]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.c
GDB copyright headers update after running GDB's copyright.py script.
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424 struct type *type;
1425
1426 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1427 language->la_language, NULL).symbol;
1428 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1429 return SYMBOL_TYPE (sym);
1430
1431 if (noerr)
1432 return NULL;
1433 error (_("No type named %s."), name);
1434 }
1435
1436 struct type *
1437 lookup_unsigned_typename (const struct language_defn *language,
1438 struct gdbarch *gdbarch, const char *name)
1439 {
1440 char *uns = (char *) alloca (strlen (name) + 10);
1441
1442 strcpy (uns, "unsigned ");
1443 strcpy (uns + 9, name);
1444 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1445 }
1446
1447 struct type *
1448 lookup_signed_typename (const struct language_defn *language,
1449 struct gdbarch *gdbarch, const char *name)
1450 {
1451 struct type *t;
1452 char *uns = (char *) alloca (strlen (name) + 8);
1453
1454 strcpy (uns, "signed ");
1455 strcpy (uns + 7, name);
1456 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1457 /* If we don't find "signed FOO" just try again with plain "FOO". */
1458 if (t != NULL)
1459 return t;
1460 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1461 }
1462
1463 /* Lookup a structure type named "struct NAME",
1464 visible in lexical block BLOCK. */
1465
1466 struct type *
1467 lookup_struct (const char *name, const struct block *block)
1468 {
1469 struct symbol *sym;
1470
1471 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1472
1473 if (sym == NULL)
1474 {
1475 error (_("No struct type named %s."), name);
1476 }
1477 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1478 {
1479 error (_("This context has class, union or enum %s, not a struct."),
1480 name);
1481 }
1482 return (SYMBOL_TYPE (sym));
1483 }
1484
1485 /* Lookup a union type named "union NAME",
1486 visible in lexical block BLOCK. */
1487
1488 struct type *
1489 lookup_union (const char *name, const struct block *block)
1490 {
1491 struct symbol *sym;
1492 struct type *t;
1493
1494 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1495
1496 if (sym == NULL)
1497 error (_("No union type named %s."), name);
1498
1499 t = SYMBOL_TYPE (sym);
1500
1501 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1502 return t;
1503
1504 /* If we get here, it's not a union. */
1505 error (_("This context has class, struct or enum %s, not a union."),
1506 name);
1507 }
1508
1509 /* Lookup an enum type named "enum NAME",
1510 visible in lexical block BLOCK. */
1511
1512 struct type *
1513 lookup_enum (const char *name, const struct block *block)
1514 {
1515 struct symbol *sym;
1516
1517 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1518 if (sym == NULL)
1519 {
1520 error (_("No enum type named %s."), name);
1521 }
1522 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1523 {
1524 error (_("This context has class, struct or union %s, not an enum."),
1525 name);
1526 }
1527 return (SYMBOL_TYPE (sym));
1528 }
1529
1530 /* Lookup a template type named "template NAME<TYPE>",
1531 visible in lexical block BLOCK. */
1532
1533 struct type *
1534 lookup_template_type (char *name, struct type *type,
1535 const struct block *block)
1536 {
1537 struct symbol *sym;
1538 char *nam = (char *)
1539 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1540
1541 strcpy (nam, name);
1542 strcat (nam, "<");
1543 strcat (nam, TYPE_NAME (type));
1544 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1545
1546 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1547
1548 if (sym == NULL)
1549 {
1550 error (_("No template type named %s."), name);
1551 }
1552 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1553 {
1554 error (_("This context has class, union or enum %s, not a struct."),
1555 name);
1556 }
1557 return (SYMBOL_TYPE (sym));
1558 }
1559
1560 /* Given a type TYPE, lookup the type of the component of type named
1561 NAME.
1562
1563 TYPE can be either a struct or union, or a pointer or reference to
1564 a struct or union. If it is a pointer or reference, its target
1565 type is automatically used. Thus '.' and '->' are interchangable,
1566 as specified for the definitions of the expression element types
1567 STRUCTOP_STRUCT and STRUCTOP_PTR.
1568
1569 If NOERR is nonzero, return zero if NAME is not suitably defined.
1570 If NAME is the name of a baseclass type, return that type. */
1571
1572 struct type *
1573 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1574 {
1575 int i;
1576 char *type_name;
1577
1578 for (;;)
1579 {
1580 type = check_typedef (type);
1581 if (TYPE_CODE (type) != TYPE_CODE_PTR
1582 && TYPE_CODE (type) != TYPE_CODE_REF)
1583 break;
1584 type = TYPE_TARGET_TYPE (type);
1585 }
1586
1587 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1588 && TYPE_CODE (type) != TYPE_CODE_UNION)
1589 {
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s is not a structure or union type."), type_name);
1593 }
1594
1595 #if 0
1596 /* FIXME: This change put in by Michael seems incorrect for the case
1597 where the structure tag name is the same as the member name.
1598 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1599 foo; } bell;" Disabled by fnf. */
1600 {
1601 char *type_name;
1602
1603 type_name = type_name_no_tag (type);
1604 if (type_name != NULL && strcmp (type_name, name) == 0)
1605 return type;
1606 }
1607 #endif
1608
1609 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1610 {
1611 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1612
1613 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1614 {
1615 return TYPE_FIELD_TYPE (type, i);
1616 }
1617 else if (!t_field_name || *t_field_name == '\0')
1618 {
1619 struct type *subtype
1620 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1621
1622 if (subtype != NULL)
1623 return subtype;
1624 }
1625 }
1626
1627 /* OK, it's not in this class. Recursively check the baseclasses. */
1628 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1629 {
1630 struct type *t;
1631
1632 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1633 if (t != NULL)
1634 {
1635 return t;
1636 }
1637 }
1638
1639 if (noerr)
1640 {
1641 return NULL;
1642 }
1643
1644 type_name = type_to_string (type);
1645 make_cleanup (xfree, type_name);
1646 error (_("Type %s has no component named %s."), type_name, name);
1647 }
1648
1649 /* Store in *MAX the largest number representable by unsigned integer type
1650 TYPE. */
1651
1652 void
1653 get_unsigned_type_max (struct type *type, ULONGEST *max)
1654 {
1655 unsigned int n;
1656
1657 type = check_typedef (type);
1658 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1659 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1660
1661 /* Written this way to avoid overflow. */
1662 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1663 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1664 }
1665
1666 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1667 signed integer type TYPE. */
1668
1669 void
1670 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1671 {
1672 unsigned int n;
1673
1674 type = check_typedef (type);
1675 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1676 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1677
1678 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1679 *min = -((ULONGEST) 1 << (n - 1));
1680 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1681 }
1682
1683 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1684 cplus_stuff.vptr_fieldno.
1685
1686 cplus_stuff is initialized to cplus_struct_default which does not
1687 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1688 designated initializers). We cope with that here. */
1689
1690 int
1691 internal_type_vptr_fieldno (struct type *type)
1692 {
1693 type = check_typedef (type);
1694 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1695 || TYPE_CODE (type) == TYPE_CODE_UNION);
1696 if (!HAVE_CPLUS_STRUCT (type))
1697 return -1;
1698 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1699 }
1700
1701 /* Set the value of cplus_stuff.vptr_fieldno. */
1702
1703 void
1704 set_type_vptr_fieldno (struct type *type, int fieldno)
1705 {
1706 type = check_typedef (type);
1707 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1708 || TYPE_CODE (type) == TYPE_CODE_UNION);
1709 if (!HAVE_CPLUS_STRUCT (type))
1710 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1711 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1712 }
1713
1714 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1715 cplus_stuff.vptr_basetype. */
1716
1717 struct type *
1718 internal_type_vptr_basetype (struct type *type)
1719 {
1720 type = check_typedef (type);
1721 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1722 || TYPE_CODE (type) == TYPE_CODE_UNION);
1723 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1724 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1725 }
1726
1727 /* Set the value of cplus_stuff.vptr_basetype. */
1728
1729 void
1730 set_type_vptr_basetype (struct type *type, struct type *basetype)
1731 {
1732 type = check_typedef (type);
1733 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1734 || TYPE_CODE (type) == TYPE_CODE_UNION);
1735 if (!HAVE_CPLUS_STRUCT (type))
1736 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1737 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1738 }
1739
1740 /* Lookup the vptr basetype/fieldno values for TYPE.
1741 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1742 vptr_fieldno. Also, if found and basetype is from the same objfile,
1743 cache the results.
1744 If not found, return -1 and ignore BASETYPEP.
1745 Callers should be aware that in some cases (for example,
1746 the type or one of its baseclasses is a stub type and we are
1747 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1748 this function will not be able to find the
1749 virtual function table pointer, and vptr_fieldno will remain -1 and
1750 vptr_basetype will remain NULL or incomplete. */
1751
1752 int
1753 get_vptr_fieldno (struct type *type, struct type **basetypep)
1754 {
1755 type = check_typedef (type);
1756
1757 if (TYPE_VPTR_FIELDNO (type) < 0)
1758 {
1759 int i;
1760
1761 /* We must start at zero in case the first (and only) baseclass
1762 is virtual (and hence we cannot share the table pointer). */
1763 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1764 {
1765 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1766 int fieldno;
1767 struct type *basetype;
1768
1769 fieldno = get_vptr_fieldno (baseclass, &basetype);
1770 if (fieldno >= 0)
1771 {
1772 /* If the type comes from a different objfile we can't cache
1773 it, it may have a different lifetime. PR 2384 */
1774 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1775 {
1776 set_type_vptr_fieldno (type, fieldno);
1777 set_type_vptr_basetype (type, basetype);
1778 }
1779 if (basetypep)
1780 *basetypep = basetype;
1781 return fieldno;
1782 }
1783 }
1784
1785 /* Not found. */
1786 return -1;
1787 }
1788 else
1789 {
1790 if (basetypep)
1791 *basetypep = TYPE_VPTR_BASETYPE (type);
1792 return TYPE_VPTR_FIELDNO (type);
1793 }
1794 }
1795
1796 static void
1797 stub_noname_complaint (void)
1798 {
1799 complaint (&symfile_complaints, _("stub type has NULL name"));
1800 }
1801
1802 /* Worker for is_dynamic_type. */
1803
1804 static int
1805 is_dynamic_type_internal (struct type *type, int top_level)
1806 {
1807 type = check_typedef (type);
1808
1809 /* We only want to recognize references at the outermost level. */
1810 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1811 type = check_typedef (TYPE_TARGET_TYPE (type));
1812
1813 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1814 dynamic, even if the type itself is statically defined.
1815 From a user's point of view, this may appear counter-intuitive;
1816 but it makes sense in this context, because the point is to determine
1817 whether any part of the type needs to be resolved before it can
1818 be exploited. */
1819 if (TYPE_DATA_LOCATION (type) != NULL
1820 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1821 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1822 return 1;
1823
1824 if (TYPE_ASSOCIATED_PROP (type))
1825 return 1;
1826
1827 if (TYPE_ALLOCATED_PROP (type))
1828 return 1;
1829
1830 switch (TYPE_CODE (type))
1831 {
1832 case TYPE_CODE_RANGE:
1833 {
1834 /* A range type is obviously dynamic if it has at least one
1835 dynamic bound. But also consider the range type to be
1836 dynamic when its subtype is dynamic, even if the bounds
1837 of the range type are static. It allows us to assume that
1838 the subtype of a static range type is also static. */
1839 return (!has_static_range (TYPE_RANGE_DATA (type))
1840 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1841 }
1842
1843 case TYPE_CODE_ARRAY:
1844 {
1845 gdb_assert (TYPE_NFIELDS (type) == 1);
1846
1847 /* The array is dynamic if either the bounds are dynamic,
1848 or the elements it contains have a dynamic contents. */
1849 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1850 return 1;
1851 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1852 }
1853
1854 case TYPE_CODE_STRUCT:
1855 case TYPE_CODE_UNION:
1856 {
1857 int i;
1858
1859 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1860 if (!field_is_static (&TYPE_FIELD (type, i))
1861 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1862 return 1;
1863 }
1864 break;
1865 }
1866
1867 return 0;
1868 }
1869
1870 /* See gdbtypes.h. */
1871
1872 int
1873 is_dynamic_type (struct type *type)
1874 {
1875 return is_dynamic_type_internal (type, 1);
1876 }
1877
1878 static struct type *resolve_dynamic_type_internal
1879 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1880
1881 /* Given a dynamic range type (dyn_range_type) and a stack of
1882 struct property_addr_info elements, return a static version
1883 of that type. */
1884
1885 static struct type *
1886 resolve_dynamic_range (struct type *dyn_range_type,
1887 struct property_addr_info *addr_stack)
1888 {
1889 CORE_ADDR value;
1890 struct type *static_range_type, *static_target_type;
1891 const struct dynamic_prop *prop;
1892 const struct dwarf2_locexpr_baton *baton;
1893 struct dynamic_prop low_bound, high_bound;
1894
1895 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1896
1897 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1898 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1899 {
1900 low_bound.kind = PROP_CONST;
1901 low_bound.data.const_val = value;
1902 }
1903 else
1904 {
1905 low_bound.kind = PROP_UNDEFINED;
1906 low_bound.data.const_val = 0;
1907 }
1908
1909 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1910 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1911 {
1912 high_bound.kind = PROP_CONST;
1913 high_bound.data.const_val = value;
1914
1915 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1916 high_bound.data.const_val
1917 = low_bound.data.const_val + high_bound.data.const_val - 1;
1918 }
1919 else
1920 {
1921 high_bound.kind = PROP_UNDEFINED;
1922 high_bound.data.const_val = 0;
1923 }
1924
1925 static_target_type
1926 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1927 addr_stack, 0);
1928 static_range_type = create_range_type (copy_type (dyn_range_type),
1929 static_target_type,
1930 &low_bound, &high_bound);
1931 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1932 return static_range_type;
1933 }
1934
1935 /* Resolves dynamic bound values of an array type TYPE to static ones.
