]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-v3-abi.c
Add missing CHECK_TYPEDEF calls to recent vptr_{fieldno,basetype} cleanup.
[thirdparty/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2015 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "typeprint.h"
30
31 static struct cp_abi_ops gnu_v3_abi_ops;
32
33 /* A gdbarch key for std::type_info, in the event that it can't be
34 found in the debug info. */
35
36 static struct gdbarch_data *std_type_info_gdbarch_data;
37
38
39 static int
40 gnuv3_is_vtable_name (const char *name)
41 {
42 return strncmp (name, "_ZTV", 4) == 0;
43 }
44
45 static int
46 gnuv3_is_operator_name (const char *name)
47 {
48 return strncmp (name, "operator", 8) == 0;
49 }
50
51
52 /* To help us find the components of a vtable, we build ourselves a
53 GDB type object representing the vtable structure. Following the
54 V3 ABI, it goes something like this:
55
56 struct gdb_gnu_v3_abi_vtable {
57
58 / * An array of virtual call and virtual base offsets. The real
59 length of this array depends on the class hierarchy; we use
60 negative subscripts to access the elements. Yucky, but
61 better than the alternatives. * /
62 ptrdiff_t vcall_and_vbase_offsets[0];
63
64 / * The offset from a virtual pointer referring to this table
65 to the top of the complete object. * /
66 ptrdiff_t offset_to_top;
67
68 / * The type_info pointer for this class. This is really a
69 std::type_info *, but GDB doesn't really look at the
70 type_info object itself, so we don't bother to get the type
71 exactly right. * /
72 void *type_info;
73
74 / * Virtual table pointers in objects point here. * /
75
76 / * Virtual function pointers. Like the vcall/vbase array, the
77 real length of this table depends on the class hierarchy. * /
78 void (*virtual_functions[0]) ();
79
80 };
81
82 The catch, of course, is that the exact layout of this table
83 depends on the ABI --- word size, endianness, alignment, etc. So
84 the GDB type object is actually a per-architecture kind of thing.
85
86 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
87 which refers to the struct type * for this structure, laid out
88 appropriately for the architecture. */
89 static struct gdbarch_data *vtable_type_gdbarch_data;
90
91
92 /* Human-readable names for the numbers of the fields above. */
93 enum {
94 vtable_field_vcall_and_vbase_offsets,
95 vtable_field_offset_to_top,
96 vtable_field_type_info,
97 vtable_field_virtual_functions
98 };
99
100
101 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
102 described above, laid out appropriately for ARCH.
103
104 We use this function as the gdbarch per-architecture data
105 initialization function. */
106 static void *
107 build_gdb_vtable_type (struct gdbarch *arch)
108 {
109 struct type *t;
110 struct field *field_list, *field;
111 int offset;
112
113 struct type *void_ptr_type
114 = builtin_type (arch)->builtin_data_ptr;
115 struct type *ptr_to_void_fn_type
116 = builtin_type (arch)->builtin_func_ptr;
117
118 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
119 struct type *ptrdiff_type
120 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
121
122 /* We assume no padding is necessary, since GDB doesn't know
123 anything about alignment at the moment. If this assumption bites
124 us, we should add a gdbarch method which, given a type, returns
125 the alignment that type requires, and then use that here. */
126
127 /* Build the field list. */
128 field_list = xmalloc (sizeof (struct field [4]));
129 memset (field_list, 0, sizeof (struct field [4]));
130 field = &field_list[0];
131 offset = 0;
132
133 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
134 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
135 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
136 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
137 offset += TYPE_LENGTH (FIELD_TYPE (*field));
138 field++;
139
140 /* ptrdiff_t offset_to_top; */
141 FIELD_NAME (*field) = "offset_to_top";
142 FIELD_TYPE (*field) = ptrdiff_type;
143 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
144 offset += TYPE_LENGTH (FIELD_TYPE (*field));
145 field++;
146
147 /* void *type_info; */
148 FIELD_NAME (*field) = "type_info";
149 FIELD_TYPE (*field) = void_ptr_type;
150 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
151 offset += TYPE_LENGTH (FIELD_TYPE (*field));
152 field++;
153
154 /* void (*virtual_functions[0]) (); */
155 FIELD_NAME (*field) = "virtual_functions";
156 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
157 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
158 offset += TYPE_LENGTH (FIELD_TYPE (*field));
159 field++;
160
161 /* We assumed in the allocation above that there were four fields. */
162 gdb_assert (field == (field_list + 4));
163
164 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
165 TYPE_NFIELDS (t) = field - field_list;
166 TYPE_FIELDS (t) = field_list;
167 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
168 INIT_CPLUS_SPECIFIC (t);
169
170 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
171 }
172
173
174 /* Return the ptrdiff_t type used in the vtable type. */
175 static struct type *
176 vtable_ptrdiff_type (struct gdbarch *gdbarch)
177 {
178 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
179
180 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
181 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
182 }
183
184 /* Return the offset from the start of the imaginary `struct
185 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
