]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-regex.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / gnu-regex.c
1 /* *INDENT-OFF* */ /* keep in sync with glibc */
2 /* Extended regular expression matching and search library,
3 version 0.12.
4 (Implements POSIX draft P1003.2/D11.2, except for some of the
5 internationalization features.)
6 Copyright (C) 1993, 94, 95, 96, 97, 98 Free Software Foundation, Inc.
7
8 NOTE: The canonical source of this file is maintained with the
9 GNU C Library. Bugs can be reported to bug-glibc@prep.ai.mit.edu.
10
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2, or (at your option) any
14 later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software Foundation,
23 Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* AIX requires this to be the first thing in the file. */
27 #if defined _AIX && !defined REGEX_MALLOC
28 #pragma alloca
29 #endif
30
31 #undef _GNU_SOURCE
32 #define _GNU_SOURCE
33
34 #ifdef HAVE_CONFIG_H
35 # include <config.h>
36 #endif
37
38 #ifndef PARAMS
39 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
40 # define PARAMS(args) args
41 # else
42 # define PARAMS(args) ()
43 # endif /* GCC. */
44 #endif /* Not PARAMS. */
45
46 #if defined STDC_HEADERS && !defined emacs
47 # include <stddef.h>
48 #else
49 /* We need this for `gnu-regex.h', and perhaps for the Emacs include files. */
50 # include <sys/types.h>
51 #endif
52
53 /* For platform which support the ISO C amendement 1 functionality we
54 support user defined character classes. */
55 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
56 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
57 # include <wchar.h>
58 # include <wctype.h>
59 #endif
60
61 /* This is for other GNU distributions with internationalized messages. */
62 /* CYGNUS LOCAL: ../intl will handle this for us */
63 #ifdef ENABLE_NLS
64 # include <libintl.h>
65 #else
66 # define gettext(msgid) (msgid)
67 #endif
68
69 #ifndef gettext_noop
70 /* This define is so xgettext can find the internationalizable
71 strings. */
72 # define gettext_noop(String) String
73 #endif
74
75 /* The `emacs' switch turns on certain matching commands
76 that make sense only in Emacs. */
77 #ifdef emacs
78
79 # include "lisp.h"
80 # include "buffer.h"
81 # include "syntax.h"
82
83 #else /* not emacs */
84
85 /* If we are not linking with Emacs proper,
86 we can't use the relocating allocator
87 even if config.h says that we can. */
88 # undef REL_ALLOC
89
90 # if defined STDC_HEADERS || defined _LIBC
91 # include <stdlib.h>
92 # else
93 char *malloc ();
94 char *realloc ();
95 # endif
96
97 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
98 If nothing else has been done, use the method below. */
99 # ifdef INHIBIT_STRING_HEADER
100 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
101 # if !defined bzero && !defined bcopy
102 # undef INHIBIT_STRING_HEADER
103 # endif
104 # endif
105 # endif
106
107 /* This is the normal way of making sure we have a bcopy and a bzero.
108 This is used in most programs--a few other programs avoid this
109 by defining INHIBIT_STRING_HEADER. */
110 # ifndef INHIBIT_STRING_HEADER
111 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
112 # include <string.h>
113 # ifndef bzero
114 # ifndef _LIBC
115 # define bzero(s, n) (memset (s, '\0', n), (s))
116 # else
117 # define bzero(s, n) __bzero (s, n)
118 # endif
119 # endif
120 # else
121 # include <strings.h>
122 # ifndef memcmp
123 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
124 # endif
125 # ifndef memcpy
126 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
127 # endif
128 # endif
129 # endif
130
131 /* Define the syntax stuff for \<, \>, etc. */
132
133 /* This must be nonzero for the wordchar and notwordchar pattern
134 commands in re_match_2. */
135 # ifndef Sword
136 # define Sword 1
137 # endif
138
139 # ifdef SWITCH_ENUM_BUG
140 # define SWITCH_ENUM_CAST(x) ((int)(x))
141 # else
142 # define SWITCH_ENUM_CAST(x) (x)
143 # endif
144
145 /* How many characters in the character set. */
146 # define CHAR_SET_SIZE 256
147
148 /* GDB LOCAL: define _REGEX_RE_COMP to get BSD style re_comp and re_exec */
149 #ifndef _REGEX_RE_COMP
150 #define _REGEX_RE_COMP
151 #endif
152
153 # ifdef SYNTAX_TABLE
154
155 extern char *re_syntax_table;
156
157 # else /* not SYNTAX_TABLE */
158
159 static char re_syntax_table[CHAR_SET_SIZE];
160
161 static void
162 init_syntax_once ()
163 {
164 register int c;
165 static int done = 0;
166
167 if (done)
168 return;
169
170 bzero (re_syntax_table, sizeof re_syntax_table);
171
172 for (c = 'a'; c <= 'z'; c++)
173 re_syntax_table[c] = Sword;
174
175 for (c = 'A'; c <= 'Z'; c++)
176 re_syntax_table[c] = Sword;
177
178 for (c = '0'; c <= '9'; c++)
179 re_syntax_table[c] = Sword;
180
181 re_syntax_table['_'] = Sword;
182
183 done = 1;
184 }
185
186 # endif /* not SYNTAX_TABLE */
187
188 # define SYNTAX(c) re_syntax_table[c]
189
190 #endif /* not emacs */
191 \f
192 /* Get the interface, including the syntax bits. */
193 /* CYGNUS LOCAL: call it gnu-regex.h, not regex.h, to avoid name conflicts */
194 #include "gnu-regex.h"
195
196 /* isalpha etc. are used for the character classes. */
197 #include <ctype.h>
198
199 /* Jim Meyering writes:
200
201 "... Some ctype macros are valid only for character codes that
202 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
203 using /bin/cc or gcc but without giving an ansi option). So, all
204 ctype uses should be through macros like ISPRINT... If
205 STDC_HEADERS is defined, then autoconf has verified that the ctype
206 macros don't need to be guarded with references to isascii. ...
207 Defining isascii to 1 should let any compiler worth its salt
208 eliminate the && through constant folding."
209 Solaris defines some of these symbols so we must undefine them first. */
210
211 #undef ISASCII
212 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
213 # define ISASCII(c) 1
214 #else
215 # define ISASCII(c) isascii(c)
216 #endif
217
218 #ifdef isblank
219 # define ISBLANK(c) (ISASCII (c) && isblank (c))
220 #else
221 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
222 #endif
223 #ifdef isgraph
224 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
225 #else
226 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
227 #endif
228
229 #undef ISPRINT
230 #define ISPRINT(c) (ISASCII (c) && isprint (c))
231 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
232 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
233 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
234 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
235 #define ISLOWER(c) (ISASCII (c) && islower (c))
236 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
237 #define ISSPACE(c) (ISASCII (c) && isspace (c))
238 #define ISUPPER(c) (ISASCII (c) && isupper (c))
239 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
240
241 #ifndef NULL
242 # define NULL (void *)0
243 #endif
244
245 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
246 since ours (we hope) works properly with all combinations of
247 machines, compilers, `char' and `unsigned char' argument types.
248 (Per Bothner suggested the basic approach.) */
249 #undef SIGN_EXTEND_CHAR
250 #if __STDC__
251 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
252 #else /* not __STDC__ */
253 /* As in Harbison and Steele. */
254 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
255 #endif
256 \f
257 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
258 use `alloca' instead of `malloc'. This is because using malloc in
259 re_search* or re_match* could cause memory leaks when C-g is used in
260 Emacs; also, malloc is slower and causes storage fragmentation. On
261 the other hand, malloc is more portable, and easier to debug.
262
263 Because we sometimes use alloca, some routines have to be macros,
264 not functions -- `alloca'-allocated space disappears at the end of the
265 function it is called in. */
266
267 #ifdef REGEX_MALLOC
268
269 # define REGEX_ALLOCATE malloc
270 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
271 # define REGEX_FREE free
272
273 #else /* not REGEX_MALLOC */
274
275 /* Emacs already defines alloca, sometimes. */
276 # ifndef alloca
277
278 /* Make alloca work the best possible way. */
279 # ifdef __GNUC__
280 # define alloca __builtin_alloca
281 # else /* not __GNUC__ */
282 # if HAVE_ALLOCA_H
283 # include <alloca.h>
284 # endif /* HAVE_ALLOCA_H */
285 # endif /* not __GNUC__ */
286
287 # endif /* not alloca */
288
289 # define REGEX_ALLOCATE alloca
290
291 /* Assumes a `char *destination' variable. */
292 # define REGEX_REALLOCATE(source, osize, nsize) \
293 (destination = (char *) alloca (nsize), \
294 memcpy (destination, source, osize))
295
296 /* No need to do anything to free, after alloca. */
297 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
298
299 #endif /* not REGEX_MALLOC */
300
301 /* Define how to allocate the failure stack. */
302
303 #if defined REL_ALLOC && defined REGEX_MALLOC
304
305 # define REGEX_ALLOCATE_STACK(size) \
306 r_alloc (&failure_stack_ptr, (size))
307 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
308 r_re_alloc (&failure_stack_ptr, (nsize))
309 # define REGEX_FREE_STACK(ptr) \
310 r_alloc_free (&failure_stack_ptr)
311
312 #else /* not using relocating allocator */
313
314 # ifdef REGEX_MALLOC
315
316 # define REGEX_ALLOCATE_STACK malloc
317 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
318 # define REGEX_FREE_STACK free
319
320 # else /* not REGEX_MALLOC */
321
322 # define REGEX_ALLOCATE_STACK alloca
323
324 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
325 REGEX_REALLOCATE (source, osize, nsize)
326 /* No need to explicitly free anything. */
327 # define REGEX_FREE_STACK(arg)
328
329 # endif /* not REGEX_MALLOC */
330 #endif /* not using relocating allocator */
331
332
333 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
334 `string1' or just past its end. This works if PTR is NULL, which is
335 a good thing. */
336 #define FIRST_STRING_P(ptr) \
337 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
338
339 /* (Re)Allocate N items of type T using malloc, or fail. */
340 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
341 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
342 #define RETALLOC_IF(addr, n, t) \
343 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
344 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
345
346 #define BYTEWIDTH 8 /* In bits. */
347
348 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
349
350 #undef MAX
351 #undef MIN
352 #define MAX(a, b) ((a) > (b) ? (a) : (b))
353 #define MIN(a, b) ((a) < (b) ? (a) : (b))
354
355 typedef char boolean;
356 #define false 0
357 #define true 1
358
359 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
360 const char *string1, int size1,
361 const char *string2, int size2,
362 int pos,
363 struct re_registers *regs,
364 int stop));
365 \f
366 /* These are the command codes that appear in compiled regular
367 expressions. Some opcodes are followed by argument bytes. A
368 command code can specify any interpretation whatsoever for its
369 arguments. Zero bytes may appear in the compiled regular expression. */
370
371 typedef enum
372 {
373 no_op = 0,
374
375 /* Succeed right away--no more backtracking. */
376 succeed,
377
378 /* Followed by one byte giving n, then by n literal bytes. */
379 exactn,
380
381 /* Matches any (more or less) character. */
382 anychar,
383
384 /* Matches any one char belonging to specified set. First
385 following byte is number of bitmap bytes. Then come bytes
386 for a bitmap saying which chars are in. Bits in each byte
387 are ordered low-bit-first. A character is in the set if its
388 bit is 1. A character too large to have a bit in the map is
389 automatically not in the set. */
390 charset,
391
392 /* Same parameters as charset, but match any character that is
393 not one of those specified. */
394 charset_not,
395
396 /* Start remembering the text that is matched, for storing in a
397 register. Followed by one byte with the register number, in
398 the range 0 to one less than the pattern buffer's re_nsub
399 field. Then followed by one byte with the number of groups
400 inner to this one. (This last has to be part of the
401 start_memory only because we need it in the on_failure_jump
402 of re_match_2.) */
403 start_memory,
404
405 /* Stop remembering the text that is matched and store it in a
406 memory register. Followed by one byte with the register
407 number, in the range 0 to one less than `re_nsub' in the
408 pattern buffer, and one byte with the number of inner groups,
409 just like `start_memory'. (We need the number of inner
410 groups here because we don't have any easy way of finding the
411 corresponding start_memory when we're at a stop_memory.) */
412 stop_memory,
413
414 /* Match a duplicate of something remembered. Followed by one
415 byte containing the register number. */
416 duplicate,
417
418 /* Fail unless at beginning of line. */
419 begline,
420
421 /* Fail unless at end of line. */
422 endline,
423
424 /* Succeeds if at beginning of buffer (if emacs) or at beginning
425 of string to be matched (if not). */
426 begbuf,
427
428 /* Analogously, for end of buffer/string. */
429 endbuf,
430
431 /* Followed by two byte relative address to which to jump. */
432 jump,
433
434 /* Same as jump, but marks the end of an alternative. */
435 jump_past_alt,
436
437 /* Followed by two-byte relative address of place to resume at
438 in case of failure. */
439 on_failure_jump,
440
441 /* Like on_failure_jump, but pushes a placeholder instead of the
442 current string position when executed. */
443 on_failure_keep_string_jump,
444
445 /* Throw away latest failure point and then jump to following
446 two-byte relative address. */
447 pop_failure_jump,
448
449 /* Change to pop_failure_jump if know won't have to backtrack to
450 match; otherwise change to jump. This is used to jump
451 back to the beginning of a repeat. If what follows this jump
452 clearly won't match what the repeat does, such that we can be
453 sure that there is no use backtracking out of repetitions
454 already matched, then we change it to a pop_failure_jump.
455 Followed by two-byte address. */
456 maybe_pop_jump,
457
458 /* Jump to following two-byte address, and push a dummy failure
459 point. This failure point will be thrown away if an attempt
460 is made to use it for a failure. A `+' construct makes this
461 before the first repeat. Also used as an intermediary kind
462 of jump when compiling an alternative. */
463 dummy_failure_jump,
464
465 /* Push a dummy failure point and continue. Used at the end of
466 alternatives. */
467 push_dummy_failure,
468
469 /* Followed by two-byte relative address and two-byte number n.
470 After matching N times, jump to the address upon failure. */
471 succeed_n,
472
473 /* Followed by two-byte relative address, and two-byte number n.
474 Jump to the address N times, then fail. */
475 jump_n,
476
477 /* Set the following two-byte relative address to the
478 subsequent two-byte number. The address *includes* the two
479 bytes of number. */
480 set_number_at,
481
482 wordchar, /* Matches any word-constituent character. */
483 notwordchar, /* Matches any char that is not a word-constituent. */
484
485 wordbeg, /* Succeeds if at word beginning. */
486 wordend, /* Succeeds if at word end. */
487
488 wordbound, /* Succeeds if at a word boundary. */
489 notwordbound /* Succeeds if not at a word boundary. */
490
491 #ifdef emacs
492 ,before_dot, /* Succeeds if before point. */
493 at_dot, /* Succeeds if at point. */
494 after_dot, /* Succeeds if after point. */
495
496 /* Matches any character whose syntax is specified. Followed by
497 a byte which contains a syntax code, e.g., Sword. */
498 syntaxspec,
499
500 /* Matches any character whose syntax is not that specified. */
501 notsyntaxspec
502 #endif /* emacs */
503 } re_opcode_t;
504 \f
505 /* Common operations on the compiled pattern. */
506
507 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
508
509 #define STORE_NUMBER(destination, number) \
510 do { \
511 (destination)[0] = (number) & 0377; \
512 (destination)[1] = (number) >> 8; \
513 } while (0)
514
515 /* Same as STORE_NUMBER, except increment DESTINATION to
516 the byte after where the number is stored. Therefore, DESTINATION
517 must be an lvalue. */
518
519 #define STORE_NUMBER_AND_INCR(destination, number) \
520 do { \
521 STORE_NUMBER (destination, number); \
522 (destination) += 2; \
523 } while (0)
524
525 /* Put into DESTINATION a number stored in two contiguous bytes starting
526 at SOURCE. */
527
528 #define EXTRACT_NUMBER(destination, source) \
529 do { \
530 (destination) = *(source) & 0377; \
531 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
532 } while (0)
533
534 #ifdef DEBUG
535 static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
536 static void
537 extract_number (dest, source)
538 int *dest;
539 unsigned char *source;
540 {
541 int temp = SIGN_EXTEND_CHAR (*(source + 1));
542 *dest = *source & 0377;
543 *dest += temp << 8;
544 }
545
546 # ifndef EXTRACT_MACROS /* To debug the macros. */
547 # undef EXTRACT_NUMBER
548 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
549 # endif /* not EXTRACT_MACROS */
550
551 #endif /* DEBUG */
552
553 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
554 SOURCE must be an lvalue. */
555
556 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
557 do { \
558 EXTRACT_NUMBER (destination, source); \
559 (source) += 2; \
560 } while (0)
561
562 #ifdef DEBUG
563 static void extract_number_and_incr _RE_ARGS ((int *destination,
564 unsigned char **source));
565 static void
566 extract_number_and_incr (destination, source)
567 int *destination;
568 unsigned char **source;
569 {
570 extract_number (destination, *source);
571 *source += 2;
572 }
573
574 # ifndef EXTRACT_MACROS
575 # undef EXTRACT_NUMBER_AND_INCR
576 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
577 extract_number_and_incr (&dest, &src)
578 # endif /* not EXTRACT_MACROS */
579
580 #endif /* DEBUG */
581 \f
582 /* If DEBUG is defined, Regex prints many voluminous messages about what
583 it is doing (if the variable `debug' is nonzero). If linked with the
584 main program in `iregex.c', you can enter patterns and strings
585 interactively. And if linked with the main program in `main.c' and
586 the other test files, you can run the already-written tests. */
587
588 #ifdef DEBUG
589
590 /* We use standard I/O for debugging. */
591 # include <stdio.h>
592
593 /* It is useful to test things that ``must'' be true when debugging. */
594 # include <assert.h>
595
596 static int debug = 0;
597
598 # define DEBUG_STATEMENT(e) e
599 # define DEBUG_PRINT1(x) if (debug) printf (x)
600 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
601 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
602 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
603 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
604 if (debug) print_partial_compiled_pattern (s, e)
605 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
606 if (debug) print_double_string (w, s1, sz1, s2, sz2)
607
608
609 /* Print the fastmap in human-readable form. */
610
611 void
612 print_fastmap (fastmap)
613 char *fastmap;
614 {
615 unsigned was_a_range = 0;
616 unsigned i = 0;
617
618 while (i < (1 << BYTEWIDTH))
619 {
620 if (fastmap[i++])
621 {
622 was_a_range = 0;
623 putchar (i - 1);
624 while (i < (1 << BYTEWIDTH) && fastmap[i])
625 {
626 was_a_range = 1;
627 i++;
628 }
629 if (was_a_range)
630 {
631 printf ("-");
632 putchar (i - 1);
633 }
634 }
635 }
636 putchar ('\n');
637 }
638
639
640 /* Print a compiled pattern string in human-readable form, starting at
641 the START pointer into it and ending just before the pointer END. */
642
643 void
644 print_partial_compiled_pattern (start, end)
645 unsigned char *start;
646 unsigned char *end;
647 {
648 int mcnt, mcnt2;
649 unsigned char *p1;
650 unsigned char *p = start;
651 unsigned char *pend = end;
652
653 if (start == NULL)
654 {
655 printf ("(null)\n");
656 return;
657 }
658
659 /* Loop over pattern commands. */
660 while (p < pend)
661 {
662 printf ("%d:\t", p - start);
663
664 switch ((re_opcode_t) *p++)
665 {
666 case no_op:
667 printf ("/no_op");
668 break;
669
670 case exactn:
671 mcnt = *p++;
672 printf ("/exactn/%d", mcnt);
673 do
674 {
675 putchar ('/');
676 putchar (*p++);
677 }
678 while (--mcnt);
679 break;
680
681 case start_memory:
682 mcnt = *p++;
683 printf ("/start_memory/%d/%d", mcnt, *p++);
684 break;
685
686 case stop_memory:
687 mcnt = *p++;
688 printf ("/stop_memory/%d/%d", mcnt, *p++);
689 break;
690
691 case duplicate:
692 printf ("/duplicate/%d", *p++);
693 break;
694
695 case anychar:
696 printf ("/anychar");
697 break;
698
699 case charset:
700 case charset_not:
701 {
702 register int c, last = -100;
703 register int in_range = 0;
704
705 printf ("/charset [%s",
706 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
707
708 assert (p + *p < pend);
709
710 for (c = 0; c < 256; c++)
711 if (c / 8 < *p
712 && (p[1 + (c/8)] & (1 << (c % 8))))
713 {
714 /* Are we starting a range? */
715 if (last + 1 == c && ! in_range)
716 {
717 putchar ('-');
718 in_range = 1;
719 }
720 /* Have we broken a range? */
721 else if (last + 1 != c && in_range)
722 {
723 putchar (last);
724 in_range = 0;
725 }
726
727 if (! in_range)
728 putchar (c);
729
730 last = c;
731 }
732
733 if (in_range)
734 putchar (last);
735
736 putchar (']');
737
738 p += 1 + *p;
739 }
740 break;
741
742 case begline:
743 printf ("/begline");
744 break;
745
746 case endline:
747 printf ("/endline");
748 break;
749
750 case on_failure_jump:
751 extract_number_and_incr (&mcnt, &p);
752 printf ("/on_failure_jump to %d", p + mcnt - start);
753 break;
754
755 case on_failure_keep_string_jump:
756 extract_number_and_incr (&mcnt, &p);
757 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
758 break;
759
760 case dummy_failure_jump:
761 extract_number_and_incr (&mcnt, &p);
762 printf ("/dummy_failure_jump to %d", p + mcnt - start);
763 break;
764
765 case push_dummy_failure:
766 printf ("/push_dummy_failure");
767 break;
768
769 case maybe_pop_jump:
770 extract_number_and_incr (&mcnt, &p);
771 printf ("/maybe_pop_jump to %d", p + mcnt - start);
772 break;
773
774 case pop_failure_jump:
775 extract_number_and_incr (&mcnt, &p);
776 printf ("/pop_failure_jump to %d", p + mcnt - start);
777 break;
778
779 case jump_past_alt:
780 extract_number_and_incr (&mcnt, &p);
781 printf ("/jump_past_alt to %d", p + mcnt - start);
782 break;
783
784 case jump:
785 extract_number_and_incr (&mcnt, &p);
786 printf ("/jump to %d", p + mcnt - start);
787 break;
788
789 case succeed_n:
790 extract_number_and_incr (&mcnt, &p);
791 p1 = p + mcnt;
792 extract_number_and_incr (&mcnt2, &p);
793 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
794 break;
795
796 case jump_n:
797 extract_number_and_incr (&mcnt, &p);
798 p1 = p + mcnt;
799 extract_number_and_incr (&mcnt2, &p);
800 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
801 break;
802
803 case set_number_at:
804 extract_number_and_incr (&mcnt, &p);
805 p1 = p + mcnt;
806 extract_number_and_incr (&mcnt2, &p);
807 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
808 break;
809
810 case wordbound:
811 printf ("/wordbound");
812 break;
813
814 case notwordbound:
815 printf ("/notwordbound");
816 break;
817
818 case wordbeg:
819 printf ("/wordbeg");
820 break;
821
822 case wordend:
823 printf ("/wordend");
824
825 # ifdef emacs
826 case before_dot:
827 printf ("/before_dot");
828 break;
829
830 case at_dot:
831 printf ("/at_dot");
832 break;
833
834 case after_dot:
835 printf ("/after_dot");
836 break;
837
838 case syntaxspec:
839 printf ("/syntaxspec");
840 mcnt = *p++;
841 printf ("/%d", mcnt);
842 break;
843
844 case notsyntaxspec:
845 printf ("/notsyntaxspec");
846 mcnt = *p++;
847 printf ("/%d", mcnt);
848 break;
849 # endif /* emacs */
850
851 case wordchar:
852 printf ("/wordchar");
853 break;
854
855 case notwordchar:
856 printf ("/notwordchar");
857 break;
858
859 case begbuf:
860 printf ("/begbuf");
861 break;
862
863 case endbuf:
864 printf ("/endbuf");
865 break;
866
867 default:
868 printf ("?%d", *(p-1));
869 }
870
871 putchar ('\n');
872 }
873
874 printf ("%d:\tend of pattern.\n", p - start);
875 }
876
877
878 void
879 print_compiled_pattern (bufp)
880 struct re_pattern_buffer *bufp;
881 {
882 unsigned char *buffer = bufp->buffer;
883
884 print_partial_compiled_pattern (buffer, buffer + bufp->used);
885 printf ("%ld bytes used/%ld bytes allocated.\n",
886 bufp->used, bufp->allocated);
887
888 if (bufp->fastmap_accurate && bufp->fastmap)
889 {
890 printf ("fastmap: ");
891 print_fastmap (bufp->fastmap);
892 }
893
894 printf ("re_nsub: %d\t", bufp->re_nsub);
895 printf ("regs_alloc: %d\t", bufp->regs_allocated);
896 printf ("can_be_null: %d\t", bufp->can_be_null);
897 printf ("newline_anchor: %d\n", bufp->newline_anchor);
898 printf ("no_sub: %d\t", bufp->no_sub);
899 printf ("not_bol: %d\t", bufp->not_bol);
900 printf ("not_eol: %d\t", bufp->not_eol);
901 printf ("syntax: %lx\n", bufp->syntax);
902 /* Perhaps we should print the translate table? */
903 }
904
905
906 void
907 print_double_string (where, string1, size1, string2, size2)
908 const char *where;
909 const char *string1;
910 const char *string2;
911 int size1;
912 int size2;
913 {
914 int this_char;
915
916 if (where == NULL)
917 printf ("(null)");
918 else
919 {
920 if (FIRST_STRING_P (where))
921 {
922 for (this_char = where - string1; this_char < size1; this_char++)
923 putchar (string1[this_char]);
924
925 where = string2;
926 }
927
928 for (this_char = where - string2; this_char < size2; this_char++)
929 putchar (string2[this_char]);
930 }
931 }
932
933 void
934 printchar (c)
935 int c;
936 {
937 putc (c, stderr);
938 }
939
940 #else /* not DEBUG */
941
942 # undef assert
943 # define assert(e)
944
945 # define DEBUG_STATEMENT(e)
946 # define DEBUG_PRINT1(x)
947 # define DEBUG_PRINT2(x1, x2)
948 # define DEBUG_PRINT3(x1, x2, x3)
949 # define DEBUG_PRINT4(x1, x2, x3, x4)
950 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
951 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
952
953 #endif /* not DEBUG */
954 \f
955 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
956 also be assigned to arbitrarily: each pattern buffer stores its own
957 syntax, so it can be changed between regex compilations. */
958 /* This has no initializer because initialized variables in Emacs
959 become read-only after dumping. */
960 reg_syntax_t re_syntax_options;
961
962
963 /* Specify the precise syntax of regexps for compilation. This provides
964 for compatibility for various utilities which historically have
965 different, incompatible syntaxes.
