1752 {
1753 type = check_typedef (type);
1754
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
1770 switch (TYPE_CODE (type))
1771 {
1772 case TYPE_CODE_RANGE:
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
1782
1783 case TYPE_CODE_ARRAY:
1784 {
1785 gdb_assert (TYPE_NFIELDS (type) == 1);
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1790 return 1;
1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1792 }
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1802 return 1;
1803 }
1804 break;
1805 }
1806
1807 return 0;
1808 }
1809
1810 /* See gdbtypes.h. */
1811
1812 int
1813 is_dynamic_type (struct type *type)
1814 {
1815 return is_dynamic_type_internal (type, 1);
1816 }
1817
1818 static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1820
1821 /* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
1824
1825 static struct type *
1826 resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
1828 {
1829 CORE_ADDR value;
1830 struct type *static_range_type, *static_target_type;
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1836
1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
1854
1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1867 addr_stack, 0);
1868 static_range_type = create_range_type (copy_type (dyn_range_type),
1869 static_target_type,
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873 }
1874
1875 /* Resolves dynamic bound values of an array type TYPE to static ones.
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
1878
1879 static struct type *
1880 resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
1882 {
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1892 range_type = resolve_dynamic_range (range_type, addr_stack);
1893
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904 }
1905
1906 /* Resolve dynamic bounds of members of the union TYPE to static
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
1909
1910 static struct type *
1911 resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
1913 {
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1935 addr_stack, 0);
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943 }
1944
1945 /* Resolve dynamic bounds of members of the struct TYPE to static
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
1948
1949 static struct type *
1950 resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
1952 {
1953 struct type *resolved_type;
1954 int i;
1955 unsigned resolved_type_bit_length = 0;
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
1969 unsigned new_bit_length;
1970 struct property_addr_info pinfo;
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
2011 }
2012
2013 TYPE_LENGTH (resolved_type)
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
2016 return resolved_type;
2017 }
2018
2019 /* Worker for resolved_dynamic_type. */
2020
2021 static struct type *
2022 resolve_dynamic_type_internal (struct type *type,
2023 struct property_addr_info *addr_stack,
2024 int top_level)
2025 {
2026 struct type *real_type = check_typedef (type);
2027 struct type *resolved_type = type;
2028 const struct dynamic_prop *prop;
2029 CORE_ADDR value;
2030
2031 if (!is_dynamic_type_internal (real_type, top_level))
2032 return type;
2033
2034 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2035 {
2036 resolved_type = copy_type (type);
2037 TYPE_TARGET_TYPE (resolved_type)
2038 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2039 top_level);
2040 }
2041 else
2042 {
2043 /* Before trying to resolve TYPE, make sure it is not a stub. */
2044 type = real_type;
2045
2046 switch (TYPE_CODE (type))
2047 {
2048 case TYPE_CODE_REF:
2049 {
2050 struct property_addr_info pinfo;
2051
2052 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2053 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2054 pinfo.next = addr_stack;
2055
2056 resolved_type = copy_type (type);
2057 TYPE_TARGET_TYPE (resolved_type)
2058 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2059 &pinfo, top_level);
2060 break;
2061 }
2062
2063 case TYPE_CODE_ARRAY:
2064 resolved_type = resolve_dynamic_array (type, addr_stack);
2065 break;
2066
2067 case TYPE_CODE_RANGE:
2068 resolved_type = resolve_dynamic_range (type, addr_stack);
2069 break;
2070
2071 case TYPE_CODE_UNION:
2072 resolved_type = resolve_dynamic_union (type, addr_stack);
2073 break;
2074
2075 case TYPE_CODE_STRUCT:
2076 resolved_type = resolve_dynamic_struct (type, addr_stack);
2077 break;
2078 }
2079 }
2080
2081 /* Resolve data_location attribute. */
2082 prop = TYPE_DATA_LOCATION (resolved_type);
2083 if (dwarf2_evaluate_property (prop, addr_stack, &value))
2084 {
2085 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2086 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2087 }
2088 else
2089 TYPE_DATA_LOCATION (resolved_type) = NULL;
2090
2091 return resolved_type;
2092 }
2093
2094 /* See gdbtypes.h */
2095
2096 struct type *
2097 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2098 {
2099 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2100
2101 return resolve_dynamic_type_internal (type, &pinfo, 1);
2102 }
2103
2104 /* Find the real type of TYPE. This function returns the real type,
2105 after removing all layers of typedefs, and completing opaque or stub
2106 types. Completion changes the TYPE argument, but stripping of
2107 typedefs does not.
2108
2109 Instance flags (e.g. const/volatile) are preserved as typedefs are
2110 stripped. If necessary a new qualified form of the underlying type
2111 is created.
2112
2113 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2114 not been computed and we're either in the middle of reading symbols, or
2115 there was no name for the typedef in the debug info.
2116
2117 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2118 QUITs in the symbol reading code can also throw.
2119 Thus this function can throw an exception.
2120
2121 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2122 the target type.
2123
2124 If this is a stubbed struct (i.e. declared as struct foo *), see if
2125 we can find a full definition in some other file. If so, copy this
2126 definition, so we can use it in future. There used to be a comment
2127 (but not any code) that if we don't find a full definition, we'd
2128 set a flag so we don't spend time in the future checking the same
2129 type. That would be a mistake, though--we might load in more
2130 symbols which contain a full definition for the type. */
2131
2132 struct type *
2133 check_typedef (struct type *type)
2134 {
2135 struct type *orig_type = type;
2136 /* While we're removing typedefs, we don't want to lose qualifiers.
2137 E.g., const/volatile. */
2138 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2139
2140 gdb_assert (type);
2141
2142 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2143 {
2144 if (!TYPE_TARGET_TYPE (type))
2145 {
2146 const char *name;
2147 struct symbol *sym;
2148
2149 /* It is dangerous to call lookup_symbol if we are currently
2150 reading a symtab. Infinite recursion is one danger. */
2151 if (currently_reading_symtab)
2152 return make_qualified_type (type, instance_flags, NULL);
2153
2154 name = type_name_no_tag (type);
2155 /* FIXME: shouldn't we separately check the TYPE_NAME and
2156 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2157 VAR_DOMAIN as appropriate? (this code was written before
2158 TYPE_NAME and TYPE_TAG_NAME were separate). */
2159 if (name == NULL)
2160 {
2161 stub_noname_complaint ();
2162 return make_qualified_type (type, instance_flags, NULL);
2163 }
2164 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2165 if (sym)
2166 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2167 else /* TYPE_CODE_UNDEF */
2168 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2169 }
2170 type = TYPE_TARGET_TYPE (type);
2171
2172 /* Preserve the instance flags as we traverse down the typedef chain.
2173
2174 Handling address spaces/classes is nasty, what do we do if there's a
2175 conflict?
2176 E.g., what if an outer typedef marks the type as class_1 and an inner
2177 typedef marks the type as class_2?
2178 This is the wrong place to do such error checking. We leave it to
2179 the code that created the typedef in the first place to flag the
2180 error. We just pick the outer address space (akin to letting the
2181 outer cast in a chain of casting win), instead of assuming
2182 "it can't happen". */
2183 {
2184 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2185 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2186 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2187 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2188
2189 /* Treat code vs data spaces and address classes separately. */
2190 if ((instance_flags & ALL_SPACES) != 0)
2191 new_instance_flags &= ~ALL_SPACES;
2192 if ((instance_flags & ALL_CLASSES) != 0)
2193 new_instance_flags &= ~ALL_CLASSES;
2194
2195 instance_flags |= new_instance_flags;
2196 }
2197 }
2198
2199 /* If this is a struct/class/union with no fields, then check
2200 whether a full definition exists somewhere else. This is for
2201 systems where a type definition with no fields is issued for such
2202 types, instead of identifying them as stub types in the first
2203 place. */
2204
2205 if (TYPE_IS_OPAQUE (type)
2206 && opaque_type_resolution
2207 && !currently_reading_symtab)
2208 {
2209 const char *name = type_name_no_tag (type);
2210 struct type *newtype;
2211
2212 if (name == NULL)
2213 {
2214 stub_noname_complaint ();
2215 return make_qualified_type (type, instance_flags, NULL);
2216 }
2217 newtype = lookup_transparent_type (name);
2218
2219 if (newtype)
2220 {
2221 /* If the resolved type and the stub are in the same
2222 objfile, then replace the stub type with the real deal.
2223 But if they're in separate objfiles, leave the stub
2224 alone; we'll just look up the transparent type every time
2225 we call check_typedef. We can't create pointers between
2226 types allocated to different objfiles, since they may
2227 have different lifetimes. Trying to copy NEWTYPE over to
2228 TYPE's objfile is pointless, too, since you'll have to
2229 move over any other types NEWTYPE refers to, which could
2230 be an unbounded amount of stuff. */
2231 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2232 type = make_qualified_type (newtype,
2233 TYPE_INSTANCE_FLAGS (type),
2234 type);
2235 else
2236 type = newtype;
2237 }
2238 }
2239 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2240 types. */
2241 else if (TYPE_STUB (type) && !currently_reading_symtab)
2242 {
2243 const char *name = type_name_no_tag (type);
2244 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2245 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2246 as appropriate? (this code was written before TYPE_NAME and
2247 TYPE_TAG_NAME were separate). */
2248 struct symbol *sym;
2249
2250 if (name == NULL)
2251 {
2252 stub_noname_complaint ();
2253 return make_qualified_type (type, instance_flags, NULL);
2254 }
2255 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2256 if (sym)
2257 {
2258 /* Same as above for opaque types, we can replace the stub
2259 with the complete type only if they are in the same
2260 objfile. */
2261 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2262 type = make_qualified_type (SYMBOL_TYPE (sym),
2263 TYPE_INSTANCE_FLAGS (type),
2264 type);
2265 else
2266 type = SYMBOL_TYPE (sym);
2267 }
2268 }
2269
2270 if (TYPE_TARGET_STUB (type))
2271 {
2272 struct type *range_type;
2273 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2274
2275 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2276 {
2277 /* Nothing we can do. */
2278 }
2279 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2280 {
2281 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2282 TYPE_TARGET_STUB (type) = 0;
2283 }
2284 }
2285
2286 type = make_qualified_type (type, instance_flags, NULL);
2287
2288 /* Cache TYPE_LENGTH for future use. */
2289 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2290
2291 return type;
2292 }
2293
2294 /* Parse a type expression in the string [P..P+LENGTH). If an error
2295 occurs, silently return a void type. */
2296
2297 static struct type *
2298 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2299 {
2300 struct ui_file *saved_gdb_stderr;
2301 struct type *type = NULL; /* Initialize to keep gcc happy. */
2302 volatile struct gdb_exception except;
2303
2304 /* Suppress error messages. */
2305 saved_gdb_stderr = gdb_stderr;
2306 gdb_stderr = ui_file_new ();
2307
2308 /* Call parse_and_eval_type() without fear of longjmp()s. */
2309 TRY_CATCH (except, RETURN_MASK_ERROR)
2310 {
2311 type = parse_and_eval_type (p, length);
2312 }
2313
2314 if (except.reason < 0)
2315 type = builtin_type (gdbarch)->builtin_void;
2316
2317 /* Stop suppressing error messages. */
2318 ui_file_delete (gdb_stderr);
2319 gdb_stderr = saved_gdb_stderr;
2320
2321 return type;
2322 }
2323
2324 /* Ugly hack to convert method stubs into method types.
2325
2326 He ain't kiddin'. This demangles the name of the method into a
2327 string including argument types, parses out each argument type,
2328 generates a string casting a zero to that type, evaluates the
2329 string, and stuffs the resulting type into an argtype vector!!!
