]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-v3-abi.c
Updated copyright notices for most files.
[thirdparty/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "cp-abi.h"
25 #include "cp-support.h"
26 #include "demangle.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 static struct cp_abi_ops gnu_v3_abi_ops;
34
35 static int
36 gnuv3_is_vtable_name (const char *name)
37 {
38 return strncmp (name, "_ZTV", 4) == 0;
39 }
40
41 static int
42 gnuv3_is_operator_name (const char *name)
43 {
44 return strncmp (name, "operator", 8) == 0;
45 }
46
47
48 /* Determine architecture of class DOMAIN. This architecture is used
49 to query C++ ABI details (types, method pointer layout, etc.).
50
51 Note that we assume DOMAIN must have been allocated with an OBJFILE;
52 GDB does not provide any built-in class types. Thus we use the
53 architecture of that OBJFILE to define the C++ ABI. */
54
55 static struct gdbarch *
56 get_class_arch (struct type *domain)
57 {
58 gdb_assert (TYPE_CODE (domain) == TYPE_CODE_CLASS);
59 gdb_assert (TYPE_OBJFILE (domain) != NULL);
60 return get_objfile_arch (TYPE_OBJFILE (domain));
61 }
62
63 /* To help us find the components of a vtable, we build ourselves a
64 GDB type object representing the vtable structure. Following the
65 V3 ABI, it goes something like this:
66
67 struct gdb_gnu_v3_abi_vtable {
68
69 / * An array of virtual call and virtual base offsets. The real
70 length of this array depends on the class hierarchy; we use
71 negative subscripts to access the elements. Yucky, but
72 better than the alternatives. * /
73 ptrdiff_t vcall_and_vbase_offsets[0];
74
75 / * The offset from a virtual pointer referring to this table
76 to the top of the complete object. * /
77 ptrdiff_t offset_to_top;
78
79 / * The type_info pointer for this class. This is really a
80 std::type_info *, but GDB doesn't really look at the
81 type_info object itself, so we don't bother to get the type
82 exactly right. * /
83 void *type_info;
84
85 / * Virtual table pointers in objects point here. * /
86
87 / * Virtual function pointers. Like the vcall/vbase array, the
88 real length of this table depends on the class hierarchy. * /
89 void (*virtual_functions[0]) ();
90
91 };
92
93 The catch, of course, is that the exact layout of this table
94 depends on the ABI --- word size, endianness, alignment, etc. So
95 the GDB type object is actually a per-architecture kind of thing.
96
97 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
98 which refers to the struct type * for this structure, laid out
99 appropriately for the architecture. */
100 static struct gdbarch_data *vtable_type_gdbarch_data;
101
102
103 /* Human-readable names for the numbers of the fields above. */
104 enum {
105 vtable_field_vcall_and_vbase_offsets,
106 vtable_field_offset_to_top,
107 vtable_field_type_info,
108 vtable_field_virtual_functions
109 };
110
111
112 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
113 described above, laid out appropriately for ARCH.