1936 ADDR_STACK is a stack of struct property_addr_info to be used
1937 if needed during the dynamic resolution. */
1938
1939 static struct type *
1940 resolve_dynamic_array (struct type *type,
1941 struct property_addr_info *addr_stack)
1942 {
1943 CORE_ADDR value;
1944 struct type *elt_type;
1945 struct type *range_type;
1946 struct type *ary_dim;
1947 struct dynamic_prop *prop;
1948
1949 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1950
1951 type = copy_type (type);
1952
1953 elt_type = type;
1954 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1955 range_type = resolve_dynamic_range (range_type, addr_stack);
1956
1957 /* Resolve allocated/associated here before creating a new array type, which
1958 will update the length of the array accordingly. */
1959 prop = TYPE_ALLOCATED_PROP (type);
1960 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1961 {
1962 TYPE_DYN_PROP_ADDR (prop) = value;
1963 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1964 }
1965 prop = TYPE_ASSOCIATED_PROP (type);
1966 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1967 {
1968 TYPE_DYN_PROP_ADDR (prop) = value;
1969 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1970 }
1971
1972 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1973
1974 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1975 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1976 else
1977 elt_type = TYPE_TARGET_TYPE (type);
1978
1979 return create_array_type_with_stride (type, elt_type, range_type,
1980 TYPE_FIELD_BITSIZE (type, 0));
1981 }
1982
1983 /* Resolve dynamic bounds of members of the union TYPE to static
1984 bounds. ADDR_STACK is a stack of struct property_addr_info
1985 to be used if needed during the dynamic resolution. */
1986
1987 static struct type *
1988 resolve_dynamic_union (struct type *type,
1989 struct property_addr_info *addr_stack)
1990 {
1991 struct type *resolved_type;
1992 int i;
1993 unsigned int max_len = 0;
1994
1995 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1996
1997 resolved_type = copy_type (type);
1998 TYPE_FIELDS (resolved_type)
1999 = (struct field *) TYPE_ALLOC (resolved_type,
2000 TYPE_NFIELDS (resolved_type)
2001 * sizeof (struct field));
2002 memcpy (TYPE_FIELDS (resolved_type),
2003 TYPE_FIELDS (type),
2004 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2005 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2006 {
2007 struct type *t;
2008
2009 if (field_is_static (&TYPE_FIELD (type, i)))
2010 continue;
2011
2012 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2013 addr_stack, 0);
2014 TYPE_FIELD_TYPE (resolved_type, i) = t;
2015 if (TYPE_LENGTH (t) > max_len)
2016 max_len = TYPE_LENGTH (t);
2017 }
2018
2019 TYPE_LENGTH (resolved_type) = max_len;
2020 return resolved_type;
2021 }
2022
2023 /* Resolve dynamic bounds of members of the struct TYPE to static
2024 bounds. ADDR_STACK is a stack of struct property_addr_info to
2025 be used if needed during the dynamic resolution. */
2026
2027 static struct type *
2028 resolve_dynamic_struct (struct type *type,
2029 struct property_addr_info *addr_stack)
2030 {
2031 struct type *resolved_type;
2032 int i;
2033 unsigned resolved_type_bit_length = 0;
2034
2035 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2036 gdb_assert (TYPE_NFIELDS (type) > 0);
2037
2038 resolved_type = copy_type (type);
2039 TYPE_FIELDS (resolved_type)
2040 = (struct field *) TYPE_ALLOC (resolved_type,
2041 TYPE_NFIELDS (resolved_type)
2042 * sizeof (struct field));
2043 memcpy (TYPE_FIELDS (resolved_type),
2044 TYPE_FIELDS (type),
2045 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2046 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2047 {
2048 unsigned new_bit_length;
2049 struct property_addr_info pinfo;
2050
2051 if (field_is_static (&TYPE_FIELD (type, i)))
2052 continue;
2053
2054 /* As we know this field is not a static field, the field's
2055 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2056 this is the case, but only trigger a simple error rather
2057 than an internal error if that fails. While failing
2058 that verification indicates a bug in our code, the error
2059 is not severe enough to suggest to the user he stops
2060 his debugging session because of it. */
2061 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2062 error (_("Cannot determine struct field location"
2063 " (invalid location kind)"));
2064
2065 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2066 pinfo.valaddr = addr_stack->valaddr;
2067 pinfo.addr = addr_stack->addr;
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2072 &pinfo, 0);
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
2091 }
2092
2093 TYPE_LENGTH (resolved_type)
2094 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2095
2096 /* The Ada language uses this field as a cache for static fixed types: reset
2097 it as RESOLVED_TYPE must have its own static fixed type. */
2098 TYPE_TARGET_TYPE (resolved_type) = NULL;
2099
2100 return resolved_type;
2101 }
2102
2103 /* Worker for resolved_dynamic_type. */
2104
2105 static struct type *
2106 resolve_dynamic_type_internal (struct type *type,
2107 struct property_addr_info *addr_stack,
2108 int top_level)
2109 {
2110 struct type *real_type = check_typedef (type);
2111 struct type *resolved_type = type;
2112 struct dynamic_prop *prop;
2113 CORE_ADDR value;
2114
2115 if (!is_dynamic_type_internal (real_type, top_level))
2116 return type;
2117
2118 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2119 {
2120 resolved_type = copy_type (type);
2121 TYPE_TARGET_TYPE (resolved_type)
2122 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2123 top_level);
2124 }
2125 else
2126 {
2127 /* Before trying to resolve TYPE, make sure it is not a stub. */
2128 type = real_type;
2129
2130 switch (TYPE_CODE (type))
2131 {
2132 case TYPE_CODE_REF:
2133 {
2134 struct property_addr_info pinfo;
2135
2136 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2137 pinfo.valaddr = NULL;
2138 if (addr_stack->valaddr != NULL)
2139 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2140 else
2141 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2142 pinfo.next = addr_stack;
2143
2144 resolved_type = copy_type (type);
2145 TYPE_TARGET_TYPE (resolved_type)
2146 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2147 &pinfo, top_level);
2148 break;
2149 }
2150
2151 case TYPE_CODE_ARRAY:
2152 resolved_type = resolve_dynamic_array (type, addr_stack);
2153 break;
2154
2155 case TYPE_CODE_RANGE:
2156 resolved_type = resolve_dynamic_range (type, addr_stack);
2157 break;
2158
2159 case TYPE_CODE_UNION:
2160 resolved_type = resolve_dynamic_union (type, addr_stack);
2161 break;
2162
2163 case TYPE_CODE_STRUCT:
2164 resolved_type = resolve_dynamic_struct (type, addr_stack);
2165 break;
2166 }
2167 }
2168
2169 /* Resolve data_location attribute. */
2170 prop = TYPE_DATA_LOCATION (resolved_type);
2171 if (prop != NULL
2172 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2173 {
2174 TYPE_DYN_PROP_ADDR (prop) = value;
2175 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2176 }
2177
2178 return resolved_type;
2179 }
2180
2181 /* See gdbtypes.h */
2182
2183 struct type *
2184 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2185 CORE_ADDR addr)
2186 {
2187 struct property_addr_info pinfo
2188 = {check_typedef (type), valaddr, addr, NULL};
2189
2190 return resolve_dynamic_type_internal (type, &pinfo, 1);
2191 }
2192
2193 /* See gdbtypes.h */
2194
2195 struct dynamic_prop *
2196 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2197 {
2198 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2199
2200 while (node != NULL)
2201 {
2202 if (node->prop_kind == prop_kind)
2203 return &node->prop;
2204 node = node->next;
2205 }
2206 return NULL;
2207 }
2208
2209 /* See gdbtypes.h */
2210
2211 void
2212 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2213 struct type *type, struct objfile *objfile)
2214 {
2215 struct dynamic_prop_list *temp;
2216
2217 gdb_assert (TYPE_OBJFILE_OWNED (type));
2218
2219 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2220 temp->prop_kind = prop_kind;
2221 temp->prop = prop;
2222 temp->next = TYPE_DYN_PROP_LIST (type);
2223
2224 TYPE_DYN_PROP_LIST (type) = temp;
2225 }
2226
2227
2228 /* Find the real type of TYPE. This function returns the real type,
2229 after removing all layers of typedefs, and completing opaque or stub
2230 types. Completion changes the TYPE argument, but stripping of
2231 typedefs does not.
2232
2233 Instance flags (e.g. const/volatile) are preserved as typedefs are
2234 stripped. If necessary a new qualified form of the underlying type
2235 is created.
2236
2237 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2238 not been computed and we're either in the middle of reading symbols, or
2239 there was no name for the typedef in the debug info.
2240
2241 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2242 QUITs in the symbol reading code can also throw.
2243 Thus this function can throw an exception.
2244
2245 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2246 the target type.
2247
2248 If this is a stubbed struct (i.e. declared as struct foo *), see if
2249 we can find a full definition in some other file. If so, copy this
2250 definition, so we can use it in future. There used to be a comment
2251 (but not any code) that if we don't find a full definition, we'd
2252 set a flag so we don't spend time in the future checking the same
2253 type. That would be a mistake, though--we might load in more
2254 symbols which contain a full definition for the type. */
2255
2256 struct type *
2257 check_typedef (struct type *type)
2258 {
2259 struct type *orig_type = type;
2260 /* While we're removing typedefs, we don't want to lose qualifiers.
2261 E.g., const/volatile. */
2262 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2263
2264 gdb_assert (type);
2265
2266 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2267 {
2268 if (!TYPE_TARGET_TYPE (type))
2269 {
2270 const char *name;
2271 struct symbol *sym;
2272
2273 /* It is dangerous to call lookup_symbol if we are currently
2274 reading a symtab. Infinite recursion is one danger. */
2275 if (currently_reading_symtab)
2276 return make_qualified_type (type, instance_flags, NULL);
2277
2278 name = type_name_no_tag (type);
2279 /* FIXME: shouldn't we separately check the TYPE_NAME and
2280 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2281 VAR_DOMAIN as appropriate? (this code was written before
2282 TYPE_NAME and TYPE_TAG_NAME were separate). */
2283 if (name == NULL)
2284 {
2285 stub_noname_complaint ();
2286 return make_qualified_type (type, instance_flags, NULL);
2287 }
2288 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2289 if (sym)
2290 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2291 else /* TYPE_CODE_UNDEF */
2292 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2293 }
2294 type = TYPE_TARGET_TYPE (type);
2295
2296 /* Preserve the instance flags as we traverse down the typedef chain.
2297
2298 Handling address spaces/classes is nasty, what do we do if there's a
2299 conflict?
2300 E.g., what if an outer typedef marks the type as class_1 and an inner
2301 typedef marks the type as class_2?
2302 This is the wrong place to do such error checking. We leave it to
2303 the code that created the typedef in the first place to flag the
2304 error. We just pick the outer address space (akin to letting the
2305 outer cast in a chain of casting win), instead of assuming
2306 "it can't happen". */
2307 {
2308 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2309 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2310 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2311 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2312
2313 /* Treat code vs data spaces and address classes separately. */
2314 if ((instance_flags & ALL_SPACES) != 0)
2315 new_instance_flags &= ~ALL_SPACES;
2316 if ((instance_flags & ALL_CLASSES) != 0)
2317 new_instance_flags &= ~ALL_CLASSES;
2318
2319 instance_flags |= new_instance_flags;
2320 }
2321 }
2322
2323 /* If this is a struct/class/union with no fields, then check
2324 whether a full definition exists somewhere else. This is for
2325 systems where a type definition with no fields is issued for such
2326 types, instead of identifying them as stub types in the first
2327 place. */
2328
2329 if (TYPE_IS_OPAQUE (type)
2330 && opaque_type_resolution
2331 && !currently_reading_symtab)
2332 {
2333 const char *name = type_name_no_tag (type);
2334 struct type *newtype;
2335
2336 if (name == NULL)
2337 {
2338 stub_noname_complaint ();
2339 return make_qualified_type (type, instance_flags, NULL);
2340 }
2341 newtype = lookup_transparent_type (name);
2342
2343 if (newtype)
2344 {
2345 /* If the resolved type and the stub are in the same
2346 objfile, then replace the stub type with the real deal.
2347 But if they're in separate objfiles, leave the stub
2348 alone; we'll just look up the transparent type every time
2349 we call check_typedef. We can't create pointers between
2350 types allocated to different objfiles, since they may
2351 have different lifetimes. Trying to copy NEWTYPE over to
2352 TYPE's objfile is pointless, too, since you'll have to
2353 move over any other types NEWTYPE refers to, which could
2354 be an unbounded amount of stuff. */
2355 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2356 type = make_qualified_type (newtype,
2357 TYPE_INSTANCE_FLAGS (type),
2358 type);
2359 else
2360 type = newtype;
2361 }
2362 }
2363 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2364 types. */
2365 else if (TYPE_STUB (type) && !currently_reading_symtab)
2366 {
2367 const char *name = type_name_no_tag (type);
2368 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2369 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2370 as appropriate? (this code was written before TYPE_NAME and
2371 TYPE_TAG_NAME were separate). */
2372 struct symbol *sym;
2373
2374 if (name == NULL)
2375 {
2376 stub_noname_complaint ();
2377 return make_qualified_type (type, instance_flags, NULL);
2378 }
2379 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2380 if (sym)
2381 {
2382 /* Same as above for opaque types, we can replace the stub
2383 with the complete type only if they are in the same
2384 objfile. */
2385 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2386 type = make_qualified_type (SYMBOL_TYPE (sym),
2387 TYPE_INSTANCE_FLAGS (type),
2388 type);
2389 else
2390 type = SYMBOL_TYPE (sym);
2391 }
2392 }
2393
2394 if (TYPE_TARGET_STUB (type))
2395 {
2396 struct type *range_type;
2397 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2398
2399 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2400 {
2401 /* Nothing we can do. */
2402 }
2403 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2404 {
2405 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2406 TYPE_TARGET_STUB (type) = 0;
2407 }
2408 }
2409
2410 type = make_qualified_type (type, instance_flags, NULL);
2411
2412 /* Cache TYPE_LENGTH for future use. */
2413 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2414
2415 return type;
2416 }
2417
2418 /* Parse a type expression in the string [P..P+LENGTH). If an error
2419 occurs, silently return a void type. */
2420
2421 static struct type *
2422 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2423 {
2424 struct ui_file *saved_gdb_stderr;
2425 struct type *type = NULL; /* Initialize to keep gcc happy. */
2426
2427 /* Suppress error messages. */
2428 saved_gdb_stderr = gdb_stderr;
2429 gdb_stderr = ui_file_new ();
2430
2431 /* Call parse_and_eval_type() without fear of longjmp()s. */
2432 TRY
2433 {
2434 type = parse_and_eval_type (p, length);
2435 }
2436 CATCH (except, RETURN_MASK_ERROR)
2437 {
2438 type = builtin_type (gdbarch)->builtin_void;
2439 }
2440 END_CATCH
2441
2442 /* Stop suppressing error messages. */
2443 ui_file_delete (gdb_stderr);
2444 gdb_stderr = saved_gdb_stderr;
2445
2446 return type;
2447 }
2448
2449 /* Ugly hack to convert method stubs into method types.