2330 Then it knows the type of the whole function (including argument
2331 types for overloading), which info used to be in the stab's but was
2332 removed to hack back the space required for them. */
2333
2334 static void
2335 check_stub_method (struct type *type, int method_id, int signature_id)
2336 {
2337 struct gdbarch *gdbarch = get_type_arch (type);
2338 struct fn_field *f;
2339 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2340 char *demangled_name = gdb_demangle (mangled_name,
2341 DMGL_PARAMS | DMGL_ANSI);
2342 char *argtypetext, *p;
2343 int depth = 0, argcount = 1;
2344 struct field *argtypes;
2345 struct type *mtype;
2346
2347 /* Make sure we got back a function string that we can use. */
2348 if (demangled_name)
2349 p = strchr (demangled_name, '(');
2350 else
2351 p = NULL;
2352
2353 if (demangled_name == NULL || p == NULL)
2354 error (_("Internal: Cannot demangle mangled name `%s'."),
2355 mangled_name);
2356
2357 /* Now, read in the parameters that define this type. */
2358 p += 1;
2359 argtypetext = p;
2360 while (*p)
2361 {
2362 if (*p == '(' || *p == '<')
2363 {
2364 depth += 1;
2365 }
2366 else if (*p == ')' || *p == '>')
2367 {
2368 depth -= 1;
2369 }
2370 else if (*p == ',' && depth == 0)
2371 {
2372 argcount += 1;
2373 }
2374
2375 p += 1;
2376 }
2377
2378 /* If we read one argument and it was ``void'', don't count it. */
2379 if (startswith (argtypetext, "(void)"))
2380 argcount -= 1;
2381
2382 /* We need one extra slot, for the THIS pointer. */
2383
2384 argtypes = (struct field *)
2385 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2386 p = argtypetext;
2387
2388 /* Add THIS pointer for non-static methods. */
2389 f = TYPE_FN_FIELDLIST1 (type, method_id);
2390 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2391 argcount = 0;
2392 else
2393 {
2394 argtypes[0].type = lookup_pointer_type (type);
2395 argcount = 1;
2396 }
2397
2398 if (*p != ')') /* () means no args, skip while. */
2399 {
2400 depth = 0;
2401 while (*p)
2402 {
2403 if (depth <= 0 && (*p == ',' || *p == ')'))
2404 {
2405 /* Avoid parsing of ellipsis, they will be handled below.
2406 Also avoid ``void'' as above. */
2407 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2408 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2409 {
2410 argtypes[argcount].type =
2411 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2412 argcount += 1;
2413 }
2414 argtypetext = p + 1;
2415 }
2416
2417 if (*p == '(' || *p == '<')
2418 {
2419 depth += 1;
2420 }
2421 else if (*p == ')' || *p == '>')
2422 {
2423 depth -= 1;
2424 }
2425
2426 p += 1;
2427 }
2428 }
2429
2430 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2431
2432 /* Now update the old "stub" type into a real type. */
2433 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2434 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2435 We want a method (TYPE_CODE_METHOD). */
2436 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2437 argtypes, argcount, p[-2] == '.');
2438 TYPE_STUB (mtype) = 0;
2439 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2440
2441 xfree (demangled_name);
2442 }
2443
2444 /* This is the external interface to check_stub_method, above. This
2445 function unstubs all of the signatures for TYPE's METHOD_ID method
2446 name. After calling this function TYPE_FN_FIELD_STUB will be
2447 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2448 correct.
2449
2450 This function unfortunately can not die until stabs do. */
2451
2452 void
2453 check_stub_method_group (struct type *type, int method_id)
2454 {
2455 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2456 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2457 int j, found_stub = 0;
2458
2459 for (j = 0; j < len; j++)
2460 if (TYPE_FN_FIELD_STUB (f, j))
2461 {
2462 found_stub = 1;
2463 check_stub_method (type, method_id, j);
2464 }
2465
2466 /* GNU v3 methods with incorrect names were corrected when we read
2467 in type information, because it was cheaper to do it then. The
2468 only GNU v2 methods with incorrect method names are operators and
2469 destructors; destructors were also corrected when we read in type
2470 information.
2471
2472 Therefore the only thing we need to handle here are v2 operator
2473 names. */
2474 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2475 {
2476 int ret;
2477 char dem_opname[256];
2478
2479 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2480 method_id),
2481 dem_opname, DMGL_ANSI);
2482 if (!ret)
2483 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2484 method_id),
2485 dem_opname, 0);
2486 if (ret)
2487 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2488 }
2489 }
2490
2491 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2492 const struct cplus_struct_type cplus_struct_default = { };
2493
2494 void
2495 allocate_cplus_struct_type (struct type *type)
2496 {
2497 if (HAVE_CPLUS_STRUCT (type))
2498 /* Structure was already allocated. Nothing more to do. */
2499 return;
2500
2501 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2502 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2503 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2504 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2505 set_type_vptr_fieldno (type, -1);
2506 }
2507
2508 const struct gnat_aux_type gnat_aux_default =
2509 { NULL };
2510
2511 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2512 and allocate the associated gnat-specific data. The gnat-specific
2513 data is also initialized to gnat_aux_default. */
2514
2515 void
2516 allocate_gnat_aux_type (struct type *type)
2517 {
2518 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2519 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2520 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2521 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2522 }
2523
2524 /* Helper function to initialize the standard scalar types.
2525
2526 If NAME is non-NULL, then it is used to initialize the type name.
2527 Note that NAME is not copied; it is required to have a lifetime at
2528 least as long as OBJFILE. */
2529
2530 struct type *
2531 init_type (enum type_code code, int length, int flags,
2532 const char *name, struct objfile *objfile)
2533 {
2534 struct type *type;
2535
2536 type = alloc_type (objfile);
2537 TYPE_CODE (type) = code;
2538 TYPE_LENGTH (type) = length;
2539
2540 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2541 if (flags & TYPE_FLAG_UNSIGNED)
2542 TYPE_UNSIGNED (type) = 1;
2543 if (flags & TYPE_FLAG_NOSIGN)
2544 TYPE_NOSIGN (type) = 1;
2545 if (flags & TYPE_FLAG_STUB)
2546 TYPE_STUB (type) = 1;
2547 if (flags & TYPE_FLAG_TARGET_STUB)
2548 TYPE_TARGET_STUB (type) = 1;
2549 if (flags & TYPE_FLAG_STATIC)
2550 TYPE_STATIC (type) = 1;
2551 if (flags & TYPE_FLAG_PROTOTYPED)
2552 TYPE_PROTOTYPED (type) = 1;
2553 if (flags & TYPE_FLAG_INCOMPLETE)
2554 TYPE_INCOMPLETE (type) = 1;
2555 if (flags & TYPE_FLAG_VARARGS)
2556 TYPE_VARARGS (type) = 1;
2557 if (flags & TYPE_FLAG_VECTOR)
2558 TYPE_VECTOR (type) = 1;
2559 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2560 TYPE_STUB_SUPPORTED (type) = 1;
2561 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2562 TYPE_FIXED_INSTANCE (type) = 1;
2563 if (flags & TYPE_FLAG_GNU_IFUNC)
2564 TYPE_GNU_IFUNC (type) = 1;
2565
2566 TYPE_NAME (type) = name;
2567
2568 /* C++ fancies. */
2569
2570 if (name && strcmp (name, "char") == 0)
2571 TYPE_NOSIGN (type) = 1;
2572
2573 switch (code)
2574 {
2575 case TYPE_CODE_STRUCT:
2576 case TYPE_CODE_UNION:
2577 case TYPE_CODE_NAMESPACE:
2578 INIT_CPLUS_SPECIFIC (type);
2579 break;
2580 case TYPE_CODE_FLT:
2581 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2582 break;
2583 case TYPE_CODE_FUNC:
2584 INIT_FUNC_SPECIFIC (type);
2585 break;
2586 }
2587 return type;
2588 }
2589 \f
2590 /* Queries on types. */
2591
2592 int
2593 can_dereference (struct type *t)
2594 {
2595 /* FIXME: Should we return true for references as well as
2596 pointers? */
2597 CHECK_TYPEDEF (t);
2598 return
2599 (t != NULL
2600 && TYPE_CODE (t) == TYPE_CODE_PTR
2601 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2602 }
2603
2604 int
2605 is_integral_type (struct type *t)
2606 {
2607 CHECK_TYPEDEF (t);
2608 return
2609 ((t != NULL)
2610 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2611 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2612 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2613 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2614 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2615 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2616 }
2617
2618 /* Return true if TYPE is scalar. */
2619
2620 static int
2621 is_scalar_type (struct type *type)
2622 {
2623 CHECK_TYPEDEF (type);
2624
2625 switch (TYPE_CODE (type))
2626 {
2627 case TYPE_CODE_ARRAY:
2628 case TYPE_CODE_STRUCT:
2629 case TYPE_CODE_UNION:
2630 case TYPE_CODE_SET:
2631 case TYPE_CODE_STRING:
2632 return 0;
2633 default:
2634 return 1;
2635 }
2636 }
2637
2638 /* Return true if T is scalar, or a composite type which in practice has
2639 the memory layout of a scalar type. E.g., an array or struct with only
2640 one scalar element inside it, or a union with only scalar elements. */
2641
2642 int
2643 is_scalar_type_recursive (struct type *t)
2644 {
2645 CHECK_TYPEDEF (t);
2646
2647 if (is_scalar_type (t))
2648 return 1;
2649 /* Are we dealing with an array or string of known dimensions? */
2650 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2651 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2652 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2653 {
2654 LONGEST low_bound, high_bound;
2655 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2656
2657 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2658
2659 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2660 }
2661 /* Are we dealing with a struct with one element? */
2662 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2663 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2664 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2665 {
2666 int i, n = TYPE_NFIELDS (t);
2667
2668 /* If all elements of the union are scalar, then the union is scalar. */
2669 for (i = 0; i < n; i++)
2670 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2671 return 0;
2672
2673 return 1;
2674 }
2675
2676 return 0;
2677 }
2678
2679 /* Return true is T is a class or a union. False otherwise. */
2680
2681 int
2682 class_or_union_p (const struct type *t)
2683 {
2684 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2685 || TYPE_CODE (t) == TYPE_CODE_UNION);
2686 }
2687
2688 /* A helper function which returns true if types A and B represent the
2689 "same" class type. This is true if the types have the same main
2690 type, or the same name. */
2691
2692 int
2693 class_types_same_p (const struct type *a, const struct type *b)
2694 {
2695 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2696 || (TYPE_NAME (a) && TYPE_NAME (b)
2697 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2698 }
2699
2700 /* If BASE is an ancestor of DCLASS return the distance between them.
2701 otherwise return -1;
2702 eg:
2703
2704 class A {};
2705 class B: public A {};
2706 class C: public B {};
2707 class D: C {};
2708
2709 distance_to_ancestor (A, A, 0) = 0
2710 distance_to_ancestor (A, B, 0) = 1
2711 distance_to_ancestor (A, C, 0) = 2
2712 distance_to_ancestor (A, D, 0) = 3
2713
2714 If PUBLIC is 1 then only public ancestors are considered,
2715 and the function returns the distance only if BASE is a public ancestor
2716 of DCLASS.