114
115 We use this function as the gdbarch per-architecture data
116 initialization function. */
117 static void *
118 build_gdb_vtable_type (struct gdbarch *arch)
119 {
120 struct type *t;
121 struct field *field_list, *field;
122 int offset;
123
124 struct type *void_ptr_type
125 = builtin_type (arch)->builtin_data_ptr;
126 struct type *ptr_to_void_fn_type
127 = builtin_type (arch)->builtin_func_ptr;
128
129 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
130 struct type *ptrdiff_type
131 = init_type (TYPE_CODE_INT,
132 gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT, 0,
133 "ptrdiff_t", 0);
134
135 /* We assume no padding is necessary, since GDB doesn't know
136 anything about alignment at the moment. If this assumption bites
137 us, we should add a gdbarch method which, given a type, returns
138 the alignment that type requires, and then use that here. */
139
140 /* Build the field list. */
141 field_list = xmalloc (sizeof (struct field [4]));
142 memset (field_list, 0, sizeof (struct field [4]));
143 field = &field_list[0];
144 offset = 0;
145
146 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
147 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
148 FIELD_TYPE (*field)
149 = create_array_type (0, ptrdiff_type,
150 create_range_type (0, builtin_type_int32, 0, -1));
151 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
152 offset += TYPE_LENGTH (FIELD_TYPE (*field));
153 field++;
154
155 /* ptrdiff_t offset_to_top; */
156 FIELD_NAME (*field) = "offset_to_top";
157 FIELD_TYPE (*field) = ptrdiff_type;
158 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
159 offset += TYPE_LENGTH (FIELD_TYPE (*field));
160 field++;
161
162 /* void *type_info; */
163 FIELD_NAME (*field) = "type_info";
164 FIELD_TYPE (*field) = void_ptr_type;
165 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
166 offset += TYPE_LENGTH (FIELD_TYPE (*field));
167 field++;
168
169 /* void (*virtual_functions[0]) (); */
170 FIELD_NAME (*field) = "virtual_functions";
171 FIELD_TYPE (*field)
172 = create_array_type (0, ptr_to_void_fn_type,
173 create_range_type (0, builtin_type_int32, 0, -1));
174 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
175 offset += TYPE_LENGTH (FIELD_TYPE (*field));
176 field++;
177
178 /* We assumed in the allocation above that there were four fields. */
179 gdb_assert (field == (field_list + 4));
180
181 t = init_type (TYPE_CODE_STRUCT, offset, 0, 0, 0);
182 TYPE_NFIELDS (t) = field - field_list;
183 TYPE_FIELDS (t) = field_list;
184 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
185
186 return t;
187 }
188
189
190 /* Return the ptrdiff_t type used in the vtable type. */
191 static struct type *
192 vtable_ptrdiff_type (struct gdbarch *gdbarch)
193 {
194 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
195
196 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
197 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
198 }
199
200 /* Return the offset from the start of the imaginary `struct
201 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
202 (i.e., where objects' virtual table pointers point). */
203 static int
204 vtable_address_point_offset (struct gdbarch *gdbarch)
205 {
206 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
207
208 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
209 / TARGET_CHAR_BIT);
210 }
211
212
213 static struct type *
214 gnuv3_rtti_type (struct value *value,
215 int *full_p, int *top_p, int *using_enc_p)
216 {
217 struct gdbarch *gdbarch;
218 struct type *vtable_type;
219 struct type *values_type = check_typedef (value_type (value));
220 CORE_ADDR vtable_address;
221 struct value *vtable;
222 struct minimal_symbol *vtable_symbol;
223 const char *vtable_symbol_name;
224 const char *class_name;
225 struct type *run_time_type;
226 struct type *base_type;
227 LONGEST offset_to_top;
228 struct type *values_type_vptr_basetype;
229 int values_type_vptr_fieldno;
230
231 /* We only have RTTI for class objects. */
232 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
233 return NULL;
234
235 /* This routine may be called for Java types that do not have
236 a proper objfile. Just return NULL for those. */
237 if (!TYPE_OBJFILE (values_type)
238 || !TYPE_OBJFILE (values_type)->obfd)
239 return NULL;
240
241 /* Determine architecture. */
242 gdbarch = get_class_arch (values_type);
243 vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
244
245 /* If we can't find the virtual table pointer for values_type, we
246 can't find the RTTI. */
247 values_type_vptr_fieldno = get_vptr_fieldno (values_type,
248 &values_type_vptr_basetype);
249 if (values_type_vptr_fieldno == -1)
250 return NULL;
251
252 if (using_enc_p)
253 *using_enc_p = 0;
254
255 /* Fetch VALUE's virtual table pointer, and tweak it to point at
256 an instance of our imaginary gdb_gnu_v3_abi_vtable structure. */
257 base_type = check_typedef (values_type_vptr_basetype);
258 if (values_type != base_type)
259 {
260 value = value_cast (base_type, value);
261 if (using_enc_p)
262 *using_enc_p = 1;
263 }
264 vtable_address
265 = value_as_address (value_field (value, values_type_vptr_fieldno));
266 vtable
267 = value_at_lazy (vtable_type,
268 vtable_address - vtable_address_point_offset (gdbarch));
269
270 /* Find the linker symbol for this vtable. */
271 vtable_symbol
272 = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtable)
273 + value_offset (vtable)
274 + value_embedded_offset (vtable));
275 if (! vtable_symbol)
276 return NULL;