186 (i.e., where objects' virtual table pointers point). */
187 static int
188 vtable_address_point_offset (struct gdbarch *gdbarch)
189 {
190 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
191
192 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
193 / TARGET_CHAR_BIT);
194 }
195
196
197 /* Determine whether structure TYPE is a dynamic class. Cache the
198 result. */
199
200 static int
201 gnuv3_dynamic_class (struct type *type)
202 {
203 int fieldnum, fieldelem;
204
205 CHECK_TYPEDEF (type);
206 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
207 || TYPE_CODE (type) == TYPE_CODE_UNION);
208
209 if (TYPE_CODE (type) == TYPE_CODE_UNION)
210 return 0;
211
212 if (TYPE_CPLUS_DYNAMIC (type))
213 return TYPE_CPLUS_DYNAMIC (type) == 1;
214
215 ALLOCATE_CPLUS_STRUCT_TYPE (type);
216
217 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
218 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
219 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
220 {
221 TYPE_CPLUS_DYNAMIC (type) = 1;
222 return 1;
223 }
224
225 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
226 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
227 fieldelem++)
228 {
229 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
230
231 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
232 {
233 TYPE_CPLUS_DYNAMIC (type) = 1;
234 return 1;
235 }
236 }
237
238 TYPE_CPLUS_DYNAMIC (type) = -1;
239 return 0;
240 }
241
242 /* Find the vtable for a value of CONTAINER_TYPE located at
243 CONTAINER_ADDR. Return a value of the correct vtable type for this
244 architecture, or NULL if CONTAINER does not have a vtable. */
245
246 static struct value *
247 gnuv3_get_vtable (struct gdbarch *gdbarch,
248 struct type *container_type, CORE_ADDR container_addr)
249 {
250 struct type *vtable_type = gdbarch_data (gdbarch,
251 vtable_type_gdbarch_data);
252 struct type *vtable_pointer_type;
253 struct value *vtable_pointer;
254 CORE_ADDR vtable_address;
255
256 CHECK_TYPEDEF (container_type);
257 gdb_assert (TYPE_CODE (container_type) == TYPE_CODE_STRUCT);
258
259 /* If this type does not have a virtual table, don't read the first
260 field. */
261 if (!gnuv3_dynamic_class (container_type))
262 return NULL;
263
264 /* We do not consult the debug information to find the virtual table.
265 The ABI specifies that it is always at offset zero in any class,
266 and debug information may not represent it.
267
268 We avoid using value_contents on principle, because the object might
269 be large. */
270
271 /* Find the type "pointer to virtual table". */
272 vtable_pointer_type = lookup_pointer_type (vtable_type);
273
274 /* Load it from the start of the class. */
275 vtable_pointer = value_at (vtable_pointer_type, container_addr);
276 vtable_address = value_as_address (vtable_pointer);
277
278 /* Correct it to point at the start of the virtual table, rather
279 than the address point. */
280 return value_at_lazy (vtable_type,
281 vtable_address
282 - vtable_address_point_offset (gdbarch));
283 }
284
285
286 static struct type *
287 gnuv3_rtti_type (struct value *value,
288 int *full_p, int *top_p, int *using_enc_p)
289 {
290 struct gdbarch *gdbarch;
291 struct type *values_type = check_typedef (value_type (value));
292 struct value *vtable;
293 struct minimal_symbol *vtable_symbol;
294 const char *vtable_symbol_name;
295 const char *class_name;
296 struct type *run_time_type;
297 LONGEST offset_to_top;
298 char *atsign;
299
300 /* We only have RTTI for class objects. */
301 if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
302 return NULL;
303
304 /* Java doesn't have RTTI following the C++ ABI. */
305 if (TYPE_CPLUS_REALLY_JAVA (values_type))
306 return NULL;
307
308 /* Determine architecture. */
309 gdbarch = get_type_arch (values_type);
310
311 if (using_enc_p)
312 *using_enc_p = 0;
313
314 vtable = gnuv3_get_vtable (gdbarch, values_type,
315 value_as_address (value_addr (value)));
316 if (vtable == NULL)
317 return NULL;
318
319 /* Find the linker symbol for this vtable. */
320 vtable_symbol
321 = lookup_minimal_symbol_by_pc (value_address (vtable)
322 + value_embedded_offset (vtable)).minsym;
323 if (! vtable_symbol)
324 return NULL;
325
326 /* The symbol's demangled name should be something like "vtable for
327 CLASS", where CLASS is the name of the run-time type of VALUE.
328 If we didn't like this approach, we could instead look in the
329 type_info object itself to get the class name. But this way
330 should work just as well, and doesn't read target memory. */
331 vtable_symbol_name = MSYMBOL_DEMANGLED_NAME (vtable_symbol);
332 if (vtable_symbol_name == NULL
333 || strncmp (vtable_symbol_name, "vtable for ", 11))
334 {
335 warning (_("can't find linker symbol for virtual table for `%s' value"),
336 TYPE_SAFE_NAME (values_type));
337 if (vtable_symbol_name)
338 warning (_(" found `%s' instead"), vtable_symbol_name);
339 return NULL;
340 }
341 class_name = vtable_symbol_name + 11;
342
343 /* Strip off @plt and version suffixes. */
344 atsign = strchr (class_name, '@');
345 if (atsign != NULL)
346 {
347 char *copy;
348
349 copy = alloca (atsign - class_name + 1);
350 memcpy (copy, class_name, atsign - class_name);
351 copy[atsign - class_name] = '\0';
352 class_name = copy;
353 }
354
355 /* Try to look up the class name as a type name. */
356 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
357 run_time_type = cp_lookup_rtti_type (class_name, NULL);
358 if (run_time_type == NULL)
359 return NULL;
360
361 /* Get the offset from VALUE to the top of the complete object.