2717 Eg:
2718
2719 distance_to_ancestor (A, D, 1) = -1. */
2720
2721 static int
2722 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2723 {
2724 int i;
2725 int d;
2726
2727 CHECK_TYPEDEF (base);
2728 CHECK_TYPEDEF (dclass);
2729
2730 if (class_types_same_p (base, dclass))
2731 return 0;
2732
2733 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2734 {
2735 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2736 continue;
2737
2738 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2739 if (d >= 0)
2740 return 1 + d;
2741 }
2742
2743 return -1;
2744 }
2745
2746 /* Check whether BASE is an ancestor or base class or DCLASS
2747 Return 1 if so, and 0 if not.
2748 Note: If BASE and DCLASS are of the same type, this function
2749 will return 1. So for some class A, is_ancestor (A, A) will
2750 return 1. */
2751
2752 int
2753 is_ancestor (struct type *base, struct type *dclass)
2754 {
2755 return distance_to_ancestor (base, dclass, 0) >= 0;
2756 }
2757
2758 /* Like is_ancestor, but only returns true when BASE is a public
2759 ancestor of DCLASS. */
2760
2761 int
2762 is_public_ancestor (struct type *base, struct type *dclass)
2763 {
2764 return distance_to_ancestor (base, dclass, 1) >= 0;
2765 }
2766
2767 /* A helper function for is_unique_ancestor. */
2768
2769 static int
2770 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2771 int *offset,
2772 const gdb_byte *valaddr, int embedded_offset,
2773 CORE_ADDR address, struct value *val)
2774 {
2775 int i, count = 0;
2776
2777 CHECK_TYPEDEF (base);
2778 CHECK_TYPEDEF (dclass);
2779
2780 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2781 {
2782 struct type *iter;
2783 int this_offset;
2784
2785 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2786
2787 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2788 address, val);
2789
2790 if (class_types_same_p (base, iter))
2791 {
2792 /* If this is the first subclass, set *OFFSET and set count
2793 to 1. Otherwise, if this is at the same offset as
2794 previous instances, do nothing. Otherwise, increment
2795 count. */
2796 if (*offset == -1)
2797 {
2798 *offset = this_offset;
2799 count = 1;
2800 }
2801 else if (this_offset == *offset)
2802 {
2803 /* Nothing. */
2804 }
2805 else
2806 ++count;
2807 }
2808 else
2809 count += is_unique_ancestor_worker (base, iter, offset,
2810 valaddr,
2811 embedded_offset + this_offset,
2812 address, val);
2813 }
2814
2815 return count;
2816 }
2817
2818 /* Like is_ancestor, but only returns true if BASE is a unique base
2819 class of the type of VAL. */
2820
2821 int
2822 is_unique_ancestor (struct type *base, struct value *val)
2823 {
2824 int offset = -1;
2825
2826 return is_unique_ancestor_worker (base, value_type (val), &offset,
2827 value_contents_for_printing (val),
2828 value_embedded_offset (val),
2829 value_address (val), val) == 1;
2830 }
2831
2832 \f
2833 /* Overload resolution. */
2834
2835 /* Return the sum of the rank of A with the rank of B. */
2836
2837 struct rank
2838 sum_ranks (struct rank a, struct rank b)
2839 {
2840 struct rank c;
2841 c.rank = a.rank + b.rank;
2842 c.subrank = a.subrank + b.subrank;
2843 return c;
2844 }
2845
2846 /* Compare rank A and B and return:
2847 0 if a = b
2848 1 if a is better than b
2849 -1 if b is better than a. */
2850
2851 int
2852 compare_ranks (struct rank a, struct rank b)
2853 {
2854 if (a.rank == b.rank)
2855 {
2856 if (a.subrank == b.subrank)
2857 return 0;
2858 if (a.subrank < b.subrank)
2859 return 1;
2860 if (a.subrank > b.subrank)
2861 return -1;
2862 }
2863
2864 if (a.rank < b.rank)
2865 return 1;
2866
2867 /* a.rank > b.rank */
2868 return -1;
2869 }
2870
2871 /* Functions for overload resolution begin here. */
2872
2873 /* Compare two badness vectors A and B and return the result.
2874 0 => A and B are identical
2875 1 => A and B are incomparable
2876 2 => A is better than B
2877 3 => A is worse than B */
2878
2879 int
2880 compare_badness (struct badness_vector *a, struct badness_vector *b)
2881 {
2882 int i;
2883 int tmp;
2884 short found_pos = 0; /* any positives in c? */
2885 short found_neg = 0; /* any negatives in c? */
2886
2887 /* differing lengths => incomparable */
2888 if (a->length != b->length)
2889 return 1;
2890
2891 /* Subtract b from a */
2892 for (i = 0; i < a->length; i++)
2893 {
2894 tmp = compare_ranks (b->rank[i], a->rank[i]);
2895 if (tmp > 0)
2896 found_pos = 1;
2897 else if (tmp < 0)
2898 found_neg = 1;
2899 }
2900
2901 if (found_pos)
2902 {
2903 if (found_neg)
2904 return 1; /* incomparable */
2905 else
2906 return 3; /* A > B */
2907 }
2908 else
2909 /* no positives */
2910 {
2911 if (found_neg)
2912 return 2; /* A < B */
2913 else
2914 return 0; /* A == B */
2915 }
2916 }
2917
2918 /* Rank a function by comparing its parameter types (PARMS, length
2919 NPARMS), to the types of an argument list (ARGS, length NARGS).
2920 Return a pointer to a badness vector. This has NARGS + 1
2921 entries. */
2922
2923 struct badness_vector *
2924 rank_function (struct type **parms, int nparms,
2925 struct value **args, int nargs)
2926 {
2927 int i;
2928 struct badness_vector *bv;
2929 int min_len = nparms < nargs ? nparms : nargs;
2930
2931 bv = xmalloc (sizeof (struct badness_vector));
2932 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2933 bv->rank = XNEWVEC (struct rank, nargs + 1);
2934
2935 /* First compare the lengths of the supplied lists.
2936 If there is a mismatch, set it to a high value. */
2937
2938 /* pai/1997-06-03 FIXME: when we have debug info about default
2939 arguments and ellipsis parameter lists, we should consider those
2940 and rank the length-match more finely. */
2941
2942 LENGTH_MATCH (bv) = (nargs != nparms)
2943 ? LENGTH_MISMATCH_BADNESS
2944 : EXACT_MATCH_BADNESS;
2945
2946 /* Now rank all the parameters of the candidate function. */
2947 for (i = 1; i <= min_len; i++)
2948 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2949 args[i - 1]);
2950
2951 /* If more arguments than parameters, add dummy entries. */
2952 for (i = min_len + 1; i <= nargs; i++)
2953 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2954
2955 return bv;
2956 }
2957
2958 /* Compare the names of two integer types, assuming that any sign
2959 qualifiers have been checked already. We do it this way because
2960 there may be an "int" in the name of one of the types. */
2961
2962 static int
2963 integer_types_same_name_p (const char *first, const char *second)
2964 {
2965 int first_p, second_p;
2966
2967 /* If both are shorts, return 1; if neither is a short, keep
2968 checking. */
2969 first_p = (strstr (first, "short") != NULL);
2970 second_p = (strstr (second, "short") != NULL);
2971 if (first_p && second_p)
2972 return 1;
2973 if (first_p || second_p)
2974 return 0;
2975
2976 /* Likewise for long. */
2977 first_p = (strstr (first, "long") != NULL);
2978 second_p = (strstr (second, "long") != NULL);
2979 if (first_p && second_p)
2980 return 1;
2981 if (first_p || second_p)
2982 return 0;
2983
2984 /* Likewise for char. */
2985 first_p = (strstr (first, "char") != NULL);
2986 second_p = (strstr (second, "char") != NULL);
2987 if (first_p && second_p)
2988 return 1;
2989 if (first_p || second_p)
2990 return 0;
2991
2992 /* They must both be ints. */
2993 return 1;
2994 }
2995
2996 /* Compares type A to type B returns 1 if the represent the same type
2997 0 otherwise. */
2998
2999 int
3000 types_equal (struct type *a, struct type *b)
3001 {
3002 /* Identical type pointers. */
3003 /* However, this still doesn't catch all cases of same type for b
3004 and a. The reason is that builtin types are different from
3005 the same ones constructed from the object. */
3006 if (a == b)
3007 return 1;
3008
3009 /* Resolve typedefs */
3010 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3011 a = check_typedef (a);
3012 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3013 b = check_typedef (b);
3014
3015 /* If after resolving typedefs a and b are not of the same type
3016 code then they are not equal. */
3017 if (TYPE_CODE (a) != TYPE_CODE (b))
3018 return 0;
3019
3020 /* If a and b are both pointers types or both reference types then
3021 they are equal of the same type iff the objects they refer to are
3022 of the same type. */
3023 if (TYPE_CODE (a) == TYPE_CODE_PTR
3024 || TYPE_CODE (a) == TYPE_CODE_REF)
3025 return types_equal (TYPE_TARGET_TYPE (a),
3026 TYPE_TARGET_TYPE (b));
3027
3028 /* Well, damnit, if the names are exactly the same, I'll say they
3029 are exactly the same. This happens when we generate method
3030 stubs. The types won't point to the same address, but they
3031 really are the same. */
3032
3033 if (TYPE_NAME (a) && TYPE_NAME (b)
3034 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3035 return 1;
3036
3037 /* Check if identical after resolving typedefs. */
3038 if (a == b)
3039 return 1;
3040
3041 /* Two function types are equal if their argument and return types
3042 are equal. */
3043 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3044 {
3045 int i;
3046
3047 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3048 return 0;
3049
3050 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3051 return 0;
3052
3053 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3054 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3055 return 0;
3056
3057 return 1;
3058 }
3059
3060 return 0;
3061 }
3062 \f
3063 /* Deep comparison of types. */
3064
3065 /* An entry in the type-equality bcache. */
3066
3067 typedef struct type_equality_entry
3068 {
3069 struct type *type1, *type2;
3070 } type_equality_entry_d;
3071
3072 DEF_VEC_O (type_equality_entry_d);
3073
3074 /* A helper function to compare two strings. Returns 1 if they are
3075 the same, 0 otherwise. Handles NULLs properly. */
3076
3077 static int
3078 compare_maybe_null_strings (const char *s, const char *t)
3079 {
3080 if (s == NULL && t != NULL)
3081 return 0;
3082 else if (s != NULL && t == NULL)
3083 return 0;
3084 else if (s == NULL && t== NULL)
3085 return 1;
3086 return strcmp (s, t) == 0;
3087 }
3088
3089 /* A helper function for check_types_worklist that checks two types for
3090 "deep" equality. Returns non-zero if the types are considered the
3091 same, zero otherwise. */
3092
3093 static int
3094 check_types_equal (struct type *type1, struct type *type2,
3095 VEC (type_equality_entry_d) **worklist)
3096 {
3097 CHECK_TYPEDEF (type1);
3098 CHECK_TYPEDEF (type2);
3099
3100 if (type1 == type2)
3101 return 1;
3102
3103 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3104 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3105 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3106 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3107 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3108 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3109 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3110 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3111 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3112 return 0;
3113
3114 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3115 TYPE_TAG_NAME (type2)))
3116 return 0;