277
278 /* The symbol's demangled name should be something like "vtable for
279 CLASS", where CLASS is the name of the run-time type of VALUE.
280 If we didn't like this approach, we could instead look in the
281 type_info object itself to get the class name. But this way
282 should work just as well, and doesn't read target memory. */
283 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
284 if (vtable_symbol_name == NULL
285 || strncmp (vtable_symbol_name, "vtable for ", 11))
286 {
287 warning (_("can't find linker symbol for virtual table for `%s' value"),
288 TYPE_NAME (values_type));
289 if (vtable_symbol_name)
290 warning (_(" found `%s' instead"), vtable_symbol_name);
291 return NULL;
292 }
293 class_name = vtable_symbol_name + 11;
294
295 /* Try to look up the class name as a type name. */
296 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
297 run_time_type = cp_lookup_rtti_type (class_name, NULL);
298 if (run_time_type == NULL)
299 return NULL;
300
301 /* Get the offset from VALUE to the top of the complete object.
302 NOTE: this is the reverse of the meaning of *TOP_P. */
303 offset_to_top
304 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
305
306 if (full_p)
307 *full_p = (- offset_to_top == value_embedded_offset (value)
308 && (TYPE_LENGTH (value_enclosing_type (value))
309 >= TYPE_LENGTH (run_time_type)));
310 if (top_p)
311 *top_p = - offset_to_top;
312
313 return run_time_type;
314 }
315
316 /* Find the vtable for CONTAINER and return a value of the correct
317 vtable type for this architecture. */
318
319 static struct value *
320 gnuv3_get_vtable (struct gdbarch *gdbarch, struct value *container)
321 {
322 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
323 struct type *vtable_pointer_type;
324 struct value *vtable_pointer;
325 CORE_ADDR vtable_pointer_address, vtable_address;
326
327 /* We do not consult the debug information to find the virtual table.
328 The ABI specifies that it is always at offset zero in any class,
329 and debug information may not represent it. We won't issue an
330 error if there's a class with virtual functions but no virtual table
331 pointer, but something's already gone seriously wrong if that
332 happens.
333
334 We avoid using value_contents on principle, because the object might
335 be large. */
336
337 /* Find the type "pointer to virtual table". */
338 vtable_pointer_type = lookup_pointer_type (vtable_type);
339
340 /* Load it from the start of the class. */
341 vtable_pointer_address = value_as_address (value_addr (container));
342 vtable_pointer = value_at (vtable_pointer_type, vtable_pointer_address);
343 vtable_address = value_as_address (vtable_pointer);
344
345 /* Correct it to point at the start of the virtual table, rather
346 than the address point. */
347 return value_at_lazy (vtable_type,
348 vtable_address - vtable_address_point_offset (gdbarch));
349 }
350
351 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
352 function, of type FNTYPE. */
353
354 static struct value *
355 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
356 struct type *fntype, int vtable_index)
357 {
358 struct value *vtable = gnuv3_get_vtable (gdbarch, container);
359 struct value *vfn;
360
361 /* Fetch the appropriate function pointer from the vtable. */
362 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
363 value_from_longest (builtin_type_int32, vtable_index));
364
365 /* If this architecture uses function descriptors directly in the vtable,
366 then the address of the vtable entry is actually a "function pointer"
367 (i.e. points to the descriptor). We don't need to scale the index
368 by the size of a function descriptor; GCC does that before outputing
369 debug information. */
370 if (gdbarch_vtable_function_descriptors (gdbarch))
371 vfn = value_addr (vfn);
372
373 /* Cast the function pointer to the appropriate type. */
374 vfn = value_cast (lookup_pointer_type (fntype), vfn);
375
376 return vfn;
377 }
378
379 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
380 for a description of the arguments. */
381
382 static struct value *
383 gnuv3_virtual_fn_field (struct value **value_p,
384 struct fn_field *f, int j,
385 struct type *vfn_base, int offset)
386 {
387 struct type *values_type = check_typedef (value_type (*value_p));
388 struct gdbarch *gdbarch;
389
390 /* Some simple sanity checks. */
391 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
392 error (_("Only classes can have virtual functions."));
393
394 /* Determine architecture. */
395 gdbarch = get_class_arch (values_type);
396
397 /* Cast our value to the base class which defines this virtual
398 function. This takes care of any necessary `this'
399 adjustments. */
400 if (vfn_base != values_type)
401 *value_p = value_cast (vfn_base, *value_p);
402
403 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
404 TYPE_FN_FIELD_VOFFSET (f, j));
405 }
406
407 /* Compute the offset of the baseclass which is
408 the INDEXth baseclass of class TYPE,
409 for value at VALADDR (in host) at ADDRESS (in target).