966
967 The argument SYNTAX is a bit mask comprised of the various bits
968 defined in gnu-regex.h. We return the old syntax. */
969
970 reg_syntax_t
971 re_set_syntax (syntax)
972 reg_syntax_t syntax;
973 {
974 reg_syntax_t ret = re_syntax_options;
975
976 re_syntax_options = syntax;
977 #ifdef DEBUG
978 if (syntax & RE_DEBUG)
979 debug = 1;
980 else if (debug) /* was on but now is not */
981 debug = 0;
982 #endif /* DEBUG */
983 return ret;
984 }
985 #ifdef _LIBC
986 weak_alias (__re_set_syntax, re_set_syntax)
987 #endif
988 \f
989 /* This table gives an error message for each of the error codes listed
990 in gnu-regex.h. Obviously the order here has to be same as there.
991 POSIX doesn't require that we do anything for REG_NOERROR,
992 but why not be nice? */
993
994 static const char *re_error_msgid[] =
995 {
996 gettext_noop ("Success"), /* REG_NOERROR */
997 gettext_noop ("No match"), /* REG_NOMATCH */
998 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
999 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1000 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1001 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1002 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1003 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1004 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1005 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1006 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1007 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1008 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1009 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1010 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1011 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1012 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1013 };
1014 \f
1015 /* Avoiding alloca during matching, to placate r_alloc. */
1016
1017 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1018 searching and matching functions should not call alloca. On some
1019 systems, alloca is implemented in terms of malloc, and if we're
1020 using the relocating allocator routines, then malloc could cause a
1021 relocation, which might (if the strings being searched are in the
1022 ralloc heap) shift the data out from underneath the regexp
1023 routines.
1024
1025 Here's another reason to avoid allocation: Emacs
1026 processes input from X in a signal handler; processing X input may
1027 call malloc; if input arrives while a matching routine is calling
1028 malloc, then we're scrod. But Emacs can't just block input while
1029 calling matching routines; then we don't notice interrupts when
1030 they come in. So, Emacs blocks input around all regexp calls
1031 except the matching calls, which it leaves unprotected, in the
1032 faith that they will not malloc. */
1033
1034 /* Normally, this is fine. */
1035 #define MATCH_MAY_ALLOCATE
1036
1037 /* When using GNU C, we are not REALLY using the C alloca, no matter
1038 what config.h may say. So don't take precautions for it. */
1039 #ifdef __GNUC__
1040 # undef C_ALLOCA
1041 #endif
1042
1043 /* The match routines may not allocate if (1) they would do it with malloc
1044 and (2) it's not safe for them to use malloc.
1045 Note that if REL_ALLOC is defined, matching would not use malloc for the
1046 failure stack, but we would still use it for the register vectors;
1047 so REL_ALLOC should not affect this. */
1048 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1049 # undef MATCH_MAY_ALLOCATE
1050 #endif
1051
1052 \f
1053 /* Failure stack declarations and macros; both re_compile_fastmap and
1054 re_match_2 use a failure stack. These have to be macros because of
1055 REGEX_ALLOCATE_STACK. */
1056
1057
1058 /* Number of failure points for which to initially allocate space
1059 when matching. If this number is exceeded, we allocate more
1060 space, so it is not a hard limit. */
1061 #ifndef INIT_FAILURE_ALLOC
1062 # define INIT_FAILURE_ALLOC 5
1063 #endif
1064
1065 /* Roughly the maximum number of failure points on the stack. Would be
1066 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1067 This is a variable only so users of regex can assign to it; we never
1068 change it ourselves. */
1069
1070 #ifdef INT_IS_16BIT
1071
1072 # if defined MATCH_MAY_ALLOCATE
1073 /* 4400 was enough to cause a crash on Alpha OSF/1,
1074 whose default stack limit is 2mb. */
1075 long int re_max_failures = 4000;
1076 # else
1077 long int re_max_failures = 2000;
1078 # endif
1079
1080 union fail_stack_elt
1081 {
1082 unsigned char *pointer;
1083 long int integer;
1084 };
1085
1086 typedef union fail_stack_elt fail_stack_elt_t;
1087
1088 typedef struct
1089 {
1090 fail_stack_elt_t *stack;
1091 unsigned long int size;
1092 unsigned long int avail; /* Offset of next open position. */
1093 } fail_stack_type;
1094
1095 #else /* not INT_IS_16BIT */
1096
1097 # if defined MATCH_MAY_ALLOCATE
1098 /* 4400 was enough to cause a crash on Alpha OSF/1,
1099 whose default stack limit is 2mb. */
1100 int re_max_failures = 20000;
1101 # else
1102 int re_max_failures = 2000;
1103 # endif
1104
1105 union fail_stack_elt
1106 {
1107 unsigned char *pointer;
1108 int integer;
1109 };
1110
1111 typedef union fail_stack_elt fail_stack_elt_t;
1112
1113 typedef struct
1114 {
1115 fail_stack_elt_t *stack;
1116 unsigned size;
1117 unsigned avail; /* Offset of next open position. */
1118 } fail_stack_type;
1119
1120 #endif /* INT_IS_16BIT */
1121
1122 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1123 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1124 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1125
1126
1127 /* Define macros to initialize and free the failure stack.
1128 Do `return -2' if the alloc fails. */
1129
1130 #ifdef MATCH_MAY_ALLOCATE
1131 # define INIT_FAIL_STACK() \
1132 do { \
1133 fail_stack.stack = (fail_stack_elt_t *) \
1134 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1135 \
1136 if (fail_stack.stack == NULL) \
1137 return -2; \
1138 \
1139 fail_stack.size = INIT_FAILURE_ALLOC; \
1140 fail_stack.avail = 0; \
1141 } while (0)
1142
1143 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1144 #else
1145 # define INIT_FAIL_STACK() \
1146 do { \
1147 fail_stack.avail = 0; \
1148 } while (0)
1149
1150 # define RESET_FAIL_STACK()
1151 #endif
1152
1153
1154 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1155
1156 Return 1 if succeeds, and 0 if either ran out of memory
1157 allocating space for it or it was already too large.
1158
1159 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1160
1161 #define DOUBLE_FAIL_STACK(fail_stack) \
1162 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1163 ? 0 \
1164 : ((fail_stack).stack = (fail_stack_elt_t *) \
1165 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1166 (fail_stack).size * sizeof (fail_stack_elt_t), \
1167 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1168 \
1169 (fail_stack).stack == NULL \
1170 ? 0 \
1171 : ((fail_stack).size <<= 1, \
1172 1)))
1173
1174
1175 /* Push pointer POINTER on FAIL_STACK.
1176 Return 1 if was able to do so and 0 if ran out of memory allocating
1177 space to do so. */
1178 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1179 ((FAIL_STACK_FULL () \
1180 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1181 ? 0 \
1182 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1183 1))
1184
1185 /* Push a pointer value onto the failure stack.
1186 Assumes the variable `fail_stack'. Probably should only
1187 be called from within `PUSH_FAILURE_POINT'. */
1188 #define PUSH_FAILURE_POINTER(item) \
1189 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1190
1191 /* This pushes an integer-valued item onto the failure stack.
1192 Assumes the variable `fail_stack'. Probably should only
1193 be called from within `PUSH_FAILURE_POINT'. */
1194 #define PUSH_FAILURE_INT(item) \
1195 fail_stack.stack[fail_stack.avail++].integer = (item)
1196
1197 /* Push a fail_stack_elt_t value onto the failure stack.
1198 Assumes the variable `fail_stack'. Probably should only
1199 be called from within `PUSH_FAILURE_POINT'. */
1200 #define PUSH_FAILURE_ELT(item) \
1201 fail_stack.stack[fail_stack.avail++] = (item)
1202
1203 /* These three POP... operations complement the three PUSH... operations.
1204 All assume that `fail_stack' is nonempty. */
1205 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1206 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1207 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1208
1209 /* Used to omit pushing failure point id's when we're not debugging. */
1210 #ifdef DEBUG
1211 # define DEBUG_PUSH PUSH_FAILURE_INT
1212 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1213 #else
1214 # define DEBUG_PUSH(item)
1215 # define DEBUG_POP(item_addr)
1216 #endif
1217
1218
1219 /* Push the information about the state we will need
1220 if we ever fail back to it.
1221
1222 Requires variables fail_stack, regstart, regend, reg_info, and
1223 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1224 be declared.
1225
1226 Does `return FAILURE_CODE' if runs out of memory. */
1227
1228 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1229 do { \
1230 char *destination; \
1231 /* Must be int, so when we don't save any registers, the arithmetic \
1232 of 0 + -1 isn't done as unsigned. */ \
1233 /* Can't be int, since there is not a shred of a guarantee that int \
1234 is wide enough to hold a value of something to which pointer can \
1235 be assigned */ \
1236 active_reg_t this_reg; \
1237 \
1238 DEBUG_STATEMENT (failure_id++); \
1239 DEBUG_STATEMENT (nfailure_points_pushed++); \
1240 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1241 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1242 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1243 \
1244 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1245 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1246 \
1247 /* Ensure we have enough space allocated for what we will push. */ \
1248 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1249 { \
1250 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1251 return failure_code; \
1252 \
1253 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1254 (fail_stack).size); \
1255 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1256 } \
1257 \
1258 /* Push the info, starting with the registers. */ \
1259 DEBUG_PRINT1 ("\n"); \
1260 \
1261 if (1) \
1262 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1263 this_reg++) \
1264 { \
1265 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1266 DEBUG_STATEMENT (num_regs_pushed++); \
1267 \
1268 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1269 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1270 \
1271 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1272 PUSH_FAILURE_POINTER (regend[this_reg]); \
1273 \
1274 DEBUG_PRINT2 (" info: %p\n ", \
1275 reg_info[this_reg].word.pointer); \
1276 DEBUG_PRINT2 (" match_null=%d", \
1277 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1278 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1279 DEBUG_PRINT2 (" matched_something=%d", \
1280 MATCHED_SOMETHING (reg_info[this_reg])); \
1281 DEBUG_PRINT2 (" ever_matched=%d", \
1282 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1283 DEBUG_PRINT1 ("\n"); \
1284 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1285 } \
1286 \
1287 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1288 PUSH_FAILURE_INT (lowest_active_reg); \
1289 \
1290 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1291 PUSH_FAILURE_INT (highest_active_reg); \
1292 \
1293 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1294 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1295 PUSH_FAILURE_POINTER (pattern_place); \
1296 \
1297 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1298 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1299 size2); \
1300 DEBUG_PRINT1 ("'\n"); \
1301 PUSH_FAILURE_POINTER (string_place); \
1302 \
1303 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1304 DEBUG_PUSH (failure_id); \
1305 } while (0)
1306
1307 /* This is the number of items that are pushed and popped on the stack
1308 for each register. */
1309 #define NUM_REG_ITEMS 3
1310
1311 /* Individual items aside from the registers. */
1312 #ifdef DEBUG
1313 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1314 #else
1315 # define NUM_NONREG_ITEMS 4
1316 #endif
1317
1318 /* We push at most this many items on the stack. */
1319 /* We used to use (num_regs - 1), which is the number of registers
1320 this regexp will save; but that was changed to 5
1321 to avoid stack overflow for a regexp with lots of parens. */
1322 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1323
1324 /* We actually push this many items. */
1325 #define NUM_FAILURE_ITEMS \
1326 (((0 \
1327 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1328 * NUM_REG_ITEMS) \
1329 + NUM_NONREG_ITEMS)
1330
1331 /* How many items can still be added to the stack without overflowing it. */
1332 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1333
1334
1335 /* Pops what PUSH_FAIL_STACK pushes.
1336
1337 We restore into the parameters, all of which should be lvalues:
1338 STR -- the saved data position.
1339 PAT -- the saved pattern position.
1340 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1341 REGSTART, REGEND -- arrays of string positions.
1342 REG_INFO -- array of information about each subexpression.
1343
1344 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1345 `pend', `string1', `size1', `string2', and `size2'. */
1346
1347 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1348 { \
1349 DEBUG_STATEMENT (unsigned failure_id;) \
1350 active_reg_t this_reg; \
1351 const unsigned char *string_temp; \
1352 \
1353 assert (!FAIL_STACK_EMPTY ()); \
1354 \
1355 /* Remove failure points and point to how many regs pushed. */ \
1356 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1357 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1358 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1359 \
1360 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1361 \
1362 DEBUG_POP (&failure_id); \
1363 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1364 \
1365 /* If the saved string location is NULL, it came from an \
1366 on_failure_keep_string_jump opcode, and we want to throw away the \
1367 saved NULL, thus retaining our current position in the string. */ \
1368 string_temp = POP_FAILURE_POINTER (); \
1369 if (string_temp != NULL) \
1370 str = (const char *) string_temp; \
1371 \
1372 DEBUG_PRINT2 (" Popping string %p: `", str); \
1373 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1374 DEBUG_PRINT1 ("'\n"); \
1375 \
1376 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1377 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1378 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1379 \
1380 /* Restore register info. */ \
1381 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1382 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1383 \
1384 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1385 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1386 \
1387 if (1) \
1388 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1389 { \
1390 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1391 \
1392 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1393 DEBUG_PRINT2 (" info: %p\n", \
1394 reg_info[this_reg].word.pointer); \
1395 \
1396 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1397 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1398 \
1399 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1400 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1401 } \
1402 else \
1403 { \
1404 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1405 { \
1406 reg_info[this_reg].word.integer = 0; \
1407 regend[this_reg] = 0; \
1408 regstart[this_reg] = 0; \
1409 } \
1410 highest_active_reg = high_reg; \
1411 } \
1412 \
1413 set_regs_matched_done = 0; \
1414 DEBUG_STATEMENT (nfailure_points_popped++); \
1415 } /* POP_FAILURE_POINT */
1416
1417
1418 \f
1419 /* Structure for per-register (a.k.a. per-group) information.
1420 Other register information, such as the
1421 starting and ending positions (which are addresses), and the list of
1422 inner groups (which is a bits list) are maintained in separate
1423 variables.