2450
2451 He ain't kiddin'. This demangles the name of the method into a
2452 string including argument types, parses out each argument type,
2453 generates a string casting a zero to that type, evaluates the
2454 string, and stuffs the resulting type into an argtype vector!!!
2455 Then it knows the type of the whole function (including argument
2456 types for overloading), which info used to be in the stab's but was
2457 removed to hack back the space required for them. */
2458
2459 static void
2460 check_stub_method (struct type *type, int method_id, int signature_id)
2461 {
2462 struct gdbarch *gdbarch = get_type_arch (type);
2463 struct fn_field *f;
2464 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2465 char *demangled_name = gdb_demangle (mangled_name,
2466 DMGL_PARAMS | DMGL_ANSI);
2467 char *argtypetext, *p;
2468 int depth = 0, argcount = 1;
2469 struct field *argtypes;
2470 struct type *mtype;
2471
2472 /* Make sure we got back a function string that we can use. */
2473 if (demangled_name)
2474 p = strchr (demangled_name, '(');
2475 else
2476 p = NULL;
2477
2478 if (demangled_name == NULL || p == NULL)
2479 error (_("Internal: Cannot demangle mangled name `%s'."),
2480 mangled_name);
2481
2482 /* Now, read in the parameters that define this type. */
2483 p += 1;
2484 argtypetext = p;
2485 while (*p)
2486 {
2487 if (*p == '(' || *p == '<')
2488 {
2489 depth += 1;
2490 }
2491 else if (*p == ')' || *p == '>')
2492 {
2493 depth -= 1;
2494 }
2495 else if (*p == ',' && depth == 0)
2496 {
2497 argcount += 1;
2498 }
2499
2500 p += 1;
2501 }
2502
2503 /* If we read one argument and it was ``void'', don't count it. */
2504 if (startswith (argtypetext, "(void)"))
2505 argcount -= 1;
2506
2507 /* We need one extra slot, for the THIS pointer. */
2508
2509 argtypes = (struct field *)
2510 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2511 p = argtypetext;
2512
2513 /* Add THIS pointer for non-static methods. */
2514 f = TYPE_FN_FIELDLIST1 (type, method_id);
2515 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2516 argcount = 0;
2517 else
2518 {
2519 argtypes[0].type = lookup_pointer_type (type);
2520 argcount = 1;
2521 }
2522
2523 if (*p != ')') /* () means no args, skip while. */
2524 {
2525 depth = 0;
2526 while (*p)
2527 {
2528 if (depth <= 0 && (*p == ',' || *p == ')'))
2529 {
2530 /* Avoid parsing of ellipsis, they will be handled below.
2531 Also avoid ``void'' as above. */
2532 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2533 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2534 {
2535 argtypes[argcount].type =
2536 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2537 argcount += 1;
2538 }
2539 argtypetext = p + 1;
2540 }
2541
2542 if (*p == '(' || *p == '<')
2543 {
2544 depth += 1;
2545 }
2546 else if (*p == ')' || *p == '>')
2547 {
2548 depth -= 1;
2549 }
2550
2551 p += 1;
2552 }
2553 }
2554
2555 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2556
2557 /* Now update the old "stub" type into a real type. */
2558 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2559 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2560 We want a method (TYPE_CODE_METHOD). */
2561 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2562 argtypes, argcount, p[-2] == '.');
2563 TYPE_STUB (mtype) = 0;
2564 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2565
2566 xfree (demangled_name);
2567 }
2568
2569 /* This is the external interface to check_stub_method, above. This
2570 function unstubs all of the signatures for TYPE's METHOD_ID method
2571 name. After calling this function TYPE_FN_FIELD_STUB will be
2572 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2573 correct.
2574
2575 This function unfortunately can not die until stabs do. */
2576
2577 void
2578 check_stub_method_group (struct type *type, int method_id)
2579 {
2580 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2581 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2582 int j, found_stub = 0;
2583
2584 for (j = 0; j < len; j++)
2585 if (TYPE_FN_FIELD_STUB (f, j))
2586 {
2587 found_stub = 1;
2588 check_stub_method (type, method_id, j);
2589 }
2590
2591 /* GNU v3 methods with incorrect names were corrected when we read
2592 in type information, because it was cheaper to do it then. The
2593 only GNU v2 methods with incorrect method names are operators and
2594 destructors; destructors were also corrected when we read in type
2595 information.
2596
2597 Therefore the only thing we need to handle here are v2 operator
2598 names. */
2599 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2600 {
2601 int ret;
2602 char dem_opname[256];
2603
2604 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2605 method_id),
2606 dem_opname, DMGL_ANSI);
2607 if (!ret)
2608 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2609 method_id),
2610 dem_opname, 0);
2611 if (ret)
2612 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2613 }
2614 }
2615
2616 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2617 const struct cplus_struct_type cplus_struct_default = { };
2618
2619 void
2620 allocate_cplus_struct_type (struct type *type)
2621 {
2622 if (HAVE_CPLUS_STRUCT (type))
2623 /* Structure was already allocated. Nothing more to do. */
2624 return;
2625
2626 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2627 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2628 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2629 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2630 set_type_vptr_fieldno (type, -1);
2631 }
2632
2633 const struct gnat_aux_type gnat_aux_default =
2634 { NULL };
2635
2636 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2637 and allocate the associated gnat-specific data. The gnat-specific
2638 data is also initialized to gnat_aux_default. */
2639
2640 void
2641 allocate_gnat_aux_type (struct type *type)
2642 {
2643 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2644 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2645 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2646 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2647 }
2648
2649 /* Helper function to initialize the standard scalar types.
2650
2651 If NAME is non-NULL, then it is used to initialize the type name.
2652 Note that NAME is not copied; it is required to have a lifetime at
2653 least as long as OBJFILE. */
2654
2655 struct type *
2656 init_type (enum type_code code, int length, int flags,
2657 const char *name, struct objfile *objfile)
2658 {
2659 struct type *type;
2660
2661 type = alloc_type (objfile);
2662 TYPE_CODE (type) = code;
2663 TYPE_LENGTH (type) = length;
2664
2665 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2666 if (flags & TYPE_FLAG_UNSIGNED)
2667 TYPE_UNSIGNED (type) = 1;
2668 if (flags & TYPE_FLAG_NOSIGN)
2669 TYPE_NOSIGN (type) = 1;
2670 if (flags & TYPE_FLAG_STUB)
2671 TYPE_STUB (type) = 1;
2672 if (flags & TYPE_FLAG_TARGET_STUB)
2673 TYPE_TARGET_STUB (type) = 1;
2674 if (flags & TYPE_FLAG_STATIC)
2675 TYPE_STATIC (type) = 1;
2676 if (flags & TYPE_FLAG_PROTOTYPED)
2677 TYPE_PROTOTYPED (type) = 1;
2678 if (flags & TYPE_FLAG_INCOMPLETE)
2679 TYPE_INCOMPLETE (type) = 1;
2680 if (flags & TYPE_FLAG_VARARGS)
2681 TYPE_VARARGS (type) = 1;
2682 if (flags & TYPE_FLAG_VECTOR)
2683 TYPE_VECTOR (type) = 1;
2684 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2685 TYPE_STUB_SUPPORTED (type) = 1;
2686 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2687 TYPE_FIXED_INSTANCE (type) = 1;
2688 if (flags & TYPE_FLAG_GNU_IFUNC)
2689 TYPE_GNU_IFUNC (type) = 1;
2690
2691 TYPE_NAME (type) = name;
2692
2693 /* C++ fancies. */
2694
2695 if (name && strcmp (name, "char") == 0)
2696 TYPE_NOSIGN (type) = 1;
2697
2698 switch (code)
2699 {
2700 case TYPE_CODE_STRUCT:
2701 case TYPE_CODE_UNION:
2702 case TYPE_CODE_NAMESPACE:
2703 INIT_CPLUS_SPECIFIC (type);
2704 break;
2705 case TYPE_CODE_FLT:
2706 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2707 break;
2708 case TYPE_CODE_FUNC:
2709 INIT_FUNC_SPECIFIC (type);
2710 break;
2711 }
2712 return type;
2713 }
2714 \f
2715 /* Queries on types. */
2716
2717 int
2718 can_dereference (struct type *t)
2719 {
2720 /* FIXME: Should we return true for references as well as
2721 pointers? */
2722 t = check_typedef (t);
2723 return
2724 (t != NULL
2725 && TYPE_CODE (t) == TYPE_CODE_PTR
2726 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2727 }
2728
2729 int
2730 is_integral_type (struct type *t)
2731 {
2732 t = check_typedef (t);
2733 return
2734 ((t != NULL)
2735 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2736 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2737 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2738 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2739 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2740 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2741 }
2742
2743 /* Return true if TYPE is scalar. */
2744
2745 int
2746 is_scalar_type (struct type *type)
2747 {
2748 type = check_typedef (type);
2749
2750 switch (TYPE_CODE (type))
2751 {
2752 case TYPE_CODE_ARRAY:
2753 case TYPE_CODE_STRUCT:
2754 case TYPE_CODE_UNION:
2755 case TYPE_CODE_SET:
2756 case TYPE_CODE_STRING:
2757 return 0;
2758 default:
2759 return 1;
2760 }
2761 }
2762
2763 /* Return true if T is scalar, or a composite type which in practice has
2764 the memory layout of a scalar type. E.g., an array or struct with only
2765 one scalar element inside it, or a union with only scalar elements. */
2766
2767 int
2768 is_scalar_type_recursive (struct type *t)
2769 {
2770 t = check_typedef (t);
2771
2772 if (is_scalar_type (t))
2773 return 1;
2774 /* Are we dealing with an array or string of known dimensions? */
2775 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2776 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2777 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2778 {
2779 LONGEST low_bound, high_bound;
2780 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2781
2782 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2783
2784 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2785 }
2786 /* Are we dealing with a struct with one element? */
2787 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2788 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2789 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2790 {
2791 int i, n = TYPE_NFIELDS (t);
2792
2793 /* If all elements of the union are scalar, then the union is scalar. */
2794 for (i = 0; i < n; i++)
2795 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2796 return 0;
2797
2798 return 1;
2799 }
2800
2801 return 0;
2802 }
2803
2804 /* Return true is T is a class or a union. False otherwise. */
2805
2806 int
2807 class_or_union_p (const struct type *t)
2808 {
2809 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2810 || TYPE_CODE (t) == TYPE_CODE_UNION);
2811 }
2812
2813 /* A helper function which returns true if types A and B represent the
2814 "same" class type. This is true if the types have the same main
2815 type, or the same name. */
2816
2817 int
2818 class_types_same_p (const struct type *a, const struct type *b)
2819 {
2820 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2821 || (TYPE_NAME (a) && TYPE_NAME (b)
2822 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2823 }
2824
2825 /* If BASE is an ancestor of DCLASS return the distance between them.
2826 otherwise return -1;
2827 eg:
2828
2829 class A {};
2830 class B: public A {};
2831 class C: public B {};
2832 class D: C {};
2833
2834 distance_to_ancestor (A, A, 0) = 0
2835 distance_to_ancestor (A, B, 0) = 1
2836 distance_to_ancestor (A, C, 0) = 2
2837 distance_to_ancestor (A, D, 0) = 3
2838
2839 If PUBLIC is 1 then only public ancestors are considered,
2840 and the function returns the distance only if BASE is a public ancestor
2841 of DCLASS.