410 The result is the offset of the baseclass value relative
411 to (the address of)(ARG) + OFFSET.
412
413 -1 is returned on error. */
414 static int
415 gnuv3_baseclass_offset (struct type *type, int index, const bfd_byte *valaddr,
416 CORE_ADDR address)
417 {
418 struct gdbarch *gdbarch;
419 struct type *vtable_type;
420 struct type *ptr_type;
421 struct value *vtable;
422 struct type *vbasetype;
423 struct value *offset_val, *vbase_array;
424 CORE_ADDR vtable_address;
425 long int cur_base_offset, base_offset;
426 int vbasetype_vptr_fieldno;
427
428 /* Determine architecture. */
429 gdbarch = get_class_arch (type);
430 vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
431 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
432
433 /* If it isn't a virtual base, this is easy. The offset is in the
434 type definition. */
435 if (!BASETYPE_VIA_VIRTUAL (type, index))
436 return TYPE_BASECLASS_BITPOS (type, index) / 8;
437
438 /* To access a virtual base, we need to use the vbase offset stored in
439 our vtable. Recent GCC versions provide this information. If it isn't
440 available, we could get what we needed from RTTI, or from drawing the
441 complete inheritance graph based on the debug info. Neither is
442 worthwhile. */
443 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
444 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
445 error (_("Expected a negative vbase offset (old compiler?)"));
446
447 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
448 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
449 error (_("Misaligned vbase offset."));
450 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
451
452 /* We're now looking for the cur_base_offset'th entry (negative index)
453 in the vcall_and_vbase_offsets array. We used to cast the object to
454 its TYPE_VPTR_BASETYPE, and reference the vtable as TYPE_VPTR_FIELDNO;
455 however, that cast can not be done without calling baseclass_offset again
456 if the TYPE_VPTR_BASETYPE is a virtual base class, as described in the
457 v3 C++ ABI Section 2.4.I.2.b. Fortunately the ABI guarantees that the
458 vtable pointer will be located at the beginning of the object, so we can
459 bypass the casting. Verify that the TYPE_VPTR_FIELDNO is in fact at the
460 start of whichever baseclass it resides in, as a sanity measure - iff
461 we have debugging information for that baseclass. */
462
463 vbasetype = TYPE_VPTR_BASETYPE (type);
464 vbasetype_vptr_fieldno = get_vptr_fieldno (vbasetype, NULL);
465
466 if (vbasetype_vptr_fieldno >= 0
467 && TYPE_FIELD_BITPOS (vbasetype, vbasetype_vptr_fieldno) != 0)
468 error (_("Illegal vptr offset in class %s"),
469 TYPE_NAME (vbasetype) ? TYPE_NAME (vbasetype) : "<unknown>");
470
471 vtable_address = value_as_address (value_at_lazy (ptr_type, address));
472 vtable
473 = value_at_lazy (vtable_type,
474 vtable_address - vtable_address_point_offset (gdbarch));
475 offset_val = value_from_longest (builtin_type_int32, cur_base_offset);
476 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
477 base_offset = value_as_long (value_subscript (vbase_array, offset_val));
478 return base_offset;
479 }
480
481 /* Locate a virtual method in DOMAIN or its non-virtual base classes
482 which has virtual table index VOFFSET. The method has an associated
483 "this" adjustment of ADJUSTMENT bytes. */
484
485 const char *
486 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
487 LONGEST adjustment)
488 {
489 int i;
490 const char *physname;
491
492 /* Search this class first. */
493 physname = NULL;
494 if (adjustment == 0)
495 {
496 int len;
497
498 len = TYPE_NFN_FIELDS (domain);
499 for (i = 0; i < len; i++)
500 {
501 int len2, j;
502 struct fn_field *f;
503
504 f = TYPE_FN_FIELDLIST1 (domain, i);
505 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
506
507 check_stub_method_group (domain, i);
508 for (j = 0; j < len2; j++)
509 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
510 return TYPE_FN_FIELD_PHYSNAME (f, j);
511 }
512 }
513
514 /* Next search non-virtual bases. If it's in a virtual base,
515 we're out of luck. */
516 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
517 {
518 int pos;
519 struct type *basetype;
520
521 if (BASETYPE_VIA_VIRTUAL (domain, i))
522 continue;
523
524 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