1424
1425 We are making a (strictly speaking) nonportable assumption here: that
1426 the compiler will pack our bit fields into something that fits into
1427 the type of `word', i.e., is something that fits into one item on the
1428 failure stack. */
1429
1430
1431 /* Declarations and macros for re_match_2. */
1432
1433 typedef union
1434 {
1435 fail_stack_elt_t word;
1436 struct
1437 {
1438 /* This field is one if this group can match the empty string,
1439 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1440 #define MATCH_NULL_UNSET_VALUE 3
1441 unsigned match_null_string_p : 2;
1442 unsigned is_active : 1;
1443 unsigned matched_something : 1;
1444 unsigned ever_matched_something : 1;
1445 } bits;
1446 } register_info_type;
1447
1448 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1449 #define IS_ACTIVE(R) ((R).bits.is_active)
1450 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1451 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1452
1453
1454 /* Call this when have matched a real character; it sets `matched' flags
1455 for the subexpressions which we are currently inside. Also records
1456 that those subexprs have matched. */
1457 #define SET_REGS_MATCHED() \
1458 do \
1459 { \
1460 if (!set_regs_matched_done) \
1461 { \
1462 active_reg_t r; \
1463 set_regs_matched_done = 1; \
1464 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1465 { \
1466 MATCHED_SOMETHING (reg_info[r]) \
1467 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1468 = 1; \
1469 } \
1470 } \
1471 } \
1472 while (0)
1473
1474 /* Registers are set to a sentinel when they haven't yet matched. */
1475 static char reg_unset_dummy;
1476 #define REG_UNSET_VALUE (&reg_unset_dummy)
1477 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1478 \f
1479 /* Subroutine declarations and macros for regex_compile. */
1480
1481 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1482 reg_syntax_t syntax,
1483 struct re_pattern_buffer *bufp));
1484 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1485 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1486 int arg1, int arg2));
1487 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1488 int arg, unsigned char *end));
1489 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1490 int arg1, int arg2, unsigned char *end));
1491 static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1492 reg_syntax_t syntax));
1493 static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1494 reg_syntax_t syntax));
1495 static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1496 const char *pend,
1497 char *translate,
1498 reg_syntax_t syntax,
1499 unsigned char *b));
1500
1501 /* Fetch the next character in the uncompiled pattern---translating it
1502 if necessary. Also cast from a signed character in the constant
1503 string passed to us by the user to an unsigned char that we can use
1504 as an array index (in, e.g., `translate'). */
1505 #ifndef PATFETCH
1506 # define PATFETCH(c) \
1507 do {if (p == pend) return REG_EEND; \
1508 c = (unsigned char) *p++; \
1509 if (translate) c = (unsigned char) translate[c]; \
1510 } while (0)
1511 #endif
1512
1513 /* Fetch the next character in the uncompiled pattern, with no
1514 translation. */
1515 #define PATFETCH_RAW(c) \
1516 do {if (p == pend) return REG_EEND; \
1517 c = (unsigned char) *p++; \
1518 } while (0)
1519
1520 /* Go backwards one character in the pattern. */
1521 #define PATUNFETCH p--
1522
1523
1524 /* If `translate' is non-null, return translate[D], else just D. We
1525 cast the subscript to translate because some data is declared as
1526 `char *', to avoid warnings when a string constant is passed. But
1527 when we use a character as a subscript we must make it unsigned. */
1528 #ifndef TRANSLATE
1529 # define TRANSLATE(d) \
1530 (translate ? (char) translate[(unsigned char) (d)] : (d))
1531 #endif
1532
1533
1534 /* Macros for outputting the compiled pattern into `buffer'. */
1535
1536 /* If the buffer isn't allocated when it comes in, use this. */
1537 #define INIT_BUF_SIZE 32
1538
1539 /* Make sure we have at least N more bytes of space in buffer. */
1540 #define GET_BUFFER_SPACE(n) \
1541 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1542 EXTEND_BUFFER ()
1543
1544 /* Make sure we have one more byte of buffer space and then add C to it. */
1545 #define BUF_PUSH(c) \
1546 do { \
1547 GET_BUFFER_SPACE (1); \
1548 *b++ = (unsigned char) (c); \
1549 } while (0)
1550
1551
1552 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1553 #define BUF_PUSH_2(c1, c2) \
1554 do { \
1555 GET_BUFFER_SPACE (2); \
1556 *b++ = (unsigned char) (c1); \
1557 *b++ = (unsigned char) (c2); \
1558 } while (0)
1559
1560
1561 /* As with BUF_PUSH_2, except for three bytes. */
1562 #define BUF_PUSH_3(c1, c2, c3) \
1563 do { \
1564 GET_BUFFER_SPACE (3); \
1565 *b++ = (unsigned char) (c1); \
1566 *b++ = (unsigned char) (c2); \
1567 *b++ = (unsigned char) (c3); \
1568 } while (0)
1569
1570
1571 /* Store a jump with opcode OP at LOC to location TO. We store a
1572 relative address offset by the three bytes the jump itself occupies. */
1573 #define STORE_JUMP(op, loc, to) \
1574 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1575
1576 /* Likewise, for a two-argument jump. */
1577 #define STORE_JUMP2(op, loc, to, arg) \
1578 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1579
1580 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1581 #define INSERT_JUMP(op, loc, to) \
1582 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1583
1584 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1585 #define INSERT_JUMP2(op, loc, to, arg) \
1586 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1587
1588
1589 /* This is not an arbitrary limit: the arguments which represent offsets
1590 into the pattern are two bytes long. So if 2^16 bytes turns out to
1591 be too small, many things would have to change. */
1592 /* Any other compiler which, like MSC, has allocation limit below 2^16
1593 bytes will have to use approach similar to what was done below for
1594 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1595 reallocating to 0 bytes. Such thing is not going to work too well.
1596 You have been warned!! */
1597 #if defined _MSC_VER && !defined WIN32
1598 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1599 The REALLOC define eliminates a flurry of conversion warnings,
1600 but is not required. */
1601 # define MAX_BUF_SIZE 65500L
1602 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1603 #else
1604 # define MAX_BUF_SIZE (1L << 16)
1605 # define REALLOC(p,s) realloc ((p), (s))
1606 #endif
1607
1608 /* Extend the buffer by twice its current size via realloc and
1609 reset the pointers that pointed into the old block to point to the
1610 correct places in the new one. If extending the buffer results in it
1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1612 #define EXTEND_BUFFER() \
1613 do { \
1614 unsigned char *old_buffer = bufp->buffer; \
1615 if (bufp->allocated == MAX_BUF_SIZE) \
1616 return REG_ESIZE; \
1617 bufp->allocated <<= 1; \
1618 if (bufp->allocated > MAX_BUF_SIZE) \
1619 bufp->allocated = MAX_BUF_SIZE; \
1620 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1621 if (bufp->buffer == NULL) \
1622 return REG_ESPACE; \
1623 /* If the buffer moved, move all the pointers into it. */ \
1624 if (old_buffer != bufp->buffer) \
1625 { \
1626 b = (b - old_buffer) + bufp->buffer; \
1627 begalt = (begalt - old_buffer) + bufp->buffer; \
1628 if (fixup_alt_jump) \
1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1630 if (laststart) \
1631 laststart = (laststart - old_buffer) + bufp->buffer; \
1632 if (pending_exact) \
1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1634 } \
1635 } while (0)
1636
1637
1638 /* Since we have one byte reserved for the register number argument to
1639 {start,stop}_memory, the maximum number of groups we can report
1640 things about is what fits in that byte. */
1641 #define MAX_REGNUM 255
1642
1643 /* But patterns can have more than `MAX_REGNUM' registers. We just
1644 ignore the excess. */
1645 typedef unsigned regnum_t;
1646
1647
1648 /* Macros for the compile stack. */
1649
1650 /* Since offsets can go either forwards or backwards, this type needs to
1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1652 /* int may be not enough when sizeof(int) == 2. */
1653 typedef long pattern_offset_t;
1654
1655 typedef struct
1656 {
1657 pattern_offset_t begalt_offset;
1658 pattern_offset_t fixup_alt_jump;
1659 pattern_offset_t inner_group_offset;
1660 pattern_offset_t laststart_offset;
1661 regnum_t regnum;
1662 } compile_stack_elt_t;
1663
1664
1665 typedef struct
1666 {
1667 compile_stack_elt_t *stack;
1668 unsigned size;
1669 unsigned avail; /* Offset of next open position. */
1670 } compile_stack_type;
1671
1672
1673 #define INIT_COMPILE_STACK_SIZE 32
1674
1675 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1676 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1677
1678 /* The next available element. */
1679 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1680
1681
1682 /* Set the bit for character C in a list. */
1683 #define SET_LIST_BIT(c) \
1684 (b[((unsigned char) (c)) / BYTEWIDTH] \
1685 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1686
1687
1688 /* Get the next unsigned number in the uncompiled pattern. */
1689 #define GET_UNSIGNED_NUMBER(num) \
1690 { if (p != pend) \
1691 { \
1692 PATFETCH (c); \
1693 while (ISDIGIT (c)) \
1694 { \
1695 if (num < 0) \
1696 num = 0; \
1697 num = num * 10 + c - '0'; \
1698 if (p == pend) \
1699 break; \
1700 PATFETCH (c); \
1701 } \
1702 } \
1703 }
1704
1705 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H)
1706 /* The GNU C library provides support for user-defined character classes
1707 and the functions from ISO C amendement 1. */
1708 # ifdef CHARCLASS_NAME_MAX
1709 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1710 # else
1711 /* This shouldn't happen but some implementation might still have this
1712 problem. Use a reasonable default value. */
1713 # define CHAR_CLASS_MAX_LENGTH 256
1714 # endif
1715
1716 # ifdef _LIBC
1717 # define IS_CHAR_CLASS(string) __wctype (string)
1718 # else
1719 # define IS_CHAR_CLASS(string) wctype (string)
1720 # endif
1721 #else
1722 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1723
1724 # define IS_CHAR_CLASS(string) \
1725 (STREQ (string, "alpha") || STREQ (string, "upper") \
1726 || STREQ (string, "lower") || STREQ (string, "digit") \
1727 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1728 || STREQ (string, "space") || STREQ (string, "print") \
1729 || STREQ (string, "punct") || STREQ (string, "graph") \
1730 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1731 #endif
1732 \f
1733 #ifndef MATCH_MAY_ALLOCATE
1734
1735 /* If we cannot allocate large objects within re_match_2_internal,
1736 we make the fail stack and register vectors global.
1737 The fail stack, we grow to the maximum size when a regexp
1738 is compiled.
1739 The register vectors, we adjust in size each time we
1740 compile a regexp, according to the number of registers it needs. */
1741
1742 static fail_stack_type fail_stack;
1743
1744 /* Size with which the following vectors are currently allocated.
1745 That is so we can make them bigger as needed,
1746 but never make them smaller. */
1747 static int regs_allocated_size;
1748
1749 static const char ** regstart, ** regend;
1750 static const char ** old_regstart, ** old_regend;
1751 static const char **best_regstart, **best_regend;
1752 static register_info_type *reg_info;
1753 static const char **reg_dummy;
1754 static register_info_type *reg_info_dummy;
1755
1756 /* Make the register vectors big enough for NUM_REGS registers,
1757 but don't make them smaller. */
1758
1759 static
1760 regex_grow_registers (num_regs)
1761 int num_regs;
1762 {
1763 if (num_regs > regs_allocated_size)
1764 {
1765 RETALLOC_IF (regstart, num_regs, const char *);
1766 RETALLOC_IF (regend, num_regs, const char *);
1767 RETALLOC_IF (old_regstart, num_regs, const char *);
1768 RETALLOC_IF (old_regend, num_regs, const char *);
1769 RETALLOC_IF (best_regstart, num_regs, const char *);
1770 RETALLOC_IF (best_regend, num_regs, const char *);
1771 RETALLOC_IF (reg_info, num_regs, register_info_type);
1772 RETALLOC_IF (reg_dummy, num_regs, const char *);
1773 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1774
1775 regs_allocated_size = num_regs;
1776 }
1777 }
1778
1779 #endif /* not MATCH_MAY_ALLOCATE */
1780 \f
1781 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1782 compile_stack,
1783 regnum_t regnum));
1784
1785 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1786 Returns one of error codes defined in `gnu-regex.h', or zero for success.
1787
1788 Assumes the `allocated' (and perhaps `buffer') and `translate'
1789 fields are set in BUFP on entry.
1790
1791 If it succeeds, results are put in BUFP (if it returns an error, the
1792 contents of BUFP are undefined):
1793 `buffer' is the compiled pattern;
1794 `syntax' is set to SYNTAX;
1795 `used' is set to the length of the compiled pattern;
1796 `fastmap_accurate' is zero;
1797 `re_nsub' is the number of subexpressions in PATTERN;
1798 `not_bol' and `not_eol' are zero;
1799
1800 The `fastmap' and `newline_anchor' fields are neither
1801 examined nor set. */
1802
1803 /* Return, freeing storage we allocated. */
1804 #define FREE_STACK_RETURN(value) \
1805 return (free (compile_stack.stack), value)
1806
1807 static reg_errcode_t
1808 regex_compile (pattern, size, syntax, bufp)
1809 const char *pattern;
1810 size_t size;
1811 reg_syntax_t syntax;
1812 struct re_pattern_buffer *bufp;
1813 {
1814 /* We fetch characters from PATTERN here. Even though PATTERN is
1815 `char *' (i.e., signed), we declare these variables as unsigned, so
1816 they can be reliably used as array indices. */
1817 register unsigned char c, c1;
1818
1819 /* A random temporary spot in PATTERN. */
1820 const char *p1;
1821
1822 /* Points to the end of the buffer, where we should append. */
1823 register unsigned char *b;
1824
1825 /* Keeps track of unclosed groups. */
1826 compile_stack_type compile_stack;
1827
1828 /* Points to the current (ending) position in the pattern. */
1829 const char *p = pattern;
1830 const char *pend = pattern + size;
1831
1832 /* How to translate the characters in the pattern. */
1833 RE_TRANSLATE_TYPE translate = bufp->translate;
1834
1835 /* Address of the count-byte of the most recently inserted `exactn'
1836 command. This makes it possible to tell if a new exact-match
1837 character can be added to that command or if the character requires
1838 a new `exactn' command. */
1839 unsigned char *pending_exact = 0;
1840
1841 /* Address of start of the most recently finished expression.
1842 This tells, e.g., postfix * where to find the start of its
1843 operand. Reset at the beginning of groups and alternatives. */
1844 unsigned char *laststart = 0;
1845
1846 /* Address of beginning of regexp, or inside of last group. */
1847 unsigned char *begalt;
1848
1849 /* Place in the uncompiled pattern (i.e., the {) to
1850 which to go back if the interval is invalid. */
1851 const char *beg_interval;
1852
1853 /* Address of the place where a forward jump should go to the end of
1854 the containing expression. Each alternative of an `or' -- except the
1855 last -- ends with a forward jump of this sort. */
1856 unsigned char *fixup_alt_jump = 0;
1857
1858 /* Counts open-groups as they are encountered. Remembered for the
1859 matching close-group on the compile stack, so the same register
1860 number is put in the stop_memory as the start_memory. */
1861 regnum_t regnum = 0;
1862
1863 #ifdef DEBUG
1864 DEBUG_PRINT1 ("\nCompiling pattern: ");
1865 if (debug)
1866 {
1867 unsigned debug_count;
1868
1869 for (debug_count = 0; debug_count < size; debug_count++)
1870 putchar (pattern[debug_count]);
1871 putchar ('\n');
1872 }
1873 #endif /* DEBUG */
1874
1875 /* Initialize the compile stack. */
1876 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1877 if (compile_stack.stack == NULL)
1878 return REG_ESPACE;
1879
1880 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1881 compile_stack.avail = 0;
1882
1883 /* Initialize the pattern buffer. */
1884 bufp->syntax = syntax;
1885 bufp->fastmap_accurate = 0;
1886 bufp->not_bol = bufp->not_eol = 0;
1887
1888 /* Set `used' to zero, so that if we return an error, the pattern
1889 printer (for debugging) will think there's no pattern. We reset it
1890 at the end. */
1891 bufp->used = 0;
1892
1893 /* Always count groups, whether or not bufp->no_sub is set. */
1894 bufp->re_nsub = 0;
1895
1896 #if !defined emacs && !defined SYNTAX_TABLE
1897 /* Initialize the syntax table. */
1898 init_syntax_once ();
1899 #endif
1900
1901 if (bufp->allocated == 0)
1902 {
1903 if (bufp->buffer)
1904 { /* If zero allocated, but buffer is non-null, try to realloc
1905 enough space. This loses if buffer's address is bogus, but
1906 that is the user's responsibility. */
1907 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1908 }
1909 else
1910 { /* Caller did not allocate a buffer. Do it for them. */
1911 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1912 }
1913 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1914
1915 bufp->allocated = INIT_BUF_SIZE;
1916 }
1917
1918 begalt = b = bufp->buffer;
1919
1920 /* Loop through the uncompiled pattern until we're at the end. */
1921 while (p != pend)
1922 {
1923 PATFETCH (c);
1924
1925 switch (c)
1926 {
1927 case '^':
1928 {
1929 if ( /* If at start of pattern, it's an operator. */
1930 p == pattern + 1
1931 /* If context independent, it's an operator. */
1932 || syntax & RE_CONTEXT_INDEP_ANCHORS
1933 /* Otherwise, depends on what's come before. */
1934 || at_begline_loc_p (pattern, p, syntax))
1935 BUF_PUSH (begline);
1936 else
1937 goto normal_char;
1938 }
1939 break;
1940
1941
1942 case '$':
1943 {
1944 if ( /* If at end of pattern, it's an operator. */
1945 p == pend
1946 /* If context independent, it's an operator. */
1947 || syntax & RE_CONTEXT_INDEP_ANCHORS
1948 /* Otherwise, depends on what's next. */
1949 || at_endline_loc_p (p, pend, syntax))
1950 BUF_PUSH (endline);
1951 else
1952 goto normal_char;
1953 }
1954 break;
1955
1956
1957 case '+':
1958 case '?':
1959 if ((syntax & RE_BK_PLUS_QM)
1960 || (syntax & RE_LIMITED_OPS))
1961 goto normal_char;
1962 handle_plus:
1963 case '*':
1964 /* If there is no previous pattern... */
1965 if (!laststart)
1966 {
1967 if (syntax & RE_CONTEXT_INVALID_OPS)
1968 FREE_STACK_RETURN (REG_BADRPT);
1969 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1970 goto normal_char;
1971 }
1972
1973 {
1974 /* Are we optimizing this jump? */
1975 boolean keep_string_p = false;
1976
1977 /* 1 means zero (many) matches is allowed. */
1978 char zero_times_ok = 0, many_times_ok = 0;
1979
1980 /* If there is a sequence of repetition chars, collapse it
1981 down to just one (the right one). We can't combine
1982 interval operators with these because of, e.g., `a{2}*',
1983 which should only match an even number of `a's. */
1984
1985 for (;;)
1986 {
1987 zero_times_ok |= c != '+';
1988 many_times_ok |= c != '?';
1989
1990 if (p == pend)
1991 break;
1992
1993 PATFETCH (c);
1994
1995 if (c == '*'
1996 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1997 ;
1998
1999 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2000 {
2001 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2002
2003 PATFETCH (c1);
2004 if (!(c1 == '+' || c1 == '?'))
2005 {
2006 PATUNFETCH;
2007 PATUNFETCH;
2008 break;
2009 }
2010
2011 c = c1;
2012 }
2013 else
2014 {
2015 PATUNFETCH;
2016 break;
2017 }
2018
2019 /* If we get here, we found another repeat character. */
2020 }
2021
2022 /* Star, etc. applied to an empty pattern is equivalent
2023 to an empty pattern. */
2024 if (!laststart)
2025 break;
2026
2027 /* Now we know whether or not zero matches is allowed
2028 and also whether or not two or more matches is allowed. */
2029 if (many_times_ok)
2030 { /* More than one repetition is allowed, so put in at the
2031 end a backward relative jump from `b' to before the next
2032 jump we're going to put in below (which jumps from
2033 laststart to after this jump).