2842 Eg:
2843
2844 distance_to_ancestor (A, D, 1) = -1. */
2845
2846 static int
2847 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2848 {
2849 int i;
2850 int d;
2851
2852 base = check_typedef (base);
2853 dclass = check_typedef (dclass);
2854
2855 if (class_types_same_p (base, dclass))
2856 return 0;
2857
2858 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2859 {
2860 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2861 continue;
2862
2863 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2864 if (d >= 0)
2865 return 1 + d;
2866 }
2867
2868 return -1;
2869 }
2870
2871 /* Check whether BASE is an ancestor or base class or DCLASS
2872 Return 1 if so, and 0 if not.
2873 Note: If BASE and DCLASS are of the same type, this function
2874 will return 1. So for some class A, is_ancestor (A, A) will
2875 return 1. */
2876
2877 int
2878 is_ancestor (struct type *base, struct type *dclass)
2879 {
2880 return distance_to_ancestor (base, dclass, 0) >= 0;
2881 }
2882
2883 /* Like is_ancestor, but only returns true when BASE is a public
2884 ancestor of DCLASS. */
2885
2886 int
2887 is_public_ancestor (struct type *base, struct type *dclass)
2888 {
2889 return distance_to_ancestor (base, dclass, 1) >= 0;
2890 }
2891
2892 /* A helper function for is_unique_ancestor. */
2893
2894 static int
2895 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2896 int *offset,
2897 const gdb_byte *valaddr, int embedded_offset,
2898 CORE_ADDR address, struct value *val)
2899 {
2900 int i, count = 0;
2901
2902 base = check_typedef (base);
2903 dclass = check_typedef (dclass);
2904
2905 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2906 {
2907 struct type *iter;
2908 int this_offset;
2909
2910 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2911
2912 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2913 address, val);
2914
2915 if (class_types_same_p (base, iter))
2916 {
2917 /* If this is the first subclass, set *OFFSET and set count
2918 to 1. Otherwise, if this is at the same offset as
2919 previous instances, do nothing. Otherwise, increment
2920 count. */
2921 if (*offset == -1)
2922 {
2923 *offset = this_offset;
2924 count = 1;
2925 }
2926 else if (this_offset == *offset)
2927 {
2928 /* Nothing. */
2929 }
2930 else
2931 ++count;
2932 }
2933 else
2934 count += is_unique_ancestor_worker (base, iter, offset,
2935 valaddr,
2936 embedded_offset + this_offset,
2937 address, val);
2938 }
2939
2940 return count;
2941 }
2942
2943 /* Like is_ancestor, but only returns true if BASE is a unique base
2944 class of the type of VAL. */
2945
2946 int
2947 is_unique_ancestor (struct type *base, struct value *val)
2948 {
2949 int offset = -1;
2950
2951 return is_unique_ancestor_worker (base, value_type (val), &offset,
2952 value_contents_for_printing (val),
2953 value_embedded_offset (val),
2954 value_address (val), val) == 1;
2955 }
2956
2957 \f
2958 /* Overload resolution. */
2959
2960 /* Return the sum of the rank of A with the rank of B. */
2961
2962 struct rank
2963 sum_ranks (struct rank a, struct rank b)
2964 {
2965 struct rank c;
2966 c.rank = a.rank + b.rank;
2967 c.subrank = a.subrank + b.subrank;
2968 return c;
2969 }
2970
2971 /* Compare rank A and B and return:
2972 0 if a = b
2973 1 if a is better than b
2974 -1 if b is better than a. */
2975
2976 int
2977 compare_ranks (struct rank a, struct rank b)
2978 {
2979 if (a.rank == b.rank)
2980 {
2981 if (a.subrank == b.subrank)
2982 return 0;
2983 if (a.subrank < b.subrank)
2984 return 1;
2985 if (a.subrank > b.subrank)
2986 return -1;
2987 }
2988
2989 if (a.rank < b.rank)
2990 return 1;
2991
2992 /* a.rank > b.rank */
2993 return -1;
2994 }
2995
2996 /* Functions for overload resolution begin here. */
2997
2998 /* Compare two badness vectors A and B and return the result.
2999 0 => A and B are identical
3000 1 => A and B are incomparable
3001 2 => A is better than B
3002 3 => A is worse than B */
3003
3004 int
3005 compare_badness (struct badness_vector *a, struct badness_vector *b)
3006 {
3007 int i;
3008 int tmp;
3009 short found_pos = 0; /* any positives in c? */
3010 short found_neg = 0; /* any negatives in c? */
3011
3012 /* differing lengths => incomparable */
3013 if (a->length != b->length)
3014 return 1;
3015
3016 /* Subtract b from a */
3017 for (i = 0; i < a->length; i++)
3018 {
3019 tmp = compare_ranks (b->rank[i], a->rank[i]);
3020 if (tmp > 0)
3021 found_pos = 1;
3022 else if (tmp < 0)
3023 found_neg = 1;
3024 }
3025
3026 if (found_pos)
3027 {
3028 if (found_neg)
3029 return 1; /* incomparable */
3030 else
3031 return 3; /* A > B */
3032 }
3033 else
3034 /* no positives */
3035 {
3036 if (found_neg)
3037 return 2; /* A < B */
3038 else
3039 return 0; /* A == B */
3040 }
3041 }
3042
3043 /* Rank a function by comparing its parameter types (PARMS, length
3044 NPARMS), to the types of an argument list (ARGS, length NARGS).
3045 Return a pointer to a badness vector. This has NARGS + 1
3046 entries. */
3047
3048 struct badness_vector *
3049 rank_function (struct type **parms, int nparms,
3050 struct value **args, int nargs)
3051 {
3052 int i;
3053 struct badness_vector *bv = XNEW (struct badness_vector);
3054 int min_len = nparms < nargs ? nparms : nargs;
3055
3056 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3057 bv->rank = XNEWVEC (struct rank, nargs + 1);
3058
3059 /* First compare the lengths of the supplied lists.
3060 If there is a mismatch, set it to a high value. */
3061
3062 /* pai/1997-06-03 FIXME: when we have debug info about default
3063 arguments and ellipsis parameter lists, we should consider those
3064 and rank the length-match more finely. */
3065
3066 LENGTH_MATCH (bv) = (nargs != nparms)
3067 ? LENGTH_MISMATCH_BADNESS
3068 : EXACT_MATCH_BADNESS;
3069
3070 /* Now rank all the parameters of the candidate function. */
3071 for (i = 1; i <= min_len; i++)
3072 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3073 args[i - 1]);
3074
3075 /* If more arguments than parameters, add dummy entries. */
3076 for (i = min_len + 1; i <= nargs; i++)
3077 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3078
3079 return bv;
3080 }
3081
3082 /* Compare the names of two integer types, assuming that any sign
3083 qualifiers have been checked already. We do it this way because
3084 there may be an "int" in the name of one of the types. */
3085
3086 static int
3087 integer_types_same_name_p (const char *first, const char *second)
3088 {
3089 int first_p, second_p;
3090
3091 /* If both are shorts, return 1; if neither is a short, keep
3092 checking. */
3093 first_p = (strstr (first, "short") != NULL);
3094 second_p = (strstr (second, "short") != NULL);
3095 if (first_p && second_p)
3096 return 1;
3097 if (first_p || second_p)
3098 return 0;
3099
3100 /* Likewise for long. */
3101 first_p = (strstr (first, "long") != NULL);
3102 second_p = (strstr (second, "long") != NULL);
3103 if (first_p && second_p)
3104 return 1;
3105 if (first_p || second_p)
3106 return 0;
3107
3108 /* Likewise for char. */
3109 first_p = (strstr (first, "char") != NULL);
3110 second_p = (strstr (second, "char") != NULL);
3111 if (first_p && second_p)
3112 return 1;
3113 if (first_p || second_p)
3114 return 0;
3115
3116 /* They must both be ints. */
3117 return 1;
3118 }
3119
3120 /* Compares type A to type B returns 1 if the represent the same type
3121 0 otherwise. */
3122
3123 int
3124 types_equal (struct type *a, struct type *b)
3125 {
3126 /* Identical type pointers. */
3127 /* However, this still doesn't catch all cases of same type for b
3128 and a. The reason is that builtin types are different from
3129 the same ones constructed from the object. */
3130 if (a == b)
3131 return 1;
3132
3133 /* Resolve typedefs */
3134 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3135 a = check_typedef (a);
3136 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3137 b = check_typedef (b);
3138
3139 /* If after resolving typedefs a and b are not of the same type
3140 code then they are not equal. */
3141 if (TYPE_CODE (a) != TYPE_CODE (b))
3142 return 0;
3143
3144 /* If a and b are both pointers types or both reference types then
3145 they are equal of the same type iff the objects they refer to are
3146 of the same type. */
3147 if (TYPE_CODE (a) == TYPE_CODE_PTR
3148 || TYPE_CODE (a) == TYPE_CODE_REF)
3149 return types_equal (TYPE_TARGET_TYPE (a),
3150 TYPE_TARGET_TYPE (b));
3151
3152 /* Well, damnit, if the names are exactly the same, I'll say they
3153 are exactly the same. This happens when we generate method
3154 stubs. The types won't point to the same address, but they
3155 really are the same. */
3156
3157 if (TYPE_NAME (a) && TYPE_NAME (b)
3158 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3159 return 1;
3160
3161 /* Check if identical after resolving typedefs. */
3162 if (a == b)
3163 return 1;
3164
3165 /* Two function types are equal if their argument and return types
3166 are equal. */
3167 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3168 {
3169 int i;
3170
3171 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3172 return 0;
3173
3174 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3175 return 0;
3176
3177 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3178 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3179 return 0;
3180
3181 return 1;
3182 }
3183
3184 return 0;
3185 }
3186 \f
3187 /* Deep comparison of types. */
3188
3189 /* An entry in the type-equality bcache. */
3190
3191 typedef struct type_equality_entry
3192 {
3193 struct type *type1, *type2;
3194 } type_equality_entry_d;
3195
3196 DEF_VEC_O (type_equality_entry_d);
3197
3198 /* A helper function to compare two strings. Returns 1 if they are
3199 the same, 0 otherwise. Handles NULLs properly. */
3200
3201 static int
3202 compare_maybe_null_strings (const char *s, const char *t)
3203 {
3204 if (s == NULL && t != NULL)
3205 return 0;
3206 else if (s != NULL && t == NULL)
3207 return 0;
3208 else if (s == NULL && t== NULL)
3209 return 1;
3210 return strcmp (s, t) == 0;
3211 }
3212
3213 /* A helper function for check_types_worklist that checks two types for
3214 "deep" equality. Returns non-zero if the types are considered the
3215 same, zero otherwise. */
3216
3217 static int
3218 check_types_equal (struct type *type1, struct type *type2,
3219 VEC (type_equality_entry_d) **worklist)
3220 {
3221 type1 = check_typedef (type1);
3222 type2 = check_typedef (type2);
3223
3224 if (type1 == type2)
3225 return 1;
3226
3227 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3228 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3229 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3230 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3231 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3232 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3233 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3234 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3235 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3236 return 0;
3237
3238 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3239 TYPE_TAG_NAME (type2)))
3240 return 0;
3241 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3242 return 0;
3243
3244 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3245 {
3246 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3247 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3248 return 0;
3249 }
3250 else
3251 {
3252 int i;
3253
3254 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3255 {
3256 const struct field *field1 = &TYPE_FIELD (type1, i);
3257 const struct field *field2 = &TYPE_FIELD (type2, i);
3258 struct type_equality_entry entry;
3259
3260 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3261 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3262 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3263 return 0;
3264 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3265 FIELD_NAME (*field2)))
3266 return 0;
3267 switch (FIELD_LOC_KIND (*field1))
3268 {
3269 case FIELD_LOC_KIND_BITPOS:
3270 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3271 return 0;
3272 break;
3273 case FIELD_LOC_KIND_ENUMVAL:
3274 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3275 return 0;
3276 break;
3277 case FIELD_LOC_KIND_PHYSADDR:
3278 if (FIELD_STATIC_PHYSADDR (*field1)
3279 != FIELD_STATIC_PHYSADDR (*field2))
3280 return 0;
3281 break;
3282 case FIELD_LOC_KIND_PHYSNAME:
3283 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3284 FIELD_STATIC_PHYSNAME (*field2)))
3285 return 0;
3286 break;
3287 case FIELD_LOC_KIND_DWARF_BLOCK:
3288 {
3289 struct dwarf2_locexpr_baton *block1, *block2;
3290
3291 block1 = FIELD_DWARF_BLOCK (*field1);
3292 block2 = FIELD_DWARF_BLOCK (*field2);
3293 if (block1->per_cu != block2->per_cu
3294 || block1->size != block2->size
3295 || memcmp (block1->data, block2->data, block1->size) != 0)
3296 return 0;
3297 }
3298 break;
3299 default:
3300 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3301 "%d by check_types_equal"),
3302 FIELD_LOC_KIND (*field1));
3303 }
3304
3305 entry.type1 = FIELD_TYPE (*field1);
3306 entry.type2 = FIELD_TYPE (*field2);
3307 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3308 }
3309 }
3310
3311 if (TYPE_TARGET_TYPE (type1) != NULL)
3312 {
3313 struct type_equality_entry entry;
3314
3315 if (TYPE_TARGET_TYPE (type2) == NULL)
3316 return 0;
3317
3318 entry.type1 = TYPE_TARGET_TYPE (type1);
3319 entry.type2 = TYPE_TARGET_TYPE (type2);
3320 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3321 }
3322 else if (TYPE_TARGET_TYPE (type2) != NULL)
3323 return 0;
3324
3325 return 1;
3326 }
3327
3328 /* Check types on a worklist for equality. Returns zero if any pair
3329 is not equal, non-zero if they are all considered equal. */
3330
3331 static int
3332 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3333 struct bcache *cache)
3334 {
3335 while (!VEC_empty (type_equality_entry_d, *worklist))
3336 {
3337 struct type_equality_entry entry;
3338 int added;
3339
3340 entry = *VEC_last (type_equality_entry_d, *worklist);
3341 VEC_pop (type_equality_entry_d, *worklist);
3342
3343 /* If the type pair has already been visited, we know it is
3344 ok. */
3345 bcache_full (&entry, sizeof (entry), cache, &added);
3346 if (!added)
3347 continue;
3348
3349 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3350 return 0;
3351 }
3352
3353 return 1;
3354 }
3355
3356 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3357 "deep comparison". Otherwise return zero. */
3358
3359 int
3360 types_deeply_equal (struct type *type1, struct type *type2)
3361 {
3362 struct gdb_exception except = exception_none;
3363 int result = 0;
3364 struct bcache *cache;
3365 VEC (type_equality_entry_d) *worklist = NULL;
3366 struct type_equality_entry entry;
3367
3368 gdb_assert (type1 != NULL && type2 != NULL);
3369
3370 /* Early exit for the simple case. */
3371 if (type1 == type2)
3372 return 1;
3373
3374 cache = bcache_xmalloc (NULL, NULL);
3375
3376 entry.type1 = type1;
3377 entry.type2 = type2;
3378 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3379
3380 /* check_types_worklist calls several nested helper functions, some
3381 of which can raise a GDB exception, so we just check and rethrow
3382 here. If there is a GDB exception, a comparison is not capable
3383 (or trusted), so exit. */
3384 TRY
3385 {
3386 result = check_types_worklist (&worklist, cache);
3387 }
3388 CATCH (ex, RETURN_MASK_ALL)
3389 {
3390 except = ex;
3391 }
3392 END_CATCH
3393
3394 bcache_xfree (cache);
3395 VEC_free (type_equality_entry_d, worklist);
3396
3397 /* Rethrow if there was a problem. */
3398 if (except.reason < 0)
3399 throw_exception (except);
3400
3401 return result;
3402 }
3403
3404 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3405 Otherwise return one. */
3406
3407 int
3408 type_not_allocated (const struct type *type)
3409 {
3410 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3411
3412 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3413 && !TYPE_DYN_PROP_ADDR (prop));
3414 }
3415
3416 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3417 Otherwise return one. */
3418
3419 int
3420 type_not_associated (const struct type *type)
3421 {
3422 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3423
3424 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3425 && !TYPE_DYN_PROP_ADDR (prop));
3426 }
3427 \f
3428 /* Compare one type (PARM) for compatibility with another (ARG).