362 NOTE: this is the reverse of the meaning of *TOP_P. */
363 offset_to_top
364 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
365
366 if (full_p)
367 *full_p = (- offset_to_top == value_embedded_offset (value)
368 && (TYPE_LENGTH (value_enclosing_type (value))
369 >= TYPE_LENGTH (run_time_type)));
370 if (top_p)
371 *top_p = - offset_to_top;
372 return run_time_type;
373 }
374
375 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
376 function, of type FNTYPE. */
377
378 static struct value *
379 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
380 struct type *fntype, int vtable_index)
381 {
382 struct value *vtable, *vfn;
383
384 /* Every class with virtual functions must have a vtable. */
385 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
386 value_as_address (value_addr (container)));
387 gdb_assert (vtable != NULL);
388
389 /* Fetch the appropriate function pointer from the vtable. */
390 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
391 vtable_index);
392
393 /* If this architecture uses function descriptors directly in the vtable,
394 then the address of the vtable entry is actually a "function pointer"
395 (i.e. points to the descriptor). We don't need to scale the index
396 by the size of a function descriptor; GCC does that before outputing
397 debug information. */
398 if (gdbarch_vtable_function_descriptors (gdbarch))
399 vfn = value_addr (vfn);
400
401 /* Cast the function pointer to the appropriate type. */
402 vfn = value_cast (lookup_pointer_type (fntype), vfn);
403
404 return vfn;
405 }
406
407 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
408 for a description of the arguments. */
409
410 static struct value *
411 gnuv3_virtual_fn_field (struct value **value_p,
412 struct fn_field *f, int j,
413 struct type *vfn_base, int offset)
414 {
415 struct type *values_type = check_typedef (value_type (*value_p));
416 struct gdbarch *gdbarch;
417
418 /* Some simple sanity checks. */
419 if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
420 error (_("Only classes can have virtual functions."));
421
422 /* Determine architecture. */
423 gdbarch = get_type_arch (values_type);
424
425 /* Cast our value to the base class which defines this virtual
426 function. This takes care of any necessary `this'
427 adjustments. */
428 if (vfn_base != values_type)
429 *value_p = value_cast (vfn_base, *value_p);
430
431 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
432 TYPE_FN_FIELD_VOFFSET (f, j));
433 }
434
435 /* Compute the offset of the baseclass which is
436 the INDEXth baseclass of class TYPE,
437 for value at VALADDR (in host) at ADDRESS (in target).
438 The result is the offset of the baseclass value relative
439 to (the address of)(ARG) + OFFSET.
440
441 -1 is returned on error. */
442
443 static int
444 gnuv3_baseclass_offset (struct type *type, int index,
445 const bfd_byte *valaddr, int embedded_offset,
446 CORE_ADDR address, const struct value *val)
447 {
448 struct gdbarch *gdbarch;
449 struct type *ptr_type;
450 struct value *vtable;
451 struct value *vbase_array;
452 long int cur_base_offset, base_offset;
453
454 /* Determine architecture. */
455 gdbarch = get_type_arch (type);
456 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
457
458 /* If it isn't a virtual base, this is easy. The offset is in the
459 type definition. Likewise for Java, which doesn't really have
460 virtual inheritance in the C++ sense. */
461 if (!BASETYPE_VIA_VIRTUAL (type, index) || TYPE_CPLUS_REALLY_JAVA (type))
462 return TYPE_BASECLASS_BITPOS (type, index) / 8;
463
464 /* To access a virtual base, we need to use the vbase offset stored in
465 our vtable. Recent GCC versions provide this information. If it isn't
466 available, we could get what we needed from RTTI, or from drawing the
467 complete inheritance graph based on the debug info. Neither is
468 worthwhile. */
469 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
470 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
471 error (_("Expected a negative vbase offset (old compiler?)"));
472
473 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
474 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
475 error (_("Misaligned vbase offset."));
476 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
477
478 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
479 gdb_assert (vtable != NULL);
480 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
481 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
482 return base_offset;
483 }
484
485 /* Locate a virtual method in DOMAIN or its non-virtual base classes
486 which has virtual table index VOFFSET. The method has an associated
487 "this" adjustment of ADJUSTMENT bytes. */
488
489 static const char *
490 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
491 LONGEST adjustment)
492 {
493 int i;
494
495 /* Search this class first. */
496 if (adjustment == 0)
497 {
498 int len;
499
500 len = TYPE_NFN_FIELDS (domain);
501 for (i = 0; i < len; i++)
502 {
503 int len2, j;
504 struct fn_field *f;
505
506 f = TYPE_FN_FIELDLIST1 (domain, i);
507 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
508
509 check_stub_method_group (domain, i);
510 for (j = 0; j < len2; j++)
511 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
512 return TYPE_FN_FIELD_PHYSNAME (f, j);
513 }
514 }
515
516 /* Next search non-virtual bases. If it's in a virtual base,
517 we're out of luck. */
518 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
519 {
520 int pos;
521 struct type *basetype;
522
523 if (BASETYPE_VIA_VIRTUAL (domain, i))
524 continue;
525
526 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
527 basetype = TYPE_FIELD_TYPE (domain, i);
528 /* Recurse with a modified adjustment. We don't need to adjust
529 voffset. */
530 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
531 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
532 }
533
534 return NULL;
535 }
536
537 /* Decode GNU v3 method pointer. */
538
539 static int
540 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
541 const gdb_byte *contents,
542 CORE_ADDR *value_p,