2034
2035 But if we are at the `*' in the exact sequence `.*\n',
2036 insert an unconditional jump backwards to the .,
2037 instead of the beginning of the loop. This way we only
2038 push a failure point once, instead of every time
2039 through the loop. */
2040 assert (p - 1 > pattern);
2041
2042 /* Allocate the space for the jump. */
2043 GET_BUFFER_SPACE (3);
2044
2045 /* We know we are not at the first character of the pattern,
2046 because laststart was nonzero. And we've already
2047 incremented `p', by the way, to be the character after
2048 the `*'. Do we have to do something analogous here
2049 for null bytes, because of RE_DOT_NOT_NULL? */
2050 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2051 && zero_times_ok
2052 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2053 && !(syntax & RE_DOT_NEWLINE))
2054 { /* We have .*\n. */
2055 STORE_JUMP (jump, b, laststart);
2056 keep_string_p = true;
2057 }
2058 else
2059 /* Anything else. */
2060 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2061
2062 /* We've added more stuff to the buffer. */
2063 b += 3;
2064 }
2065
2066 /* On failure, jump from laststart to b + 3, which will be the
2067 end of the buffer after this jump is inserted. */
2068 GET_BUFFER_SPACE (3);
2069 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2070 : on_failure_jump,
2071 laststart, b + 3);
2072 pending_exact = 0;
2073 b += 3;
2074
2075 if (!zero_times_ok)
2076 {
2077 /* At least one repetition is required, so insert a
2078 `dummy_failure_jump' before the initial
2079 `on_failure_jump' instruction of the loop. This
2080 effects a skip over that instruction the first time
2081 we hit that loop. */
2082 GET_BUFFER_SPACE (3);
2083 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2084 b += 3;
2085 }
2086 }
2087 break;
2088
2089
2090 case '.':
2091 laststart = b;
2092 BUF_PUSH (anychar);
2093 break;
2094
2095
2096 case '[':
2097 {
2098 boolean had_char_class = false;
2099
2100 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2101
2102 /* Ensure that we have enough space to push a charset: the
2103 opcode, the length count, and the bitset; 34 bytes in all. */
2104 GET_BUFFER_SPACE (34);
2105
2106 laststart = b;
2107
2108 /* We test `*p == '^' twice, instead of using an if
2109 statement, so we only need one BUF_PUSH. */
2110 BUF_PUSH (*p == '^' ? charset_not : charset);
2111 if (*p == '^')
2112 p++;
2113
2114 /* Remember the first position in the bracket expression. */
2115 p1 = p;
2116
2117 /* Push the number of bytes in the bitmap. */
2118 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2119
2120 /* Clear the whole map. */
2121 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2122
2123 /* charset_not matches newline according to a syntax bit. */
2124 if ((re_opcode_t) b[-2] == charset_not
2125 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2126 SET_LIST_BIT ('\n');
2127
2128 /* Read in characters and ranges, setting map bits. */
2129 for (;;)
2130 {
2131 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2132
2133 PATFETCH (c);
2134
2135 /* \ might escape characters inside [...] and [^...]. */
2136 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2137 {
2138 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2139
2140 PATFETCH (c1);
2141 SET_LIST_BIT (c1);
2142 continue;
2143 }
2144
2145 /* Could be the end of the bracket expression. If it's
2146 not (i.e., when the bracket expression is `[]' so
2147 far), the ']' character bit gets set way below. */
2148 if (c == ']' && p != p1 + 1)
2149 break;
2150
2151 /* Look ahead to see if it's a range when the last thing
2152 was a character class. */
2153 if (had_char_class && c == '-' && *p != ']')
2154 FREE_STACK_RETURN (REG_ERANGE);
2155
2156 /* Look ahead to see if it's a range when the last thing
2157 was a character: if this is a hyphen not at the
2158 beginning or the end of a list, then it's the range
2159 operator. */
2160 if (c == '-'
2161 && !(p - 2 >= pattern && p[-2] == '[')
2162 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2163 && *p != ']')
2164 {
2165 reg_errcode_t ret
2166 = compile_range (&p, pend, translate, syntax, b);
2167 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2168 }
2169
2170 else if (p[0] == '-' && p[1] != ']')
2171 { /* This handles ranges made up of characters only. */
2172 reg_errcode_t ret;
2173
2174 /* Move past the `-'. */
2175 PATFETCH (c1);
2176
2177 ret = compile_range (&p, pend, translate, syntax, b);
2178 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2179 }
2180
2181 /* See if we're at the beginning of a possible character
2182 class. */
2183
2184 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2185 { /* Leave room for the null. */
2186 char str[CHAR_CLASS_MAX_LENGTH + 1];
2187
2188 PATFETCH (c);
2189 c1 = 0;
2190
2191 /* If pattern is `[[:'. */
2192 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2193
2194 for (;;)
2195 {
2196 PATFETCH (c);
2197 if ((c == ':' && *p == ']') || p == pend
2198 || c1 == CHAR_CLASS_MAX_LENGTH)
2199 break;
2200 str[c1++] = c;
2201 }
2202 str[c1] = '\0';
2203
2204 /* If isn't a word bracketed by `[:' and `:]':
2205 undo the ending character, the letters, and leave
2206 the leading `:' and `[' (but set bits for them). */
2207 if (c == ':' && *p == ']')
2208 {
2209 /* CYGNUS LOCAL: Skip this code if we don't have btowc(). btowc() is */
2210 /* defined in the 1994 Amendment 1 to ISO C and may not be present on */
2211 /* systems where we have wchar.h and wctype.h. */
2212 #if defined _LIBC || (defined HAVE_WCTYPE_H && defined HAVE_WCHAR_H && defined HAVE_BTOWC)
2213 boolean is_lower = STREQ (str, "lower");
2214 boolean is_upper = STREQ (str, "upper");
2215 wctype_t wt;
2216 int ch;
2217
2218 wt = IS_CHAR_CLASS (str);
2219 if (wt == 0)
2220 FREE_STACK_RETURN (REG_ECTYPE);
2221
2222 /* Throw away the ] at the end of the character
2223 class. */
2224 PATFETCH (c);
2225
2226 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2227
2228 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2229 {
2230 # ifdef _LIBC
2231 if (__iswctype (__btowc (ch), wt))
2232 SET_LIST_BIT (ch);
2233 #else
2234 if (iswctype (btowc (ch), wt))
2235 SET_LIST_BIT (ch);
2236 #endif
2237
2238 if (translate && (is_upper || is_lower)
2239 && (ISUPPER (ch) || ISLOWER (ch)))
2240 SET_LIST_BIT (ch);
2241 }
2242
2243 had_char_class = true;
2244 #else
2245 int ch;
2246 boolean is_alnum = STREQ (str, "alnum");
2247 boolean is_alpha = STREQ (str, "alpha");
2248 boolean is_blank = STREQ (str, "blank");
2249 boolean is_cntrl = STREQ (str, "cntrl");
2250 boolean is_digit = STREQ (str, "digit");
2251 boolean is_graph = STREQ (str, "graph");
2252 boolean is_lower = STREQ (str, "lower");
2253 boolean is_print = STREQ (str, "print");
2254 boolean is_punct = STREQ (str, "punct");
2255 boolean is_space = STREQ (str, "space");
2256 boolean is_upper = STREQ (str, "upper");
2257 boolean is_xdigit = STREQ (str, "xdigit");
2258
2259 if (!IS_CHAR_CLASS (str))
2260 FREE_STACK_RETURN (REG_ECTYPE);
2261
2262 /* Throw away the ] at the end of the character
2263 class. */
2264 PATFETCH (c);
2265
2266 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2267
2268 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2269 {
2270 /* This was split into 3 if's to
2271 avoid an arbitrary limit in some compiler. */
2272 if ( (is_alnum && ISALNUM (ch))
2273 || (is_alpha && ISALPHA (ch))
2274 || (is_blank && ISBLANK (ch))
2275 || (is_cntrl && ISCNTRL (ch)))
2276 SET_LIST_BIT (ch);
2277 if ( (is_digit && ISDIGIT (ch))
2278 || (is_graph && ISGRAPH (ch))
2279 || (is_lower && ISLOWER (ch))
2280 || (is_print && ISPRINT (ch)))
2281 SET_LIST_BIT (ch);
2282 if ( (is_punct && ISPUNCT (ch))
2283 || (is_space && ISSPACE (ch))
2284 || (is_upper && ISUPPER (ch))
2285 || (is_xdigit && ISXDIGIT (ch)))
2286 SET_LIST_BIT (ch);
2287 if ( translate && (is_upper || is_lower)
2288 && (ISUPPER (ch) || ISLOWER (ch)))
2289 SET_LIST_BIT (ch);
2290 }
2291 had_char_class = true;
2292 #endif /* libc || wctype.h */
2293 }
2294 else
2295 {
2296 c1++;
2297 while (c1--)
2298 PATUNFETCH;
2299 SET_LIST_BIT ('[');
2300 SET_LIST_BIT (':');
2301 had_char_class = false;
2302 }
2303 }
2304 else
2305 {
2306 had_char_class = false;
2307 SET_LIST_BIT (c);
2308 }
2309 }
2310
2311 /* Discard any (non)matching list bytes that are all 0 at the
2312 end of the map. Decrease the map-length byte too. */
2313 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2314 b[-1]--;
2315 b += b[-1];
2316 }
2317 break;
2318
2319
2320 case '(':
2321 if (syntax & RE_NO_BK_PARENS)
2322 goto handle_open;
2323 else
2324 goto normal_char;
2325
2326
2327 case ')':
2328 if (syntax & RE_NO_BK_PARENS)
2329 goto handle_close;
2330 else
2331 goto normal_char;
2332
2333
2334 case '\n':
2335 if (syntax & RE_NEWLINE_ALT)
2336 goto handle_alt;
2337 else
2338 goto normal_char;
2339
2340
2341 case '|':
2342 if (syntax & RE_NO_BK_VBAR)
2343 goto handle_alt;
2344 else
2345 goto normal_char;
2346
2347
2348 case '{':
2349 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2350 goto handle_interval;
2351 else
2352 goto normal_char;
2353
2354
2355 case '\\':
2356 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2357
2358 /* Do not translate the character after the \, so that we can
2359 distinguish, e.g., \B from \b, even if we normally would
2360 translate, e.g., B to b. */
2361 PATFETCH_RAW (c);
2362
2363 switch (c)
2364 {
2365 case '(':
2366 if (syntax & RE_NO_BK_PARENS)
2367 goto normal_backslash;
2368
2369 handle_open:
2370 bufp->re_nsub++;
2371 regnum++;
2372
2373 if (COMPILE_STACK_FULL)
2374 {
2375 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2376 compile_stack_elt_t);
2377 if (compile_stack.stack == NULL) return REG_ESPACE;
2378
2379 compile_stack.size <<= 1;
2380 }
2381
2382 /* These are the values to restore when we hit end of this
2383 group. They are all relative offsets, so that if the
2384 whole pattern moves because of realloc, they will still
2385 be valid. */
2386 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2387 COMPILE_STACK_TOP.fixup_alt_jump
2388 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2389 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2390 COMPILE_STACK_TOP.regnum = regnum;
2391
2392 /* We will eventually replace the 0 with the number of
2393 groups inner to this one. But do not push a
2394 start_memory for groups beyond the last one we can
2395 represent in the compiled pattern. */
2396 if (regnum <= MAX_REGNUM)
2397 {
2398 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2399 BUF_PUSH_3 (start_memory, regnum, 0);
2400 }
2401
2402 compile_stack.avail++;
2403
2404 fixup_alt_jump = 0;
2405 laststart = 0;
2406 begalt = b;
2407 /* If we've reached MAX_REGNUM groups, then this open
2408 won't actually generate any code, so we'll have to
2409 clear pending_exact explicitly. */
2410 pending_exact = 0;
2411 break;
2412
2413
2414 case ')':
2415 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2416
2417 if (COMPILE_STACK_EMPTY)
2418 {
2419 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2420 goto normal_backslash;
2421 else
2422 FREE_STACK_RETURN (REG_ERPAREN);
2423 }
2424
2425 handle_close:
2426 if (fixup_alt_jump)
2427 { /* Push a dummy failure point at the end of the
2428 alternative for a possible future
2429 `pop_failure_jump' to pop. See comments at
2430 `push_dummy_failure' in `re_match_2'. */
2431 BUF_PUSH (push_dummy_failure);
2432
2433 /* We allocated space for this jump when we assigned
2434 to `fixup_alt_jump', in the `handle_alt' case below. */
2435 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2436 }
2437
2438 /* See similar code for backslashed left paren above. */
2439 if (COMPILE_STACK_EMPTY)
2440 {
2441 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2442 goto normal_char;
2443 else
2444 FREE_STACK_RETURN (REG_ERPAREN);
2445 }
2446
2447 /* Since we just checked for an empty stack above, this
2448 ``can't happen''. */
2449 assert (compile_stack.avail != 0);
2450 {
2451 /* We don't just want to restore into `regnum', because
2452 later groups should continue to be numbered higher,
2453 as in `(ab)c(de)' -- the second group is #2. */
2454 regnum_t this_group_regnum;
2455
2456 compile_stack.avail--;
2457 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2458 fixup_alt_jump
2459 = COMPILE_STACK_TOP.fixup_alt_jump
2460 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2461 : 0;
2462 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2463 this_group_regnum = COMPILE_STACK_TOP.regnum;
2464 /* If we've reached MAX_REGNUM groups, then this open
2465 won't actually generate any code, so we'll have to
2466 clear pending_exact explicitly. */
2467 pending_exact = 0;
2468
2469 /* We're at the end of the group, so now we know how many
2470 groups were inside this one. */
2471 if (this_group_regnum <= MAX_REGNUM)
2472 {
2473 unsigned char *inner_group_loc
2474 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2475
2476 *inner_group_loc = regnum - this_group_regnum;
2477 BUF_PUSH_3 (stop_memory, this_group_regnum,
2478 regnum - this_group_regnum);
2479 }
2480 }
2481 break;
2482
2483
2484 case '|': /* `\|'. */
2485 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2486 goto normal_backslash;
2487 handle_alt:
2488 if (syntax & RE_LIMITED_OPS)
2489 goto normal_char;
2490
2491 /* Insert before the previous alternative a jump which
2492 jumps to this alternative if the former fails. */
2493 GET_BUFFER_SPACE (3);
2494 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2495 pending_exact = 0;
2496 b += 3;
2497
2498 /* The alternative before this one has a jump after it
2499 which gets executed if it gets matched. Adjust that
2500 jump so it will jump to this alternative's analogous
2501 jump (put in below, which in turn will jump to the next
2502 (if any) alternative's such jump, etc.). The last such
2503 jump jumps to the correct final destination. A picture:
2504 _____ _____
2505 | | | |
2506 | v | v
2507 a | b | c
2508
2509 If we are at `b', then fixup_alt_jump right now points to a
2510 three-byte space after `a'. We'll put in the jump, set
2511 fixup_alt_jump to right after `b', and leave behind three
2512 bytes which we'll fill in when we get to after `c'. */
2513
2514 if (fixup_alt_jump)
2515 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2516
2517 /* Mark and leave space for a jump after this alternative,
2518 to be filled in later either by next alternative or
2519 when know we're at the end of a series of alternatives. */
2520 fixup_alt_jump = b;
2521 GET_BUFFER_SPACE (3);
2522 b += 3;
2523
2524 laststart = 0;
2525 begalt = b;
2526 break;
2527
2528
2529 case '{':
2530 /* If \{ is a literal. */
2531 if (!(syntax & RE_INTERVALS)
2532 /* If we're at `\{' and it's not the open-interval
2533 operator. */
2534 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2535 || (p - 2 == pattern && p == pend))
2536 goto normal_backslash;
2537
2538 handle_interval:
2539 {
2540 /* If got here, then the syntax allows intervals. */
2541
2542 /* At least (most) this many matches must be made. */
2543 int lower_bound = -1, upper_bound = -1;
2544
2545 beg_interval = p - 1;
2546
2547 if (p == pend)
2548 {
2549 if (syntax & RE_NO_BK_BRACES)
2550 goto unfetch_interval;
2551 else
2552 FREE_STACK_RETURN (REG_EBRACE);
2553 }
2554
2555 GET_UNSIGNED_NUMBER (lower_bound);
2556
2557 if (c == ',')
2558 {
2559 GET_UNSIGNED_NUMBER (upper_bound);
2560 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2561 }
2562 else
2563 /* Interval such as `{1}' => match exactly once. */
2564 upper_bound = lower_bound;
2565
2566 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2567 || lower_bound > upper_bound)
2568 {
2569 if (syntax & RE_NO_BK_BRACES)
2570 goto unfetch_interval;
2571 else
2572 FREE_STACK_RETURN (REG_BADBR);
2573 }
2574
2575 if (!(syntax & RE_NO_BK_BRACES))
2576 {
2577 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2578
2579 PATFETCH (c);
2580 }
2581
2582 if (c != '}')
2583 {
2584 if (syntax & RE_NO_BK_BRACES)
2585 goto unfetch_interval;
2586 else
2587 FREE_STACK_RETURN (REG_BADBR);
2588 }
2589
2590 /* We just parsed a valid interval. */
2591
2592 /* If it's invalid to have no preceding re. */
2593 if (!laststart)
2594 {
2595 if (syntax & RE_CONTEXT_INVALID_OPS)
2596 FREE_STACK_RETURN (REG_BADRPT);
2597 else if (syntax & RE_CONTEXT_INDEP_OPS)
2598 laststart = b;
2599 else
2600 goto unfetch_interval;
2601 }
2602
2603 /* If the upper bound is zero, don't want to succeed at
2604 all; jump from `laststart' to `b + 3', which will be
2605 the end of the buffer after we insert the jump. */
2606 if (upper_bound == 0)
2607 {
2608 GET_BUFFER_SPACE (3);
2609 INSERT_JUMP (jump, laststart, b + 3);
2610 b += 3;
2611 }
2612
2613 /* Otherwise, we have a nontrivial interval. When
2614 we're all done, the pattern will look like:
2615 set_number_at <jump count> <upper bound>
2616 set_number_at <succeed_n count> <lower bound>
2617 succeed_n <after jump addr> <succeed_n count>
2618 <body of loop>
2619 jump_n <succeed_n addr> <jump count>
2620 (The upper bound and `jump_n' are omitted if
2621 `upper_bound' is 1, though.) */
2622 else
2623 { /* If the upper bound is > 1, we need to insert
2624 more at the end of the loop. */
2625 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2626
2627 GET_BUFFER_SPACE (nbytes);
2628
2629 /* Initialize lower bound of the `succeed_n', even
2630 though it will be set during matching by its
2631 attendant `set_number_at' (inserted next),
2632 because `re_compile_fastmap' needs to know.
2633 Jump to the `jump_n' we might insert below. */
2634 INSERT_JUMP2 (succeed_n, laststart,
2635 b + 5 + (upper_bound > 1) * 5,
2636 lower_bound);
2637 b += 5;
2638
2639 /* Code to initialize the lower bound. Insert
2640 before the `succeed_n'. The `5' is the last two
2641 bytes of this `set_number_at', plus 3 bytes of
2642 the following `succeed_n'. */
2643 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2644 b += 5;
2645
2646 if (upper_bound > 1)
2647 { /* More than one repetition is allowed, so
2648 append a backward jump to the `succeed_n'
2649 that starts this interval.
2650
2651 When we've reached this during matching,
2652 we'll have matched the interval once, so
2653 jump back only `upper_bound - 1' times. */
2654 STORE_JUMP2 (jump_n, b, laststart + 5,
2655 upper_bound - 1);
2656 b += 5;
2657
2658 /* The location we want to set is the second
2659 parameter of the `jump_n'; that is `b-2' as
2660 an absolute address. `laststart' will be
2661 the `set_number_at' we're about to insert;
2662 `laststart+3' the number to set, the source
2663 for the relative address. But we are
2664 inserting into the middle of the pattern --
2665 so everything is getting moved up by 5.
2666 Conclusion: (b - 2) - (laststart + 3) + 5,
2667 i.e., b - laststart.
2668
2669 We insert this at the beginning of the loop
2670 so that if we fail during matching, we'll
2671 reinitialize the bounds. */
2672 insert_op2 (set_number_at, laststart, b - laststart,
2673 upper_bound - 1, b);
2674 b += 5;
2675 }
2676 }
2677 pending_exact = 0;
2678 beg_interval = NULL;
2679 }
2680 break;
2681
2682 unfetch_interval:
2683 /* If an invalid interval, match the characters as literals. */
2684 assert (beg_interval);
2685 p = beg_interval;
2686 beg_interval = NULL;
2687
2688 /* normal_char and normal_backslash need `c'. */
2689 PATFETCH (c);
2690
2691 if (!(syntax & RE_NO_BK_BRACES))
2692 {
2693 if (p > pattern && p[-1] == '\\')
2694 goto normal_backslash;
2695 }
2696 goto normal_char;
2697
2698 #ifdef emacs
2699 /* There is no way to specify the before_dot and after_dot
2700 operators. rms says this is ok. --karl */
2701 case '=':
2702 BUF_PUSH (at_dot);
2703 break;
2704
2705 case 's':
2706 laststart = b;
2707 PATFETCH (c);
2708 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2709 break;
2710
2711 case 'S':
2712 laststart = b;
2713 PATFETCH (c);
2714 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2715 break;
2716 #endif /* emacs */
2717
2718
2719 case 'w':
2720 if (syntax & RE_NO_GNU_OPS)
2721 goto normal_char;
2722 laststart = b;
2723 BUF_PUSH (wordchar);
2724 break;
2725
2726
2727 case 'W':
2728 if (syntax & RE_NO_GNU_OPS)
2729 goto normal_char;
2730 laststart = b;
2731 BUF_PUSH (notwordchar);
2732 break;
2733
2734
2735 case '<':
2736 if (syntax & RE_NO_GNU_OPS)
2737 goto normal_char;
2738 BUF_PUSH (wordbeg);
2739 break;
2740
2741 case '>':
2742 if (syntax & RE_NO_GNU_OPS)
2743 goto normal_char;
2744 BUF_PUSH (wordend);
2745 break;
2746
2747 case 'b':
2748 if (syntax & RE_NO_GNU_OPS)
2749 goto normal_char;
2750 BUF_PUSH (wordbound);
2751 break;
2752
2753 case 'B':
2754 if (syntax & RE_NO_GNU_OPS)
2755 goto normal_char;
2756 BUF_PUSH (notwordbound);
2757 break;
2758
2759 case '`':
2760 if (syntax & RE_NO_GNU_OPS)
2761 goto normal_char;
2762 BUF_PUSH (begbuf);
2763 break;
2764
2765 case '\'':
2766 if (syntax & RE_NO_GNU_OPS)
2767 goto normal_char;
2768 BUF_PUSH (endbuf);
2769 break;
2770
2771 case '1': case '2': case '3': case '4': case '5':
2772 case '6': case '7': case '8': case '9':
2773 if (syntax & RE_NO_BK_REFS)
2774 goto normal_char;
2775
2776 c1 = c - '0';
2777
2778 if (c1 > regnum)
2779 FREE_STACK_RETURN (REG_ESUBREG);
2780
2781 /* Can't back reference to a subexpression if inside of it. */
2782 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2783 goto normal_char;
2784
2785 laststart = b;
2786 BUF_PUSH_2 (duplicate, c1);
2787 break;
2788
2789
2790 case '+':
2791 case '?':
2792 if (syntax & RE_BK_PLUS_QM)
2793 goto handle_plus;
2794 else
2795 goto normal_backslash;
2796
2797 default:
2798 normal_backslash:
2799 /* You might think it would be useful for \ to mean
2800 not to translate; but if we don't translate it
2801 it will never match anything. */
2802 c = TRANSLATE (c);
2803 goto normal_char;
2804 }
2805 break;
2806
2807
2808 default:
2809 /* Expects the character in `c'. */
2810 normal_char:
2811 /* If no exactn currently being built. */
2812 if (!pending_exact
2813
2814 /* If last exactn not at current position. */
2815 || pending_exact + *pending_exact + 1 != b
2816
2817 /* We have only one byte following the exactn for the count. */
2818 || *pending_exact == (1 << BYTEWIDTH) - 1
2819
2820 /* If followed by a repetition operator. */
2821 || *p == '*' || *p == '^'
2822 || ((syntax & RE_BK_PLUS_QM)
2823 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2824 : (*p == '+' || *p == '?'))