3429 * PARM is intended to be the parameter type of a function; and
3430 * ARG is the supplied argument's type. This function tests if
3431 * the latter can be converted to the former.
3432 * VALUE is the argument's value or NULL if none (or called recursively)
3433 *
3434 * Return 0 if they are identical types;
3435 * Otherwise, return an integer which corresponds to how compatible
3436 * PARM is to ARG. The higher the return value, the worse the match.
3437 * Generally the "bad" conversions are all uniformly assigned a 100. */
3438
3439 struct rank
3440 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3441 {
3442 struct rank rank = {0,0};
3443
3444 if (types_equal (parm, arg))
3445 return EXACT_MATCH_BADNESS;
3446
3447 /* Resolve typedefs */
3448 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3449 parm = check_typedef (parm);
3450 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3451 arg = check_typedef (arg);
3452
3453 /* See through references, since we can almost make non-references
3454 references. */
3455 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3456 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3457 REFERENCE_CONVERSION_BADNESS));
3458 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3459 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3460 REFERENCE_CONVERSION_BADNESS));
3461 if (overload_debug)
3462 /* Debugging only. */
3463 fprintf_filtered (gdb_stderr,
3464 "------ Arg is %s [%d], parm is %s [%d]\n",
3465 TYPE_NAME (arg), TYPE_CODE (arg),
3466 TYPE_NAME (parm), TYPE_CODE (parm));
3467
3468 /* x -> y means arg of type x being supplied for parameter of type y. */
3469
3470 switch (TYPE_CODE (parm))
3471 {
3472 case TYPE_CODE_PTR:
3473 switch (TYPE_CODE (arg))
3474 {
3475 case TYPE_CODE_PTR:
3476
3477 /* Allowed pointer conversions are:
3478 (a) pointer to void-pointer conversion. */
3479 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3480 return VOID_PTR_CONVERSION_BADNESS;
3481
3482 /* (b) pointer to ancestor-pointer conversion. */
3483 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3484 TYPE_TARGET_TYPE (arg),
3485 0);
3486 if (rank.subrank >= 0)
3487 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3488
3489 return INCOMPATIBLE_TYPE_BADNESS;
3490 case TYPE_CODE_ARRAY:
3491 if (types_equal (TYPE_TARGET_TYPE (parm),
3492 TYPE_TARGET_TYPE (arg)))
3493 return EXACT_MATCH_BADNESS;
3494 return INCOMPATIBLE_TYPE_BADNESS;
3495 case TYPE_CODE_FUNC:
3496 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3497 case TYPE_CODE_INT:
3498 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3499 {
3500 if (value_as_long (value) == 0)
3501 {
3502 /* Null pointer conversion: allow it to be cast to a pointer.
3503 [4.10.1 of C++ standard draft n3290] */
3504 return NULL_POINTER_CONVERSION_BADNESS;
3505 }
3506 else
3507 {
3508 /* If type checking is disabled, allow the conversion. */
3509 if (!strict_type_checking)
3510 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3511 }
3512 }
3513 /* fall through */
3514 case TYPE_CODE_ENUM:
3515 case TYPE_CODE_FLAGS:
3516 case TYPE_CODE_CHAR:
3517 case TYPE_CODE_RANGE:
3518 case TYPE_CODE_BOOL:
3519 default:
3520 return INCOMPATIBLE_TYPE_BADNESS;
3521 }
3522 case TYPE_CODE_ARRAY:
3523 switch (TYPE_CODE (arg))
3524 {
3525 case TYPE_CODE_PTR:
3526 case TYPE_CODE_ARRAY:
3527 return rank_one_type (TYPE_TARGET_TYPE (parm),
3528 TYPE_TARGET_TYPE (arg), NULL);
3529 default:
3530 return INCOMPATIBLE_TYPE_BADNESS;
3531 }
3532 case TYPE_CODE_FUNC:
3533 switch (TYPE_CODE (arg))
3534 {
3535 case TYPE_CODE_PTR: /* funcptr -> func */
3536 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3537 default:
3538 return INCOMPATIBLE_TYPE_BADNESS;
3539 }
3540 case TYPE_CODE_INT:
3541 switch (TYPE_CODE (arg))
3542 {
3543 case TYPE_CODE_INT:
3544 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3545 {
3546 /* Deal with signed, unsigned, and plain chars and
3547 signed and unsigned ints. */
3548 if (TYPE_NOSIGN (parm))
3549 {
3550 /* This case only for character types. */
3551 if (TYPE_NOSIGN (arg))
3552 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3553 else /* signed/unsigned char -> plain char */
3554 return INTEGER_CONVERSION_BADNESS;
3555 }
3556 else if (TYPE_UNSIGNED (parm))
3557 {
3558 if (TYPE_UNSIGNED (arg))
3559 {
3560 /* unsigned int -> unsigned int, or
3561 unsigned long -> unsigned long */
3562 if (integer_types_same_name_p (TYPE_NAME (parm),
3563 TYPE_NAME (arg)))
3564 return EXACT_MATCH_BADNESS;
3565 else if (integer_types_same_name_p (TYPE_NAME (arg),
3566 "int")
3567 && integer_types_same_name_p (TYPE_NAME (parm),
3568 "long"))
3569 /* unsigned int -> unsigned long */
3570 return INTEGER_PROMOTION_BADNESS;
3571 else
3572 /* unsigned long -> unsigned int */
3573 return INTEGER_CONVERSION_BADNESS;
3574 }
3575 else
3576 {
3577 if (integer_types_same_name_p (TYPE_NAME (arg),
3578 "long")
3579 && integer_types_same_name_p (TYPE_NAME (parm),
3580 "int"))
3581 /* signed long -> unsigned int */
3582 return INTEGER_CONVERSION_BADNESS;
3583 else
3584 /* signed int/long -> unsigned int/long */
3585 return INTEGER_CONVERSION_BADNESS;
3586 }
3587 }
3588 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3589 {
3590 if (integer_types_same_name_p (TYPE_NAME (parm),
3591 TYPE_NAME (arg)))
3592 return EXACT_MATCH_BADNESS;
3593 else if (integer_types_same_name_p (TYPE_NAME (arg),
3594 "int")
3595 && integer_types_same_name_p (TYPE_NAME (parm),
3596 "long"))
3597 return INTEGER_PROMOTION_BADNESS;
3598 else
3599 return INTEGER_CONVERSION_BADNESS;
3600 }
3601 else
3602 return INTEGER_CONVERSION_BADNESS;
3603 }
3604 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3605 return INTEGER_PROMOTION_BADNESS;
3606 else
3607 return INTEGER_CONVERSION_BADNESS;
3608 case TYPE_CODE_ENUM:
3609 case TYPE_CODE_FLAGS:
3610 case TYPE_CODE_CHAR:
3611 case TYPE_CODE_RANGE:
3612 case TYPE_CODE_BOOL:
3613 if (TYPE_DECLARED_CLASS (arg))
3614 return INCOMPATIBLE_TYPE_BADNESS;
3615 return INTEGER_PROMOTION_BADNESS;
3616 case TYPE_CODE_FLT:
3617 return INT_FLOAT_CONVERSION_BADNESS;
3618 case TYPE_CODE_PTR:
3619 return NS_POINTER_CONVERSION_BADNESS;
3620 default:
3621 return INCOMPATIBLE_TYPE_BADNESS;
3622 }
3623 break;
3624 case TYPE_CODE_ENUM:
3625 switch (TYPE_CODE (arg))
3626 {
3627 case TYPE_CODE_INT:
3628 case TYPE_CODE_CHAR:
3629 case TYPE_CODE_RANGE:
3630 case TYPE_CODE_BOOL:
3631 case TYPE_CODE_ENUM:
3632 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3633 return INCOMPATIBLE_TYPE_BADNESS;
3634 return INTEGER_CONVERSION_BADNESS;
3635 case TYPE_CODE_FLT:
3636 return INT_FLOAT_CONVERSION_BADNESS;
3637 default:
3638 return INCOMPATIBLE_TYPE_BADNESS;
3639 }
3640 break;
3641 case TYPE_CODE_CHAR:
3642 switch (TYPE_CODE (arg))
3643 {
3644 case TYPE_CODE_RANGE:
3645 case TYPE_CODE_BOOL:
3646 case TYPE_CODE_ENUM:
3647 if (TYPE_DECLARED_CLASS (arg))
3648 return INCOMPATIBLE_TYPE_BADNESS;
3649 return INTEGER_CONVERSION_BADNESS;
3650 case TYPE_CODE_FLT:
3651 return INT_FLOAT_CONVERSION_BADNESS;
3652 case TYPE_CODE_INT:
3653 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3654 return INTEGER_CONVERSION_BADNESS;
3655 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3656 return INTEGER_PROMOTION_BADNESS;
3657 /* >>> !! else fall through !! <<< */
3658 case TYPE_CODE_CHAR:
3659 /* Deal with signed, unsigned, and plain chars for C++ and
3660 with int cases falling through from previous case. */
3661 if (TYPE_NOSIGN (parm))
3662 {
3663 if (TYPE_NOSIGN (arg))
3664 return EXACT_MATCH_BADNESS;
3665 else
3666 return INTEGER_CONVERSION_BADNESS;
3667 }
3668 else if (TYPE_UNSIGNED (parm))
3669 {
3670 if (TYPE_UNSIGNED (arg))
3671 return EXACT_MATCH_BADNESS;
3672 else
3673 return INTEGER_PROMOTION_BADNESS;
3674 }
3675 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3676 return EXACT_MATCH_BADNESS;
3677 else
3678 return INTEGER_CONVERSION_BADNESS;
3679 default:
3680 return INCOMPATIBLE_TYPE_BADNESS;
3681 }
3682 break;
3683 case TYPE_CODE_RANGE:
3684 switch (TYPE_CODE (arg))
3685 {
3686 case TYPE_CODE_INT:
3687 case TYPE_CODE_CHAR:
3688 case TYPE_CODE_RANGE:
3689 case TYPE_CODE_BOOL:
3690 case TYPE_CODE_ENUM:
3691 return INTEGER_CONVERSION_BADNESS;
3692 case TYPE_CODE_FLT:
3693 return INT_FLOAT_CONVERSION_BADNESS;
3694 default:
3695 return INCOMPATIBLE_TYPE_BADNESS;
3696 }
3697 break;
3698 case TYPE_CODE_BOOL:
3699 switch (TYPE_CODE (arg))
3700 {
3701 /* n3290 draft, section 4.12.1 (conv.bool):
3702
3703 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3704 pointer to member type can be converted to a prvalue of type
3705 bool. A zero value, null pointer value, or null member pointer
3706 value is converted to false; any other value is converted to
3707 true. A prvalue of type std::nullptr_t can be converted to a
3708 prvalue of type bool; the resulting value is false." */
3709 case TYPE_CODE_INT:
3710 case TYPE_CODE_CHAR:
3711 case TYPE_CODE_ENUM:
3712 case TYPE_CODE_FLT:
3713 case TYPE_CODE_MEMBERPTR:
3714 case TYPE_CODE_PTR:
3715 return BOOL_CONVERSION_BADNESS;
3716 case TYPE_CODE_RANGE:
3717 return INCOMPATIBLE_TYPE_BADNESS;
3718 case TYPE_CODE_BOOL:
3719 return EXACT_MATCH_BADNESS;
3720 default:
3721 return INCOMPATIBLE_TYPE_BADNESS;
3722 }
3723 break;
3724 case TYPE_CODE_FLT:
3725 switch (TYPE_CODE (arg))
3726 {
3727 case TYPE_CODE_FLT:
3728 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3729 return FLOAT_PROMOTION_BADNESS;
3730 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3731 return EXACT_MATCH_BADNESS;
3732 else
3733 return FLOAT_CONVERSION_BADNESS;
3734 case TYPE_CODE_INT:
3735 case TYPE_CODE_BOOL:
3736 case TYPE_CODE_ENUM:
3737 case TYPE_CODE_RANGE:
3738 case TYPE_CODE_CHAR:
3739 return INT_FLOAT_CONVERSION_BADNESS;
3740 default:
3741 return INCOMPATIBLE_TYPE_BADNESS;
3742 }
3743 break;
3744 case TYPE_CODE_COMPLEX:
3745 switch (TYPE_CODE (arg))
3746 { /* Strictly not needed for C++, but... */
3747 case TYPE_CODE_FLT:
3748 return FLOAT_PROMOTION_BADNESS;
3749 case TYPE_CODE_COMPLEX:
3750 return EXACT_MATCH_BADNESS;
3751 default:
3752 return INCOMPATIBLE_TYPE_BADNESS;
3753 }
3754 break;
3755 case TYPE_CODE_STRUCT:
3756 switch (TYPE_CODE (arg))
3757 {
3758 case TYPE_CODE_STRUCT:
3759 /* Check for derivation */
3760 rank.subrank = distance_to_ancestor (parm, arg, 0);
3761 if (rank.subrank >= 0)
3762 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3763 /* else fall through */
3764 default:
3765 return INCOMPATIBLE_TYPE_BADNESS;
3766 }
3767 break;
3768 case TYPE_CODE_UNION:
3769 switch (TYPE_CODE (arg))
3770 {
3771 case TYPE_CODE_UNION:
3772 default:
3773 return INCOMPATIBLE_TYPE_BADNESS;
3774 }
3775 break;
3776 case TYPE_CODE_MEMBERPTR:
3777 switch (TYPE_CODE (arg))
3778 {
3779 default:
3780 return INCOMPATIBLE_TYPE_BADNESS;
3781 }
3782 break;
3783 case TYPE_CODE_METHOD:
3784 switch (TYPE_CODE (arg))
3785 {
3786
3787 default:
3788 return INCOMPATIBLE_TYPE_BADNESS;
3789 }
3790 break;
3791 case TYPE_CODE_REF:
3792 switch (TYPE_CODE (arg))
3793 {
3794
3795 default:
3796 return INCOMPATIBLE_TYPE_BADNESS;
3797 }
3798
3799 break;
3800 case TYPE_CODE_SET:
3801 switch (TYPE_CODE (arg))
3802 {
3803 /* Not in C++ */
3804 case TYPE_CODE_SET:
3805 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3806 TYPE_FIELD_TYPE (arg, 0), NULL);
3807 default:
3808 return INCOMPATIBLE_TYPE_BADNESS;
3809 }
3810 break;
3811 case TYPE_CODE_VOID:
3812 default:
3813 return INCOMPATIBLE_TYPE_BADNESS;
3814 } /* switch (TYPE_CODE (arg)) */
3815 }
3816
3817 /* End of functions for overload resolution. */
3818 \f
3819 /* Routines to pretty-print types. */
3820
3821 static void
3822 print_bit_vector (B_TYPE *bits, int nbits)
3823 {
3824 int bitno;
3825
3826 for (bitno = 0; bitno < nbits; bitno++)
3827 {
3828 if ((bitno % 8) == 0)
3829 {
3830 puts_filtered (" ");
3831 }
3832 if (B_TST (bits, bitno))
3833 printf_filtered (("1"));
3834 else
3835 printf_filtered (("0"));
3836 }
3837 }
3838
3839 /* Note the first arg should be the "this" pointer, we may not want to
3840 include it since we may get into a infinitely recursive
3841 situation. */
3842
3843 static void
3844 print_args (struct field *args, int nargs, int spaces)
3845 {
3846 if (args != NULL)
3847 {
3848 int i;
3849
3850 for (i = 0; i < nargs; i++)
3851 {
3852 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3853 args[i].name != NULL ? args[i].name : "<NULL>");
3854 recursive_dump_type (args[i].type, spaces + 2);
3855 }
3856 }
3857 }
3858
3859 int
3860 field_is_static (struct field *f)
3861 {
3862 /* "static" fields are the fields whose location is not relative
3863 to the address of the enclosing struct. It would be nice to
3864 have a dedicated flag that would be set for static fields when
3865 the type is being created. But in practice, checking the field
3866 loc_kind should give us an accurate answer. */
3867 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3868 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3869 }
3870
3871 static void
3872 dump_fn_fieldlists (struct type *type, int spaces)
3873 {
3874 int method_idx;
3875 int overload_idx;
3876 struct fn_field *f;
3877
3878 printfi_filtered (spaces, "fn_fieldlists ");
3879 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3880 printf_filtered ("\n");
3881 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3882 {
3883 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3884 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3885 method_idx,