3117 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3118 return 0;
3119
3120 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3121 {
3122 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3123 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3124 return 0;
3125 }
3126 else
3127 {
3128 int i;
3129
3130 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3131 {
3132 const struct field *field1 = &TYPE_FIELD (type1, i);
3133 const struct field *field2 = &TYPE_FIELD (type2, i);
3134 struct type_equality_entry entry;
3135
3136 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3137 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3138 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3139 return 0;
3140 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3141 FIELD_NAME (*field2)))
3142 return 0;
3143 switch (FIELD_LOC_KIND (*field1))
3144 {
3145 case FIELD_LOC_KIND_BITPOS:
3146 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3147 return 0;
3148 break;
3149 case FIELD_LOC_KIND_ENUMVAL:
3150 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3151 return 0;
3152 break;
3153 case FIELD_LOC_KIND_PHYSADDR:
3154 if (FIELD_STATIC_PHYSADDR (*field1)
3155 != FIELD_STATIC_PHYSADDR (*field2))
3156 return 0;
3157 break;
3158 case FIELD_LOC_KIND_PHYSNAME:
3159 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3160 FIELD_STATIC_PHYSNAME (*field2)))
3161 return 0;
3162 break;
3163 case FIELD_LOC_KIND_DWARF_BLOCK:
3164 {
3165 struct dwarf2_locexpr_baton *block1, *block2;
3166
3167 block1 = FIELD_DWARF_BLOCK (*field1);
3168 block2 = FIELD_DWARF_BLOCK (*field2);
3169 if (block1->per_cu != block2->per_cu
3170 || block1->size != block2->size
3171 || memcmp (block1->data, block2->data, block1->size) != 0)
3172 return 0;
3173 }
3174 break;
3175 default:
3176 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3177 "%d by check_types_equal"),
3178 FIELD_LOC_KIND (*field1));
3179 }
3180
3181 entry.type1 = FIELD_TYPE (*field1);
3182 entry.type2 = FIELD_TYPE (*field2);
3183 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3184 }
3185 }
3186
3187 if (TYPE_TARGET_TYPE (type1) != NULL)
3188 {
3189 struct type_equality_entry entry;
3190
3191 if (TYPE_TARGET_TYPE (type2) == NULL)
3192 return 0;
3193
3194 entry.type1 = TYPE_TARGET_TYPE (type1);
3195 entry.type2 = TYPE_TARGET_TYPE (type2);
3196 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3197 }
3198 else if (TYPE_TARGET_TYPE (type2) != NULL)
3199 return 0;
3200
3201 return 1;
3202 }
3203
3204 /* Check types on a worklist for equality. Returns zero if any pair
3205 is not equal, non-zero if they are all considered equal. */
3206
3207 static int
3208 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3209 struct bcache *cache)
3210 {
3211 while (!VEC_empty (type_equality_entry_d, *worklist))
3212 {
3213 struct type_equality_entry entry;
3214 int added;
3215
3216 entry = *VEC_last (type_equality_entry_d, *worklist);
3217 VEC_pop (type_equality_entry_d, *worklist);
3218
3219 /* If the type pair has already been visited, we know it is
3220 ok. */
3221 bcache_full (&entry, sizeof (entry), cache, &added);
3222 if (!added)
3223 continue;
3224
3225 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3226 return 0;
3227 }
3228
3229 return 1;
3230 }
3231
3232 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3233 "deep comparison". Otherwise return zero. */
3234
3235 int
3236 types_deeply_equal (struct type *type1, struct type *type2)
3237 {
3238 volatile struct gdb_exception except;
3239 int result = 0;
3240 struct bcache *cache;
3241 VEC (type_equality_entry_d) *worklist = NULL;
3242 struct type_equality_entry entry;
3243
3244 gdb_assert (type1 != NULL && type2 != NULL);
3245
3246 /* Early exit for the simple case. */
3247 if (type1 == type2)
3248 return 1;
3249
3250 cache = bcache_xmalloc (NULL, NULL);
3251
3252 entry.type1 = type1;
3253 entry.type2 = type2;
3254 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3255
3256 TRY_CATCH (except, RETURN_MASK_ALL)
3257 {
3258 result = check_types_worklist (&worklist, cache);
3259 }
3260 /* check_types_worklist calls several nested helper functions,
3261 some of which can raise a GDB Exception, so we just check
3262 and rethrow here. If there is a GDB exception, a comparison
3263 is not capable (or trusted), so exit. */
3264 bcache_xfree (cache);
3265 VEC_free (type_equality_entry_d, worklist);
3266 /* Rethrow if there was a problem. */
3267 if (except.reason < 0)
3268 throw_exception (except);
3269
3270 return result;
3271 }
3272 \f
3273 /* Compare one type (PARM) for compatibility with another (ARG).
3274 * PARM is intended to be the parameter type of a function; and
3275 * ARG is the supplied argument's type. This function tests if
3276 * the latter can be converted to the former.
3277 * VALUE is the argument's value or NULL if none (or called recursively)
3278 *
3279 * Return 0 if they are identical types;
3280 * Otherwise, return an integer which corresponds to how compatible
3281 * PARM is to ARG. The higher the return value, the worse the match.
3282 * Generally the "bad" conversions are all uniformly assigned a 100. */
3283
3284 struct rank
3285 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3286 {
3287 struct rank rank = {0,0};
3288
3289 if (types_equal (parm, arg))
3290 return EXACT_MATCH_BADNESS;
3291
3292 /* Resolve typedefs */
3293 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3294 parm = check_typedef (parm);
3295 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3296 arg = check_typedef (arg);
3297
3298 /* See through references, since we can almost make non-references
3299 references. */
3300 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3301 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3302 REFERENCE_CONVERSION_BADNESS));
3303 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3304 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3305 REFERENCE_CONVERSION_BADNESS));
3306 if (overload_debug)
3307 /* Debugging only. */
3308 fprintf_filtered (gdb_stderr,
3309 "------ Arg is %s [%d], parm is %s [%d]\n",
3310 TYPE_NAME (arg), TYPE_CODE (arg),
3311 TYPE_NAME (parm), TYPE_CODE (parm));
3312
3313 /* x -> y means arg of type x being supplied for parameter of type y. */
3314
3315 switch (TYPE_CODE (parm))
3316 {
3317 case TYPE_CODE_PTR:
3318 switch (TYPE_CODE (arg))
3319 {
3320 case TYPE_CODE_PTR:
3321
3322 /* Allowed pointer conversions are:
3323 (a) pointer to void-pointer conversion. */
3324 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3325 return VOID_PTR_CONVERSION_BADNESS;
3326
3327 /* (b) pointer to ancestor-pointer conversion. */
3328 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3329 TYPE_TARGET_TYPE (arg),
3330 0);
3331 if (rank.subrank >= 0)
3332 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3333
3334 return INCOMPATIBLE_TYPE_BADNESS;
3335 case TYPE_CODE_ARRAY:
3336 if (types_equal (TYPE_TARGET_TYPE (parm),
3337 TYPE_TARGET_TYPE (arg)))
3338 return EXACT_MATCH_BADNESS;
3339 return INCOMPATIBLE_TYPE_BADNESS;
3340 case TYPE_CODE_FUNC:
3341 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3342 case TYPE_CODE_INT:
3343 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3344 {
3345 if (value_as_long (value) == 0)
3346 {
3347 /* Null pointer conversion: allow it to be cast to a pointer.
3348 [4.10.1 of C++ standard draft n3290] */
3349 return NULL_POINTER_CONVERSION_BADNESS;
3350 }
3351 else
3352 {
3353 /* If type checking is disabled, allow the conversion. */
3354 if (!strict_type_checking)
3355 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3356 }
3357 }
3358 /* fall through */
3359 case TYPE_CODE_ENUM:
3360 case TYPE_CODE_FLAGS:
3361 case TYPE_CODE_CHAR:
3362 case TYPE_CODE_RANGE:
3363 case TYPE_CODE_BOOL:
3364 default:
3365 return INCOMPATIBLE_TYPE_BADNESS;
3366 }
3367 case TYPE_CODE_ARRAY:
3368 switch (TYPE_CODE (arg))
3369 {
3370 case TYPE_CODE_PTR:
3371 case TYPE_CODE_ARRAY:
3372 return rank_one_type (TYPE_TARGET_TYPE (parm),
3373 TYPE_TARGET_TYPE (arg), NULL);
3374 default:
3375 return INCOMPATIBLE_TYPE_BADNESS;
3376 }
3377 case TYPE_CODE_FUNC:
3378 switch (TYPE_CODE (arg))
3379 {
3380 case TYPE_CODE_PTR: /* funcptr -> func */
3381 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3382 default:
3383 return INCOMPATIBLE_TYPE_BADNESS;
3384 }
3385 case TYPE_CODE_INT:
3386 switch (TYPE_CODE (arg))
3387 {
3388 case TYPE_CODE_INT:
3389 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3390 {
3391 /* Deal with signed, unsigned, and plain chars and
3392 signed and unsigned ints. */
3393 if (TYPE_NOSIGN (parm))
3394 {
3395 /* This case only for character types. */
3396 if (TYPE_NOSIGN (arg))
3397 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3398 else /* signed/unsigned char -> plain char */
3399 return INTEGER_CONVERSION_BADNESS;
3400 }
3401 else if (TYPE_UNSIGNED (parm))
3402 {
3403 if (TYPE_UNSIGNED (arg))
3404 {
3405 /* unsigned int -> unsigned int, or
3406 unsigned long -> unsigned long */
3407 if (integer_types_same_name_p (TYPE_NAME (parm),
3408 TYPE_NAME (arg)))
3409 return EXACT_MATCH_BADNESS;
3410 else if (integer_types_same_name_p (TYPE_NAME (arg),
3411 "int")
3412 && integer_types_same_name_p (TYPE_NAME (parm),
3413 "long"))
3414 /* unsigned int -> unsigned long */
3415 return INTEGER_PROMOTION_BADNESS;
3416 else
3417 /* unsigned long -> unsigned int */
3418 return INTEGER_CONVERSION_BADNESS;
3419 }
3420 else
3421 {
3422 if (integer_types_same_name_p (TYPE_NAME (arg),
3423 "long")
3424 && integer_types_same_name_p (TYPE_NAME (parm),
3425 "int"))
3426 /* signed long -> unsigned int */
3427 return INTEGER_CONVERSION_BADNESS;
3428 else
3429 /* signed int/long -> unsigned int/long */
3430 return INTEGER_CONVERSION_BADNESS;
3431 }
3432 }
3433 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3434 {
3435 if (integer_types_same_name_p (TYPE_NAME (parm),
3436 TYPE_NAME (arg)))
3437 return EXACT_MATCH_BADNESS;
3438 else if (integer_types_same_name_p (TYPE_NAME (arg),
3439 "int")
3440 && integer_types_same_name_p (TYPE_NAME (parm),
3441 "long"))
3442 return INTEGER_PROMOTION_BADNESS;
3443 else
3444 return INTEGER_CONVERSION_BADNESS;
3445 }
3446 else
3447 return INTEGER_CONVERSION_BADNESS;
3448 }
3449 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3450 return INTEGER_PROMOTION_BADNESS;
3451 else
3452 return INTEGER_CONVERSION_BADNESS;
3453 case TYPE_CODE_ENUM:
3454 case TYPE_CODE_FLAGS:
3455 case TYPE_CODE_CHAR:
3456 case TYPE_CODE_RANGE:
3457 case TYPE_CODE_BOOL:
3458 if (TYPE_DECLARED_CLASS (arg))
3459 return INCOMPATIBLE_TYPE_BADNESS;
3460 return INTEGER_PROMOTION_BADNESS;
3461 case TYPE_CODE_FLT:
3462 return INT_FLOAT_CONVERSION_BADNESS;
3463 case TYPE_CODE_PTR:
3464 return NS_POINTER_CONVERSION_BADNESS;
3465 default:
3466 return INCOMPATIBLE_TYPE_BADNESS;
3467 }
3468 break;
3469 case TYPE_CODE_ENUM:
3470 switch (TYPE_CODE (arg))
3471 {
3472 case TYPE_CODE_INT:
3473 case TYPE_CODE_CHAR:
3474 case TYPE_CODE_RANGE:
3475 case TYPE_CODE_BOOL:
3476 case TYPE_CODE_ENUM:
3477 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3478 return INCOMPATIBLE_TYPE_BADNESS;
3479 return INTEGER_CONVERSION_BADNESS;
3480 case TYPE_CODE_FLT:
3481 return INT_FLOAT_CONVERSION_BADNESS;
3482 default:
3483 return INCOMPATIBLE_TYPE_BADNESS;
3484 }
3485 break;
3486 case TYPE_CODE_CHAR:
3487 switch (TYPE_CODE (arg))
3488 {
3489 case TYPE_CODE_RANGE:
3490 case TYPE_CODE_BOOL:
3491 case TYPE_CODE_ENUM:
3492 if (TYPE_DECLARED_CLASS (arg))
3493 return INCOMPATIBLE_TYPE_BADNESS;
3494 return INTEGER_CONVERSION_BADNESS;
3495 case TYPE_CODE_FLT:
3496 return INT_FLOAT_CONVERSION_BADNESS;
3497 case TYPE_CODE_INT:
3498 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3499 return INTEGER_CONVERSION_BADNESS;
3500 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3501 return INTEGER_PROMOTION_BADNESS;
3502 /* >>> !! else fall through !! <<< */
3503 case TYPE_CODE_CHAR:
3504 /* Deal with signed, unsigned, and plain chars for C++ and
3505 with int cases falling through from previous case. */
3506 if (TYPE_NOSIGN (parm))
3507 {
3508 if (TYPE_NOSIGN (arg))
3509 return EXACT_MATCH_BADNESS;
3510 else
3511 return INTEGER_CONVERSION_BADNESS;
3512 }
3513 else if (TYPE_UNSIGNED (parm))
3514 {
3515 if (TYPE_UNSIGNED (arg))
3516 return EXACT_MATCH_BADNESS;
3517 else
3518 return INTEGER_PROMOTION_BADNESS;
3519 }
3520 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3521 return EXACT_MATCH_BADNESS;
3522 else
3523 return INTEGER_CONVERSION_BADNESS;
3524 default:
3525 return INCOMPATIBLE_TYPE_BADNESS;
3526 }
3527 break;
3528 case TYPE_CODE_RANGE:
3529 switch (TYPE_CODE (arg))
3530 {
3531 case TYPE_CODE_INT:
3532 case TYPE_CODE_CHAR:
3533 case TYPE_CODE_RANGE:
3534 case TYPE_CODE_BOOL:
3535 case TYPE_CODE_ENUM:
3536 return INTEGER_CONVERSION_BADNESS;
3537 case TYPE_CODE_FLT:
3538 return INT_FLOAT_CONVERSION_BADNESS;
3539 default:
3540 return INCOMPATIBLE_TYPE_BADNESS;
3541 }
3542 break;
3543 case TYPE_CODE_BOOL:
3544 switch (TYPE_CODE (arg))
3545 {
3546 /* n3290 draft, section 4.12.1 (conv.bool):
3547
3548 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3549 pointer to member type can be converted to a prvalue of type
3550 bool. A zero value, null pointer value, or null member pointer
3551 value is converted to false; any other value is converted to
3552 true. A prvalue of type std::nullptr_t can be converted to a
3553 prvalue of type bool; the resulting value is false." */
3554 case TYPE_CODE_INT:
3555 case TYPE_CODE_CHAR:
3556 case TYPE_CODE_ENUM:
3557 case TYPE_CODE_FLT:
3558 case TYPE_CODE_MEMBERPTR:
3559 case TYPE_CODE_PTR:
3560 return BOOL_CONVERSION_BADNESS;
3561 case TYPE_CODE_RANGE:
3562 return INCOMPATIBLE_TYPE_BADNESS;
3563 case TYPE_CODE_BOOL:
3564 return EXACT_MATCH_BADNESS;
3565 default:
3566 return INCOMPATIBLE_TYPE_BADNESS;
3567 }
3568 break;
3569 case TYPE_CODE_FLT:
3570 switch (TYPE_CODE (arg))
3571 {
3572 case TYPE_CODE_FLT:
3573 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3574 return FLOAT_PROMOTION_BADNESS;
3575 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3576 return EXACT_MATCH_BADNESS;
3577 else
3578 return FLOAT_CONVERSION_BADNESS;
3579 case TYPE_CODE_INT:
3580 case TYPE_CODE_BOOL:
3581 case TYPE_CODE_ENUM:
3582 case TYPE_CODE_RANGE:
3583 case TYPE_CODE_CHAR:
3584 return INT_FLOAT_CONVERSION_BADNESS;
3585 default:
3586 return INCOMPATIBLE_TYPE_BADNESS;
3587 }
3588 break;
3589 case TYPE_CODE_COMPLEX:
3590 switch (TYPE_CODE (arg))
3591 { /* Strictly not needed for C++, but... */
3592 case TYPE_CODE_FLT:
3593 return FLOAT_PROMOTION_BADNESS;
3594 case TYPE_CODE_COMPLEX:
3595 return EXACT_MATCH_BADNESS;
3596 default:
3597 return INCOMPATIBLE_TYPE_BADNESS;
3598 }
3599 break;
3600 case TYPE_CODE_STRUCT:
3601 switch (TYPE_CODE (arg))
3602 {
3603 case TYPE_CODE_STRUCT:
3604 /* Check for derivation */
3605 rank.subrank = distance_to_ancestor (parm, arg, 0);
3606 if (rank.subrank >= 0)
3607 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3608 /* else fall through */
3609 default:
3610 return INCOMPATIBLE_TYPE_BADNESS;
3611 }
3612 break;
3613 case TYPE_CODE_UNION:
3614 switch (TYPE_CODE (arg))
3615 {
3616 case TYPE_CODE_UNION:
3617 default:
3618 return INCOMPATIBLE_TYPE_BADNESS;
3619 }
3620 break;
3621 case TYPE_CODE_MEMBERPTR:
3622 switch (TYPE_CODE (arg))
3623 {
3624 default:
3625 return INCOMPATIBLE_TYPE_BADNESS;
3626 }
3627 break;
3628 case TYPE_CODE_METHOD:
3629 switch (TYPE_CODE (arg))
3630 {
3631
3632 default:
3633 return INCOMPATIBLE_TYPE_BADNESS;
3634 }
3635 break;
3636 case TYPE_CODE_REF:
3637 switch (TYPE_CODE (arg))
3638 {
3639
3640 default:
3641 return INCOMPATIBLE_TYPE_BADNESS;
3642 }
3643
3644 break;
3645 case TYPE_CODE_SET:
3646 switch (TYPE_CODE (arg))
3647 {
3648 /* Not in C++ */
3649 case TYPE_CODE_SET:
3650 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3651 TYPE_FIELD_TYPE (arg, 0), NULL);
3652 default:
3653 return INCOMPATIBLE_TYPE_BADNESS;
3654 }
3655 break;
3656 case TYPE_CODE_VOID:
3657 default:
3658 return INCOMPATIBLE_TYPE_BADNESS;
3659 } /* switch (TYPE_CODE (arg)) */
3660 }
3661
3662 /* End of functions for overload resolution. */
3663 \f
3664 /* Routines to pretty-print types. */
3665
3666 static void
3667 print_bit_vector (B_TYPE *bits, int nbits)
3668 {
3669 int bitno;
3670
3671 for (bitno = 0; bitno < nbits; bitno++)
3672 {
3673 if ((bitno % 8) == 0)
3674 {
3675 puts_filtered (" ");
3676 }
3677 if (B_TST (bits, bitno))
3678 printf_filtered (("1"));
3679 else
3680 printf_filtered (("0"));
3681 }
3682 }
3683
3684 /* Note the first arg should be the "this" pointer, we may not want to
3685 include it since we may get into a infinitely recursive
3686 situation. */
3687
3688 static void
3689 print_args (struct field *args, int nargs, int spaces)
3690 {
3691 if (args != NULL)
3692 {
3693 int i;
3694
3695 for (i = 0; i < nargs; i++)
3696 {
3697 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3698 args[i].name != NULL ? args[i].name : "<NULL>");
3699 recursive_dump_type (args[i].type, spaces + 2);
3700 }
3701 }
3702 }
3703
3704 int
3705 field_is_static (struct field *f)
3706 {
3707 /* "static" fields are the fields whose location is not relative
3708 to the address of the enclosing struct. It would be nice to
3709 have a dedicated flag that would be set for static fields when
3710 the type is being created. But in practice, checking the field
3711 loc_kind should give us an accurate answer. */
3712 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3713 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3714 }
3715
3716 static void
3717 dump_fn_fieldlists (struct type *type, int spaces)
3718 {
3719 int method_idx;
3720 int overload_idx;
3721 struct fn_field *f;
3722
3723 printfi_filtered (spaces, "fn_fieldlists ");
3724 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3725 printf_filtered ("\n");
3726 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3727 {
3728 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3729 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3730 method_idx,
3731 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3732 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3733 gdb_stdout);
3734 printf_filtered (_(") length %d\n"),
3735 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3736 for (overload_idx = 0;
3737 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3738 overload_idx++)
3739 {
3740 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3741 overload_idx,
3742 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3743 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3744 gdb_stdout);
3745 printf_filtered (")\n");
3746 printfi_filtered (spaces + 8, "type ");
3747 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3748 gdb_stdout);
3749 printf_filtered ("\n");
3750
3751 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3752 spaces + 8 + 2);
3753
3754 printfi_filtered (spaces + 8, "args ");
3755 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3756 gdb_stdout);
3757 printf_filtered ("\n");
3758 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3759 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3760 spaces + 8 + 2);
3761 printfi_filtered (spaces + 8, "fcontext ");
3762 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3763 gdb_stdout);
3764 printf_filtered ("\n");
3765
3766 printfi_filtered (spaces + 8, "is_const %d\n",
3767 TYPE_FN_FIELD_CONST (f, overload_idx));
3768 printfi_filtered (spaces + 8, "is_volatile %d\n",
3769 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3770 printfi_filtered (spaces + 8, "is_private %d\n",
3771 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3772 printfi_filtered (spaces + 8, "is_protected %d\n",
3773 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3774 printfi_filtered (spaces + 8, "is_stub %d\n",
3775 TYPE_FN_FIELD_STUB (f, overload_idx));
3776 printfi_filtered (spaces + 8, "voffset %u\n",
3777 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3778 }
3779 }
3780 }
3781
3782 static void
3783 print_cplus_stuff (struct type *type, int spaces)
3784 {
3785 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3786 printfi_filtered (spaces, "vptr_basetype ");
3787 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3788 puts_filtered ("\n");
3789 if (TYPE_VPTR_BASETYPE (type) != NULL)
3790 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3791
3792 printfi_filtered (spaces, "n_baseclasses %d\n",
3793 TYPE_N_BASECLASSES (type));
3794 printfi_filtered (spaces, "nfn_fields %d\n",
3795 TYPE_NFN_FIELDS (type));
3796 if (TYPE_N_BASECLASSES (type) > 0)
3797 {
3798 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3799 TYPE_N_BASECLASSES (type));
3800 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3801 gdb_stdout);
3802 printf_filtered (")");
3803
3804 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3805 TYPE_N_BASECLASSES (type));
3806 puts_filtered ("\n");
3807 }
3808 if (TYPE_NFIELDS (type) > 0)
3809 {
3810 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3811 {
3812 printfi_filtered (spaces,
3813 "private_field_bits (%d bits at *",
3814 TYPE_NFIELDS (type));
3815 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3816 gdb_stdout);
3817 printf_filtered (")");
3818 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3819 TYPE_NFIELDS (type));
3820 puts_filtered ("\n");
3821 }
3822 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3823 {
3824 printfi_filtered (spaces,
3825 "protected_field_bits (%d bits at *",
3826 TYPE_NFIELDS (type));
3827 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3828 gdb_stdout);
3829 printf_filtered (")");
3830 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3831 TYPE_NFIELDS (type));
3832 puts_filtered ("\n");
3833 }
3834 }
3835 if (TYPE_NFN_FIELDS (type) > 0)
3836 {
3837 dump_fn_fieldlists (type, spaces);
3838 }
3839 }
3840
3841 /* Print the contents of the TYPE's type_specific union, assuming that
3842 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3843
3844 static void
3845 print_gnat_stuff (struct type *type, int spaces)
3846 {
3847 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3848
3849 recursive_dump_type (descriptive_type, spaces + 2);
3850 }
3851
3852 static struct obstack dont_print_type_obstack;
3853
3854 void
3855 recursive_dump_type (struct type *type, int spaces)
3856 {
3857 int idx;