2825 || ((syntax & RE_INTERVALS)
2826 && ((syntax & RE_NO_BK_BRACES)
2827 ? *p == '{'
2828 : (p[0] == '\\' && p[1] == '{'))))
2829 {
2830 /* Start building a new exactn. */
2831
2832 laststart = b;
2833
2834 BUF_PUSH_2 (exactn, 0);
2835 pending_exact = b - 1;
2836 }
2837
2838 BUF_PUSH (c);
2839 (*pending_exact)++;
2840 break;
2841 } /* switch (c) */
2842 } /* while p != pend */
2843
2844
2845 /* Through the pattern now. */
2846
2847 if (fixup_alt_jump)
2848 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2849
2850 if (!COMPILE_STACK_EMPTY)
2851 FREE_STACK_RETURN (REG_EPAREN);
2852
2853 /* If we don't want backtracking, force success
2854 the first time we reach the end of the compiled pattern. */
2855 if (syntax & RE_NO_POSIX_BACKTRACKING)
2856 BUF_PUSH (succeed);
2857
2858 free (compile_stack.stack);
2859
2860 /* We have succeeded; set the length of the buffer. */
2861 bufp->used = b - bufp->buffer;
2862
2863 #ifdef DEBUG
2864 if (debug)
2865 {
2866 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2867 print_compiled_pattern (bufp);
2868 }
2869 #endif /* DEBUG */
2870
2871 #ifndef MATCH_MAY_ALLOCATE
2872 /* Initialize the failure stack to the largest possible stack. This
2873 isn't necessary unless we're trying to avoid calling alloca in
2874 the search and match routines. */
2875 {
2876 int num_regs = bufp->re_nsub + 1;
2877
2878 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2879 is strictly greater than re_max_failures, the largest possible stack
2880 is 2 * re_max_failures failure points. */
2881 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2882 {
2883 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2884
2885 # ifdef emacs
2886 if (! fail_stack.stack)
2887 fail_stack.stack
2888 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2889 * sizeof (fail_stack_elt_t));
2890 else
2891 fail_stack.stack
2892 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2893 (fail_stack.size
2894 * sizeof (fail_stack_elt_t)));
2895 # else /* not emacs */
2896 if (! fail_stack.stack)
2897 fail_stack.stack
2898 = (fail_stack_elt_t *) malloc (fail_stack.size
2899 * sizeof (fail_stack_elt_t));
2900 else
2901 fail_stack.stack
2902 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2903 (fail_stack.size
2904 * sizeof (fail_stack_elt_t)));
2905 # endif /* not emacs */
2906 }
2907
2908 regex_grow_registers (num_regs);
2909 }
2910 #endif /* not MATCH_MAY_ALLOCATE */
2911
2912 return REG_NOERROR;
2913 } /* regex_compile */
2914 \f
2915 /* Subroutines for `regex_compile'. */
2916
2917 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2918
2919 static void
2920 store_op1 (op, loc, arg)
2921 re_opcode_t op;
2922 unsigned char *loc;
2923 int arg;
2924 {
2925 *loc = (unsigned char) op;
2926 STORE_NUMBER (loc + 1, arg);
2927 }
2928
2929
2930 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2931
2932 static void
2933 store_op2 (op, loc, arg1, arg2)
2934 re_opcode_t op;
2935 unsigned char *loc;
2936 int arg1, arg2;
2937 {
2938 *loc = (unsigned char) op;
2939 STORE_NUMBER (loc + 1, arg1);
2940 STORE_NUMBER (loc + 3, arg2);
2941 }
2942
2943
2944 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2945 for OP followed by two-byte integer parameter ARG. */
2946
2947 static void
2948 insert_op1 (op, loc, arg, end)
2949 re_opcode_t op;
2950 unsigned char *loc;
2951 int arg;
2952 unsigned char *end;
2953 {
2954 register unsigned char *pfrom = end;
2955 register unsigned char *pto = end + 3;
2956
2957 while (pfrom != loc)
2958 *--pto = *--pfrom;
2959
2960 store_op1 (op, loc, arg);
2961 }
2962
2963
2964 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2965
2966 static void
2967 insert_op2 (op, loc, arg1, arg2, end)
2968 re_opcode_t op;
2969 unsigned char *loc;
2970 int arg1, arg2;
2971 unsigned char *end;
2972 {
2973 register unsigned char *pfrom = end;
2974 register unsigned char *pto = end + 5;
2975
2976 while (pfrom != loc)
2977 *--pto = *--pfrom;
2978
2979 store_op2 (op, loc, arg1, arg2);
2980 }
2981
2982
2983 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2984 after an alternative or a begin-subexpression. We assume there is at
2985 least one character before the ^. */
2986
2987 static boolean
2988 at_begline_loc_p (pattern, p, syntax)
2989 const char *pattern, *p;
2990 reg_syntax_t syntax;
2991 {
2992 const char *prev = p - 2;
2993 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2994
2995 return
2996 /* After a subexpression? */
2997 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2998 /* After an alternative? */
2999 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3000 }
3001
3002
3003 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3004 at least one character after the $, i.e., `P < PEND'. */
3005
3006 static boolean
3007 at_endline_loc_p (p, pend, syntax)
3008 const char *p, *pend;
3009 reg_syntax_t syntax;
3010 {
3011 const char *next = p;
3012 boolean next_backslash = *next == '\\';
3013 const char *next_next = p + 1 < pend ? p + 1 : 0;
3014
3015 return
3016 /* Before a subexpression? */
3017 (syntax & RE_NO_BK_PARENS ? *next == ')'
3018 : next_backslash && next_next && *next_next == ')')
3019 /* Before an alternative? */
3020 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3021 : next_backslash && next_next && *next_next == '|');
3022 }
3023
3024
3025 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3026 false if it's not. */
3027
3028 static boolean
3029 group_in_compile_stack (compile_stack, regnum)
3030 compile_stack_type compile_stack;
3031 regnum_t regnum;
3032 {
3033 int this_element;
3034
3035 for (this_element = compile_stack.avail - 1;
3036 this_element >= 0;
3037 this_element--)
3038 if (compile_stack.stack[this_element].regnum == regnum)
3039 return true;
3040
3041 return false;
3042 }
3043
3044
3045 /* Read the ending character of a range (in a bracket expression) from the
3046 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3047 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3048 Then we set the translation of all bits between the starting and
3049 ending characters (inclusive) in the compiled pattern B.
3050
3051 Return an error code.
3052
3053 We use these short variable names so we can use the same macros as
3054 `regex_compile' itself. */
3055
3056 static reg_errcode_t
3057 compile_range (p_ptr, pend, translate, syntax, b)
3058 const char **p_ptr, *pend;
3059 RE_TRANSLATE_TYPE translate;
3060 reg_syntax_t syntax;
3061 unsigned char *b;
3062 {
3063 unsigned this_char;
3064
3065 const char *p = *p_ptr;
3066 unsigned int range_start, range_end;
3067
3068 if (p == pend)
3069 return REG_ERANGE;
3070
3071 /* Even though the pattern is a signed `char *', we need to fetch
3072 with unsigned char *'s; if the high bit of the pattern character
3073 is set, the range endpoints will be negative if we fetch using a
3074 signed char *.
3075
3076 We also want to fetch the endpoints without translating them; the
3077 appropriate translation is done in the bit-setting loop below. */
3078 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3079 range_start = ((const unsigned char *) p)[-2];
3080 range_end = ((const unsigned char *) p)[0];
3081
3082 /* Have to increment the pointer into the pattern string, so the
3083 caller isn't still at the ending character. */
3084 (*p_ptr)++;
3085
3086 /* If the start is after the end, the range is empty. */
3087 if (range_start > range_end)
3088 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3089
3090 /* Here we see why `this_char' has to be larger than an `unsigned
3091 char' -- the range is inclusive, so if `range_end' == 0xff
3092 (assuming 8-bit characters), we would otherwise go into an infinite
3093 loop, since all characters <= 0xff. */
3094 for (this_char = range_start; this_char <= range_end; this_char++)
3095 {
3096 SET_LIST_BIT (TRANSLATE (this_char));
3097 }
3098
3099 return REG_NOERROR;
3100 }
3101 \f
3102 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3103 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3104 characters can start a string that matches the pattern. This fastmap
3105 is used by re_search to skip quickly over impossible starting points.
3106
3107 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3108 area as BUFP->fastmap.
3109
3110 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3111 the pattern buffer.
3112
3113 Returns 0 if we succeed, -2 if an internal error. */
3114
3115 int
3116 re_compile_fastmap (bufp)
3117 struct re_pattern_buffer *bufp;
3118 {
3119 int j, k;
3120 #ifdef MATCH_MAY_ALLOCATE
3121 fail_stack_type fail_stack;
3122 #endif
3123 #ifndef REGEX_MALLOC
3124 char *destination;
3125 #endif
3126
3127 register char *fastmap = bufp->fastmap;
3128 unsigned char *pattern = bufp->buffer;
3129 unsigned char *p = pattern;
3130 register unsigned char *pend = pattern + bufp->used;
3131
3132 #ifdef REL_ALLOC
3133 /* This holds the pointer to the failure stack, when
3134 it is allocated relocatably. */
3135 fail_stack_elt_t *failure_stack_ptr;
3136 #endif
3137
3138 /* Assume that each path through the pattern can be null until
3139 proven otherwise. We set this false at the bottom of switch
3140 statement, to which we get only if a particular path doesn't
3141 match the empty string. */
3142 boolean path_can_be_null = true;
3143
3144 /* We aren't doing a `succeed_n' to begin with. */
3145 boolean succeed_n_p = false;
3146
3147 assert (fastmap != NULL && p != NULL);
3148
3149 INIT_FAIL_STACK ();
3150 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3151 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3152 bufp->can_be_null = 0;
3153
3154 while (1)
3155 {
3156 if (p == pend || *p == succeed)
3157 {
3158 /* We have reached the (effective) end of pattern. */
3159 if (!FAIL_STACK_EMPTY ())
3160 {
3161 bufp->can_be_null |= path_can_be_null;
3162
3163 /* Reset for next path. */
3164 path_can_be_null = true;
3165
3166 p = fail_stack.stack[--fail_stack.avail].pointer;
3167
3168 continue;
3169 }
3170 else
3171 break;
3172 }
3173
3174 /* We should never be about to go beyond the end of the pattern. */
3175 assert (p < pend);
3176
3177 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3178 {
3179
3180 /* I guess the idea here is to simply not bother with a fastmap
3181 if a backreference is used, since it's too hard to figure out
3182 the fastmap for the corresponding group. Setting
3183 `can_be_null' stops `re_search_2' from using the fastmap, so
3184 that is all we do. */
3185 case duplicate:
3186 bufp->can_be_null = 1;
3187 goto done;
3188
3189
3190 /* Following are the cases which match a character. These end
3191 with `break'. */
3192
3193 case exactn:
3194 fastmap[p[1]] = 1;
3195 break;
3196
3197
3198 case charset:
3199 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3200 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3201 fastmap[j] = 1;
3202 break;
3203
3204
3205 case charset_not:
3206 /* Chars beyond end of map must be allowed. */
3207 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3208 fastmap[j] = 1;
3209
3210 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3211 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3212 fastmap[j] = 1;
3213 break;
3214
3215
3216 case wordchar:
3217 for (j = 0; j < (1 << BYTEWIDTH); j++)
3218 if (SYNTAX (j) == Sword)
3219 fastmap[j] = 1;
3220 break;
3221
3222
3223 case notwordchar:
3224 for (j = 0; j < (1 << BYTEWIDTH); j++)
3225 if (SYNTAX (j) != Sword)
3226 fastmap[j] = 1;
3227 break;
3228
3229
3230 case anychar:
3231 {
3232 int fastmap_newline = fastmap['\n'];
3233
3234 /* `.' matches anything ... */
3235 for (j = 0; j < (1 << BYTEWIDTH); j++)
3236 fastmap[j] = 1;
3237
3238 /* ... except perhaps newline. */
3239 if (!(bufp->syntax & RE_DOT_NEWLINE))
3240 fastmap['\n'] = fastmap_newline;
3241
3242 /* Return if we have already set `can_be_null'; if we have,
3243 then the fastmap is irrelevant. Something's wrong here. */
3244 else if (bufp->can_be_null)
3245 goto done;
3246
3247 /* Otherwise, have to check alternative paths. */
3248 break;
3249 }
3250
3251 #ifdef emacs
3252 case syntaxspec:
3253 k = *p++;
3254 for (j = 0; j < (1 << BYTEWIDTH); j++)
3255 if (SYNTAX (j) == (enum syntaxcode) k)
3256 fastmap[j] = 1;
3257 break;
3258
3259
3260 case notsyntaxspec:
3261 k = *p++;
3262 for (j = 0; j < (1 << BYTEWIDTH); j++)
3263 if (SYNTAX (j) != (enum syntaxcode) k)
3264 fastmap[j] = 1;
3265 break;
3266
3267
3268 /* All cases after this match the empty string. These end with
3269 `continue'. */
3270
3271
3272 case before_dot:
3273 case at_dot:
3274 case after_dot:
3275 continue;
3276 #endif /* emacs */
3277
3278
3279 case no_op:
3280 case begline:
3281 case endline:
3282 case begbuf:
3283 case endbuf:
3284 case wordbound:
3285 case notwordbound:
3286 case wordbeg:
3287 case wordend:
3288 case push_dummy_failure:
3289 continue;
3290
3291
3292 case jump_n:
3293 case pop_failure_jump:
3294 case maybe_pop_jump:
3295 case jump:
3296 case jump_past_alt:
3297 case dummy_failure_jump:
3298 EXTRACT_NUMBER_AND_INCR (j, p);
3299 p += j;
3300 if (j > 0)
3301 continue;
3302
3303 /* Jump backward implies we just went through the body of a
3304 loop and matched nothing. Opcode jumped to should be
3305 `on_failure_jump' or `succeed_n'. Just treat it like an
3306 ordinary jump. For a * loop, it has pushed its failure
3307 point already; if so, discard that as redundant. */
3308 if ((re_opcode_t) *p != on_failure_jump
3309 && (re_opcode_t) *p != succeed_n)
3310 continue;
3311
3312 p++;
3313 EXTRACT_NUMBER_AND_INCR (j, p);
3314 p += j;
3315
3316 /* If what's on the stack is where we are now, pop it. */
3317 if (!FAIL_STACK_EMPTY ()
3318 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3319 fail_stack.avail--;
3320
3321 continue;
3322
3323
3324 case on_failure_jump:
3325 case on_failure_keep_string_jump:
3326 handle_on_failure_jump:
3327 EXTRACT_NUMBER_AND_INCR (j, p);
3328
3329 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3330 end of the pattern. We don't want to push such a point,
3331 since when we restore it above, entering the switch will
3332 increment `p' past the end of the pattern. We don't need
3333 to push such a point since we obviously won't find any more
3334 fastmap entries beyond `pend'. Such a pattern can match
3335 the null string, though. */
3336 if (p + j < pend)
3337 {
3338 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3339 {
3340 RESET_FAIL_STACK ();
3341 return -2;
3342 }
3343 }
3344 else
3345 bufp->can_be_null = 1;
3346
3347 if (succeed_n_p)
3348 {
3349 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3350 succeed_n_p = false;
3351 }
3352
3353 continue;
3354
3355
3356 case succeed_n:
3357 /* Get to the number of times to succeed. */
3358 p += 2;
3359
3360 /* Increment p past the n for when k != 0. */
3361 EXTRACT_NUMBER_AND_INCR (k, p);
3362 if (k == 0)
3363 {
3364 p -= 4;
3365 succeed_n_p = true; /* Spaghetti code alert. */
3366 goto handle_on_failure_jump;
3367 }
3368 continue;
3369
3370
3371 case set_number_at:
3372 p += 4;
3373 continue;
3374
3375
3376 case start_memory:
3377 case stop_memory:
3378 p += 2;
3379 continue;
3380
3381
3382 default:
3383 abort (); /* We have listed all the cases. */
3384 } /* switch *p++ */
3385
3386 /* Getting here means we have found the possible starting
3387 characters for one path of the pattern -- and that the empty
3388 string does not match. We need not follow this path further.
3389 Instead, look at the next alternative (remembered on the
3390 stack), or quit if no more. The test at the top of the loop
3391 does these things. */
3392 path_can_be_null = false;
3393 p = pend;
3394 } /* while p */
3395
3396 /* Set `can_be_null' for the last path (also the first path, if the
3397 pattern is empty). */
3398 bufp->can_be_null |= path_can_be_null;
3399
3400 done:
3401 RESET_FAIL_STACK ();
3402 return 0;
3403 } /* re_compile_fastmap */
3404 #ifdef _LIBC
3405 weak_alias (__re_compile_fastmap, re_compile_fastmap)
3406 #endif
3407 \f
3408 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3409 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3410 this memory for recording register information. STARTS and ENDS
3411 must be allocated using the malloc library routine, and must each
3412 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3413
3414 If NUM_REGS == 0, then subsequent matches should allocate their own
3415 register data.
3416
3417 Unless this function is called, the first search or match using
3418 PATTERN_BUFFER will allocate its own register data, without
3419 freeing the old data. */
3420
3421 void
3422 re_set_registers (bufp, regs, num_regs, starts, ends)
3423 struct re_pattern_buffer *bufp;
3424 struct re_registers *regs;
3425 unsigned num_regs;
3426 regoff_t *starts, *ends;
3427 {
3428 if (num_regs)
3429 {
3430 bufp->regs_allocated = REGS_REALLOCATE;
3431 regs->num_regs = num_regs;
3432 regs->start = starts;
3433 regs->end = ends;
3434 }
3435 else
3436 {
3437 bufp->regs_allocated = REGS_UNALLOCATED;
3438 regs->num_regs = 0;
3439 regs->start = regs->end = (regoff_t *) 0;
3440 }
3441 }
3442 #ifdef _LIBC
3443 weak_alias (__re_set_registers, re_set_registers)
3444 #endif
3445 \f
3446 /* Searching routines. */
3447
3448 /* Like re_search_2, below, but only one string is specified, and
3449 doesn't let you say where to stop matching. */
3450
3451 int
3452 re_search (bufp, string, size, startpos, range, regs)
3453 struct re_pattern_buffer *bufp;
3454 const char *string;
3455 int size, startpos, range;
3456 struct re_registers *regs;
3457 {
3458 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3459 regs, size);
3460 }
3461 #ifdef _LIBC
3462 weak_alias (__re_search, re_search)
3463 #endif
3464
3465
3466 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3467 virtual concatenation of STRING1 and STRING2, starting first at index
3468 STARTPOS, then at STARTPOS + 1, and so on.
3469
3470 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3471
3472 RANGE is how far to scan while trying to match. RANGE = 0 means try
3473 only at STARTPOS; in general, the last start tried is STARTPOS +
3474 RANGE.
3475
3476 In REGS, return the indices of the virtual concatenation of STRING1
3477 and STRING2 that matched the entire BUFP->buffer and its contained
3478 subexpressions.
3479
3480 Do not consider matching one past the index STOP in the virtual
3481 concatenation of STRING1 and STRING2.
3482
3483 We return either the position in the strings at which the match was
3484 found, -1 if no match, or -2 if error (such as failure
3485 stack overflow). */
3486
3487 int
3488 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3489 struct re_pattern_buffer *bufp;
3490 const char *string1, *string2;
3491 int size1, size2;
3492 int startpos;
3493 int range;
3494 struct re_registers *regs;
3495 int stop;
3496 {
3497 int val;
3498 register char *fastmap = bufp->fastmap;
3499 register RE_TRANSLATE_TYPE translate = bufp->translate;
3500 int total_size = size1 + size2;
3501 int endpos = startpos + range;
3502
3503 /* Check for out-of-range STARTPOS. */
3504 if (startpos < 0 || startpos > total_size)
3505 return -1;
3506
3507 /* Fix up RANGE if it might eventually take us outside
3508 the virtual concatenation of STRING1 and STRING2.
3509 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3510 if (endpos < 0)
3511 range = 0 - startpos;
3512 else if (endpos > total_size)
3513 range = total_size - startpos;
3514
3515 /* If the search isn't to be a backwards one, don't waste time in a
3516 search for a pattern that must be anchored. */
3517 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
3518 {
3519 if (startpos > 0)
3520 return -1;
3521 else
3522 range = 1;
3523 }
3524
3525 #ifdef emacs
3526 /* In a forward search for something that starts with \=.