543 LONGEST *adjustment_p)
544 {
545 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
546 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
547 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
548 CORE_ADDR ptr_value;
549 LONGEST voffset, adjustment;
550 int vbit;
551
552 /* Extract the pointer to member. The first element is either a pointer
553 or a vtable offset. For pointers, we need to use extract_typed_address
554 to allow the back-end to convert the pointer to a GDB address -- but
555 vtable offsets we must handle as integers. At this point, we do not
556 yet know which case we have, so we extract the value under both
557 interpretations and choose the right one later on. */
558 ptr_value = extract_typed_address (contents, funcptr_type);
559 voffset = extract_signed_integer (contents,
560 TYPE_LENGTH (funcptr_type), byte_order);
561 contents += TYPE_LENGTH (funcptr_type);
562 adjustment = extract_signed_integer (contents,
563 TYPE_LENGTH (offset_type), byte_order);
564
565 if (!gdbarch_vbit_in_delta (gdbarch))
566 {
567 vbit = voffset & 1;
568 voffset = voffset ^ vbit;
569 }
570 else
571 {
572 vbit = adjustment & 1;
573 adjustment = adjustment >> 1;
574 }
575
576 *value_p = vbit? voffset : ptr_value;
577 *adjustment_p = adjustment;
578 return vbit;
579 }
580
581 /* GNU v3 implementation of cplus_print_method_ptr. */
582
583 static void
584 gnuv3_print_method_ptr (const gdb_byte *contents,
585 struct type *type,
586 struct ui_file *stream)
587 {
588 struct type *self_type = TYPE_SELF_TYPE (type);
589 struct gdbarch *gdbarch = get_type_arch (self_type);
590 CORE_ADDR ptr_value;
591 LONGEST adjustment;
592 int vbit;
593
594 /* Extract the pointer to member. */
595 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
596
597 /* Check for NULL. */
598 if (ptr_value == 0 && vbit == 0)
599 {
600 fprintf_filtered (stream, "NULL");
601 return;
602 }
603
604 /* Search for a virtual method. */
605 if (vbit)
606 {
607 CORE_ADDR voffset;
608 const char *physname;
609
610 /* It's a virtual table offset, maybe in this class. Search
611 for a field with the correct vtable offset. First convert it
612 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
613 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
614
615 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
616
617 /* If we found a method, print that. We don't bother to disambiguate
618 possible paths to the method based on the adjustment. */
619 if (physname)
620 {
621 char *demangled_name = gdb_demangle (physname,
622 DMGL_ANSI | DMGL_PARAMS);
623
624 fprintf_filtered (stream, "&virtual ");
625 if (demangled_name == NULL)
626 fputs_filtered (physname, stream);
627 else
628 {
629 fputs_filtered (demangled_name, stream);
630 xfree (demangled_name);
631 }
632 return;
633 }
634 }
635 else if (ptr_value != 0)
636 {
637 /* Found a non-virtual function: print out the type. */
638 fputs_filtered ("(", stream);
639 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
640 fputs_filtered (") ", stream);
641 }
642
643 /* We didn't find it; print the raw data. */
644 if (vbit)
645 {
646 fprintf_filtered (stream, "&virtual table offset ");
647 print_longest (stream, 'd', 1, ptr_value);
648 }
649 else
650 {
651 struct value_print_options opts;
652
653 get_user_print_options (&opts);
654 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
655 }
656
657 if (adjustment)
658 {
659 fprintf_filtered (stream, ", this adjustment ");
660 print_longest (stream, 'd', 1, adjustment);
661 }
662 }
663
664 /* GNU v3 implementation of cplus_method_ptr_size. */
665
666 static int
667 gnuv3_method_ptr_size (struct type *type)
668 {
669 struct gdbarch *gdbarch = get_type_arch (type);
670
671 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
672 }
673
674 /* GNU v3 implementation of cplus_make_method_ptr. */
675
676 static void
677 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
678 CORE_ADDR value, int is_virtual)
679 {
680 struct gdbarch *gdbarch = get_type_arch (type);
681 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
683
684 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
685 always zero, since the method pointer is of the correct type.
686 But if the method pointer came from a base class, this is
687 incorrect - it should be the offset to the base. The best
688 fix might be to create the pointer to member pointing at the
689 base class and cast it to the derived class, but that requires
690 support for adjusting pointers to members when casting them -
691 not currently supported by GDB. */
692
693 if (!gdbarch_vbit_in_delta (gdbarch))
694 {
695 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
696 store_unsigned_integer (contents + size, size, byte_order, 0);
697 }
698 else
699 {
700 store_unsigned_integer (contents, size, byte_order, value);
701 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
702 }
703 }
704
705 /* GNU v3 implementation of cplus_method_ptr_to_value. */
706
707 static struct value *
708 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
709 {
710 struct gdbarch *gdbarch;
711 const gdb_byte *contents = value_contents (method_ptr);
712 CORE_ADDR ptr_value;
713 struct type *self_type, *final_type, *method_type;
714 LONGEST adjustment;
715 int vbit;
716
717 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
718 final_type = lookup_pointer_type (self_type);
719
720 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
721
722 /* Extract the pointer to member. */
723 gdbarch = get_type_arch (self_type);
724 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
725
726 /* First convert THIS to match the containing type of the pointer to
727 member. This cast may adjust the value of THIS. */
728 *this_p = value_cast (final_type, *this_p);
729
730 /* Then apply whatever adjustment is necessary. This creates a somewhat
731 strange pointer: it claims to have type FINAL_TYPE, but in fact it
732 might not be a valid FINAL_TYPE. For instance, it might be a
733 base class of FINAL_TYPE. And if it's not the primary base class,
734 then printing it out as a FINAL_TYPE object would produce some pretty
735 garbage.