3858
3859 if (spaces == 0)
3860 obstack_begin (&dont_print_type_obstack, 0);
3861
3862 if (TYPE_NFIELDS (type) > 0
3863 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3864 {
3865 struct type **first_dont_print
3866 = (struct type **) obstack_base (&dont_print_type_obstack);
3867
3868 int i = (struct type **)
3869 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3870
3871 while (--i >= 0)
3872 {
3873 if (type == first_dont_print[i])
3874 {
3875 printfi_filtered (spaces, "type node ");
3876 gdb_print_host_address (type, gdb_stdout);
3877 printf_filtered (_(" <same as already seen type>\n"));
3878 return;
3879 }
3880 }
3881
3882 obstack_ptr_grow (&dont_print_type_obstack, type);
3883 }
3884
3885 printfi_filtered (spaces, "type node ");
3886 gdb_print_host_address (type, gdb_stdout);
3887 printf_filtered ("\n");
3888 printfi_filtered (spaces, "name '%s' (",
3889 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3890 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3891 printf_filtered (")\n");
3892 printfi_filtered (spaces, "tagname '%s' (",
3893 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3894 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3895 printf_filtered (")\n");
3896 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3897 switch (TYPE_CODE (type))
3898 {
3899 case TYPE_CODE_UNDEF:
3900 printf_filtered ("(TYPE_CODE_UNDEF)");
3901 break;
3902 case TYPE_CODE_PTR:
3903 printf_filtered ("(TYPE_CODE_PTR)");
3904 break;
3905 case TYPE_CODE_ARRAY:
3906 printf_filtered ("(TYPE_CODE_ARRAY)");
3907 break;
3908 case TYPE_CODE_STRUCT:
3909 printf_filtered ("(TYPE_CODE_STRUCT)");
3910 break;
3911 case TYPE_CODE_UNION:
3912 printf_filtered ("(TYPE_CODE_UNION)");
3913 break;
3914 case TYPE_CODE_ENUM:
3915 printf_filtered ("(TYPE_CODE_ENUM)");
3916 break;
3917 case TYPE_CODE_FLAGS:
3918 printf_filtered ("(TYPE_CODE_FLAGS)");
3919 break;
3920 case TYPE_CODE_FUNC:
3921 printf_filtered ("(TYPE_CODE_FUNC)");
3922 break;
3923 case TYPE_CODE_INT:
3924 printf_filtered ("(TYPE_CODE_INT)");
3925 break;
3926 case TYPE_CODE_FLT:
3927 printf_filtered ("(TYPE_CODE_FLT)");
3928 break;
3929 case TYPE_CODE_VOID:
3930 printf_filtered ("(TYPE_CODE_VOID)");
3931 break;
3932 case TYPE_CODE_SET:
3933 printf_filtered ("(TYPE_CODE_SET)");
3934 break;
3935 case TYPE_CODE_RANGE:
3936 printf_filtered ("(TYPE_CODE_RANGE)");
3937 break;
3938 case TYPE_CODE_STRING:
3939 printf_filtered ("(TYPE_CODE_STRING)");
3940 break;
3941 case TYPE_CODE_ERROR:
3942 printf_filtered ("(TYPE_CODE_ERROR)");
3943 break;
3944 case TYPE_CODE_MEMBERPTR:
3945 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3946 break;
3947 case TYPE_CODE_METHODPTR:
3948 printf_filtered ("(TYPE_CODE_METHODPTR)");
3949 break;
3950 case TYPE_CODE_METHOD:
3951 printf_filtered ("(TYPE_CODE_METHOD)");
3952 break;
3953 case TYPE_CODE_REF:
3954 printf_filtered ("(TYPE_CODE_REF)");
3955 break;
3956 case TYPE_CODE_CHAR:
3957 printf_filtered ("(TYPE_CODE_CHAR)");
3958 break;
3959 case TYPE_CODE_BOOL:
3960 printf_filtered ("(TYPE_CODE_BOOL)");
3961 break;
3962 case TYPE_CODE_COMPLEX:
3963 printf_filtered ("(TYPE_CODE_COMPLEX)");
3964 break;
3965 case TYPE_CODE_TYPEDEF:
3966 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3967 break;
3968 case TYPE_CODE_NAMESPACE:
3969 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3970 break;
3971 default:
3972 printf_filtered ("(UNKNOWN TYPE CODE)");
3973 break;
3974 }
3975 puts_filtered ("\n");
3976 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3977 if (TYPE_OBJFILE_OWNED (type))
3978 {
3979 printfi_filtered (spaces, "objfile ");
3980 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3981 }
3982 else
3983 {
3984 printfi_filtered (spaces, "gdbarch ");
3985 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3986 }
3987 printf_filtered ("\n");
3988 printfi_filtered (spaces, "target_type ");
3989 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3990 printf_filtered ("\n");
3991 if (TYPE_TARGET_TYPE (type) != NULL)
3992 {
3993 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3994 }
3995 printfi_filtered (spaces, "pointer_type ");
3996 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3997 printf_filtered ("\n");
3998 printfi_filtered (spaces, "reference_type ");
3999 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4000 printf_filtered ("\n");
4001 printfi_filtered (spaces, "type_chain ");
4002 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4003 printf_filtered ("\n");
4004 printfi_filtered (spaces, "instance_flags 0x%x",
4005 TYPE_INSTANCE_FLAGS (type));
4006 if (TYPE_CONST (type))
4007 {
4008 puts_filtered (" TYPE_FLAG_CONST");
4009 }
4010 if (TYPE_VOLATILE (type))
4011 {
4012 puts_filtered (" TYPE_FLAG_VOLATILE");
4013 }
4014 if (TYPE_CODE_SPACE (type))
4015 {
4016 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4017 }
4018 if (TYPE_DATA_SPACE (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4021 }
4022 if (TYPE_ADDRESS_CLASS_1 (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4025 }
4026 if (TYPE_ADDRESS_CLASS_2 (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4029 }
4030 if (TYPE_RESTRICT (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_RESTRICT");
4033 }
4034 if (TYPE_ATOMIC (type))
4035 {
4036 puts_filtered (" TYPE_FLAG_ATOMIC");
4037 }
4038 puts_filtered ("\n");
4039
4040 printfi_filtered (spaces, "flags");
4041 if (TYPE_UNSIGNED (type))
4042 {
4043 puts_filtered (" TYPE_FLAG_UNSIGNED");
4044 }
4045 if (TYPE_NOSIGN (type))
4046 {
4047 puts_filtered (" TYPE_FLAG_NOSIGN");
4048 }
4049 if (TYPE_STUB (type))
4050 {
4051 puts_filtered (" TYPE_FLAG_STUB");
4052 }
4053 if (TYPE_TARGET_STUB (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4056 }
4057 if (TYPE_STATIC (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_STATIC");
4060 }
4061 if (TYPE_PROTOTYPED (type))
4062 {
4063 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4064 }
4065 if (TYPE_INCOMPLETE (type))
4066 {
4067 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4068 }
4069 if (TYPE_VARARGS (type))
4070 {
4071 puts_filtered (" TYPE_FLAG_VARARGS");
4072 }
4073 /* This is used for things like AltiVec registers on ppc. Gcc emits
4074 an attribute for the array type, which tells whether or not we
4075 have a vector, instead of a regular array. */
4076 if (TYPE_VECTOR (type))
4077 {
4078 puts_filtered (" TYPE_FLAG_VECTOR");
4079 }
4080 if (TYPE_FIXED_INSTANCE (type))
4081 {
4082 puts_filtered (" TYPE_FIXED_INSTANCE");
4083 }
4084 if (TYPE_STUB_SUPPORTED (type))
4085 {
4086 puts_filtered (" TYPE_STUB_SUPPORTED");
4087 }
4088 if (TYPE_NOTTEXT (type))
4089 {
4090 puts_filtered (" TYPE_NOTTEXT");
4091 }
4092 puts_filtered ("\n");
4093 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4094 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4095 puts_filtered ("\n");
4096 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4097 {
4098 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4099 printfi_filtered (spaces + 2,
4100 "[%d] enumval %s type ",
4101 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4102 else
4103 printfi_filtered (spaces + 2,
4104 "[%d] bitpos %d bitsize %d type ",
4105 idx, TYPE_FIELD_BITPOS (type, idx),
4106 TYPE_FIELD_BITSIZE (type, idx));
4107 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4108 printf_filtered (" name '%s' (",
4109 TYPE_FIELD_NAME (type, idx) != NULL
4110 ? TYPE_FIELD_NAME (type, idx)
4111 : "<NULL>");
4112 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4113 printf_filtered (")\n");
4114 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4115 {
4116 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4117 }
4118 }
4119 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4120 {
4121 printfi_filtered (spaces, "low %s%s high %s%s\n",
4122 plongest (TYPE_LOW_BOUND (type)),
4123 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4124 plongest (TYPE_HIGH_BOUND (type)),
4125 TYPE_HIGH_BOUND_UNDEFINED (type)
4126 ? " (undefined)" : "");
4127 }
4128
4129 switch (TYPE_SPECIFIC_FIELD (type))
4130 {
4131 case TYPE_SPECIFIC_CPLUS_STUFF:
4132 printfi_filtered (spaces, "cplus_stuff ");
4133 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4134 gdb_stdout);
4135 puts_filtered ("\n");
4136 print_cplus_stuff (type, spaces);
4137 break;
4138
4139 case TYPE_SPECIFIC_GNAT_STUFF:
4140 printfi_filtered (spaces, "gnat_stuff ");
4141 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4142 puts_filtered ("\n");
4143 print_gnat_stuff (type, spaces);
4144 break;
4145
4146 case TYPE_SPECIFIC_FLOATFORMAT:
4147 printfi_filtered (spaces, "floatformat ");
4148 if (TYPE_FLOATFORMAT (type) == NULL)
4149 puts_filtered ("(null)");
4150 else
4151 {
4152 puts_filtered ("{ ");
4153 if (TYPE_FLOATFORMAT (type)[0] == NULL
4154 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4155 puts_filtered ("(null)");
4156 else
4157 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4158
4159 puts_filtered (", ");
4160 if (TYPE_FLOATFORMAT (type)[1] == NULL
4161 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4162 puts_filtered ("(null)");
4163 else
4164 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4165
4166 puts_filtered (" }");
4167 }
4168 puts_filtered ("\n");
4169 break;
4170
4171 case TYPE_SPECIFIC_FUNC:
4172 printfi_filtered (spaces, "calling_convention %d\n",
4173 TYPE_CALLING_CONVENTION (type));
4174 /* tail_call_list is not printed. */
4175 break;
4176
4177 case TYPE_SPECIFIC_SELF_TYPE:
4178 printfi_filtered (spaces, "self_type ");
4179 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4180 puts_filtered ("\n");
4181 break;
4182 }
4183
4184 if (spaces == 0)
4185 obstack_free (&dont_print_type_obstack, NULL);
4186 }
4187 \f
4188 /* Trivial helpers for the libiberty hash table, for mapping one
4189 type to another. */
4190
4191 struct type_pair
4192 {
4193 struct type *old, *newobj;
4194 };
4195
4196 static hashval_t
4197 type_pair_hash (const void *item)
4198 {
4199 const struct type_pair *pair = item;
4200
4201 return htab_hash_pointer (pair->old);
4202 }
4203
4204 static int
4205 type_pair_eq (const void *item_lhs, const void *item_rhs)
4206 {
4207 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4208
4209 return lhs->old == rhs->old;
4210 }
4211
4212 /* Allocate the hash table used by copy_type_recursive to walk
4213 types without duplicates. We use OBJFILE's obstack, because
4214 OBJFILE is about to be deleted. */
4215
4216 htab_t
4217 create_copied_types_hash (struct objfile *objfile)
4218 {
4219 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4220 NULL, &objfile->objfile_obstack,
4221 hashtab_obstack_allocate,
4222 dummy_obstack_deallocate);
4223 }
4224
4225 /* Recursively copy (deep copy) TYPE, if it is associated with
4226 OBJFILE. Return a new type allocated using malloc, a saved type if
4227 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4228 not associated with OBJFILE. */
4229
4230 struct type *
4231 copy_type_recursive (struct objfile *objfile,
4232 struct type *type,
4233 htab_t copied_types)
4234 {
4235 struct type_pair *stored, pair;
4236 void **slot;
4237 struct type *new_type;
4238
4239 if (! TYPE_OBJFILE_OWNED (type))