525 basetype = TYPE_FIELD_TYPE (domain, i);
526 /* Recurse with a modified adjustment. We don't need to adjust
527 voffset. */
528 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
529 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
530 }
531
532 return NULL;
533 }
534
535 /* Decode GNU v3 method pointer. */
536
537 static int
538 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
539 const gdb_byte *contents,
540 CORE_ADDR *value_p,
541 LONGEST *adjustment_p)
542 {
543 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
544 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
545 CORE_ADDR ptr_value;
546 LONGEST voffset, adjustment;
547 int vbit;
548
549 /* Extract the pointer to member. The first element is either a pointer
550 or a vtable offset. For pointers, we need to use extract_typed_address
551 to allow the back-end to convert the pointer to a GDB address -- but
552 vtable offsets we must handle as integers. At this point, we do not
553 yet know which case we have, so we extract the value under both
554 interpretations and choose the right one later on. */
555 ptr_value = extract_typed_address (contents, funcptr_type);
556 voffset = extract_signed_integer (contents, TYPE_LENGTH (funcptr_type));
557 contents += TYPE_LENGTH (funcptr_type);
558 adjustment = extract_signed_integer (contents, TYPE_LENGTH (offset_type));
559
560 if (!gdbarch_vbit_in_delta (gdbarch))
561 {
562 vbit = voffset & 1;
563 voffset = voffset ^ vbit;
564 }
565 else
566 {
567 vbit = adjustment & 1;
568 adjustment = adjustment >> 1;
569 }
570
571 *value_p = vbit? voffset : ptr_value;
572 *adjustment_p = adjustment;
573 return vbit;
574 }
575
576 /* GNU v3 implementation of cplus_print_method_ptr. */
577
578 static void
579 gnuv3_print_method_ptr (const gdb_byte *contents,
580 struct type *type,
581 struct ui_file *stream)
582 {
583 struct type *domain = TYPE_DOMAIN_TYPE (type);
584 struct gdbarch *gdbarch = get_class_arch (domain);
585 CORE_ADDR ptr_value;
586 LONGEST adjustment;
587 int vbit;
588
589 /* Extract the pointer to member. */
590 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
591
592 /* Check for NULL. */
593 if (ptr_value == 0 && vbit == 0)
594 {
595 fprintf_filtered (stream, "NULL");
596 return;
597 }
598
599 /* Search for a virtual method. */
600 if (vbit)
601 {
602 CORE_ADDR voffset;
603 const char *physname;
604
605 /* It's a virtual table offset, maybe in this class. Search
606 for a field with the correct vtable offset. First convert it
607 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
608 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
609
610 physname = gnuv3_find_method_in (domain, voffset, adjustment);
611
612 /* If we found a method, print that. We don't bother to disambiguate
613 possible paths to the method based on the adjustment. */
614 if (physname)
615 {
616 char *demangled_name = cplus_demangle (physname,
617 DMGL_ANSI | DMGL_PARAMS);
618 if (demangled_name != NULL)
619 {
620 fprintf_filtered (stream, "&virtual ");
621 fputs_filtered (demangled_name, stream);
622 xfree (demangled_name);
623 return;
624 }
625 }
626 }
627
628 /* We didn't find it; print the raw data. */
629 if (vbit)
630 {
631 fprintf_filtered (stream, "&virtual table offset ");
632 print_longest (stream, 'd', 1, ptr_value);
633 }
634 else
635 print_address_demangle (ptr_value, stream, demangle);
636
637 if (adjustment)
638 {
639 fprintf_filtered (stream, ", this adjustment ");
640 print_longest (stream, 'd', 1, adjustment);
641 }
642 }
643
644 /* GNU v3 implementation of cplus_method_ptr_size. */
645
646 static int
647 gnuv3_method_ptr_size (struct type *type)
648 {
649 struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type));
650 struct gdbarch *gdbarch = get_class_arch (domain_type);
651 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
652 }
653
654 /* GNU v3 implementation of cplus_make_method_ptr. */
655
656 static void
657 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
658 CORE_ADDR value, int is_virtual)
659 {
660 struct type *domain_type = check_typedef (TYPE_DOMAIN_TYPE (type));
661 struct gdbarch *gdbarch = get_class_arch (domain_type);
662 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
663
664 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
665 always zero, since the method pointer is of the correct type.