3527 don't keep searching past point. */
3528 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3529 {
3530 range = PT - startpos;
3531 if (range <= 0)
3532 return -1;
3533 }
3534 #endif /* emacs */
3535
3536 /* Update the fastmap now if not correct already. */
3537 if (fastmap && !bufp->fastmap_accurate)
3538 if (re_compile_fastmap (bufp) == -2)
3539 return -2;
3540
3541 /* Loop through the string, looking for a place to start matching. */
3542 for (;;)
3543 {
3544 /* If a fastmap is supplied, skip quickly over characters that
3545 cannot be the start of a match. If the pattern can match the
3546 null string, however, we don't need to skip characters; we want
3547 the first null string. */
3548 if (fastmap && startpos < total_size && !bufp->can_be_null)
3549 {
3550 if (range > 0) /* Searching forwards. */
3551 {
3552 register const char *d;
3553 register int lim = 0;
3554 int irange = range;
3555
3556 if (startpos < size1 && startpos + range >= size1)
3557 lim = range - (size1 - startpos);
3558
3559 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3560
3561 /* Written out as an if-else to avoid testing `translate'
3562 inside the loop. */
3563 if (translate)
3564 while (range > lim
3565 && !fastmap[(unsigned char)
3566 translate[(unsigned char) *d++]])
3567 range--;
3568 else
3569 while (range > lim && !fastmap[(unsigned char) *d++])
3570 range--;
3571
3572 startpos += irange - range;
3573 }
3574 else /* Searching backwards. */
3575 {
3576 register char c = (size1 == 0 || startpos >= size1
3577 ? string2[startpos - size1]
3578 : string1[startpos]);
3579
3580 if (!fastmap[(unsigned char) TRANSLATE (c)])
3581 goto advance;
3582 }
3583 }
3584
3585 /* If can't match the null string, and that's all we have left, fail. */
3586 if (range >= 0 && startpos == total_size && fastmap
3587 && !bufp->can_be_null)
3588 return -1;
3589
3590 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3591 startpos, regs, stop);
3592 #ifndef REGEX_MALLOC
3593 # ifdef C_ALLOCA
3594 alloca (0);
3595 # endif
3596 #endif
3597
3598 if (val >= 0)
3599 return startpos;
3600
3601 if (val == -2)
3602 return -2;
3603
3604 advance:
3605 if (!range)
3606 break;
3607 else if (range > 0)
3608 {
3609 range--;
3610 startpos++;
3611 }
3612 else
3613 {
3614 range++;
3615 startpos--;
3616 }
3617 }
3618 return -1;
3619 } /* re_search_2 */
3620 #ifdef _LIBC
3621 weak_alias (__re_search_2, re_search_2)
3622 #endif
3623 \f
3624 /* This converts PTR, a pointer into one of the search strings `string1'
3625 and `string2' into an offset from the beginning of that string. */
3626 #define POINTER_TO_OFFSET(ptr) \
3627 (FIRST_STRING_P (ptr) \
3628 ? ((regoff_t) ((ptr) - string1)) \
3629 : ((regoff_t) ((ptr) - string2 + size1)))
3630
3631 /* Macros for dealing with the split strings in re_match_2. */
3632
3633 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3634
3635 /* Call before fetching a character with *d. This switches over to
3636 string2 if necessary. */
3637 #define PREFETCH() \
3638 while (d == dend) \
3639 { \
3640 /* End of string2 => fail. */ \
3641 if (dend == end_match_2) \
3642 goto fail; \
3643 /* End of string1 => advance to string2. */ \
3644 d = string2; \
3645 dend = end_match_2; \
3646 }
3647
3648
3649 /* Test if at very beginning or at very end of the virtual concatenation
3650 of `string1' and `string2'. If only one string, it's `string2'. */
3651 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3652 #define AT_STRINGS_END(d) ((d) == end2)
3653
3654
3655 /* Test if D points to a character which is word-constituent. We have
3656 two special cases to check for: if past the end of string1, look at
3657 the first character in string2; and if before the beginning of
3658 string2, look at the last character in string1. */
3659 #define WORDCHAR_P(d) \
3660 (SYNTAX ((d) == end1 ? *string2 \
3661 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3662 == Sword)
3663
3664 /* Disabled due to a compiler bug -- see comment at case wordbound */
3665 #if 0
3666 /* Test if the character before D and the one at D differ with respect
3667 to being word-constituent. */
3668 #define AT_WORD_BOUNDARY(d) \
3669 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3670 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3671 #endif
3672
3673 /* Free everything we malloc. */
3674 #ifdef MATCH_MAY_ALLOCATE
3675 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3676 # define FREE_VARIABLES() \
3677 do { \
3678 REGEX_FREE_STACK (fail_stack.stack); \
3679 FREE_VAR (regstart); \
3680 FREE_VAR (regend); \
3681 FREE_VAR (old_regstart); \
3682 FREE_VAR (old_regend); \
3683 FREE_VAR (best_regstart); \
3684 FREE_VAR (best_regend); \
3685 FREE_VAR (reg_info); \
3686 FREE_VAR (reg_dummy); \
3687 FREE_VAR (reg_info_dummy); \
3688 } while (0)
3689 #else
3690 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3691 #endif /* not MATCH_MAY_ALLOCATE */
3692
3693 /* These values must meet several constraints. They must not be valid
3694 register values; since we have a limit of 255 registers (because
3695 we use only one byte in the pattern for the register number), we can
3696 use numbers larger than 255. They must differ by 1, because of
3697 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3698 be larger than the value for the highest register, so we do not try
3699 to actually save any registers when none are active. */
3700 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3701 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3702 \f
3703 /* Matching routines. */
3704
3705 #ifndef emacs /* Emacs never uses this. */
3706 /* re_match is like re_match_2 except it takes only a single string. */
3707
3708 int
3709 re_match (bufp, string, size, pos, regs)
3710 struct re_pattern_buffer *bufp;
3711 const char *string;
3712 int size, pos;
3713 struct re_registers *regs;
3714 {
3715 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3716 pos, regs, size);
3717 # ifndef REGEX_MALLOC
3718 # ifdef C_ALLOCA
3719 alloca (0);
3720 # endif
3721 # endif
3722 return result;
3723 }
3724 # ifdef _LIBC
3725 weak_alias (__re_match, re_match)
3726 # endif
3727 #endif /* not emacs */
3728
3729 static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3730 unsigned char *end,
3731 register_info_type *reg_info));
3732 static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3733 unsigned char *end,
3734 register_info_type *reg_info));
3735 static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3736 unsigned char *end,
3737 register_info_type *reg_info));
3738 static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3739 int len, char *translate));
3740
3741 /* re_match_2 matches the compiled pattern in BUFP against the
3742 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3743 and SIZE2, respectively). We start matching at POS, and stop
3744 matching at STOP.
3745
3746 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3747 store offsets for the substring each group matched in REGS. See the
3748 documentation for exactly how many groups we fill.
3749
3750 We return -1 if no match, -2 if an internal error (such as the
3751 failure stack overflowing). Otherwise, we return the length of the
3752 matched substring. */
3753
3754 int
3755 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3756 struct re_pattern_buffer *bufp;
3757 const char *string1, *string2;
3758 int size1, size2;
3759 int pos;
3760 struct re_registers *regs;
3761 int stop;
3762 {
3763 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3764 pos, regs, stop);
3765 #ifndef REGEX_MALLOC
3766 # ifdef C_ALLOCA
3767 alloca (0);
3768 # endif
3769 #endif
3770 return result;
3771 }
3772 #ifdef _LIBC
3773 weak_alias (__re_match_2, re_match_2)
3774 #endif
3775
3776 /* This is a separate function so that we can force an alloca cleanup
3777 afterwards. */
3778 static int
3779 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3780 struct re_pattern_buffer *bufp;
3781 const char *string1, *string2;
3782 int size1, size2;
3783 int pos;
3784 struct re_registers *regs;
3785 int stop;
3786 {
3787 /* General temporaries. */
3788 int mcnt;
3789 unsigned char *p1;
3790
3791 /* Just past the end of the corresponding string. */
3792 const char *end1, *end2;
3793
3794 /* Pointers into string1 and string2, just past the last characters in
3795 each to consider matching. */
3796 const char *end_match_1, *end_match_2;
3797
3798 /* Where we are in the data, and the end of the current string. */
3799 const char *d, *dend;
3800
3801 /* Where we are in the pattern, and the end of the pattern. */
3802 unsigned char *p = bufp->buffer;
3803 register unsigned char *pend = p + bufp->used;
3804
3805 /* Mark the opcode just after a start_memory, so we can test for an
3806 empty subpattern when we get to the stop_memory. */
3807 unsigned char *just_past_start_mem = 0;
3808
3809 /* We use this to map every character in the string. */
3810 RE_TRANSLATE_TYPE translate = bufp->translate;
3811
3812 /* Failure point stack. Each place that can handle a failure further
3813 down the line pushes a failure point on this stack. It consists of
3814 restart, regend, and reg_info for all registers corresponding to
3815 the subexpressions we're currently inside, plus the number of such
3816 registers, and, finally, two char *'s. The first char * is where
3817 to resume scanning the pattern; the second one is where to resume
3818 scanning the strings. If the latter is zero, the failure point is
3819 a ``dummy''; if a failure happens and the failure point is a dummy,
3820 it gets discarded and the next next one is tried. */
3821 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3822 fail_stack_type fail_stack;
3823 #endif
3824 #ifdef DEBUG
3825 static unsigned failure_id = 0;
3826 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3827 #endif
3828
3829 #ifdef REL_ALLOC
3830 /* This holds the pointer to the failure stack, when
3831 it is allocated relocatably. */
3832 fail_stack_elt_t *failure_stack_ptr;
3833 #endif
3834
3835 /* We fill all the registers internally, independent of what we
3836 return, for use in backreferences. The number here includes
3837 an element for register zero. */
3838 size_t num_regs = bufp->re_nsub + 1;
3839
3840 /* The currently active registers. */
3841 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3842 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3843
3844 /* Information on the contents of registers. These are pointers into
3845 the input strings; they record just what was matched (on this
3846 attempt) by a subexpression part of the pattern, that is, the
3847 regnum-th regstart pointer points to where in the pattern we began
3848 matching and the regnum-th regend points to right after where we
3849 stopped matching the regnum-th subexpression. (The zeroth register
3850 keeps track of what the whole pattern matches.) */
3851 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3852 const char **regstart, **regend;
3853 #endif
3854
3855 /* If a group that's operated upon by a repetition operator fails to
3856 match anything, then the register for its start will need to be
3857 restored because it will have been set to wherever in the string we
3858 are when we last see its open-group operator. Similarly for a
3859 register's end. */
3860 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3861 const char **old_regstart, **old_regend;
3862 #endif
3863
3864 /* The is_active field of reg_info helps us keep track of which (possibly
3865 nested) subexpressions we are currently in. The matched_something
3866 field of reg_info[reg_num] helps us tell whether or not we have
3867 matched any of the pattern so far this time through the reg_num-th
3868 subexpression. These two fields get reset each time through any
3869 loop their register is in. */
3870 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3871 register_info_type *reg_info;
3872 #endif
3873
3874 /* The following record the register info as found in the above
3875 variables when we find a match better than any we've seen before.
3876 This happens as we backtrack through the failure points, which in
3877 turn happens only if we have not yet matched the entire string. */
3878 unsigned best_regs_set = false;
3879 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3880 const char **best_regstart, **best_regend;
3881 #endif
3882
3883 /* Logically, this is `best_regend[0]'. But we don't want to have to
3884 allocate space for that if we're not allocating space for anything
3885 else (see below). Also, we never need info about register 0 for
3886 any of the other register vectors, and it seems rather a kludge to
3887 treat `best_regend' differently than the rest. So we keep track of
3888 the end of the best match so far in a separate variable. We
3889 initialize this to NULL so that when we backtrack the first time
3890 and need to test it, it's not garbage. */
3891 const char *match_end = NULL;
3892
3893 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3894 int set_regs_matched_done = 0;
3895
3896 /* Used when we pop values we don't care about. */
3897 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3898 const char **reg_dummy;
3899 register_info_type *reg_info_dummy;
3900 #endif
3901
3902 #ifdef DEBUG
3903 /* Counts the total number of registers pushed. */
3904 unsigned num_regs_pushed = 0;
3905 #endif
3906
3907 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3908
3909 INIT_FAIL_STACK ();
3910
3911 #ifdef MATCH_MAY_ALLOCATE
3912 /* Do not bother to initialize all the register variables if there are
3913 no groups in the pattern, as it takes a fair amount of time. If
3914 there are groups, we include space for register 0 (the whole
3915 pattern), even though we never use it, since it simplifies the
3916 array indexing. We should fix this. */
3917 if (bufp->re_nsub)
3918 {
3919 regstart = REGEX_TALLOC (num_regs, const char *);
3920 regend = REGEX_TALLOC (num_regs, const char *);
3921 old_regstart = REGEX_TALLOC (num_regs, const char *);
3922 old_regend = REGEX_TALLOC (num_regs, const char *);
3923 best_regstart = REGEX_TALLOC (num_regs, const char *);
3924 best_regend = REGEX_TALLOC (num_regs, const char *);
3925 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3926 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3927 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3928
3929 if (!(regstart && regend && old_regstart && old_regend && reg_info
3930 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3931 {
3932 FREE_VARIABLES ();
3933 return -2;
3934 }
3935 }
3936 else
3937 {
3938 /* We must initialize all our variables to NULL, so that
3939 `FREE_VARIABLES' doesn't try to free them. */
3940 regstart = regend = old_regstart = old_regend = best_regstart
3941 = best_regend = reg_dummy = NULL;
3942 reg_info = reg_info_dummy = (register_info_type *) NULL;
3943 }
3944 #endif /* MATCH_MAY_ALLOCATE */
3945
3946 /* The starting position is bogus. */
3947 if (pos < 0 || pos > size1 + size2)
3948 {
3949 FREE_VARIABLES ();
3950 return -1;
3951 }
3952
3953 /* Initialize subexpression text positions to -1 to mark ones that no
3954 start_memory/stop_memory has been seen for. Also initialize the
3955 register information struct. */
3956 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
3957 {
3958 regstart[mcnt] = regend[mcnt]
3959 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3960
3961 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3962 IS_ACTIVE (reg_info[mcnt]) = 0;
3963 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3964 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3965 }
3966
3967 /* We move `string1' into `string2' if the latter's empty -- but not if
3968 `string1' is null. */
3969 if (size2 == 0 && string1 != NULL)
3970 {
3971 string2 = string1;
3972 size2 = size1;
3973 string1 = 0;
3974 size1 = 0;
3975 }
3976 end1 = string1 + size1;
3977 end2 = string2 + size2;
3978
3979 /* Compute where to stop matching, within the two strings. */
3980 if (stop <= size1)
3981 {
3982 end_match_1 = string1 + stop;
3983 end_match_2 = string2;
3984 }
3985 else
3986 {
3987 end_match_1 = end1;
3988 end_match_2 = string2 + stop - size1;
3989 }
3990
3991 /* `p' scans through the pattern as `d' scans through the data.
3992 `dend' is the end of the input string that `d' points within. `d'
3993 is advanced into the following input string whenever necessary, but
3994 this happens before fetching; therefore, at the beginning of the
3995 loop, `d' can be pointing at the end of a string, but it cannot
3996 equal `string2'. */
3997 if (size1 > 0 && pos <= size1)
3998 {
3999 d = string1 + pos;
4000 dend = end_match_1;
4001 }
4002 else
4003 {
4004 d = string2 + pos - size1;
4005 dend = end_match_2;
4006 }
4007
4008 DEBUG_PRINT1 ("The compiled pattern is:\n");
4009 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4010 DEBUG_PRINT1 ("The string to match is: `");
4011 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4012 DEBUG_PRINT1 ("'\n");
4013
4014 /* This loops over pattern commands. It exits by returning from the
4015 function if the match is complete, or it drops through if the match
4016 fails at this starting point in the input data. */
4017 for (;;)
4018 {
4019 #ifdef _LIBC
4020 DEBUG_PRINT2 ("\n%p: ", p);
4021 #else
4022 DEBUG_PRINT2 ("\n0x%x: ", p);
4023 #endif
4024
4025 if (p == pend)
4026 { /* End of pattern means we might have succeeded. */
4027 DEBUG_PRINT1 ("end of pattern ... ");
4028
4029 /* If we haven't matched the entire string, and we want the
4030 longest match, try backtracking. */
4031 if (d != end_match_2)
4032 {
4033 /* 1 if this match ends in the same string (string1 or string2)
4034 as the best previous match. */
4035 boolean same_str_p = (FIRST_STRING_P (match_end)
4036 == MATCHING_IN_FIRST_STRING);
4037 /* 1 if this match is the best seen so far. */
4038 boolean best_match_p;
4039
4040 /* AIX compiler got confused when this was combined
4041 with the previous declaration. */
4042 if (same_str_p)
4043 best_match_p = d > match_end;
4044 else
4045 best_match_p = !MATCHING_IN_FIRST_STRING;
4046
4047 DEBUG_PRINT1 ("backtracking.\n");
4048
4049 if (!FAIL_STACK_EMPTY ())
4050 { /* More failure points to try. */
4051
4052 /* If exceeds best match so far, save it. */
4053 if (!best_regs_set || best_match_p)
4054 {
4055 best_regs_set = true;
4056 match_end = d;
4057
4058 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4059
4060 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4061 {
4062 best_regstart[mcnt] = regstart[mcnt];
4063 best_regend[mcnt] = regend[mcnt];
4064 }
4065 }
4066 goto fail;
4067 }
4068
4069 /* If no failure points, don't restore garbage. And if
4070 last match is real best match, don't restore second
4071 best one. */
4072 else if (best_regs_set && !best_match_p)
4073 {
4074 restore_best_regs:
4075 /* Restore best match. It may happen that `dend ==
4076 end_match_1' while the restored d is in string2.
4077 For example, the pattern `x.*y.*z' against the
4078 strings `x-' and `y-z-', if the two strings are
4079 not consecutive in memory. */
4080 DEBUG_PRINT1 ("Restoring best registers.\n");
4081
4082 d = match_end;
4083 dend = ((d >= string1 && d <= end1)
4084 ? end_match_1 : end_match_2);
4085
4086 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4087 {
4088 regstart[mcnt] = best_regstart[mcnt];
4089 regend[mcnt] = best_regend[mcnt];
4090 }
4091 }
4092 } /* d != end_match_2 */
4093
4094 succeed_label:
4095 DEBUG_PRINT1 ("Accepting match.\n");
4096
4097 /* If caller wants register contents data back, do it. */
4098 if (regs && !bufp->no_sub)
4099 {
4100 /* Have the register data arrays been allocated? */
4101 if (bufp->regs_allocated == REGS_UNALLOCATED)
4102 { /* No. So allocate them with malloc. We need one
4103 extra element beyond `num_regs' for the `-1' marker
4104 GNU code uses. */
4105 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4106 regs->start = TALLOC (regs->num_regs, regoff_t);
4107 regs->end = TALLOC (regs->num_regs, regoff_t);
4108 if (regs->start == NULL || regs->end == NULL)
4109 {
4110 FREE_VARIABLES ();
4111 return -2;
4112 }
4113 bufp->regs_allocated = REGS_REALLOCATE;
4114 }
4115 else if (bufp->regs_allocated == REGS_REALLOCATE)
4116 { /* Yes. If we need more elements than were already
4117 allocated, reallocate them. If we need fewer, just
4118 leave it alone. */
4119 if (regs->num_regs < num_regs + 1)
4120 {
4121 regs->num_regs = num_regs + 1;
4122 RETALLOC (regs->start, regs->num_regs, regoff_t);
4123 RETALLOC (regs->end, regs->num_regs, regoff_t);
4124 if (regs->start == NULL || regs->end == NULL)
4125 {
4126 FREE_VARIABLES ();
4127 return -2;
4128 }
4129 }
4130 }
4131 else
4132 {
4133 /* These braces fend off a "empty body in an else-statement"
4134 warning under GCC when assert expands to nothing. */
4135 assert (bufp->regs_allocated == REGS_FIXED);
4136 }
4137
4138 /* Convert the pointer data in `regstart' and `regend' to
4139 indices. Register zero has to be set differently,
4140 since we haven't kept track of any info for it. */
4141 if (regs->num_regs > 0)
4142 {
4143 regs->start[0] = pos;
4144 regs->end[0] = (MATCHING_IN_FIRST_STRING
4145 ? ((regoff_t) (d - string1))
4146 : ((regoff_t) (d - string2 + size1)));
4147 }
4148
4149 /* Go through the first `min (num_regs, regs->num_regs)'
4150 registers, since that is all we initialized. */
4151 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4152 mcnt++)
4153 {
4154 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4155 regs->start[mcnt] = regs->end[mcnt] = -1;
4156 else
4157 {
4158 regs->start[mcnt]
4159 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4160 regs->end[mcnt]
4161 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4162 }
4163 }
4164
4165 /* If the regs structure we return has more elements than
4166 were in the pattern, set the extra elements to -1. If
4167 we (re)allocated the registers, this is the case,
4168 because we always allocate enough to have at least one
4169 -1 at the end. */
4170 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4171 regs->start[mcnt] = regs->end[mcnt] = -1;
4172 } /* regs && !bufp->no_sub */
4173
4174 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4175 nfailure_points_pushed, nfailure_points_popped,
4176 nfailure_points_pushed - nfailure_points_popped);
4177 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4178
4179 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4180 ? string1
4181 : string2 - size1);
4182
4183 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4184
4185 FREE_VARIABLES ();
4186 return mcnt;
4187 }
4188
4189 /* Otherwise match next pattern command. */
4190 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4191 {
4192 /* Ignore these. Used to ignore the n of succeed_n's which
4193 currently have n == 0. */
4194 case no_op:
4195 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4196 break;
4197
4198 case succeed:
4199 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4200 goto succeed_label;
4201
4202 /* Match the next n pattern characters exactly. The following
4203 byte in the pattern defines n, and the n bytes after that
4204 are the characters to match. */
4205 case exactn:
4206 mcnt = *p++;
4207 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4208
4209 /* This is written out as an if-else so we don't waste time
4210 testing `translate' inside the loop. */
4211 if (translate)
4212 {
4213 do
4214 {
4215 PREFETCH ();
4216 if ((unsigned char) translate[(unsigned char) *d++]
4217 != (unsigned char) *p++)
4218 goto fail;
4219 }
4220 while (--mcnt);
4221 }
4222 else
4223 {
4224 do
4225 {
4226 PREFETCH ();
4227 if (*d++ != (char) *p++) goto fail;
4228 }
4229 while (--mcnt);
4230 }
4231 SET_REGS_MATCHED ();
4232 break;
4233
4234
4235 /* Match any character except possibly a newline or a null. */
4236 case anychar:
4237 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4238
4239 PREFETCH ();
4240
4241 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4242 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4243 goto fail;
4244
4245 SET_REGS_MATCHED ();
4246 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4247 d++;
4248 break;
4249
4250
4251 case charset:
4252 case charset_not:
4253 {
4254 register unsigned char c;
4255 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4256
4257 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4258
4259 PREFETCH ();
4260 c = TRANSLATE (*d); /* The character to match. */
4261
4262 /* Cast to `unsigned' instead of `unsigned char' in case the
4263 bit list is a full 32 bytes long. */
4264 if (c < (unsigned) (*p * BYTEWIDTH)
4265 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4266 not = !not;
4267
4268 p += 1 + *p;
4269
4270 if (!not) goto fail;
4271
4272 SET_REGS_MATCHED ();
4273 d++;
4274 break;
4275 }
4276
4277
4278 /* The beginning of a group is represented by start_memory.