4240 return type;
4241
4242 /* This type shouldn't be pointing to any types in other objfiles;
4243 if it did, the type might disappear unexpectedly. */
4244 gdb_assert (TYPE_OBJFILE (type) == objfile);
4245
4246 pair.old = type;
4247 slot = htab_find_slot (copied_types, &pair, INSERT);
4248 if (*slot != NULL)
4249 return ((struct type_pair *) *slot)->newobj;
4250
4251 new_type = alloc_type_arch (get_type_arch (type));
4252
4253 /* We must add the new type to the hash table immediately, in case
4254 we encounter this type again during a recursive call below. */
4255 stored
4256 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4257 stored->old = type;
4258 stored->newobj = new_type;
4259 *slot = stored;
4260
4261 /* Copy the common fields of types. For the main type, we simply
4262 copy the entire thing and then update specific fields as needed. */
4263 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4264 TYPE_OBJFILE_OWNED (new_type) = 0;
4265 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4266
4267 if (TYPE_NAME (type))
4268 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4269 if (TYPE_TAG_NAME (type))
4270 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4271
4272 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4273 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4274
4275 /* Copy the fields. */
4276 if (TYPE_NFIELDS (type))
4277 {
4278 int i, nfields;
4279
4280 nfields = TYPE_NFIELDS (type);
4281 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4282 for (i = 0; i < nfields; i++)
4283 {
4284 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4285 TYPE_FIELD_ARTIFICIAL (type, i);
4286 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4287 if (TYPE_FIELD_TYPE (type, i))
4288 TYPE_FIELD_TYPE (new_type, i)
4289 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4290 copied_types);
4291 if (TYPE_FIELD_NAME (type, i))
4292 TYPE_FIELD_NAME (new_type, i) =
4293 xstrdup (TYPE_FIELD_NAME (type, i));
4294 switch (TYPE_FIELD_LOC_KIND (type, i))
4295 {
4296 case FIELD_LOC_KIND_BITPOS:
4297 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4298 TYPE_FIELD_BITPOS (type, i));
4299 break;
4300 case FIELD_LOC_KIND_ENUMVAL:
4301 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4302 TYPE_FIELD_ENUMVAL (type, i));
4303 break;
4304 case FIELD_LOC_KIND_PHYSADDR:
4305 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4306 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4307 break;
4308 case FIELD_LOC_KIND_PHYSNAME:
4309 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4310 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4311 i)));
4312 break;
4313 default:
4314 internal_error (__FILE__, __LINE__,
4315 _("Unexpected type field location kind: %d"),
4316 TYPE_FIELD_LOC_KIND (type, i));
4317 }
4318 }
4319 }
4320
4321 /* For range types, copy the bounds information. */
4322 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4323 {
4324 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4325 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4326 }
4327
4328 /* Copy the data location information. */
4329 if (TYPE_DATA_LOCATION (type) != NULL)
4330 {
4331 TYPE_DATA_LOCATION (new_type)
4332 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4333 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4334 sizeof (struct dynamic_prop));
4335 }
4336
4337 /* Copy pointers to other types. */
4338 if (TYPE_TARGET_TYPE (type))
4339 TYPE_TARGET_TYPE (new_type) =
4340 copy_type_recursive (objfile,
4341 TYPE_TARGET_TYPE (type),
4342 copied_types);
4343
4344 /* Maybe copy the type_specific bits.
4345
4346 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4347 base classes and methods. There's no fundamental reason why we
4348 can't, but at the moment it is not needed. */
4349
4350 switch (TYPE_SPECIFIC_FIELD (type))
4351 {
4352 case TYPE_SPECIFIC_NONE:
4353 break;
4354 case TYPE_SPECIFIC_FUNC:
4355 INIT_FUNC_SPECIFIC (new_type);
4356 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4357 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4358 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4359 break;
4360 case TYPE_SPECIFIC_FLOATFORMAT:
4361 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4362 break;
4363 case TYPE_SPECIFIC_CPLUS_STUFF:
4364 INIT_CPLUS_SPECIFIC (new_type);
4365 break;
4366 case TYPE_SPECIFIC_GNAT_STUFF:
4367 INIT_GNAT_SPECIFIC (new_type);
4368 break;
4369 case TYPE_SPECIFIC_SELF_TYPE:
4370 set_type_self_type (new_type,
4371 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4372 copied_types));
4373 break;
4374 default:
4375 gdb_assert_not_reached ("bad type_specific_kind");
4376 }
4377
4378 return new_type;
4379 }
4380
4381 /* Make a copy of the given TYPE, except that the pointer & reference
4382 types are not preserved.
4383
4384 This function assumes that the given type has an associated objfile.
4385 This objfile is used to allocate the new type. */
4386
4387 struct type *
4388 copy_type (const struct type *type)
4389 {
4390 struct type *new_type;
4391
4392 gdb_assert (TYPE_OBJFILE_OWNED (type));
4393
4394 new_type = alloc_type_copy (type);
4395 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4396 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4397 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4398 sizeof (struct main_type));
4399 if (TYPE_DATA_LOCATION (type) != NULL)
4400 {
4401 TYPE_DATA_LOCATION (new_type)
4402 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4403 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4404 sizeof (struct dynamic_prop));
4405 }
4406
4407 return new_type;
4408 }
4409 \f
4410 /* Helper functions to initialize architecture-specific types. */
4411
4412 /* Allocate a type structure associated with GDBARCH and set its
4413 CODE, LENGTH, and NAME fields. */
4414
4415 struct type *
4416 arch_type (struct gdbarch *gdbarch,
4417 enum type_code code, int length, char *name)
4418 {
4419 struct type *type;
4420
4421 type = alloc_type_arch (gdbarch);
4422 TYPE_CODE (type) = code;
4423 TYPE_LENGTH (type) = length;
4424
4425 if (name)
4426 TYPE_NAME (type) = xstrdup (name);
4427
4428 return type;
4429 }
4430
4431 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4432 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4433 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4434
4435 struct type *
4436 arch_integer_type (struct gdbarch *gdbarch,
4437 int bit, int unsigned_p, char *name)
4438 {
4439 struct type *t;
4440
4441 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4442 if (unsigned_p)
4443 TYPE_UNSIGNED (t) = 1;
4444 if (name && strcmp (name, "char") == 0)
4445 TYPE_NOSIGN (t) = 1;
4446
4447 return t;
4448 }
4449
4450 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4451 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4452 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4453
4454 struct type *
4455 arch_character_type (struct gdbarch *gdbarch,
4456 int bit, int unsigned_p, char *name)
4457 {
4458 struct type *t;
4459
4460 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4461 if (unsigned_p)
4462 TYPE_UNSIGNED (t) = 1;
4463
4464 return t;
4465 }
4466
4467 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4468 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4469 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4470
4471 struct type *
4472 arch_boolean_type (struct gdbarch *gdbarch,
4473 int bit, int unsigned_p, char *name)
4474 {
4475 struct type *t;
4476
4477 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4478 if (unsigned_p)
4479 TYPE_UNSIGNED (t) = 1;
4480
4481 return t;
4482 }
4483
4484 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4485 BIT is the type size in bits; if BIT equals -1, the size is
4486 determined by the floatformat. NAME is the type name. Set the
4487 TYPE_FLOATFORMAT from FLOATFORMATS. */
4488
4489 struct type *
4490 arch_float_type (struct gdbarch *gdbarch,
4491 int bit, char *name, const struct floatformat **floatformats)
4492 {
4493 struct type *t;
4494
4495 if (bit == -1)
4496 {
4497 gdb_assert (floatformats != NULL);
4498 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4499 bit = floatformats[0]->totalsize;
4500 }
4501 gdb_assert (bit >= 0);
4502
4503 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4504 TYPE_FLOATFORMAT (t) = floatformats;
4505 return t;
4506 }
4507
4508 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4509 NAME is the type name. TARGET_TYPE is the component float type. */
4510
4511 struct type *
4512 arch_complex_type (struct gdbarch *gdbarch,
4513 char *name, struct type *target_type)
4514 {
4515 struct type *t;
4516
4517 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4518 2 * TYPE_LENGTH (target_type), name);
4519 TYPE_TARGET_TYPE (t) = target_type;
4520 return t;
4521 }
4522
4523 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4524 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4525
4526 struct type *
4527 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4528 {
4529 int nfields = length * TARGET_CHAR_BIT;
4530 struct type *type;
4531
4532 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4533 TYPE_UNSIGNED (type) = 1;
4534 TYPE_NFIELDS (type) = nfields;
4535 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4536
4537 return type;
4538 }
4539
4540 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4541 position BITPOS is called NAME. */
4542
4543 void
4544 append_flags_type_flag (struct type *type, int bitpos, char *name)
4545 {
4546 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4547 gdb_assert (bitpos < TYPE_NFIELDS (type));
4548 gdb_assert (bitpos >= 0);
4549
4550 if (name)
4551 {
4552 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4553 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4554 }
4555 else
4556 {
4557 /* Don't show this field to the user. */
4558 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4559 }
4560 }
4561
4562 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4563 specified by CODE) associated with GDBARCH. NAME is the type name. */
4564
4565 struct type *
4566 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4567 {
4568 struct type *t;
4569
4570 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4571 t = arch_type (gdbarch, code, 0, NULL);
4572 TYPE_TAG_NAME (t) = name;
4573 INIT_CPLUS_SPECIFIC (t);
4574 return t;
4575 }
4576
4577 /* Add new field with name NAME and type FIELD to composite type T.
4578 Do not set the field's position or adjust the type's length;
4579 the caller should do so. Return the new field. */
4580
4581 struct field *
4582 append_composite_type_field_raw (struct type *t, char *name,
4583 struct type *field)
4584 {
4585 struct field *f;
4586
4587 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4588 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4589 sizeof (struct field) * TYPE_NFIELDS (t));
4590 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4591 memset (f, 0, sizeof f[0]);
4592 FIELD_TYPE (f[0]) = field;
4593 FIELD_NAME (f[0]) = name;
4594 return f;
4595 }
4596
4597 /* Add new field with name NAME and type FIELD to composite type T.