666 But if the method pointer came from a base class, this is
667 incorrect - it should be the offset to the base. The best
668 fix might be to create the pointer to member pointing at the
669 base class and cast it to the derived class, but that requires
670 support for adjusting pointers to members when casting them -
671 not currently supported by GDB. */
672
673 if (!gdbarch_vbit_in_delta (gdbarch))
674 {
675 store_unsigned_integer (contents, size, value | is_virtual);
676 store_unsigned_integer (contents + size, size, 0);
677 }
678 else
679 {
680 store_unsigned_integer (contents, size, value);
681 store_unsigned_integer (contents + size, size, is_virtual);
682 }
683 }
684
685 /* GNU v3 implementation of cplus_method_ptr_to_value. */
686
687 static struct value *
688 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
689 {
690 struct gdbarch *gdbarch;
691 const gdb_byte *contents = value_contents (method_ptr);
692 CORE_ADDR ptr_value;
693 struct type *domain_type, *final_type, *method_type;
694 LONGEST adjustment;
695 struct value *adjval;
696 int vbit;
697
698 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
699 final_type = lookup_pointer_type (domain_type);
700
701 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
702
703 /* Extract the pointer to member. */
704 gdbarch = get_class_arch (domain_type);
705 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
706
707 /* First convert THIS to match the containing type of the pointer to
708 member. This cast may adjust the value of THIS. */
709 *this_p = value_cast (final_type, *this_p);
710
711 /* Then apply whatever adjustment is necessary. This creates a somewhat
712 strange pointer: it claims to have type FINAL_TYPE, but in fact it
713 might not be a valid FINAL_TYPE. For instance, it might be a
714 base class of FINAL_TYPE. And if it's not the primary base class,
715 then printing it out as a FINAL_TYPE object would produce some pretty
716 garbage.
717
718 But we don't really know the type of the first argument in
719 METHOD_TYPE either, which is why this happens. We can't
720 dereference this later as a FINAL_TYPE, but once we arrive in the
721 called method we'll have debugging information for the type of
722 "this" - and that'll match the value we produce here.
723
724 You can provoke this case by casting a Base::* to a Derived::*, for
725 instance. */
726 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
727 adjval = value_from_longest (builtin_type (gdbarch)->builtin_long,
728 adjustment);
729 *this_p = value_ptradd (*this_p, adjval);
730 *this_p = value_cast (final_type, *this_p);
731
732 if (vbit)
733 {
734 LONGEST voffset;
735 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
736 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
737 method_type, voffset);
738 }
739 else
740 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
741 }
742
743 /* Determine if we are currently in a C++ thunk. If so, get the address
744 of the routine we are thunking to and continue to there instead. */
745
746 static CORE_ADDR
747 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
748 {
749 CORE_ADDR real_stop_pc, method_stop_pc;
750 struct gdbarch *gdbarch = get_frame_arch (frame);
751 struct minimal_symbol *thunk_sym, *fn_sym;
752 struct obj_section *section;
753 char *thunk_name, *fn_name;
754
755 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
756 if (real_stop_pc == 0)
757 real_stop_pc = stop_pc;
758
759 /* Find the linker symbol for this potential thunk. */
760 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
761 section = find_pc_section (real_stop_pc);
762 if (thunk_sym == NULL || section == NULL)
763 return 0;
764
765 /* The symbol's demangled name should be something like "virtual
766 thunk to FUNCTION", where FUNCTION is the name of the function
767 being thunked to. */
768 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
769 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
770 return 0;
771
772 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
773 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
774 if (fn_sym == NULL)
775 return 0;
776
777 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
778 real_stop_pc = gdbarch_skip_trampoline_code
779 (gdbarch, frame, method_stop_pc);
780 if (real_stop_pc == 0)
781 real_stop_pc = method_stop_pc;
782
783 return real_stop_pc;
784 }
785
786 /* Return nonzero if a type should be passed by reference.
