]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-v3-abi.c
* gnu-v3-abi.c (gnuv3_print_vtable): Initialize 'result_vec'.
[thirdparty/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2003, 2005-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "exceptions.h"
30
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
33
34 static struct cp_abi_ops gnu_v3_abi_ops;
35
36 static int
37 gnuv3_is_vtable_name (const char *name)
38 {
39 return strncmp (name, "_ZTV", 4) == 0;
40 }
41
42 static int
43 gnuv3_is_operator_name (const char *name)
44 {
45 return strncmp (name, "operator", 8) == 0;
46 }
47
48
49 /* To help us find the components of a vtable, we build ourselves a
50 GDB type object representing the vtable structure. Following the
51 V3 ABI, it goes something like this:
52
53 struct gdb_gnu_v3_abi_vtable {
54
55 / * An array of virtual call and virtual base offsets. The real
56 length of this array depends on the class hierarchy; we use
57 negative subscripts to access the elements. Yucky, but
58 better than the alternatives. * /
59 ptrdiff_t vcall_and_vbase_offsets[0];
60
61 / * The offset from a virtual pointer referring to this table
62 to the top of the complete object. * /
63 ptrdiff_t offset_to_top;
64
65 / * The type_info pointer for this class. This is really a
66 std::type_info *, but GDB doesn't really look at the
67 type_info object itself, so we don't bother to get the type
68 exactly right. * /
69 void *type_info;
70
71 / * Virtual table pointers in objects point here. * /
72
73 / * Virtual function pointers. Like the vcall/vbase array, the
74 real length of this table depends on the class hierarchy. * /
75 void (*virtual_functions[0]) ();
76
77 };
78
79 The catch, of course, is that the exact layout of this table
80 depends on the ABI --- word size, endianness, alignment, etc. So
81 the GDB type object is actually a per-architecture kind of thing.
82
83 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
84 which refers to the struct type * for this structure, laid out
85 appropriately for the architecture. */
86 static struct gdbarch_data *vtable_type_gdbarch_data;
87
88
89 /* Human-readable names for the numbers of the fields above. */
90 enum {
91 vtable_field_vcall_and_vbase_offsets,
92 vtable_field_offset_to_top,
93 vtable_field_type_info,
94 vtable_field_virtual_functions
95 };
96
97
98 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
99 described above, laid out appropriately for ARCH.
100
101 We use this function as the gdbarch per-architecture data
102 initialization function. */
103 static void *
104 build_gdb_vtable_type (struct gdbarch *arch)
105 {
106 struct type *t;
107 struct field *field_list, *field;
108 int offset;
109
110 struct type *void_ptr_type
111 = builtin_type (arch)->builtin_data_ptr;
112 struct type *ptr_to_void_fn_type
113 = builtin_type (arch)->builtin_func_ptr;
114
115 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
116 struct type *ptrdiff_type
117 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
118
119 /* We assume no padding is necessary, since GDB doesn't know
120 anything about alignment at the moment. If this assumption bites
121 us, we should add a gdbarch method which, given a type, returns
122 the alignment that type requires, and then use that here. */
123
124 /* Build the field list. */
125 field_list = xmalloc (sizeof (struct field [4]));
126 memset (field_list, 0, sizeof (struct field [4]));
127 field = &field_list[0];
128 offset = 0;
129
130 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
131 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
132 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
133 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
134 offset += TYPE_LENGTH (FIELD_TYPE (*field));
135 field++;
136
137 /* ptrdiff_t offset_to_top; */
138 FIELD_NAME (*field) = "offset_to_top";
139 FIELD_TYPE (*field) = ptrdiff_type;
140 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
141 offset += TYPE_LENGTH (FIELD_TYPE (*field));
142 field++;
143
144 /* void *type_info; */
145 FIELD_NAME (*field) = "type_info";
146 FIELD_TYPE (*field) = void_ptr_type;
147 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
148 offset += TYPE_LENGTH (FIELD_TYPE (*field));
149 field++;
150
151 /* void (*virtual_functions[0]) (); */
152 FIELD_NAME (*field) = "virtual_functions";
153 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
154 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
155 offset += TYPE_LENGTH (FIELD_TYPE (*field));
156 field++;
157
158 /* We assumed in the allocation above that there were four fields. */
159 gdb_assert (field == (field_list + 4));