4598 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4599
4600 void
4601 append_composite_type_field_aligned (struct type *t, char *name,
4602 struct type *field, int alignment)
4603 {
4604 struct field *f = append_composite_type_field_raw (t, name, field);
4605
4606 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4607 {
4608 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4609 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4610 }
4611 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4612 {
4613 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4614 if (TYPE_NFIELDS (t) > 1)
4615 {
4616 SET_FIELD_BITPOS (f[0],
4617 (FIELD_BITPOS (f[-1])
4618 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4619 * TARGET_CHAR_BIT)));
4620
4621 if (alignment)
4622 {
4623 int left;
4624
4625 alignment *= TARGET_CHAR_BIT;
4626 left = FIELD_BITPOS (f[0]) % alignment;
4627
4628 if (left)
4629 {
4630 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4631 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4632 }
4633 }
4634 }
4635 }
4636 }
4637
4638 /* Add new field with name NAME and type FIELD to composite type T. */
4639
4640 void
4641 append_composite_type_field (struct type *t, char *name,
4642 struct type *field)
4643 {
4644 append_composite_type_field_aligned (t, name, field, 0);
4645 }
4646
4647 static struct gdbarch_data *gdbtypes_data;
4648
4649 const struct builtin_type *
4650 builtin_type (struct gdbarch *gdbarch)
4651 {
4652 return gdbarch_data (gdbarch, gdbtypes_data);
4653 }
4654
4655 static void *
4656 gdbtypes_post_init (struct gdbarch *gdbarch)
4657 {
4658 struct builtin_type *builtin_type
4659 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4660
4661 /* Basic types. */
4662 builtin_type->builtin_void
4663 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4664 builtin_type->builtin_char
4665 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4666 !gdbarch_char_signed (gdbarch), "char");
4667 builtin_type->builtin_signed_char
4668 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4669 0, "signed char");
4670 builtin_type->builtin_unsigned_char
4671 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4672 1, "unsigned char");
4673 builtin_type->builtin_short
4674 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4675 0, "short");
4676 builtin_type->builtin_unsigned_short
4677 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4678 1, "unsigned short");
4679 builtin_type->builtin_int
4680 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4681 0, "int");
4682 builtin_type->builtin_unsigned_int
4683 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4684 1, "unsigned int");
4685 builtin_type->builtin_long
4686 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4687 0, "long");
4688 builtin_type->builtin_unsigned_long
4689 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4690 1, "unsigned long");
4691 builtin_type->builtin_long_long
4692 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4693 0, "long long");
4694 builtin_type->builtin_unsigned_long_long
4695 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4696 1, "unsigned long long");
4697 builtin_type->builtin_float
4698 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4699 "float", gdbarch_float_format (gdbarch));
4700 builtin_type->builtin_double
4701 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4702 "double", gdbarch_double_format (gdbarch));
4703 builtin_type->builtin_long_double
4704 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4705 "long double", gdbarch_long_double_format (gdbarch));
4706 builtin_type->builtin_complex
4707 = arch_complex_type (gdbarch, "complex",
4708 builtin_type->builtin_float);
4709 builtin_type->builtin_double_complex
4710 = arch_complex_type (gdbarch, "double complex",
4711 builtin_type->builtin_double);
4712 builtin_type->builtin_string
4713 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4714 builtin_type->builtin_bool
4715 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4716
4717 /* The following three are about decimal floating point types, which
4718 are 32-bits, 64-bits and 128-bits respectively. */
4719 builtin_type->builtin_decfloat
4720 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4721 builtin_type->builtin_decdouble
4722 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4723 builtin_type->builtin_declong
4724 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4725
4726 /* "True" character types. */
4727 builtin_type->builtin_true_char
4728 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4729 builtin_type->builtin_true_unsigned_char
4730 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4731
4732 /* Fixed-size integer types. */
4733 builtin_type->builtin_int0
4734 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4735 builtin_type->builtin_int8
4736 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4737 builtin_type->builtin_uint8
4738 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4739 builtin_type->builtin_int16
4740 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4741 builtin_type->builtin_uint16
4742 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4743 builtin_type->builtin_int32
4744 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4745 builtin_type->builtin_uint32
4746 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4747 builtin_type->builtin_int64
4748 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4749 builtin_type->builtin_uint64
4750 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4751 builtin_type->builtin_int128
4752 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4753 builtin_type->builtin_uint128
4754 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4755 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4756 TYPE_INSTANCE_FLAG_NOTTEXT;
4757 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4758 TYPE_INSTANCE_FLAG_NOTTEXT;
4759
4760 /* Wide character types. */
4761 builtin_type->builtin_char16
4762 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4763 builtin_type->builtin_char32
4764 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4765
4766
4767 /* Default data/code pointer types. */
4768 builtin_type->builtin_data_ptr
4769 = lookup_pointer_type (builtin_type->builtin_void);
4770 builtin_type->builtin_func_ptr
4771 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4772 builtin_type->builtin_func_func
4773 = lookup_function_type (builtin_type->builtin_func_ptr);
4774
4775 /* This type represents a GDB internal function. */
4776 builtin_type->internal_fn
4777 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4778 "<internal function>");
4779
4780 /* This type represents an xmethod. */
4781 builtin_type->xmethod
4782 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4783
4784 return builtin_type;
4785 }
4786
4787 /* This set of objfile-based types is intended to be used by symbol
4788 readers as basic types. */
4789
4790 static const struct objfile_data *objfile_type_data;
4791
4792 const struct objfile_type *
4793 objfile_type (struct objfile *objfile)
4794 {
4795 struct gdbarch *gdbarch;
4796 struct objfile_type *objfile_type
4797 = objfile_data (objfile, objfile_type_data);
4798
4799 if (objfile_type)
4800 return objfile_type;
4801
4802 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4803 1, struct objfile_type);
4804
4805 /* Use the objfile architecture to determine basic type properties. */
4806 gdbarch = get_objfile_arch (objfile);
4807
4808 /* Basic types. */
4809 objfile_type->builtin_void
4810 = init_type (TYPE_CODE_VOID, 1,
4811 0,
4812 "void", objfile);
4813
4814 objfile_type->builtin_char
4815 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4816 (TYPE_FLAG_NOSIGN
4817 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4818 "char", objfile);
4819 objfile_type->builtin_signed_char
4820 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4821 0,
4822 "signed char", objfile);
4823 objfile_type->builtin_unsigned_char
4824 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4825 TYPE_FLAG_UNSIGNED,
4826 "unsigned char", objfile);
4827 objfile_type->builtin_short
4828 = init_type (TYPE_CODE_INT,
4829 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4830 0, "short", objfile);
4831 objfile_type->builtin_unsigned_short
4832 = init_type (TYPE_CODE_INT,
4833 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4834 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4835 objfile_type->builtin_int
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4838 0, "int", objfile);
4839 objfile_type->builtin_unsigned_int
4840 = init_type (TYPE_CODE_INT,
4841 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4842 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4843 objfile_type->builtin_long
4844 = init_type (TYPE_CODE_INT,
4845 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4846 0, "long", objfile);
4847 objfile_type->builtin_unsigned_long
4848 = init_type (TYPE_CODE_INT,
4849 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4850 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4851 objfile_type->builtin_long_long
4852 = init_type (TYPE_CODE_INT,
4853 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4854 0, "long long", objfile);
4855 objfile_type->builtin_unsigned_long_long
4856 = init_type (TYPE_CODE_INT,
4857 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4858 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4859
4860 objfile_type->builtin_float
4861 = init_type (TYPE_CODE_FLT,
4862 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4863 0, "float", objfile);
4864 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4865 = gdbarch_float_format (gdbarch);
4866 objfile_type->builtin_double
4867 = init_type (TYPE_CODE_FLT,
4868 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4869 0, "double", objfile);
4870 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4871 = gdbarch_double_format (gdbarch);
4872 objfile_type->builtin_long_double
4873 = init_type (TYPE_CODE_FLT,
4874 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4875 0, "long double", objfile);
4876 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4877 = gdbarch_long_double_format (gdbarch);
4878
4879 /* This type represents a type that was unrecognized in symbol read-in. */
4880 objfile_type->builtin_error
4881 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4882
4883 /* The following set of types is used for symbols with no
4884 debug information. */
4885 objfile_type->nodebug_text_symbol
4886 = init_type (TYPE_CODE_FUNC, 1, 0,
4887 "<text variable, no debug info>", objfile);
4888 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4889 = objfile_type->builtin_int;
4890 objfile_type->nodebug_text_gnu_ifunc_symbol
4891 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4892 "<text gnu-indirect-function variable, no debug info>",
4893 objfile);
4894 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4895 = objfile_type->nodebug_text_symbol;
4896 objfile_type->nodebug_got_plt_symbol
4897 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4898 "<text from jump slot in .got.plt, no debug info>",
4899 objfile);
4900 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4901 = objfile_type->nodebug_text_symbol;
4902 objfile_type->nodebug_data_symbol
4903 = init_type (TYPE_CODE_INT,
4904 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4905 "<data variable, no debug info>", objfile);
4906 objfile_type->nodebug_unknown_symbol
4907 = init_type (TYPE_CODE_INT, 1, 0,
4908 "<variable (not text or data), no debug info>", objfile);
4909 objfile_type->nodebug_tls_symbol
4910 = init_type (TYPE_CODE_INT,
4911 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4912 "<thread local variable, no debug info>", objfile);
4913
4914 /* NOTE: on some targets, addresses and pointers are not necessarily
4915 the same.
4916
4917 The upshot is:
4918 - gdb's `struct type' always describes the target's
4919 representation.
4920 - gdb's `struct value' objects should always hold values in
4921 target form.
4922 - gdb's CORE_ADDR values are addresses in the unified virtual
4923 address space that the assembler and linker work with. Thus,
4924 since target_read_memory takes a CORE_ADDR as an argument, it
4925 can access any memory on the target, even if the processor has
4926 separate code and data address spaces.
4927
4928 In this context, objfile_type->builtin_core_addr is a bit odd:
4929 it's a target type for a value the target will never see. It's
4930 only used to hold the values of (typeless) linker symbols, which
4931 are indeed in the unified virtual address space. */
4932
4933 objfile_type->builtin_core_addr
4934 = init_type (TYPE_CODE_INT,
4935 gdbarch_addr_bit (gdbarch) / 8,
4936 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4937
4938 set_objfile_data (objfile, objfile_type_data, objfile_type);
4939 return objfile_type;
4940 }
4941
4942 extern initialize_file_ftype _initialize_gdbtypes;
4943
4944 void
4945 _initialize_gdbtypes (void)
4946 {
4947 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4948 objfile_type_data = register_objfile_data ();
4949
4950 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4951 _("Set debugging of C++ overloading."),
4952 _("Show debugging of C++ overloading."),
4953 _("When enabled, ranking of the "
4954 "functions is displayed."),
4955 NULL,
4956 show_overload_debug,
4957 &setdebuglist, &showdebuglist);
4958
4959 /* Add user knob for controlling resolution of opaque types. */
4960 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4961 &opaque_type_resolution,
4962 _("Set resolution of opaque struct/class/union"
4963 " types (if set before loading symbols)."),
4964 _("Show resolution of opaque struct/class/union"
4965 " types (if set before loading symbols)."),
4966 NULL, NULL,
4967 show_opaque_type_resolution,
4968 &setlist, &showlist);
4969
4970 /* Add an option to permit non-strict type checking. */
4971 add_setshow_boolean_cmd ("type", class_support,
4972 &strict_type_checking,
4973 _("Set strict type checking."),
4974 _("Show strict type checking."),
4975 NULL, NULL,
4976 show_strict_type_checking,
4977 &setchecklist, &showchecklist);
4978 }