787
788 The rule in the v3 ABI document comes from section 3.1.1. If the
789 type has a non-trivial copy constructor or destructor, then the
790 caller must make a copy (by calling the copy constructor if there
791 is one or perform the copy itself otherwise), pass the address of
792 the copy, and then destroy the temporary (if necessary).
793
794 For return values with non-trivial copy constructors or
795 destructors, space will be allocated in the caller, and a pointer
796 will be passed as the first argument (preceding "this").
797
798 We don't have a bulletproof mechanism for determining whether a
799 constructor or destructor is trivial. For GCC and DWARF2 debug
800 information, we can check the artificial flag.
801
802 We don't do anything with the constructors or destructors,
803 but we have to get the argument passing right anyway. */
804 static int
805 gnuv3_pass_by_reference (struct type *type)
806 {
807 int fieldnum, fieldelem;
808
809 CHECK_TYPEDEF (type);
810
811 /* We're only interested in things that can have methods. */
812 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
813 && TYPE_CODE (type) != TYPE_CODE_CLASS
814 && TYPE_CODE (type) != TYPE_CODE_UNION)
815 return 0;
816
817 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
818 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
819 fieldelem++)
820 {
821 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
822 char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
823 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
824
825 /* If this function is marked as artificial, it is compiler-generated,
826 and we assume it is trivial. */
827 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
828 continue;
829
830 /* If we've found a destructor, we must pass this by reference. */
831 if (name[0] == '~')
832 return 1;
833
834 /* If the mangled name of this method doesn't indicate that it
835 is a constructor, we're not interested.
836
837 FIXME drow/2007-09-23: We could do this using the name of
838 the method and the name of the class instead of dealing
839 with the mangled name. We don't have a convenient function
840 to strip off both leading scope qualifiers and trailing
841 template arguments yet. */
842 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
843 continue;
844
845 /* If this method takes two arguments, and the second argument is
846 a reference to this class, then it is a copy constructor. */
847 if (TYPE_NFIELDS (fieldtype) == 2
848 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
849 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype, 1))) == type)
850 return 1;
851 }
852
853 /* Even if all the constructors and destructors were artificial, one
854 of them may have invoked a non-artificial constructor or
855 destructor in a base class. If any base class needs to be passed
856 by reference, so does this class. Similarly for members, which
857 are constructed whenever this class is. We do not need to worry
858 about recursive loops here, since we are only looking at members
859 of complete class type. */
860 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
861 if (gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
862 return 1;
863
864 return 0;
865 }
866
867 static void
868 init_gnuv3_ops (void)
869 {
870 vtable_type_gdbarch_data = gdbarch_data_register_post_init (build_gdb_vtable_type);
871
872 gnu_v3_abi_ops.shortname = "gnu-v3";
873 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
874 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
875 gnu_v3_abi_ops.is_destructor_name =
876 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
877 gnu_v3_abi_ops.is_constructor_name =
878 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
879 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
880 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
881 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
882 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
883 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
884 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
885 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
886 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
887 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
888 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
889 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
890 }
891
892 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
893
894 void
895 _initialize_gnu_v3_abi (void)
896 {
897 init_gnuv3_ops ();
898
899 register_cp_abi (&gnu_v3_abi_ops);
900 }