736
737 But we don't really know the type of the first argument in
738 METHOD_TYPE either, which is why this happens. We can't
739 dereference this later as a FINAL_TYPE, but once we arrive in the
740 called method we'll have debugging information for the type of
741 "this" - and that'll match the value we produce here.
742
743 You can provoke this case by casting a Base::* to a Derived::*, for
744 instance. */
745 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
746 *this_p = value_ptradd (*this_p, adjustment);
747 *this_p = value_cast (final_type, *this_p);
748
749 if (vbit)
750 {
751 LONGEST voffset;
752
753 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
754 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
755 method_type, voffset);
756 }
757 else
758 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
759 }
760
761 /* Objects of this type are stored in a hash table and a vector when
762 printing the vtables for a class. */
763
764 struct value_and_voffset
765 {
766 /* The value representing the object. */
767 struct value *value;
768
769 /* The maximum vtable offset we've found for any object at this
770 offset in the outermost object. */
771 int max_voffset;
772 };
773
774 typedef struct value_and_voffset *value_and_voffset_p;
775 DEF_VEC_P (value_and_voffset_p);
776
777 /* Hash function for value_and_voffset. */
778
779 static hashval_t
780 hash_value_and_voffset (const void *p)
781 {
782 const struct value_and_voffset *o = p;
783
784 return value_address (o->value) + value_embedded_offset (o->value);
785 }
786
787 /* Equality function for value_and_voffset. */
788
789 static int
790 eq_value_and_voffset (const void *a, const void *b)
791 {
792 const struct value_and_voffset *ova = a;
793 const struct value_and_voffset *ovb = b;
794
795 return (value_address (ova->value) + value_embedded_offset (ova->value)
796 == value_address (ovb->value) + value_embedded_offset (ovb->value));
797 }
798
799 /* qsort comparison function for value_and_voffset. */
800
801 static int
802 compare_value_and_voffset (const void *a, const void *b)
803 {
804 const struct value_and_voffset * const *ova = a;
805 CORE_ADDR addra = (value_address ((*ova)->value)
806 + value_embedded_offset ((*ova)->value));
807 const struct value_and_voffset * const *ovb = b;
808 CORE_ADDR addrb = (value_address ((*ovb)->value)
809 + value_embedded_offset ((*ovb)->value));
810
811 if (addra < addrb)
812 return -1;
813 if (addra > addrb)
814 return 1;
815 return 0;
816 }
817
818 /* A helper function used when printing vtables. This determines the
819 key (most derived) sub-object at each address and also computes the
820 maximum vtable offset seen for the corresponding vtable. Updates
821 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
822 needed. VALUE is the object to examine. */
823
824 static void
825 compute_vtable_size (htab_t offset_hash,
826 VEC (value_and_voffset_p) **offset_vec,
827 struct value *value)
828 {
829 int i;
830 struct type *type = check_typedef (value_type (value));
831 void **slot;
832 struct value_and_voffset search_vo, *current_vo;
833
834 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
835
836 /* If the object is not dynamic, then we are done; as it cannot have
837 dynamic base types either. */
838 if (!gnuv3_dynamic_class (type))
839 return;
840
841 /* Update the hash and the vec, if needed. */
842 search_vo.value = value;
843 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
844 if (*slot)
845 current_vo = *slot;
846 else
847 {
848 current_vo = XNEW (struct value_and_voffset);
849 current_vo->value = value;
850 current_vo->max_voffset = -1;
851 *slot = current_vo;
852 VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
853 }
854
855 /* Update the value_and_voffset object with the highest vtable
856 offset from this class. */
857 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
858 {
859 int j;
860 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
861
862 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
863 {
864 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
865 {
866 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
867
868 if (voffset > current_vo->max_voffset)
869 current_vo->max_voffset = voffset;
870 }
871 }
872 }
873
874 /* Recurse into base classes. */
875 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
876 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
877 }
878
879 /* Helper for gnuv3_print_vtable that prints a single vtable. */
880
881 static void
882 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
883 int max_voffset,
884 struct value_print_options *opts)
885 {
886 int i;
887 struct type *type = check_typedef (value_type (value));
888 struct value *vtable;
889 CORE_ADDR vt_addr;
890
891 vtable = gnuv3_get_vtable (gdbarch, type,
892 value_address (value)
893 + value_embedded_offset (value));
894 vt_addr = value_address (value_field (vtable,
895 vtable_field_virtual_functions));
896
897 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
898 TYPE_SAFE_NAME (type),
899 paddress (gdbarch, vt_addr),
900 paddress (gdbarch, (value_address (value)
901 + value_embedded_offset (value))));
902
903 for (i = 0; i <= max_voffset; ++i)
904 {
905 /* Initialize it just to avoid a GCC false warning. */
906 CORE_ADDR addr = 0;
907 struct value *vfn;
908 volatile struct gdb_exception ex;
909
910 printf_filtered ("[%d]: ", i);
911
912 vfn = value_subscript (value_field (vtable,
913 vtable_field_virtual_functions),
914 i);
915
916 if (gdbarch_vtable_function_descriptors (gdbarch))
917 vfn = value_addr (vfn);
918
919 TRY_CATCH (ex, RETURN_MASK_ERROR)