160
161 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
162 TYPE_NFIELDS (t) = field - field_list;
163 TYPE_FIELDS (t) = field_list;
164 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
165 INIT_CPLUS_SPECIFIC (t);
166
167 return t;
168 }
169
170
171 /* Return the ptrdiff_t type used in the vtable type. */
172 static struct type *
173 vtable_ptrdiff_type (struct gdbarch *gdbarch)
174 {
175 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
176
177 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
178 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
179 }
180
181 /* Return the offset from the start of the imaginary `struct
182 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
183 (i.e., where objects' virtual table pointers point). */
184 static int
185 vtable_address_point_offset (struct gdbarch *gdbarch)
186 {
187 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
188
189 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
190 / TARGET_CHAR_BIT);
191 }
192
193
194 /* Determine whether structure TYPE is a dynamic class. Cache the
195 result. */
196
197 static int
198 gnuv3_dynamic_class (struct type *type)
199 {
200 int fieldnum, fieldelem;
201
202 if (TYPE_CPLUS_DYNAMIC (type))
203 return TYPE_CPLUS_DYNAMIC (type) == 1;
204
205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
206
207 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
208 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
209 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
210 {
211 TYPE_CPLUS_DYNAMIC (type) = 1;
212 return 1;
213 }
214
215 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
216 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
217 fieldelem++)
218 {
219 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
220
221 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
222 {
223 TYPE_CPLUS_DYNAMIC (type) = 1;
224 return 1;
225 }
226 }
227
228 TYPE_CPLUS_DYNAMIC (type) = -1;
229 return 0;
230 }
231
232 /* Find the vtable for a value of CONTAINER_TYPE located at
233 CONTAINER_ADDR. Return a value of the correct vtable type for this
234 architecture, or NULL if CONTAINER does not have a vtable. */
235
236 static struct value *
237 gnuv3_get_vtable (struct gdbarch *gdbarch,
238 struct type *container_type, CORE_ADDR container_addr)
239 {
240 struct type *vtable_type = gdbarch_data (gdbarch,
241 vtable_type_gdbarch_data);
242 struct type *vtable_pointer_type;
243 struct value *vtable_pointer;
244 CORE_ADDR vtable_address;
245
246 /* If this type does not have a virtual table, don't read the first
247 field. */
248 if (!gnuv3_dynamic_class (check_typedef (container_type)))
249 return NULL;
250
251 /* We do not consult the debug information to find the virtual table.
252 The ABI specifies that it is always at offset zero in any class,
253 and debug information may not represent it.
254
255 We avoid using value_contents on principle, because the object might
256 be large. */
257
258 /* Find the type "pointer to virtual table". */
259 vtable_pointer_type = lookup_pointer_type (vtable_type);
260
261 /* Load it from the start of the class. */
262 vtable_pointer = value_at (vtable_pointer_type, container_addr);
263 vtable_address = value_as_address (vtable_pointer);
264
265 /* Correct it to point at the start of the virtual table, rather
266 than the address point. */
267 return value_at_lazy (vtable_type,
268 vtable_address
269 - vtable_address_point_offset (gdbarch));
270 }
271
272
273 static struct type *
274 gnuv3_rtti_type (struct value *value,
275 int *full_p, int *top_p, int *using_enc_p)
276 {
277 struct gdbarch *gdbarch;
278 struct type *values_type = check_typedef (value_type (value));
279 struct value *vtable;
280 struct minimal_symbol *vtable_symbol;
281 const char *vtable_symbol_name;
282 const char *class_name;
283 struct type *run_time_type;
284 LONGEST offset_to_top;
285
286 /* We only have RTTI for class objects. */
287 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
288 return NULL;
289
290 /* Java doesn't have RTTI following the C++ ABI. */
291 if (TYPE_CPLUS_REALLY_JAVA (values_type))
292 return NULL;
293
294 /* Determine architecture. */
295 gdbarch = get_type_arch (values_type);
296
297 if (using_enc_p)
298 *using_enc_p = 0;
299
300 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
301 value_as_address (value_addr (value)));
302 if (vtable == NULL)
303 return NULL;
304
305 /* Find the linker symbol for this vtable. */
306 vtable_symbol
307 = lookup_minimal_symbol_by_pc (value_address (vtable)
308 + value_embedded_offset (vtable));
309 if (! vtable_symbol)
310 return NULL;