3886 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3887 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3888 gdb_stdout);
3889 printf_filtered (_(") length %d\n"),
3890 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3891 for (overload_idx = 0;
3892 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3893 overload_idx++)
3894 {
3895 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3896 overload_idx,
3897 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3898 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3899 gdb_stdout);
3900 printf_filtered (")\n");
3901 printfi_filtered (spaces + 8, "type ");
3902 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3903 gdb_stdout);
3904 printf_filtered ("\n");
3905
3906 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3907 spaces + 8 + 2);
3908
3909 printfi_filtered (spaces + 8, "args ");
3910 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3911 gdb_stdout);
3912 printf_filtered ("\n");
3913 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3914 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3915 spaces + 8 + 2);
3916 printfi_filtered (spaces + 8, "fcontext ");
3917 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3918 gdb_stdout);
3919 printf_filtered ("\n");
3920
3921 printfi_filtered (spaces + 8, "is_const %d\n",
3922 TYPE_FN_FIELD_CONST (f, overload_idx));
3923 printfi_filtered (spaces + 8, "is_volatile %d\n",
3924 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3925 printfi_filtered (spaces + 8, "is_private %d\n",
3926 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3927 printfi_filtered (spaces + 8, "is_protected %d\n",
3928 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3929 printfi_filtered (spaces + 8, "is_stub %d\n",
3930 TYPE_FN_FIELD_STUB (f, overload_idx));
3931 printfi_filtered (spaces + 8, "voffset %u\n",
3932 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3933 }
3934 }
3935 }
3936
3937 static void
3938 print_cplus_stuff (struct type *type, int spaces)
3939 {
3940 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3941 printfi_filtered (spaces, "vptr_basetype ");
3942 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3943 puts_filtered ("\n");
3944 if (TYPE_VPTR_BASETYPE (type) != NULL)
3945 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3946
3947 printfi_filtered (spaces, "n_baseclasses %d\n",
3948 TYPE_N_BASECLASSES (type));
3949 printfi_filtered (spaces, "nfn_fields %d\n",
3950 TYPE_NFN_FIELDS (type));
3951 if (TYPE_N_BASECLASSES (type) > 0)
3952 {
3953 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3954 TYPE_N_BASECLASSES (type));
3955 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3956 gdb_stdout);
3957 printf_filtered (")");
3958
3959 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3960 TYPE_N_BASECLASSES (type));
3961 puts_filtered ("\n");
3962 }
3963 if (TYPE_NFIELDS (type) > 0)
3964 {
3965 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3966 {
3967 printfi_filtered (spaces,
3968 "private_field_bits (%d bits at *",
3969 TYPE_NFIELDS (type));
3970 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3971 gdb_stdout);
3972 printf_filtered (")");
3973 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3974 TYPE_NFIELDS (type));
3975 puts_filtered ("\n");
3976 }
3977 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3978 {
3979 printfi_filtered (spaces,
3980 "protected_field_bits (%d bits at *",
3981 TYPE_NFIELDS (type));
3982 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3983 gdb_stdout);
3984 printf_filtered (")");
3985 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3986 TYPE_NFIELDS (type));
3987 puts_filtered ("\n");
3988 }
3989 }
3990 if (TYPE_NFN_FIELDS (type) > 0)
3991 {
3992 dump_fn_fieldlists (type, spaces);
3993 }
3994 }
3995
3996 /* Print the contents of the TYPE's type_specific union, assuming that
3997 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3998
3999 static void
4000 print_gnat_stuff (struct type *type, int spaces)
4001 {
4002 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4003
4004 if (descriptive_type == NULL)
4005 printfi_filtered (spaces + 2, "no descriptive type\n");
4006 else
4007 {
4008 printfi_filtered (spaces + 2, "descriptive type\n");
4009 recursive_dump_type (descriptive_type, spaces + 4);
4010 }
4011 }
4012
4013 static struct obstack dont_print_type_obstack;
4014
4015 void
4016 recursive_dump_type (struct type *type, int spaces)
4017 {
4018 int idx;
4019
4020 if (spaces == 0)
4021 obstack_begin (&dont_print_type_obstack, 0);
4022
4023 if (TYPE_NFIELDS (type) > 0
4024 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4025 {
4026 struct type **first_dont_print
4027 = (struct type **) obstack_base (&dont_print_type_obstack);
4028
4029 int i = (struct type **)
4030 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4031
4032 while (--i >= 0)
4033 {
4034 if (type == first_dont_print[i])
4035 {
4036 printfi_filtered (spaces, "type node ");
4037 gdb_print_host_address (type, gdb_stdout);
4038 printf_filtered (_(" <same as already seen type>\n"));
4039 return;
4040 }
4041 }
4042
4043 obstack_ptr_grow (&dont_print_type_obstack, type);
4044 }
4045
4046 printfi_filtered (spaces, "type node ");
4047 gdb_print_host_address (type, gdb_stdout);
4048 printf_filtered ("\n");
4049 printfi_filtered (spaces, "name '%s' (",
4050 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4051 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4052 printf_filtered (")\n");
4053 printfi_filtered (spaces, "tagname '%s' (",
4054 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4055 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4056 printf_filtered (")\n");
4057 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4058 switch (TYPE_CODE (type))
4059 {
4060 case TYPE_CODE_UNDEF:
4061 printf_filtered ("(TYPE_CODE_UNDEF)");
4062 break;
4063 case TYPE_CODE_PTR:
4064 printf_filtered ("(TYPE_CODE_PTR)");
4065 break;
4066 case TYPE_CODE_ARRAY:
4067 printf_filtered ("(TYPE_CODE_ARRAY)");
4068 break;
4069 case TYPE_CODE_STRUCT:
4070 printf_filtered ("(TYPE_CODE_STRUCT)");
4071 break;
4072 case TYPE_CODE_UNION:
4073 printf_filtered ("(TYPE_CODE_UNION)");
4074 break;
4075 case TYPE_CODE_ENUM:
4076 printf_filtered ("(TYPE_CODE_ENUM)");
4077 break;
4078 case TYPE_CODE_FLAGS:
4079 printf_filtered ("(TYPE_CODE_FLAGS)");
4080 break;
4081 case TYPE_CODE_FUNC:
4082 printf_filtered ("(TYPE_CODE_FUNC)");
4083 break;
4084 case TYPE_CODE_INT:
4085 printf_filtered ("(TYPE_CODE_INT)");
4086 break;
4087 case TYPE_CODE_FLT:
4088 printf_filtered ("(TYPE_CODE_FLT)");
4089 break;
4090 case TYPE_CODE_VOID:
4091 printf_filtered ("(TYPE_CODE_VOID)");
4092 break;
4093 case TYPE_CODE_SET:
4094 printf_filtered ("(TYPE_CODE_SET)");
4095 break;
4096 case TYPE_CODE_RANGE:
4097 printf_filtered ("(TYPE_CODE_RANGE)");
4098 break;
4099 case TYPE_CODE_STRING:
4100 printf_filtered ("(TYPE_CODE_STRING)");
4101 break;
4102 case TYPE_CODE_ERROR:
4103 printf_filtered ("(TYPE_CODE_ERROR)");
4104 break;
4105 case TYPE_CODE_MEMBERPTR:
4106 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4107 break;
4108 case TYPE_CODE_METHODPTR:
4109 printf_filtered ("(TYPE_CODE_METHODPTR)");
4110 break;
4111 case TYPE_CODE_METHOD:
4112 printf_filtered ("(TYPE_CODE_METHOD)");
4113 break;
4114 case TYPE_CODE_REF:
4115 printf_filtered ("(TYPE_CODE_REF)");
4116 break;
4117 case TYPE_CODE_CHAR:
4118 printf_filtered ("(TYPE_CODE_CHAR)");
4119 break;
4120 case TYPE_CODE_BOOL:
4121 printf_filtered ("(TYPE_CODE_BOOL)");
4122 break;
4123 case TYPE_CODE_COMPLEX:
4124 printf_filtered ("(TYPE_CODE_COMPLEX)");
4125 break;
4126 case TYPE_CODE_TYPEDEF:
4127 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4128 break;
4129 case TYPE_CODE_NAMESPACE:
4130 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4131 break;
4132 default:
4133 printf_filtered ("(UNKNOWN TYPE CODE)");
4134 break;
4135 }
4136 puts_filtered ("\n");
4137 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4138 if (TYPE_OBJFILE_OWNED (type))
4139 {
4140 printfi_filtered (spaces, "objfile ");
4141 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4142 }
4143 else
4144 {
4145 printfi_filtered (spaces, "gdbarch ");
4146 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4147 }
4148 printf_filtered ("\n");
4149 printfi_filtered (spaces, "target_type ");
4150 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4151 printf_filtered ("\n");
4152 if (TYPE_TARGET_TYPE (type) != NULL)
4153 {
4154 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4155 }
4156 printfi_filtered (spaces, "pointer_type ");
4157 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4158 printf_filtered ("\n");
4159 printfi_filtered (spaces, "reference_type ");
4160 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4161 printf_filtered ("\n");
4162 printfi_filtered (spaces, "type_chain ");
4163 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4164 printf_filtered ("\n");
4165 printfi_filtered (spaces, "instance_flags 0x%x",
4166 TYPE_INSTANCE_FLAGS (type));
4167 if (TYPE_CONST (type))
4168 {
4169 puts_filtered (" TYPE_FLAG_CONST");
4170 }
4171 if (TYPE_VOLATILE (type))
4172 {
4173 puts_filtered (" TYPE_FLAG_VOLATILE");
4174 }
4175 if (TYPE_CODE_SPACE (type))
4176 {
4177 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4178 }
4179 if (TYPE_DATA_SPACE (type))
4180 {
4181 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4182 }
4183 if (TYPE_ADDRESS_CLASS_1 (type))
4184 {
4185 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4186 }
4187 if (TYPE_ADDRESS_CLASS_2 (type))
4188 {
4189 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4190 }
4191 if (TYPE_RESTRICT (type))
4192 {
4193 puts_filtered (" TYPE_FLAG_RESTRICT");
4194 }
4195 if (TYPE_ATOMIC (type))
4196 {
4197 puts_filtered (" TYPE_FLAG_ATOMIC");
4198 }
4199 puts_filtered ("\n");
4200
4201 printfi_filtered (spaces, "flags");
4202 if (TYPE_UNSIGNED (type))
4203 {
4204 puts_filtered (" TYPE_FLAG_UNSIGNED");
4205 }
4206 if (TYPE_NOSIGN (type))
4207 {
4208 puts_filtered (" TYPE_FLAG_NOSIGN");
4209 }
4210 if (TYPE_STUB (type))
4211 {
4212 puts_filtered (" TYPE_FLAG_STUB");
4213 }
4214 if (TYPE_TARGET_STUB (type))
4215 {
4216 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4217 }
4218 if (TYPE_STATIC (type))
4219 {
4220 puts_filtered (" TYPE_FLAG_STATIC");
4221 }
4222 if (TYPE_PROTOTYPED (type))
4223 {
4224 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4225 }
4226 if (TYPE_INCOMPLETE (type))
4227 {
4228 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4229 }
4230 if (TYPE_VARARGS (type))
4231 {
4232 puts_filtered (" TYPE_FLAG_VARARGS");
4233 }
4234 /* This is used for things like AltiVec registers on ppc. Gcc emits
4235 an attribute for the array type, which tells whether or not we
4236 have a vector, instead of a regular array. */
4237 if (TYPE_VECTOR (type))
4238 {
4239 puts_filtered (" TYPE_FLAG_VECTOR");
4240 }
4241 if (TYPE_FIXED_INSTANCE (type))
4242 {
4243 puts_filtered (" TYPE_FIXED_INSTANCE");
4244 }
4245 if (TYPE_STUB_SUPPORTED (type))
4246 {
4247 puts_filtered (" TYPE_STUB_SUPPORTED");
4248 }
4249 if (TYPE_NOTTEXT (type))
4250 {
4251 puts_filtered (" TYPE_NOTTEXT");
4252 }
4253 puts_filtered ("\n");
4254 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4255 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4256 puts_filtered ("\n");
4257 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4258 {
4259 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4260 printfi_filtered (spaces + 2,
4261 "[%d] enumval %s type ",
4262 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4263 else
4264 printfi_filtered (spaces + 2,
4265 "[%d] bitpos %d bitsize %d type ",
4266 idx, TYPE_FIELD_BITPOS (type, idx),
4267 TYPE_FIELD_BITSIZE (type, idx));
4268 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4269 printf_filtered (" name '%s' (",
4270 TYPE_FIELD_NAME (type, idx) != NULL
4271 ? TYPE_FIELD_NAME (type, idx)
4272 : "<NULL>");
4273 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4274 printf_filtered (")\n");
4275 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4276 {
4277 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4278 }
4279 }
4280 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4281 {
4282 printfi_filtered (spaces, "low %s%s high %s%s\n",
4283 plongest (TYPE_LOW_BOUND (type)),
4284 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4285 plongest (TYPE_HIGH_BOUND (type)),
4286 TYPE_HIGH_BOUND_UNDEFINED (type)
4287 ? " (undefined)" : "");
4288 }
4289
4290 switch (TYPE_SPECIFIC_FIELD (type))
4291 {
4292 case TYPE_SPECIFIC_CPLUS_STUFF:
4293 printfi_filtered (spaces, "cplus_stuff ");
4294 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4295 gdb_stdout);
4296 puts_filtered ("\n");
4297 print_cplus_stuff (type, spaces);
4298 break;
4299
4300 case TYPE_SPECIFIC_GNAT_STUFF:
4301 printfi_filtered (spaces, "gnat_stuff ");
4302 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4303 puts_filtered ("\n");
4304 print_gnat_stuff (type, spaces);
4305 break;
4306
4307 case TYPE_SPECIFIC_FLOATFORMAT:
4308 printfi_filtered (spaces, "floatformat ");
4309 if (TYPE_FLOATFORMAT (type) == NULL)
4310 puts_filtered ("(null)");
4311 else
4312 {
4313 puts_filtered ("{ ");
4314 if (TYPE_FLOATFORMAT (type)[0] == NULL
4315 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4316 puts_filtered ("(null)");