920 {
921 addr = value_as_address (vfn);
922 }
923 if (ex.reason < 0)
924 printf_filtered (_("<error: %s>"), ex.message);
925 else
926 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
927 printf_filtered ("\n");
928 }
929 }
930
931 /* Implementation of the print_vtable method. */
932
933 static void
934 gnuv3_print_vtable (struct value *value)
935 {
936 struct gdbarch *gdbarch;
937 struct type *type;
938 struct value *vtable;
939 struct value_print_options opts;
940 htab_t offset_hash;
941 struct cleanup *cleanup;
942 VEC (value_and_voffset_p) *result_vec = NULL;
943 struct value_and_voffset *iter;
944 int i, count;
945
946 value = coerce_ref (value);
947 type = check_typedef (value_type (value));
948 if (TYPE_CODE (type) == TYPE_CODE_PTR)
949 {
950 value = value_ind (value);
951 type = check_typedef (value_type (value));
952 }
953
954 get_user_print_options (&opts);
955
956 /* Respect 'set print object'. */
957 if (opts.objectprint)
958 {
959 value = value_full_object (value, NULL, 0, 0, 0);
960 type = check_typedef (value_type (value));
961 }
962
963 gdbarch = get_type_arch (type);
964
965 vtable = NULL;
966 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
967 vtable = gnuv3_get_vtable (gdbarch, type,
968 value_as_address (value_addr (value)));
969
970 if (!vtable)
971 {
972 printf_filtered (_("This object does not have a virtual function table\n"));
973 return;
974 }
975
976 offset_hash = htab_create_alloc (1, hash_value_and_voffset,
977 eq_value_and_voffset,
978 xfree, xcalloc, xfree);
979 cleanup = make_cleanup_htab_delete (offset_hash);
980 make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
981
982 compute_vtable_size (offset_hash, &result_vec, value);
983
984 qsort (VEC_address (value_and_voffset_p, result_vec),
985 VEC_length (value_and_voffset_p, result_vec),
986 sizeof (value_and_voffset_p),
987 compare_value_and_voffset);
988
989 count = 0;
990 for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
991 {
992 if (iter->max_voffset >= 0)
993 {
994 if (count > 0)
995 printf_filtered ("\n");
996 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
997 ++count;
998 }
999 }
1000
1001 do_cleanups (cleanup);
1002 }
1003
1004 /* Return a GDB type representing `struct std::type_info', laid out
1005 appropriately for ARCH.
1006
1007 We use this function as the gdbarch per-architecture data
1008 initialization function. */
1009
1010 static void *
1011 build_std_type_info_type (struct gdbarch *arch)
1012 {
1013 struct type *t;
1014 struct field *field_list, *field;
1015 int offset;
1016 struct type *void_ptr_type
1017 = builtin_type (arch)->builtin_data_ptr;
1018 struct type *char_type
1019 = builtin_type (arch)->builtin_char;
1020 struct type *char_ptr_type
1021 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1022
1023 field_list = xmalloc (sizeof (struct field [2]));
1024 memset (field_list, 0, sizeof (struct field [2]));
1025 field = &field_list[0];
1026 offset = 0;
1027
1028 /* The vtable. */
1029 FIELD_NAME (*field) = "_vptr.type_info";
1030 FIELD_TYPE (*field) = void_ptr_type;
1031 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1032 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1033 field++;
1034
1035 /* The name. */
1036 FIELD_NAME (*field) = "__name";
1037 FIELD_TYPE (*field) = char_ptr_type;
1038 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1039 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1040 field++;
1041
1042 gdb_assert (field == (field_list + 2));
1043
1044 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
1045 TYPE_NFIELDS (t) = field - field_list;
1046 TYPE_FIELDS (t) = field_list;
1047 TYPE_TAG_NAME (t) = "gdb_gnu_v3_type_info";
1048 INIT_CPLUS_SPECIFIC (t);
1049
1050 return t;
1051 }
1052
1053 /* Implement the 'get_typeid_type' method. */
1054
1055 static struct type *
1056 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1057 {
1058 struct symbol *typeinfo;
1059 struct type *typeinfo_type;
1060
1061 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN, NULL);
1062 if (typeinfo == NULL)
1063 typeinfo_type = gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1064 else
1065 typeinfo_type = SYMBOL_TYPE (typeinfo);
1066
1067 return typeinfo_type;
1068 }
1069
1070 /* Implement the 'get_typeid' method. */
1071
1072 static struct value *
1073 gnuv3_get_typeid (struct value *value)
1074 {
1075 struct type *typeinfo_type;
1076 struct type *type;
1077 struct gdbarch *gdbarch;
1078 struct cleanup *cleanup;
1079 struct value *result;
1080 char *typename, *canonical;
1081
1082 /* We have to handle values a bit trickily here, to allow this code
1083 to work properly with non_lvalue values that are really just
1084 disguised types. */
1085 if (value_lval_const (value) == lval_memory)
1086 value = coerce_ref (value);
1087
1088 type = check_typedef (value_type (value));
1089
1090 /* In the non_lvalue case, a reference might have slipped through
1091 here. */
1092 if (TYPE_CODE (type) == TYPE_CODE_REF)
1093 type = check_typedef (TYPE_TARGET_TYPE (type));
1094
1095 /* Ignore top-level cv-qualifiers. */
1096 type = make_cv_type (0, 0, type, NULL);
1097 gdbarch = get_type_arch (type);
1098
1099 typename = type_to_string (type);
1100 if (typename == NULL)
1101 error (_("cannot find typeinfo for unnamed type"));
1102 cleanup = make_cleanup (xfree, typename);
1103
1104 /* We need to canonicalize the type name here, because we do lookups
1105 using the demangled name, and so we must match the format it
1106 uses. E.g., GDB tends to use "const char *" as a type name, but
1107 the demangler uses "char const *". */