4279 The arguments are the register number in the next byte, and the
4280 number of groups inner to this one in the next. The text
4281 matched within the group is recorded (in the internal
4282 registers data structure) under the register number. */
4283 case start_memory:
4284 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4285
4286 /* Find out if this group can match the empty string. */
4287 p1 = p; /* To send to group_match_null_string_p. */
4288
4289 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4290 REG_MATCH_NULL_STRING_P (reg_info[*p])
4291 = group_match_null_string_p (&p1, pend, reg_info);
4292
4293 /* Save the position in the string where we were the last time
4294 we were at this open-group operator in case the group is
4295 operated upon by a repetition operator, e.g., with `(a*)*b'
4296 against `ab'; then we want to ignore where we are now in
4297 the string in case this attempt to match fails. */
4298 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4299 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4300 : regstart[*p];
4301 DEBUG_PRINT2 (" old_regstart: %d\n",
4302 POINTER_TO_OFFSET (old_regstart[*p]));
4303
4304 regstart[*p] = d;
4305 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4306
4307 IS_ACTIVE (reg_info[*p]) = 1;
4308 MATCHED_SOMETHING (reg_info[*p]) = 0;
4309
4310 /* Clear this whenever we change the register activity status. */
4311 set_regs_matched_done = 0;
4312
4313 /* This is the new highest active register. */
4314 highest_active_reg = *p;
4315
4316 /* If nothing was active before, this is the new lowest active
4317 register. */
4318 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4319 lowest_active_reg = *p;
4320
4321 /* Move past the register number and inner group count. */
4322 p += 2;
4323 just_past_start_mem = p;
4324
4325 break;
4326
4327
4328 /* The stop_memory opcode represents the end of a group. Its
4329 arguments are the same as start_memory's: the register
4330 number, and the number of inner groups. */
4331 case stop_memory:
4332 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4333
4334 /* We need to save the string position the last time we were at
4335 this close-group operator in case the group is operated
4336 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4337 against `aba'; then we want to ignore where we are now in
4338 the string in case this attempt to match fails. */
4339 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4340 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4341 : regend[*p];
4342 DEBUG_PRINT2 (" old_regend: %d\n",
4343 POINTER_TO_OFFSET (old_regend[*p]));
4344
4345 regend[*p] = d;
4346 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4347
4348 /* This register isn't active anymore. */
4349 IS_ACTIVE (reg_info[*p]) = 0;
4350
4351 /* Clear this whenever we change the register activity status. */
4352 set_regs_matched_done = 0;
4353
4354 /* If this was the only register active, nothing is active
4355 anymore. */
4356 if (lowest_active_reg == highest_active_reg)
4357 {
4358 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4359 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4360 }
4361 else
4362 { /* We must scan for the new highest active register, since
4363 it isn't necessarily one less than now: consider
4364 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4365 new highest active register is 1. */
4366 unsigned char r = *p - 1;
4367 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4368 r--;
4369
4370 /* If we end up at register zero, that means that we saved
4371 the registers as the result of an `on_failure_jump', not
4372 a `start_memory', and we jumped to past the innermost
4373 `stop_memory'. For example, in ((.)*) we save
4374 registers 1 and 2 as a result of the *, but when we pop
4375 back to the second ), we are at the stop_memory 1.
4376 Thus, nothing is active. */
4377 if (r == 0)
4378 {
4379 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4380 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4381 }
4382 else
4383 highest_active_reg = r;
4384 }
4385
4386 /* If just failed to match something this time around with a
4387 group that's operated on by a repetition operator, try to
4388 force exit from the ``loop'', and restore the register
4389 information for this group that we had before trying this
4390 last match. */
4391 if ((!MATCHED_SOMETHING (reg_info[*p])
4392 || just_past_start_mem == p - 1)
4393 && (p + 2) < pend)
4394 {
4395 boolean is_a_jump_n = false;
4396
4397 p1 = p + 2;
4398 mcnt = 0;
4399 switch ((re_opcode_t) *p1++)
4400 {
4401 case jump_n:
4402 is_a_jump_n = true;
4403 case pop_failure_jump:
4404 case maybe_pop_jump:
4405 case jump:
4406 case dummy_failure_jump:
4407 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4408 if (is_a_jump_n)
4409 p1 += 2;
4410 break;
4411
4412 default:
4413 /* do nothing */ ;
4414 }
4415 p1 += mcnt;
4416
4417 /* If the next operation is a jump backwards in the pattern
4418 to an on_failure_jump right before the start_memory
4419 corresponding to this stop_memory, exit from the loop
4420 by forcing a failure after pushing on the stack the
4421 on_failure_jump's jump in the pattern, and d. */
4422 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4423 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4424 {
4425 /* If this group ever matched anything, then restore
4426 what its registers were before trying this last
4427 failed match, e.g., with `(a*)*b' against `ab' for
4428 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4429 against `aba' for regend[3].
4430
4431 Also restore the registers for inner groups for,
4432 e.g., `((a*)(b*))*' against `aba' (register 3 would
4433 otherwise get trashed). */
4434
4435 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4436 {
4437 unsigned r;
4438
4439 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4440
4441 /* Restore this and inner groups' (if any) registers. */
4442 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4443 r++)
4444 {
4445 regstart[r] = old_regstart[r];
4446
4447 /* xx why this test? */
4448 if (old_regend[r] >= regstart[r])
4449 regend[r] = old_regend[r];
4450 }
4451 }
4452 p1++;
4453 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4454 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4455
4456 goto fail;
4457 }
4458 }
4459
4460 /* Move past the register number and the inner group count. */
4461 p += 2;
4462 break;
4463
4464
4465 /* \<digit> has been turned into a `duplicate' command which is
4466 followed by the numeric value of <digit> as the register number. */
4467 case duplicate:
4468 {
4469 register const char *d2, *dend2;
4470 int regno = *p++; /* Get which register to match against. */
4471 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4472
4473 /* Can't back reference a group which we've never matched. */
4474 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4475 goto fail;
4476
4477 /* Where in input to try to start matching. */
4478 d2 = regstart[regno];
4479
4480 /* Where to stop matching; if both the place to start and
4481 the place to stop matching are in the same string, then
4482 set to the place to stop, otherwise, for now have to use
4483 the end of the first string. */
4484
4485 dend2 = ((FIRST_STRING_P (regstart[regno])
4486 == FIRST_STRING_P (regend[regno]))
4487 ? regend[regno] : end_match_1);
4488 for (;;)
4489 {
4490 /* If necessary, advance to next segment in register
4491 contents. */
4492 while (d2 == dend2)
4493 {
4494 if (dend2 == end_match_2) break;
4495 if (dend2 == regend[regno]) break;
4496
4497 /* End of string1 => advance to string2. */
4498 d2 = string2;
4499 dend2 = regend[regno];
4500 }
4501 /* At end of register contents => success */
4502 if (d2 == dend2) break;
4503
4504 /* If necessary, advance to next segment in data. */
4505 PREFETCH ();
4506
4507 /* How many characters left in this segment to match. */
4508 mcnt = dend - d;
4509
4510 /* Want how many consecutive characters we can match in
4511 one shot, so, if necessary, adjust the count. */
4512 if (mcnt > dend2 - d2)
4513 mcnt = dend2 - d2;
4514
4515 /* Compare that many; failure if mismatch, else move
4516 past them. */
4517 if (translate
4518 ? bcmp_translate (d, d2, mcnt, translate)
4519 : memcmp (d, d2, mcnt))
4520 goto fail;
4521 d += mcnt, d2 += mcnt;
4522
4523 /* Do this because we've match some characters. */
4524 SET_REGS_MATCHED ();
4525 }
4526 }
4527 break;
4528
4529
4530 /* begline matches the empty string at the beginning of the string
4531 (unless `not_bol' is set in `bufp'), and, if
4532 `newline_anchor' is set, after newlines. */
4533 case begline:
4534 DEBUG_PRINT1 ("EXECUTING begline.\n");
4535
4536 if (AT_STRINGS_BEG (d))
4537 {
4538 if (!bufp->not_bol) break;
4539 }
4540 else if (d[-1] == '\n' && bufp->newline_anchor)
4541 {
4542 break;
4543 }
4544 /* In all other cases, we fail. */
4545 goto fail;
4546
4547
4548 /* endline is the dual of begline. */
4549 case endline:
4550 DEBUG_PRINT1 ("EXECUTING endline.\n");
4551
4552 if (AT_STRINGS_END (d))
4553 {
4554 if (!bufp->not_eol) break;
4555 }
4556
4557 /* We have to ``prefetch'' the next character. */
4558 else if ((d == end1 ? *string2 : *d) == '\n'
4559 && bufp->newline_anchor)
4560 {
4561 break;
4562 }
4563 goto fail;
4564
4565
4566 /* Match at the very beginning of the data. */
4567 case begbuf:
4568 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4569 if (AT_STRINGS_BEG (d))
4570 break;
4571 goto fail;
4572
4573
4574 /* Match at the very end of the data. */
4575 case endbuf:
4576 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4577 if (AT_STRINGS_END (d))
4578 break;
4579 goto fail;
4580
4581
4582 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4583 pushes NULL as the value for the string on the stack. Then
4584 `pop_failure_point' will keep the current value for the
4585 string, instead of restoring it. To see why, consider
4586 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4587 then the . fails against the \n. But the next thing we want
4588 to do is match the \n against the \n; if we restored the
4589 string value, we would be back at the foo.
4590
4591 Because this is used only in specific cases, we don't need to
4592 check all the things that `on_failure_jump' does, to make
4593 sure the right things get saved on the stack. Hence we don't
4594 share its code. The only reason to push anything on the
4595 stack at all is that otherwise we would have to change
4596 `anychar's code to do something besides goto fail in this
4597 case; that seems worse than this. */
4598 case on_failure_keep_string_jump:
4599 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4600
4601 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4602 #ifdef _LIBC
4603 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4604 #else
4605 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4606 #endif
4607
4608 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4609 break;
4610
4611
4612 /* Uses of on_failure_jump:
4613
4614 Each alternative starts with an on_failure_jump that points
4615 to the beginning of the next alternative. Each alternative
4616 except the last ends with a jump that in effect jumps past
4617 the rest of the alternatives. (They really jump to the
4618 ending jump of the following alternative, because tensioning
4619 these jumps is a hassle.)
4620
4621 Repeats start with an on_failure_jump that points past both
4622 the repetition text and either the following jump or
4623 pop_failure_jump back to this on_failure_jump. */
4624 case on_failure_jump:
4625 on_failure:
4626 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4627
4628 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4629 #ifdef _LIBC
4630 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4631 #else
4632 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4633 #endif
4634
4635 /* If this on_failure_jump comes right before a group (i.e.,
4636 the original * applied to a group), save the information
4637 for that group and all inner ones, so that if we fail back
4638 to this point, the group's information will be correct.
4639 For example, in \(a*\)*\1, we need the preceding group,
4640 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4641
4642 /* We can't use `p' to check ahead because we push
4643 a failure point to `p + mcnt' after we do this. */
4644 p1 = p;
4645
4646 /* We need to skip no_op's before we look for the
4647 start_memory in case this on_failure_jump is happening as
4648 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4649 against aba. */
4650 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4651 p1++;
4652
4653 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4654 {
4655 /* We have a new highest active register now. This will
4656 get reset at the start_memory we are about to get to,
4657 but we will have saved all the registers relevant to
4658 this repetition op, as described above. */
4659 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4660 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4661 lowest_active_reg = *(p1 + 1);
4662 }
4663
4664 DEBUG_PRINT1 (":\n");
4665 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4666 break;
4667
4668
4669 /* A smart repeat ends with `maybe_pop_jump'.
4670 We change it to either `pop_failure_jump' or `jump'. */
4671 case maybe_pop_jump:
4672 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4673 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4674 {
4675 register unsigned char *p2 = p;
4676
4677 /* Compare the beginning of the repeat with what in the
4678 pattern follows its end. If we can establish that there
4679 is nothing that they would both match, i.e., that we
4680 would have to backtrack because of (as in, e.g., `a*a')
4681 then we can change to pop_failure_jump, because we'll
4682 never have to backtrack.
4683
4684 This is not true in the case of alternatives: in
4685 `(a|ab)*' we do need to backtrack to the `ab' alternative
4686 (e.g., if the string was `ab'). But instead of trying to
4687 detect that here, the alternative has put on a dummy
4688 failure point which is what we will end up popping. */
4689
4690 /* Skip over open/close-group commands.
4691 If what follows this loop is a ...+ construct,
4692 look at what begins its body, since we will have to
4693 match at least one of that. */
4694 while (1)
4695 {
4696 if (p2 + 2 < pend
4697 && ((re_opcode_t) *p2 == stop_memory
4698 || (re_opcode_t) *p2 == start_memory))
4699 p2 += 3;
4700 else if (p2 + 6 < pend
4701 && (re_opcode_t) *p2 == dummy_failure_jump)
4702 p2 += 6;
4703 else
4704 break;
4705 }
4706
4707 p1 = p + mcnt;
4708 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4709 to the `maybe_finalize_jump' of this case. Examine what
4710 follows. */
4711
4712 /* If we're at the end of the pattern, we can change. */
4713 if (p2 == pend)
4714 {
4715 /* Consider what happens when matching ":\(.*\)"
4716 against ":/". I don't really understand this code
4717 yet. */
4718 p[-3] = (unsigned char) pop_failure_jump;
4719 DEBUG_PRINT1
4720 (" End of pattern: change to `pop_failure_jump'.\n");
4721 }
4722
4723 else if ((re_opcode_t) *p2 == exactn
4724 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4725 {
4726 register unsigned char c
4727 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4728
4729 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4730 {
4731 p[-3] = (unsigned char) pop_failure_jump;
4732 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4733 c, p1[5]);
4734 }
4735
4736 else if ((re_opcode_t) p1[3] == charset
4737 || (re_opcode_t) p1[3] == charset_not)
4738 {
4739 int not = (re_opcode_t) p1[3] == charset_not;
4740
4741 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4742 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4743 not = !not;
4744
4745 /* `not' is equal to 1 if c would match, which means
4746 that we can't change to pop_failure_jump. */
4747 if (!not)
4748 {
4749 p[-3] = (unsigned char) pop_failure_jump;
4750 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4751 }
4752 }
4753 }
4754 else if ((re_opcode_t) *p2 == charset)
4755 {
4756 #ifdef DEBUG
4757 register unsigned char c
4758 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4759 #endif
4760
4761 #if 0
4762 if ((re_opcode_t) p1[3] == exactn
4763 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4764 && (p2[2 + p1[5] / BYTEWIDTH]
4765 & (1 << (p1[5] % BYTEWIDTH)))))
4766 #else
4767 if ((re_opcode_t) p1[3] == exactn
4768 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4769 && (p2[2 + p1[4] / BYTEWIDTH]
4770 & (1 << (p1[4] % BYTEWIDTH)))))
4771 #endif
4772 {
4773 p[-3] = (unsigned char) pop_failure_jump;
4774 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4775 c, p1[5]);
4776 }
4777
4778 else if ((re_opcode_t) p1[3] == charset_not)
4779 {
4780 int idx;
4781 /* We win if the charset_not inside the loop
4782 lists every character listed in the charset after. */
4783 for (idx = 0; idx < (int) p2[1]; idx++)
4784 if (! (p2[2 + idx] == 0
4785 || (idx < (int) p1[4]
4786 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4787 break;
4788
4789 if (idx == p2[1])
4790 {
4791 p[-3] = (unsigned char) pop_failure_jump;
4792 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4793 }
4794 }
4795 else if ((re_opcode_t) p1[3] == charset)
4796 {
4797 int idx;
4798 /* We win if the charset inside the loop
4799 has no overlap with the one after the loop. */
4800 for (idx = 0;
4801 idx < (int) p2[1] && idx < (int) p1[4];
4802 idx++)
4803 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4804 break;
4805
4806 if (idx == p2[1] || idx == p1[4])
4807 {
4808 p[-3] = (unsigned char) pop_failure_jump;
4809 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4810 }
4811 }
4812 }
4813 }
4814 p -= 2; /* Point at relative address again. */
4815 if ((re_opcode_t) p[-1] != pop_failure_jump)
4816 {
4817 p[-1] = (unsigned char) jump;
4818 DEBUG_PRINT1 (" Match => jump.\n");
4819 goto unconditional_jump;
4820 }
4821 /* Note fall through. */
4822
4823
4824 /* The end of a simple repeat has a pop_failure_jump back to
4825 its matching on_failure_jump, where the latter will push a
4826 failure point. The pop_failure_jump takes off failure
4827 points put on by this pop_failure_jump's matching
4828 on_failure_jump; we got through the pattern to here from the
4829 matching on_failure_jump, so didn't fail. */
4830 case pop_failure_jump:
4831 {
4832 /* We need to pass separate storage for the lowest and
4833 highest registers, even though we don't care about the
4834 actual values. Otherwise, we will restore only one
4835 register from the stack, since lowest will == highest in
4836 `pop_failure_point'. */
4837 active_reg_t dummy_low_reg, dummy_high_reg;
4838 unsigned char *pdummy;
4839 const char *sdummy;
4840
4841 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4842 POP_FAILURE_POINT (sdummy, pdummy,
4843 dummy_low_reg, dummy_high_reg,
4844 reg_dummy, reg_dummy, reg_info_dummy);
4845 }
4846 /* Note fall through. */
4847
4848 unconditional_jump:
4849 #ifdef _LIBC
4850 DEBUG_PRINT2 ("\n%p: ", p);
4851 #else
4852 DEBUG_PRINT2 ("\n0x%x: ", p);
4853 #endif
4854 /* Note fall through. */
4855
4856 /* Unconditionally jump (without popping any failure points). */
4857 case jump:
4858 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4859 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4860 p += mcnt; /* Do the jump. */
4861 #ifdef _LIBC
4862 DEBUG_PRINT2 ("(to %p).\n", p);
4863 #else
4864 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4865 #endif
4866 break;
4867
4868
4869 /* We need this opcode so we can detect where alternatives end
4870 in `group_match_null_string_p' et al. */
4871 case jump_past_alt:
4872 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4873 goto unconditional_jump;
4874
4875
4876 /* Normally, the on_failure_jump pushes a failure point, which
4877 then gets popped at pop_failure_jump. We will end up at
4878 pop_failure_jump, also, and with a pattern of, say, `a+', we
4879 are skipping over the on_failure_jump, so we have to push
4880 something meaningless for pop_failure_jump to pop. */
4881 case dummy_failure_jump:
4882 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4883 /* It doesn't matter what we push for the string here. What
4884 the code at `fail' tests is the value for the pattern. */
4885 PUSH_FAILURE_POINT (NULL, NULL, -2);
4886 goto unconditional_jump;
4887
4888
4889 /* At the end of an alternative, we need to push a dummy failure
4890 point in case we are followed by a `pop_failure_jump', because
4891 we don't want the failure point for the alternative to be
4892 popped. For example, matching `(a|ab)*' against `aab'
4893 requires that we match the `ab' alternative. */
4894 case push_dummy_failure:
4895 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4896 /* See comments just above at `dummy_failure_jump' about the
4897 two zeroes. */
4898 PUSH_FAILURE_POINT (NULL, NULL, -2);
4899 break;
4900
4901 /* Have to succeed matching what follows at least n times.