4317 else
4318 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4319
4320 puts_filtered (", ");
4321 if (TYPE_FLOATFORMAT (type)[1] == NULL
4322 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4323 puts_filtered ("(null)");
4324 else
4325 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4326
4327 puts_filtered (" }");
4328 }
4329 puts_filtered ("\n");
4330 break;
4331
4332 case TYPE_SPECIFIC_FUNC:
4333 printfi_filtered (spaces, "calling_convention %d\n",
4334 TYPE_CALLING_CONVENTION (type));
4335 /* tail_call_list is not printed. */
4336 break;
4337
4338 case TYPE_SPECIFIC_SELF_TYPE:
4339 printfi_filtered (spaces, "self_type ");
4340 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4341 puts_filtered ("\n");
4342 break;
4343 }
4344
4345 if (spaces == 0)
4346 obstack_free (&dont_print_type_obstack, NULL);
4347 }
4348 \f
4349 /* Trivial helpers for the libiberty hash table, for mapping one
4350 type to another. */
4351
4352 struct type_pair
4353 {
4354 struct type *old, *newobj;
4355 };
4356
4357 static hashval_t
4358 type_pair_hash (const void *item)
4359 {
4360 const struct type_pair *pair = (const struct type_pair *) item;
4361
4362 return htab_hash_pointer (pair->old);
4363 }
4364
4365 static int
4366 type_pair_eq (const void *item_lhs, const void *item_rhs)
4367 {
4368 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4369 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4370
4371 return lhs->old == rhs->old;
4372 }
4373
4374 /* Allocate the hash table used by copy_type_recursive to walk
4375 types without duplicates. We use OBJFILE's obstack, because
4376 OBJFILE is about to be deleted. */
4377
4378 htab_t
4379 create_copied_types_hash (struct objfile *objfile)
4380 {
4381 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4382 NULL, &objfile->objfile_obstack,
4383 hashtab_obstack_allocate,
4384 dummy_obstack_deallocate);
4385 }
4386
4387 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4388
4389 static struct dynamic_prop_list *
4390 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4391 struct dynamic_prop_list *list)
4392 {
4393 struct dynamic_prop_list *copy = list;
4394 struct dynamic_prop_list **node_ptr = &copy;
4395
4396 while (*node_ptr != NULL)
4397 {
4398 struct dynamic_prop_list *node_copy;
4399
4400 node_copy = ((struct dynamic_prop_list *)
4401 obstack_copy (objfile_obstack, *node_ptr,
4402 sizeof (struct dynamic_prop_list)));
4403 node_copy->prop = (*node_ptr)->prop;
4404 *node_ptr = node_copy;
4405
4406 node_ptr = &node_copy->next;
4407 }
4408
4409 return copy;
4410 }
4411
4412 /* Recursively copy (deep copy) TYPE, if it is associated with
4413 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4414 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4415 it is not associated with OBJFILE. */
4416
4417 struct type *
4418 copy_type_recursive (struct objfile *objfile,
4419 struct type *type,
4420 htab_t copied_types)
4421 {
4422 struct type_pair *stored, pair;
4423 void **slot;
4424 struct type *new_type;
4425
4426 if (! TYPE_OBJFILE_OWNED (type))
4427 return type;
4428
4429 /* This type shouldn't be pointing to any types in other objfiles;
4430 if it did, the type might disappear unexpectedly. */
4431 gdb_assert (TYPE_OBJFILE (type) == objfile);
4432
4433 pair.old = type;
4434 slot = htab_find_slot (copied_types, &pair, INSERT);
4435 if (*slot != NULL)
4436 return ((struct type_pair *) *slot)->newobj;
4437
4438 new_type = alloc_type_arch (get_type_arch (type));
4439
4440 /* We must add the new type to the hash table immediately, in case
4441 we encounter this type again during a recursive call below. */
4442 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4443 stored->old = type;
4444 stored->newobj = new_type;
4445 *slot = stored;
4446
4447 /* Copy the common fields of types. For the main type, we simply
4448 copy the entire thing and then update specific fields as needed. */
4449 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4450 TYPE_OBJFILE_OWNED (new_type) = 0;
4451 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4452
4453 if (TYPE_NAME (type))
4454 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4455 if (TYPE_TAG_NAME (type))
4456 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4457
4458 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4459 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4460
4461 /* Copy the fields. */
4462 if (TYPE_NFIELDS (type))
4463 {
4464 int i, nfields;
4465
4466 nfields = TYPE_NFIELDS (type);
4467 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4468 for (i = 0; i < nfields; i++)
4469 {
4470 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4471 TYPE_FIELD_ARTIFICIAL (type, i);
4472 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4473 if (TYPE_FIELD_TYPE (type, i))
4474 TYPE_FIELD_TYPE (new_type, i)
4475 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4476 copied_types);
4477 if (TYPE_FIELD_NAME (type, i))
4478 TYPE_FIELD_NAME (new_type, i) =
4479 xstrdup (TYPE_FIELD_NAME (type, i));
4480 switch (TYPE_FIELD_LOC_KIND (type, i))
4481 {
4482 case FIELD_LOC_KIND_BITPOS:
4483 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4484 TYPE_FIELD_BITPOS (type, i));
4485 break;
4486 case FIELD_LOC_KIND_ENUMVAL:
4487 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4488 TYPE_FIELD_ENUMVAL (type, i));
4489 break;
4490 case FIELD_LOC_KIND_PHYSADDR:
4491 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4492 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4493 break;
4494 case FIELD_LOC_KIND_PHYSNAME:
4495 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4496 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4497 i)));
4498 break;
4499 default:
4500 internal_error (__FILE__, __LINE__,
4501 _("Unexpected type field location kind: %d"),
4502 TYPE_FIELD_LOC_KIND (type, i));
4503 }
4504 }
4505 }
4506
4507 /* For range types, copy the bounds information. */
4508 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4509 {
4510 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4511 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4512 }
4513
4514 if (TYPE_DYN_PROP_LIST (type) != NULL)
4515 TYPE_DYN_PROP_LIST (new_type)
4516 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4517 TYPE_DYN_PROP_LIST (type));
4518
4519
4520 /* Copy pointers to other types. */
4521 if (TYPE_TARGET_TYPE (type))
4522 TYPE_TARGET_TYPE (new_type) =
4523 copy_type_recursive (objfile,
4524 TYPE_TARGET_TYPE (type),
4525 copied_types);
4526
4527 /* Maybe copy the type_specific bits.
4528
4529 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4530 base classes and methods. There's no fundamental reason why we
4531 can't, but at the moment it is not needed. */
4532
4533 switch (TYPE_SPECIFIC_FIELD (type))
4534 {
4535 case TYPE_SPECIFIC_NONE:
4536 break;
4537 case TYPE_SPECIFIC_FUNC:
4538 INIT_FUNC_SPECIFIC (new_type);
4539 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4540 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4541 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4542 break;
4543 case TYPE_SPECIFIC_FLOATFORMAT:
4544 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4545 break;
4546 case TYPE_SPECIFIC_CPLUS_STUFF:
4547 INIT_CPLUS_SPECIFIC (new_type);
4548 break;
4549 case TYPE_SPECIFIC_GNAT_STUFF:
4550 INIT_GNAT_SPECIFIC (new_type);
4551 break;
4552 case TYPE_SPECIFIC_SELF_TYPE:
4553 set_type_self_type (new_type,
4554 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4555 copied_types));
4556 break;
4557 default:
4558 gdb_assert_not_reached ("bad type_specific_kind");
4559 }
4560
4561 return new_type;
4562 }
4563
4564 /* Make a copy of the given TYPE, except that the pointer & reference
4565 types are not preserved.
4566
4567 This function assumes that the given type has an associated objfile.
4568 This objfile is used to allocate the new type. */
4569
4570 struct type *
4571 copy_type (const struct type *type)
4572 {
4573 struct type *new_type;
4574
4575 gdb_assert (TYPE_OBJFILE_OWNED (type));
4576
4577 new_type = alloc_type_copy (type);
4578 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4579 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4580 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4581 sizeof (struct main_type));
4582 if (TYPE_DYN_PROP_LIST (type) != NULL)
4583 TYPE_DYN_PROP_LIST (new_type)
4584 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4585 TYPE_DYN_PROP_LIST (type));
4586
4587 return new_type;
4588 }
4589 \f
4590 /* Helper functions to initialize architecture-specific types. */
4591
4592 /* Allocate a type structure associated with GDBARCH and set its
4593 CODE, LENGTH, and NAME fields. */
4594
4595 struct type *
4596 arch_type (struct gdbarch *gdbarch,
4597 enum type_code code, int length, char *name)
4598 {
4599 struct type *type;
4600
4601 type = alloc_type_arch (gdbarch);
4602 TYPE_CODE (type) = code;
4603 TYPE_LENGTH (type) = length;
4604
4605 if (name)
4606 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4607
4608 return type;
4609 }
4610
4611 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4612 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4613 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4614
4615 struct type *
4616 arch_integer_type (struct gdbarch *gdbarch,
4617 int bit, int unsigned_p, char *name)
4618 {
4619 struct type *t;
4620
4621 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4622 if (unsigned_p)
4623 TYPE_UNSIGNED (t) = 1;
4624 if (name && strcmp (name, "char") == 0)
4625 TYPE_NOSIGN (t) = 1;
4626
4627 return t;
4628 }
4629
4630 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4631 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4632 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4633
4634 struct type *
4635 arch_character_type (struct gdbarch *gdbarch,
4636 int bit, int unsigned_p, char *name)
4637 {
4638 struct type *t;
4639
4640 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4641 if (unsigned_p)
4642 TYPE_UNSIGNED (t) = 1;
4643
4644 return t;
4645 }
4646
4647 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4648 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4649 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4650
4651 struct type *
4652 arch_boolean_type (struct gdbarch *gdbarch,
4653 int bit, int unsigned_p, char *name)
4654 {
4655 struct type *t;
4656
4657 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4658 if (unsigned_p)
4659 TYPE_UNSIGNED (t) = 1;
4660
4661 return t;
4662 }
4663
4664 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4665 BIT is the type size in bits; if BIT equals -1, the size is
4666 determined by the floatformat. NAME is the type name. Set the
4667 TYPE_FLOATFORMAT from FLOATFORMATS. */
4668
4669 struct type *
4670 arch_float_type (struct gdbarch *gdbarch,
4671 int bit, char *name, const struct floatformat **floatformats)
4672 {
4673 struct type *t;
4674
4675 if (bit == -1)
4676 {
4677 gdb_assert (floatformats != NULL);
4678 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4679 bit = floatformats[0]->totalsize;
4680 }
4681 gdb_assert (bit >= 0);
4682
4683 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4684 TYPE_FLOATFORMAT (t) = floatformats;
4685 return t;
4686 }
4687
4688 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4689 NAME is the type name. TARGET_TYPE is the component float type. */
4690
4691 struct type *
4692 arch_complex_type (struct gdbarch *gdbarch,
4693 char *name, struct type *target_type)
4694 {
4695 struct type *t;
4696
4697 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4698 2 * TYPE_LENGTH (target_type), name);
4699 TYPE_TARGET_TYPE (t) = target_type;
4700 return t;
4701 }
4702
4703 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4704 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4705
4706 struct type *
4707 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4708 {
4709 int nfields = length * TARGET_CHAR_BIT;
4710 struct type *type;
4711
4712 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4713 TYPE_UNSIGNED (type) = 1;
4714 TYPE_NFIELDS (type) = nfields;
4715 TYPE_FIELDS (type)
4716 = (struct field *) TYPE_ZALLOC (type, nfields * sizeof (struct field));
4717
4718 return type;
4719 }
4720
4721 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4722 position BITPOS is called NAME. */
4723
4724 void
4725 append_flags_type_flag (struct type *type, int bitpos, char *name)
4726 {
4727 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4728 gdb_assert (bitpos < TYPE_NFIELDS (type));
4729 gdb_assert (bitpos >= 0);
4730
4731 if (name)
4732 {
4733 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4734 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4735 }
4736 else
4737 {
4738 /* Don't show this field to the user. */
4739 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4740 }
4741 }
4742
4743 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4744 specified by CODE) associated with GDBARCH. NAME is the type name. */
4745
4746 struct type *
4747 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4748 {
4749 struct type *t;
4750
4751 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4752 t = arch_type (gdbarch, code, 0, NULL);
4753 TYPE_TAG_NAME (t) = name;
4754 INIT_CPLUS_SPECIFIC (t);
4755 return t;
4756 }
4757
4758 /* Add new field with name NAME and type FIELD to composite type T.