1108 canonical = cp_canonicalize_string (typename);
1109 if (canonical != NULL)
1110 {
1111 make_cleanup (xfree, canonical);
1112 typename = canonical;
1113 }
1114
1115 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1116
1117 /* We check for lval_memory because in the "typeid (type-id)" case,
1118 the type is passed via a not_lval value object. */
1119 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1120 && value_lval_const (value) == lval_memory
1121 && gnuv3_dynamic_class (type))
1122 {
1123 struct value *vtable, *typeinfo_value;
1124 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1125
1126 vtable = gnuv3_get_vtable (gdbarch, type, address);
1127 if (vtable == NULL)
1128 error (_("cannot find typeinfo for object of type '%s'"), typename);
1129 typeinfo_value = value_field (vtable, vtable_field_type_info);
1130 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1131 typeinfo_value));
1132 }
1133 else
1134 {
1135 char *sym_name;
1136 struct bound_minimal_symbol minsym;
1137
1138 sym_name = concat ("typeinfo for ", typename, (char *) NULL);
1139 make_cleanup (xfree, sym_name);
1140 minsym = lookup_minimal_symbol (sym_name, NULL, NULL);
1141
1142 if (minsym.minsym == NULL)
1143 error (_("could not find typeinfo symbol for '%s'"), typename);
1144
1145 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1146 }
1147
1148 do_cleanups (cleanup);
1149 return result;
1150 }
1151
1152 /* Implement the 'get_typename_from_type_info' method. */
1153
1154 static char *
1155 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1156 {
1157 struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
1158 struct bound_minimal_symbol typeinfo_sym;
1159 CORE_ADDR addr;
1160 const char *symname;
1161 const char *class_name;
1162 const char *atsign;
1163
1164 addr = value_as_address (type_info_ptr);
1165 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1166 if (typeinfo_sym.minsym == NULL)
1167 error (_("could not find minimal symbol for typeinfo address %s"),
1168 paddress (gdbarch, addr));
1169
1170 #define TYPEINFO_PREFIX "typeinfo for "
1171 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1172 symname = MSYMBOL_DEMANGLED_NAME (typeinfo_sym.minsym);
1173 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1174 TYPEINFO_PREFIX_LEN))
1175 error (_("typeinfo symbol '%s' has unexpected name"),
1176 MSYMBOL_LINKAGE_NAME (typeinfo_sym.minsym));
1177 class_name = symname + TYPEINFO_PREFIX_LEN;
1178
1179 /* Strip off @plt and version suffixes. */
1180 atsign = strchr (class_name, '@');
1181 if (atsign != NULL)
1182 return savestring (class_name, atsign - class_name);
1183 return xstrdup (class_name);
1184 }
1185
1186 /* Implement the 'get_type_from_type_info' method. */
1187
1188 static struct type *
1189 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1190 {
1191 char *typename;
1192 struct cleanup *cleanup;
1193 struct value *type_val;
1194 struct expression *expr;
1195 struct type *result;
1196
1197 typename = gnuv3_get_typename_from_type_info (type_info_ptr);
1198 cleanup = make_cleanup (xfree, typename);
1199
1200 /* We have to parse the type name, since in general there is not a
1201 symbol for a type. This is somewhat bogus since there may be a
1202 mis-parse. Another approach might be to re-use the demangler's
1203 internal form to reconstruct the type somehow. */
1204
1205 expr = parse_expression (typename);
1206 make_cleanup (xfree, expr);
1207
1208 type_val = evaluate_type (expr);
1209 result = value_type (type_val);
1210
1211 do_cleanups (cleanup);
1212 return result;
1213 }
1214
1215 /* Determine if we are currently in a C++ thunk. If so, get the address
1216 of the routine we are thunking to and continue to there instead. */
1217
1218 static CORE_ADDR
1219 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1220 {
1221 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1222 struct gdbarch *gdbarch = get_frame_arch (frame);
1223 struct bound_minimal_symbol thunk_sym, fn_sym;
1224 struct obj_section *section;
1225 const char *thunk_name, *fn_name;
1226
1227 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1228 if (real_stop_pc == 0)
1229 real_stop_pc = stop_pc;
1230
1231 /* Find the linker symbol for this potential thunk. */
1232 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1233 section = find_pc_section (real_stop_pc);
1234 if (thunk_sym.minsym == NULL || section == NULL)
1235 return 0;
1236
1237 /* The symbol's demangled name should be something like "virtual
1238 thunk to FUNCTION", where FUNCTION is the name of the function
1239 being thunked to. */
1240 thunk_name = MSYMBOL_DEMANGLED_NAME (thunk_sym.minsym);
1241 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1242 return 0;
1243
1244 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1245 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1246 if (fn_sym.minsym == NULL)
1247 return 0;
1248
1249 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1250
1251 /* Some targets have minimal symbols pointing to function descriptors
1252 (powerpc 64 for example). Make sure to retrieve the address
1253 of the real function from the function descriptor before passing on
1254 the address to other layers of GDB. */
1255 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
1256 &current_target);
1257 if (func_addr != 0)
1258 method_stop_pc = func_addr;
1259
1260 real_stop_pc = gdbarch_skip_trampoline_code
1261 (gdbarch, frame, method_stop_pc);
1262 if (real_stop_pc == 0)
1263 real_stop_pc = method_stop_pc;
1264
1265 return real_stop_pc;
1266 }
1267
1268 /* Return nonzero if a type should be passed by reference.