4902 After that, handle like `on_failure_jump'. */
4903 case succeed_n:
4904 EXTRACT_NUMBER (mcnt, p + 2);
4905 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4906
4907 assert (mcnt >= 0);
4908 /* Originally, this is how many times we HAVE to succeed. */
4909 if (mcnt > 0)
4910 {
4911 mcnt--;
4912 p += 2;
4913 STORE_NUMBER_AND_INCR (p, mcnt);
4914 #ifdef _LIBC
4915 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4916 #else
4917 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4918 #endif
4919 }
4920 else if (mcnt == 0)
4921 {
4922 #ifdef _LIBC
4923 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
4924 #else
4925 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4926 #endif
4927 p[2] = (unsigned char) no_op;
4928 p[3] = (unsigned char) no_op;
4929 goto on_failure;
4930 }
4931 break;
4932
4933 case jump_n:
4934 EXTRACT_NUMBER (mcnt, p + 2);
4935 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4936
4937 /* Originally, this is how many times we CAN jump. */
4938 if (mcnt)
4939 {
4940 mcnt--;
4941 STORE_NUMBER (p + 2, mcnt);
4942 #ifdef _LIBC
4943 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
4944 #else
4945 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
4946 #endif
4947 goto unconditional_jump;
4948 }
4949 /* If don't have to jump any more, skip over the rest of command. */
4950 else
4951 p += 4;
4952 break;
4953
4954 case set_number_at:
4955 {
4956 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4957
4958 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4959 p1 = p + mcnt;
4960 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4961 #ifdef _LIBC
4962 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
4963 #else
4964 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4965 #endif
4966 STORE_NUMBER (p1, mcnt);
4967 break;
4968 }
4969
4970 #if 0
4971 /* The DEC Alpha C compiler 3.x generates incorrect code for the
4972 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4973 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4974 macro and introducing temporary variables works around the bug. */
4975
4976 case wordbound:
4977 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4978 if (AT_WORD_BOUNDARY (d))
4979 break;
4980 goto fail;
4981
4982 case notwordbound:
4983 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4984 if (AT_WORD_BOUNDARY (d))
4985 goto fail;
4986 break;
4987 #else
4988 case wordbound:
4989 {
4990 boolean prevchar, thischar;
4991
4992 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4993 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
4994 break;
4995
4996 prevchar = WORDCHAR_P (d - 1);
4997 thischar = WORDCHAR_P (d);
4998 if (prevchar != thischar)
4999 break;
5000 goto fail;
5001 }
5002
5003 case notwordbound:
5004 {
5005 boolean prevchar, thischar;
5006
5007 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5008 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5009 goto fail;
5010
5011 prevchar = WORDCHAR_P (d - 1);
5012 thischar = WORDCHAR_P (d);
5013 if (prevchar != thischar)
5014 goto fail;
5015 break;
5016 }
5017 #endif
5018
5019 case wordbeg:
5020 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5021 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5022 break;
5023 goto fail;
5024
5025 case wordend:
5026 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5027 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5028 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5029 break;
5030 goto fail;
5031
5032 #ifdef emacs
5033 case before_dot:
5034 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5035 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5036 goto fail;
5037 break;
5038
5039 case at_dot:
5040 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5041 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5042 goto fail;
5043 break;
5044
5045 case after_dot:
5046 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5047 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5048 goto fail;
5049 break;
5050
5051 case syntaxspec:
5052 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5053 mcnt = *p++;
5054 goto matchsyntax;
5055
5056 case wordchar:
5057 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5058 mcnt = (int) Sword;
5059 matchsyntax:
5060 PREFETCH ();
5061 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5062 d++;
5063 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5064 goto fail;
5065 SET_REGS_MATCHED ();
5066 break;
5067
5068 case notsyntaxspec:
5069 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5070 mcnt = *p++;
5071 goto matchnotsyntax;
5072
5073 case notwordchar:
5074 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5075 mcnt = (int) Sword;
5076 matchnotsyntax:
5077 PREFETCH ();
5078 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5079 d++;
5080 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5081 goto fail;
5082 SET_REGS_MATCHED ();
5083 break;
5084
5085 #else /* not emacs */
5086 case wordchar:
5087 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5088 PREFETCH ();
5089 if (!WORDCHAR_P (d))
5090 goto fail;
5091 SET_REGS_MATCHED ();
5092 d++;
5093 break;
5094
5095 case notwordchar:
5096 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5097 PREFETCH ();
5098 if (WORDCHAR_P (d))
5099 goto fail;
5100 SET_REGS_MATCHED ();
5101 d++;
5102 break;
5103 #endif /* not emacs */
5104
5105 default:
5106 abort ();
5107 }
5108 continue; /* Successfully executed one pattern command; keep going. */
5109
5110
5111 /* We goto here if a matching operation fails. */
5112 fail:
5113 if (!FAIL_STACK_EMPTY ())
5114 { /* A restart point is known. Restore to that state. */
5115 DEBUG_PRINT1 ("\nFAIL:\n");
5116 POP_FAILURE_POINT (d, p,
5117 lowest_active_reg, highest_active_reg,
5118 regstart, regend, reg_info);
5119
5120 /* If this failure point is a dummy, try the next one. */
5121 if (!p)
5122 goto fail;
5123
5124 /* If we failed to the end of the pattern, don't examine *p. */
5125 assert (p <= pend);
5126 if (p < pend)
5127 {
5128 boolean is_a_jump_n = false;
5129
5130 /* If failed to a backwards jump that's part of a repetition
5131 loop, need to pop this failure point and use the next one. */
5132 switch ((re_opcode_t) *p)
5133 {
5134 case jump_n:
5135 is_a_jump_n = true;
5136 case maybe_pop_jump:
5137 case pop_failure_jump:
5138 case jump:
5139 p1 = p + 1;
5140 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5141 p1 += mcnt;
5142
5143 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5144 || (!is_a_jump_n
5145 && (re_opcode_t) *p1 == on_failure_jump))
5146 goto fail;
5147 break;
5148 default:
5149 /* do nothing */ ;
5150 }
5151 }
5152
5153 if (d >= string1 && d <= end1)
5154 dend = end_match_1;
5155 }
5156 else
5157 break; /* Matching at this starting point really fails. */
5158 } /* for (;;) */
5159
5160 if (best_regs_set)
5161 goto restore_best_regs;
5162
5163 FREE_VARIABLES ();
5164
5165 return -1; /* Failure to match. */
5166 } /* re_match_2 */
5167 \f
5168 /* Subroutine definitions for re_match_2. */
5169
5170
5171 /* We are passed P pointing to a register number after a start_memory.
5172
5173 Return true if the pattern up to the corresponding stop_memory can
5174 match the empty string, and false otherwise.
5175
5176 If we find the matching stop_memory, sets P to point to one past its number.
5177 Otherwise, sets P to an undefined byte less than or equal to END.
5178
5179 We don't handle duplicates properly (yet). */
5180
5181 static boolean
5182 group_match_null_string_p (p, end, reg_info)
5183 unsigned char **p, *end;
5184 register_info_type *reg_info;
5185 {
5186 int mcnt;
5187 /* Point to after the args to the start_memory. */
5188 unsigned char *p1 = *p + 2;
5189
5190 while (p1 < end)
5191 {
5192 /* Skip over opcodes that can match nothing, and return true or
5193 false, as appropriate, when we get to one that can't, or to the
5194 matching stop_memory. */
5195
5196 switch ((re_opcode_t) *p1)
5197 {
5198 /* Could be either a loop or a series of alternatives. */
5199 case on_failure_jump:
5200 p1++;
5201 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5202
5203 /* If the next operation is not a jump backwards in the
5204 pattern. */
5205
5206 if (mcnt >= 0)
5207 {
5208 /* Go through the on_failure_jumps of the alternatives,
5209 seeing if any of the alternatives cannot match nothing.
5210 The last alternative starts with only a jump,
5211 whereas the rest start with on_failure_jump and end
5212 with a jump, e.g., here is the pattern for `a|b|c':
5213
5214 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5215 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5216 /exactn/1/c
5217
5218 So, we have to first go through the first (n-1)
5219 alternatives and then deal with the last one separately. */
5220
5221
5222 /* Deal with the first (n-1) alternatives, which start
5223 with an on_failure_jump (see above) that jumps to right
5224 past a jump_past_alt. */
5225
5226 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5227 {
5228 /* `mcnt' holds how many bytes long the alternative
5229 is, including the ending `jump_past_alt' and
5230 its number. */
5231
5232 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5233 reg_info))
5234 return false;
5235
5236 /* Move to right after this alternative, including the
5237 jump_past_alt. */
5238 p1 += mcnt;
5239
5240 /* Break if it's the beginning of an n-th alternative
5241 that doesn't begin with an on_failure_jump. */
5242 if ((re_opcode_t) *p1 != on_failure_jump)
5243 break;
5244
5245 /* Still have to check that it's not an n-th
5246 alternative that starts with an on_failure_jump. */
5247 p1++;
5248 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5249 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5250 {
5251 /* Get to the beginning of the n-th alternative. */
5252 p1 -= 3;
5253 break;
5254 }
5255 }
5256
5257 /* Deal with the last alternative: go back and get number
5258 of the `jump_past_alt' just before it. `mcnt' contains
5259 the length of the alternative. */
5260 EXTRACT_NUMBER (mcnt, p1 - 2);
5261
5262 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5263 return false;
5264
5265 p1 += mcnt; /* Get past the n-th alternative. */
5266 } /* if mcnt > 0 */
5267 break;
5268
5269
5270 case stop_memory:
5271 assert (p1[1] == **p);
5272 *p = p1 + 2;
5273 return true;
5274
5275
5276 default:
5277 if (!common_op_match_null_string_p (&p1, end, reg_info))
5278 return false;
5279 }
5280 } /* while p1 < end */
5281
5282 return false;
5283 } /* group_match_null_string_p */
5284
5285
5286 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5287 It expects P to be the first byte of a single alternative and END one
5288 byte past the last. The alternative can contain groups. */
5289
5290 static boolean
5291 alt_match_null_string_p (p, end, reg_info)
5292 unsigned char *p, *end;
5293 register_info_type *reg_info;
5294 {
5295 int mcnt;
5296 unsigned char *p1 = p;
5297
5298 while (p1 < end)
5299 {
5300 /* Skip over opcodes that can match nothing, and break when we get
5301 to one that can't. */
5302
5303 switch ((re_opcode_t) *p1)
5304 {
5305 /* It's a loop. */
5306 case on_failure_jump:
5307 p1++;
5308 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5309 p1 += mcnt;
5310 break;
5311
5312 default:
5313 if (!common_op_match_null_string_p (&p1, end, reg_info))
5314 return false;
5315 }
5316 } /* while p1 < end */
5317
5318 return true;
5319 } /* alt_match_null_string_p */
5320
5321
5322 /* Deals with the ops common to group_match_null_string_p and
5323 alt_match_null_string_p.
5324
5325 Sets P to one after the op and its arguments, if any. */
5326
5327 static boolean
5328 common_op_match_null_string_p (p, end, reg_info)
5329 unsigned char **p, *end;
5330 register_info_type *reg_info;
5331 {
5332 int mcnt;
5333 boolean ret;
5334 int reg_no;
5335 unsigned char *p1 = *p;
5336
5337 switch ((re_opcode_t) *p1++)
5338 {
5339 case no_op:
5340 case begline:
5341 case endline:
5342 case begbuf:
5343 case endbuf:
5344 case wordbeg:
5345 case wordend:
5346 case wordbound:
5347 case notwordbound:
5348 #ifdef emacs
5349 case before_dot:
5350 case at_dot:
5351 case after_dot:
5352 #endif
5353 break;
5354
5355 case start_memory:
5356 reg_no = *p1;
5357 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5358 ret = group_match_null_string_p (&p1, end, reg_info);
5359
5360 /* Have to set this here in case we're checking a group which
5361 contains a group and a back reference to it. */
5362
5363 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5364 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5365
5366 if (!ret)
5367 return false;
5368 break;
5369
5370 /* If this is an optimized succeed_n for zero times, make the jump. */
5371 case jump:
5372 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5373 if (mcnt >= 0)
5374 p1 += mcnt;
5375 else
5376 return false;
5377 break;
5378
5379 case succeed_n:
5380 /* Get to the number of times to succeed. */
5381 p1 += 2;
5382 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5383
5384 if (mcnt == 0)
5385 {
5386 p1 -= 4;
5387 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5388 p1 += mcnt;
5389 }
5390 else
5391 return false;
5392 break;
5393
5394 case duplicate:
5395 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5396 return false;
5397 break;
5398
5399 case set_number_at:
5400 p1 += 4;
5401
5402 default:
5403 /* All other opcodes mean we cannot match the empty string. */
5404 return false;
5405 }
5406
5407 *p = p1;
5408 return true;
5409 } /* common_op_match_null_string_p */
5410
5411
5412 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5413 bytes; nonzero otherwise. */
5414
5415 static int
5416 bcmp_translate (s1, s2, len, translate)
5417 const char *s1, *s2;
5418 register int len;
5419 RE_TRANSLATE_TYPE translate;
5420 {
5421 register const unsigned char *p1 = (const unsigned char *) s1;
5422 register const unsigned char *p2 = (const unsigned char *) s2;
5423 while (len)
5424 {
5425 if (translate[*p1++] != translate[*p2++]) return 1;
5426 len--;
5427 }
5428 return 0;
5429 }
5430 \f
5431 /* Entry points for GNU code. */
5432
5433 /* re_compile_pattern is the GNU regular expression compiler: it
5434 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5435 Returns 0 if the pattern was valid, otherwise an error string.
5436
5437 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5438 are set in BUFP on entry.
5439
5440 We call regex_compile to do the actual compilation. */
5441
5442 const char *
5443 re_compile_pattern (pattern, length, bufp)
5444 const char *pattern;
5445 size_t length;
5446 struct re_pattern_buffer *bufp;
5447 {
5448 reg_errcode_t ret;
5449
5450 /* GNU code is written to assume at least RE_NREGS registers will be set
5451 (and at least one extra will be -1). */
5452 bufp->regs_allocated = REGS_UNALLOCATED;
5453
5454 /* And GNU code determines whether or not to get register information
5455 by passing null for the REGS argument to re_match, etc., not by
5456 setting no_sub. */
5457 bufp->no_sub = 0;
5458
5459 /* Match anchors at newline. */
5460 bufp->newline_anchor = 1;
5461
5462 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5463
5464 if (!ret)
5465 return NULL;
5466 return gettext (re_error_msgid[(int) ret]);
5467 }
5468 #ifdef _LIBC
5469 weak_alias (__re_compile_pattern, re_compile_pattern)
5470 #endif
5471 \f
5472 /* Entry points compatible with 4.2 BSD regex library. We don't define
5473 them unless specifically requested. */
5474
5475 #if defined _REGEX_RE_COMP || defined _LIBC
5476
5477 /* BSD has one and only one pattern buffer. */
5478 static struct re_pattern_buffer re_comp_buf;
5479
5480 char *
5481 #ifdef _LIBC
5482 /* Make these definitions weak in libc, so POSIX programs can redefine
5483 these names if they don't use our functions, and still use
5484 regcomp/regexec below without link errors. */
5485 weak_function
5486 #endif
5487 re_comp (s)
5488 const char *s;
5489 {
5490 reg_errcode_t ret;
5491
5492 if (!s)
5493 {
5494 if (!re_comp_buf.buffer)
5495 return gettext ("No previous regular expression");
5496 return 0;
5497 }
5498
5499 if (!re_comp_buf.buffer)
5500 {
5501 re_comp_buf.buffer = (unsigned char *) malloc (200);
5502 if (re_comp_buf.buffer == NULL)
5503 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5504 re_comp_buf.allocated = 200;
5505
5506 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5507 if (re_comp_buf.fastmap == NULL)
5508 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
5509 }
5510
5511 /* Since `re_exec' always passes NULL for the `regs' argument, we
5512 don't need to initialize the pattern buffer fields which affect it. */
5513
5514 /* Match anchors at newlines. */
5515 re_comp_buf.newline_anchor = 1;
5516
5517 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5518
5519 if (!ret)
5520 return NULL;
5521
5522 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5523 return (char *) gettext (re_error_msgid[(int) ret]);
5524 }
5525
5526
5527 int
5528 #ifdef _LIBC
5529 weak_function
5530 #endif
5531 re_exec (s)
5532 const char *s;
5533 {
5534 const int len = strlen (s);
5535 return
5536 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5537 }
5538
5539 #endif /* _REGEX_RE_COMP */
5540 \f
5541 /* POSIX.2 functions. Don't define these for Emacs. */
5542
5543 #ifndef emacs
5544
5545 /* regcomp takes a regular expression as a string and compiles it.
5546
5547 PREG is a regex_t *. We do not expect any fields to be initialized,
5548 since POSIX says we shouldn't. Thus, we set
5549
5550 `buffer' to the compiled pattern;
5551 `used' to the length of the compiled pattern;
5552 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5553 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5554 RE_SYNTAX_POSIX_BASIC;
5555 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5556 `fastmap' and `fastmap_accurate' to zero;
5557 `re_nsub' to the number of subexpressions in PATTERN.
5558
5559 PATTERN is the address of the pattern string.
5560
5561 CFLAGS is a series of bits which affect compilation.
5562
5563 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5564 use POSIX basic syntax.
5565
5566 If REG_NEWLINE is set, then . and [^...] don't match newline.
5567 Also, regexec will try a match beginning after every newline.
5568
5569 If REG_ICASE is set, then we considers upper- and lowercase
5570 versions of letters to be equivalent when matching.
5571
5572 If REG_NOSUB is set, then when PREG is passed to regexec, that
5573 routine will report only success or failure, and nothing about the
5574 registers.
5575
5576 It returns 0 if it succeeds, nonzero if it doesn't. (See gnu-regex.h for
5577 the return codes and their meanings.) */
5578
5579 int
5580 regcomp (preg, pattern, cflags)
5581 regex_t *preg;
5582 const char *pattern;
5583 int cflags;
5584 {
5585 reg_errcode_t ret;
5586 reg_syntax_t syntax
5587 = (cflags & REG_EXTENDED) ?
5588 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5589
5590 /* regex_compile will allocate the space for the compiled pattern. */
5591 preg->buffer = 0;
5592 preg->allocated = 0;
5593 preg->used = 0;
5594
5595 /* Don't bother to use a fastmap when searching. This simplifies the
5596 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5597 characters after newlines into the fastmap. This way, we just try
5598 every character. */
5599 preg->fastmap = 0;
5600
5601 if (cflags & REG_ICASE)
5602 {
5603 unsigned i;
5604
5605 preg->translate
5606 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5607 * sizeof (*(RE_TRANSLATE_TYPE)0));
5608 if (preg->translate == NULL)
5609 return (int) REG_ESPACE;
5610
5611 /* Map uppercase characters to corresponding lowercase ones. */
5612 for (i = 0; i < CHAR_SET_SIZE; i++)
5613 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
5614 }
5615 else
5616 preg->translate = NULL;
5617
5618 /* If REG_NEWLINE is set, newlines are treated differently. */
5619 if (cflags & REG_NEWLINE)
5620 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5621 syntax &= ~RE_DOT_NEWLINE;
5622 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5623 /* It also changes the matching behavior. */
5624 preg->newline_anchor = 1;
5625 }
5626 else
5627 preg->newline_anchor = 0;
5628
5629 preg->no_sub = !!(cflags & REG_NOSUB);
5630
5631 /* POSIX says a null character in the pattern terminates it, so we
5632 can use strlen here in compiling the pattern. */
5633 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5634
5635 /* POSIX doesn't distinguish between an unmatched open-group and an
5636 unmatched close-group: both are REG_EPAREN. */
5637 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5638
5639 return (int) ret;
5640 }
5641 #ifdef _LIBC
5642 weak_alias (__regcomp, regcomp)
5643 #endif
5644
5645
5646 /* regexec searches for a given pattern, specified by PREG, in the
5647 string STRING.
5648
5649 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5650 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5651 least NMATCH elements, and we set them to the offsets of the
5652 corresponding matched substrings.
5653
5654 EFLAGS specifies `execution flags' which affect matching: if
5655 REG_NOTBOL is set, then ^ does not match at the beginning of the
5656 string; if REG_NOTEOL is set, then $ does not match at the end.
5657
5658 We return 0 if we find a match and REG_NOMATCH if not. */
5659
5660 int
5661 regexec (preg, string, nmatch, pmatch, eflags)
5662 const regex_t *preg;
5663 const char *string;
5664 size_t nmatch;
5665 regmatch_t pmatch[];
5666 int eflags;
5667 {
5668 int ret;
5669 struct re_registers regs;
5670 regex_t private_preg;
5671 int len = strlen (string);
5672 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5673
5674 private_preg = *preg;
5675
5676 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5677 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5678
5679 /* The user has told us exactly how many registers to return
5680 information about, via `nmatch'. We have to pass that on to the
5681 matching routines. */
5682 private_preg.regs_allocated = REGS_FIXED;
5683
5684 if (want_reg_info)
5685 {
5686 regs.num_regs = nmatch;
5687 regs.start = TALLOC (nmatch, regoff_t);
5688 regs.end = TALLOC (nmatch, regoff_t);
5689 if (regs.start == NULL || regs.end == NULL)
5690 return (int) REG_NOMATCH;
5691 }
5692
5693 /* Perform the searching operation. */
5694 ret = re_search (&private_preg, string, len,
5695 /* start: */ 0, /* range: */ len,
5696 want_reg_info ? &regs : (struct re_registers *) 0);
5697
5698 /* Copy the register information to the POSIX structure. */
5699 if (want_reg_info)
5700 {
5701 if (ret >= 0)
5702 {
5703 unsigned r;
5704
5705 for (r = 0; r < nmatch; r++)
5706 {
5707 pmatch[r].rm_so = regs.start[r];
5708 pmatch[r].rm_eo = regs.end[r];
5709 }
5710 }
5711
5712 /* If we needed the temporary register info, free the space now. */
5713 free (regs.start);
5714 free (regs.end);
5715 }
5716
5717 /* We want zero return to mean success, unlike `re_search'. */
5718 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5719 }
5720 #ifdef _LIBC
5721 weak_alias (__regexec, regexec)
5722 #endif
5723
5724
5725 /* Returns a message corresponding to an error code, ERRCODE, returned
5726 from either regcomp or regexec. We don't use PREG here. */
5727
5728 size_t
5729 __regerror (errcode, preg, errbuf, errbuf_size)
5730 int errcode;
5731 const regex_t *preg;
5732 char *errbuf;
5733 size_t errbuf_size;
5734 {
5735 const char *msg;
5736 size_t msg_size;
5737
5738 if (errcode < 0
5739 || errcode >= (int) (sizeof (re_error_msgid)
5740 / sizeof (re_error_msgid[0])))
5741 /* Only error codes returned by the rest of the code should be passed
5742 to this routine. If we are given anything else, or if other regex
5743 code generates an invalid error code, then the program has a bug.
5744 Dump core so we can fix it. */
5745 abort ();
5746
5747 msg = gettext (re_error_msgid[errcode]);
5748
5749 msg_size = strlen (msg) + 1; /* Includes the null. */
5750
5751 if (errbuf_size != 0)
5752 {
5753 if (msg_size > errbuf_size)
5754 {
5755 #if defined HAVE_MEMPCPY || defined _LIBC
5756 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5757 #else
5758 memcpy (errbuf, msg, errbuf_size - 1);
5759 errbuf[errbuf_size - 1] = 0;
5760 #endif
5761 }
5762 else
5763 memcpy (errbuf, msg, msg_size);
5764 }
5765
5766 return msg_size;
5767 }
5768 #ifdef _LIBC
5769 weak_alias (__regerror, regerror)
5770 #endif
5771
5772
5773 /* Free dynamically allocated space used by PREG. */
5774
5775 void
5776 regfree (preg)
5777 regex_t *preg;
5778 {
5779 if (preg->buffer != NULL)
5780 free (preg->buffer);
5781 preg->buffer = NULL;
5782
5783 preg->allocated = 0;
5784 preg->used = 0;
5785
5786 if (preg->fastmap != NULL)
5787 free (preg->fastmap);
5788 preg->fastmap = NULL;
5789 preg->fastmap_accurate = 0;
5790
5791 if (preg->translate != NULL)
5792 free (preg->translate);
5793 preg->translate = NULL;
5794 }
5795 #ifdef _LIBC
5796 weak_alias (__regfree, regfree)
5797 #endif
5798
5799 #endif /* not emacs */