4759 Do not set the field's position or adjust the type's length;
4760 the caller should do so. Return the new field. */
4761
4762 struct field *
4763 append_composite_type_field_raw (struct type *t, char *name,
4764 struct type *field)
4765 {
4766 struct field *f;
4767
4768 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4769 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4770 TYPE_NFIELDS (t));
4771 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4772 memset (f, 0, sizeof f[0]);
4773 FIELD_TYPE (f[0]) = field;
4774 FIELD_NAME (f[0]) = name;
4775 return f;
4776 }
4777
4778 /* Add new field with name NAME and type FIELD to composite type T.
4779 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4780
4781 void
4782 append_composite_type_field_aligned (struct type *t, char *name,
4783 struct type *field, int alignment)
4784 {
4785 struct field *f = append_composite_type_field_raw (t, name, field);
4786
4787 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4788 {
4789 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4790 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4791 }
4792 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4793 {
4794 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4795 if (TYPE_NFIELDS (t) > 1)
4796 {
4797 SET_FIELD_BITPOS (f[0],
4798 (FIELD_BITPOS (f[-1])
4799 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4800 * TARGET_CHAR_BIT)));
4801
4802 if (alignment)
4803 {
4804 int left;
4805
4806 alignment *= TARGET_CHAR_BIT;
4807 left = FIELD_BITPOS (f[0]) % alignment;
4808
4809 if (left)
4810 {
4811 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4812 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4813 }
4814 }
4815 }
4816 }
4817 }
4818
4819 /* Add new field with name NAME and type FIELD to composite type T. */
4820
4821 void
4822 append_composite_type_field (struct type *t, char *name,
4823 struct type *field)
4824 {
4825 append_composite_type_field_aligned (t, name, field, 0);
4826 }
4827
4828 static struct gdbarch_data *gdbtypes_data;
4829
4830 const struct builtin_type *
4831 builtin_type (struct gdbarch *gdbarch)
4832 {
4833 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
4834 }
4835
4836 static void *
4837 gdbtypes_post_init (struct gdbarch *gdbarch)
4838 {
4839 struct builtin_type *builtin_type
4840 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4841
4842 /* Basic types. */
4843 builtin_type->builtin_void
4844 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4845 builtin_type->builtin_char
4846 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4847 !gdbarch_char_signed (gdbarch), "char");
4848 builtin_type->builtin_signed_char
4849 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4850 0, "signed char");
4851 builtin_type->builtin_unsigned_char
4852 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4853 1, "unsigned char");
4854 builtin_type->builtin_short
4855 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4856 0, "short");
4857 builtin_type->builtin_unsigned_short
4858 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4859 1, "unsigned short");
4860 builtin_type->builtin_int
4861 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4862 0, "int");
4863 builtin_type->builtin_unsigned_int
4864 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4865 1, "unsigned int");
4866 builtin_type->builtin_long
4867 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4868 0, "long");
4869 builtin_type->builtin_unsigned_long
4870 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4871 1, "unsigned long");
4872 builtin_type->builtin_long_long
4873 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4874 0, "long long");
4875 builtin_type->builtin_unsigned_long_long
4876 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4877 1, "unsigned long long");
4878 builtin_type->builtin_float
4879 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4880 "float", gdbarch_float_format (gdbarch));
4881 builtin_type->builtin_double
4882 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4883 "double", gdbarch_double_format (gdbarch));
4884 builtin_type->builtin_long_double
4885 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4886 "long double", gdbarch_long_double_format (gdbarch));
4887 builtin_type->builtin_complex
4888 = arch_complex_type (gdbarch, "complex",
4889 builtin_type->builtin_float);
4890 builtin_type->builtin_double_complex
4891 = arch_complex_type (gdbarch, "double complex",
4892 builtin_type->builtin_double);
4893 builtin_type->builtin_string
4894 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4895 builtin_type->builtin_bool
4896 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4897
4898 /* The following three are about decimal floating point types, which
4899 are 32-bits, 64-bits and 128-bits respectively. */
4900 builtin_type->builtin_decfloat
4901 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4902 builtin_type->builtin_decdouble
4903 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4904 builtin_type->builtin_declong
4905 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4906
4907 /* "True" character types. */
4908 builtin_type->builtin_true_char
4909 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4910 builtin_type->builtin_true_unsigned_char
4911 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4912
4913 /* Fixed-size integer types. */
4914 builtin_type->builtin_int0
4915 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4916 builtin_type->builtin_int8
4917 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4918 builtin_type->builtin_uint8
4919 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4920 builtin_type->builtin_int16
4921 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4922 builtin_type->builtin_uint16
4923 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4924 builtin_type->builtin_int32
4925 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4926 builtin_type->builtin_uint32
4927 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4928 builtin_type->builtin_int64
4929 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4930 builtin_type->builtin_uint64
4931 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4932 builtin_type->builtin_int128
4933 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4934 builtin_type->builtin_uint128
4935 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4936 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4937 TYPE_INSTANCE_FLAG_NOTTEXT;
4938 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4939 TYPE_INSTANCE_FLAG_NOTTEXT;
4940
4941 /* Wide character types. */
4942 builtin_type->builtin_char16
4943 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4944 builtin_type->builtin_char32
4945 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4946
4947
4948 /* Default data/code pointer types. */
4949 builtin_type->builtin_data_ptr
4950 = lookup_pointer_type (builtin_type->builtin_void);
4951 builtin_type->builtin_func_ptr
4952 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4953 builtin_type->builtin_func_func
4954 = lookup_function_type (builtin_type->builtin_func_ptr);
4955
4956 /* This type represents a GDB internal function. */
4957 builtin_type->internal_fn
4958 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4959 "<internal function>");
4960
4961 /* This type represents an xmethod. */
4962 builtin_type->xmethod
4963 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4964
4965 return builtin_type;
4966 }
4967
4968 /* This set of objfile-based types is intended to be used by symbol
4969 readers as basic types. */
4970
4971 static const struct objfile_data *objfile_type_data;
4972
4973 const struct objfile_type *
4974 objfile_type (struct objfile *objfile)
4975 {
4976 struct gdbarch *gdbarch;
4977 struct objfile_type *objfile_type
4978 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
4979
4980 if (objfile_type)
4981 return objfile_type;
4982
4983 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4984 1, struct objfile_type);
4985
4986 /* Use the objfile architecture to determine basic type properties. */
4987 gdbarch = get_objfile_arch (objfile);
4988
4989 /* Basic types. */
4990 objfile_type->builtin_void
4991 = init_type (TYPE_CODE_VOID, 1,
4992 0,
4993 "void", objfile);
4994
4995 objfile_type->builtin_char
4996 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4997 (TYPE_FLAG_NOSIGN
4998 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4999 "char", objfile);
5000 objfile_type->builtin_signed_char
5001 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5002 0,
5003 "signed char", objfile);
5004 objfile_type->builtin_unsigned_char
5005 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5006 TYPE_FLAG_UNSIGNED,
5007 "unsigned char", objfile);
5008 objfile_type->builtin_short
5009 = init_type (TYPE_CODE_INT,
5010 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5011 0, "short", objfile);
5012 objfile_type->builtin_unsigned_short
5013 = init_type (TYPE_CODE_INT,
5014 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5015 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
5016 objfile_type->builtin_int
5017 = init_type (TYPE_CODE_INT,
5018 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5019 0, "int", objfile);
5020 objfile_type->builtin_unsigned_int
5021 = init_type (TYPE_CODE_INT,
5022 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5023 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
5024 objfile_type->builtin_long
5025 = init_type (TYPE_CODE_INT,
5026 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5027 0, "long", objfile);
5028 objfile_type->builtin_unsigned_long
5029 = init_type (TYPE_CODE_INT,
5030 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5031 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
5032 objfile_type->builtin_long_long
5033 = init_type (TYPE_CODE_INT,
5034 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5035 0, "long long", objfile);
5036 objfile_type->builtin_unsigned_long_long
5037 = init_type (TYPE_CODE_INT,
5038 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5039 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
5040
5041 objfile_type->builtin_float
5042 = init_type (TYPE_CODE_FLT,
5043 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
5044 0, "float", objfile);
5045 TYPE_FLOATFORMAT (objfile_type->builtin_float)
5046 = gdbarch_float_format (gdbarch);
5047 objfile_type->builtin_double
5048 = init_type (TYPE_CODE_FLT,
5049 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
5050 0, "double", objfile);
5051 TYPE_FLOATFORMAT (objfile_type->builtin_double)
5052 = gdbarch_double_format (gdbarch);
5053 objfile_type->builtin_long_double
5054 = init_type (TYPE_CODE_FLT,
5055 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5056 0, "long double", objfile);
5057 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5058 = gdbarch_long_double_format (gdbarch);
5059
5060 /* This type represents a type that was unrecognized in symbol read-in. */
5061 objfile_type->builtin_error
5062 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5063
5064 /* The following set of types is used for symbols with no
5065 debug information. */
5066 objfile_type->nodebug_text_symbol
5067 = init_type (TYPE_CODE_FUNC, 1, 0,
5068 "<text variable, no debug info>", objfile);
5069 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5070 = objfile_type->builtin_int;
5071 objfile_type->nodebug_text_gnu_ifunc_symbol
5072 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5073 "<text gnu-indirect-function variable, no debug info>",
5074 objfile);
5075 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5076 = objfile_type->nodebug_text_symbol;
5077 objfile_type->nodebug_got_plt_symbol
5078 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5079 "<text from jump slot in .got.plt, no debug info>",
5080 objfile);
5081 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5082 = objfile_type->nodebug_text_symbol;
5083 objfile_type->nodebug_data_symbol
5084 = init_type (TYPE_CODE_INT,
5085 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5086 "<data variable, no debug info>", objfile);
5087 objfile_type->nodebug_unknown_symbol
5088 = init_type (TYPE_CODE_INT, 1, 0,
5089 "<variable (not text or data), no debug info>", objfile);
5090 objfile_type->nodebug_tls_symbol
5091 = init_type (TYPE_CODE_INT,
5092 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5093 "<thread local variable, no debug info>", objfile);
5094
5095 /* NOTE: on some targets, addresses and pointers are not necessarily
5096 the same.
5097
5098 The upshot is:
5099 - gdb's `struct type' always describes the target's
5100 representation.
5101 - gdb's `struct value' objects should always hold values in
5102 target form.
5103 - gdb's CORE_ADDR values are addresses in the unified virtual
5104 address space that the assembler and linker work with. Thus,
5105 since target_read_memory takes a CORE_ADDR as an argument, it
5106 can access any memory on the target, even if the processor has
5107 separate code and data address spaces.
5108
5109 In this context, objfile_type->builtin_core_addr is a bit odd:
5110 it's a target type for a value the target will never see. It's
5111 only used to hold the values of (typeless) linker symbols, which
5112 are indeed in the unified virtual address space. */
5113
5114 objfile_type->builtin_core_addr
5115 = init_type (TYPE_CODE_INT,
5116 gdbarch_addr_bit (gdbarch) / 8,
5117 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5118
5119 set_objfile_data (objfile, objfile_type_data, objfile_type);
5120 return objfile_type;
5121 }
5122
5123 extern initialize_file_ftype _initialize_gdbtypes;
5124
5125 void
5126 _initialize_gdbtypes (void)
5127 {
5128 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5129 objfile_type_data = register_objfile_data ();
5130
5131 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5132 _("Set debugging of C++ overloading."),
5133 _("Show debugging of C++ overloading."),
5134 _("When enabled, ranking of the "
5135 "functions is displayed."),
5136 NULL,
5137 show_overload_debug,
5138 &setdebuglist, &showdebuglist);
5139
5140 /* Add user knob for controlling resolution of opaque types. */
5141 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5142 &opaque_type_resolution,
5143 _("Set resolution of opaque struct/class/union"
5144 " types (if set before loading symbols)."),
5145 _("Show resolution of opaque struct/class/union"
5146 " types (if set before loading symbols)."),
5147 NULL, NULL,
5148 show_opaque_type_resolution,
5149 &setlist, &showlist);
5150
5151 /* Add an option to permit non-strict type checking. */
5152 add_setshow_boolean_cmd ("type", class_support,
5153 &strict_type_checking,
5154 _("Set strict type checking."),
5155 _("Show strict type checking."),
5156 NULL, NULL,
5157 show_strict_type_checking,
5158 &setchecklist, &showchecklist);
5159 }