1269
1270 The rule in the v3 ABI document comes from section 3.1.1. If the
1271 type has a non-trivial copy constructor or destructor, then the
1272 caller must make a copy (by calling the copy constructor if there
1273 is one or perform the copy itself otherwise), pass the address of
1274 the copy, and then destroy the temporary (if necessary).
1275
1276 For return values with non-trivial copy constructors or
1277 destructors, space will be allocated in the caller, and a pointer
1278 will be passed as the first argument (preceding "this").
1279
1280 We don't have a bulletproof mechanism for determining whether a
1281 constructor or destructor is trivial. For GCC and DWARF2 debug
1282 information, we can check the artificial flag.
1283
1284 We don't do anything with the constructors or destructors,
1285 but we have to get the argument passing right anyway. */
1286 static int
1287 gnuv3_pass_by_reference (struct type *type)
1288 {
1289 int fieldnum, fieldelem;
1290
1291 CHECK_TYPEDEF (type);
1292
1293 /* We're only interested in things that can have methods. */
1294 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1295 && TYPE_CODE (type) != TYPE_CODE_UNION)
1296 return 0;
1297
1298 /* A dynamic class has a non-trivial copy constructor.
1299 See c++98 section 12.8 Copying class objects [class.copy]. */
1300 if (gnuv3_dynamic_class (type))
1301 return 1;
1302
1303 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1304 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1305 fieldelem++)
1306 {
1307 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1308 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1309 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1310
1311 /* If this function is marked as artificial, it is compiler-generated,
1312 and we assume it is trivial. */
1313 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1314 continue;
1315
1316 /* If we've found a destructor, we must pass this by reference. */
1317 if (name[0] == '~')
1318 return 1;
1319
1320 /* If the mangled name of this method doesn't indicate that it
1321 is a constructor, we're not interested.
1322
1323 FIXME drow/2007-09-23: We could do this using the name of
1324 the method and the name of the class instead of dealing
1325 with the mangled name. We don't have a convenient function
1326 to strip off both leading scope qualifiers and trailing
1327 template arguments yet. */
1328 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1329 && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1330 continue;
1331
1332 /* If this method takes two arguments, and the second argument is
1333 a reference to this class, then it is a copy constructor. */
1334 if (TYPE_NFIELDS (fieldtype) == 2)
1335 {
1336 struct type *arg_type = TYPE_FIELD_TYPE (fieldtype, 1);
1337
1338 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
1339 {
1340 struct type *arg_target_type;
1341
1342 arg_target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1343 if (class_types_same_p (arg_target_type, type))
1344 return 1;
1345 }
1346 }
1347 }
1348
1349 /* Even if all the constructors and destructors were artificial, one
1350 of them may have invoked a non-artificial constructor or
1351 destructor in a base class. If any base class needs to be passed
1352 by reference, so does this class. Similarly for members, which
1353 are constructed whenever this class is. We do not need to worry
1354 about recursive loops here, since we are only looking at members
1355 of complete class type. Also ignore any static members. */
1356 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1357 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1358 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1359 return 1;
1360
1361 return 0;
1362 }
1363
1364 static void
1365 init_gnuv3_ops (void)
1366 {
1367 vtable_type_gdbarch_data
1368 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1369 std_type_info_gdbarch_data
1370 = gdbarch_data_register_post_init (build_std_type_info_type);
1371
1372 gnu_v3_abi_ops.shortname = "gnu-v3";
1373 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1374 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1375 gnu_v3_abi_ops.is_destructor_name =
1376 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1377 gnu_v3_abi_ops.is_constructor_name =
1378 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1379 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1380 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1381 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1382 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1383 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1384 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1385 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1386 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1387 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1388 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1389 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1390 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1391 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1392 gnu_v3_abi_ops.get_typename_from_type_info
1393 = gnuv3_get_typename_from_type_info;
1394 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1395 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1396 }
1397
1398 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
1399
1400 void
1401 _initialize_gnu_v3_abi (void)
1402 {
1403 init_gnuv3_ops ();
1404
1405 register_cp_abi (&gnu_v3_abi_ops);
1406 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1407 }