311
312 /* The symbol's demangled name should be something like "vtable for
313 CLASS", where CLASS is the name of the run-time type of VALUE.
314 If we didn't like this approach, we could instead look in the
315 type_info object itself to get the class name. But this way
316 should work just as well, and doesn't read target memory. */
317 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
318 if (vtable_symbol_name == NULL
319 || strncmp (vtable_symbol_name, "vtable for ", 11))
320 {
321 warning (_("can't find linker symbol for virtual table for `%s' value"),
322 TYPE_SAFE_NAME (values_type));
323 if (vtable_symbol_name)
324 warning (_(" found `%s' instead"), vtable_symbol_name);
325 return NULL;
326 }
327 class_name = vtable_symbol_name + 11;
328
329 /* Try to look up the class name as a type name. */
330 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
331 run_time_type = cp_lookup_rtti_type (class_name, NULL);
332 if (run_time_type == NULL)
333 return NULL;
334
335 /* Get the offset from VALUE to the top of the complete object.
336 NOTE: this is the reverse of the meaning of *TOP_P. */
337 offset_to_top
338 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
339
340 if (full_p)
341 *full_p = (- offset_to_top == value_embedded_offset (value)
342 && (TYPE_LENGTH (value_enclosing_type (value))
343 >= TYPE_LENGTH (run_time_type)));
344 if (top_p)
345 *top_p = - offset_to_top;
346 return run_time_type;
347 }
348
349 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
350 function, of type FNTYPE. */
351
352 static struct value *
353 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
354 struct type *fntype, int vtable_index)
355 {
356 struct value *vtable, *vfn;
357
358 /* Every class with virtual functions must have a vtable. */
359 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
360 value_as_address (value_addr (container)));
361 gdb_assert (vtable != NULL);
362
363 /* Fetch the appropriate function pointer from the vtable. */
364 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
365 vtable_index);
366
367 /* If this architecture uses function descriptors directly in the vtable,
368 then the address of the vtable entry is actually a "function pointer"
369 (i.e. points to the descriptor). We don't need to scale the index
370 by the size of a function descriptor; GCC does that before outputing
371 debug information. */
372 if (gdbarch_vtable_function_descriptors (gdbarch))
373 vfn = value_addr (vfn);
374
375 /* Cast the function pointer to the appropriate type. */
376 vfn = value_cast (lookup_pointer_type (fntype), vfn);
377
378 return vfn;
379 }
380
381 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
382 for a description of the arguments. */
383
384 static struct value *
385 gnuv3_virtual_fn_field (struct value **value_p,
386 struct fn_field *f, int j,
387 struct type *vfn_base, int offset)
388 {
389 struct type *values_type = check_typedef (value_type (*value_p));
390 struct gdbarch *gdbarch;
391
392 /* Some simple sanity checks. */
393 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
394 error (_("Only classes can have virtual functions."));
395
396 /* Determine architecture. */
397 gdbarch = get_type_arch (values_type);
398
399 /* Cast our value to the base class which defines this virtual
400 function. This takes care of any necessary `this'
401 adjustments. */
402 if (vfn_base != values_type)
403 *value_p = value_cast (vfn_base, *value_p);
404
405 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
406 TYPE_FN_FIELD_VOFFSET (f, j));
407 }
408
409 /* Compute the offset of the baseclass which is
410 the INDEXth baseclass of class TYPE,
411 for value at VALADDR (in host) at ADDRESS (in target).
412 The result is the offset of the baseclass value relative
413 to (the address of)(ARG) + OFFSET.
414
415 -1 is returned on error. */
416
417 static int
418 gnuv3_baseclass_offset (struct type *type, int index,
419 const bfd_byte *valaddr, int embedded_offset,
420 CORE_ADDR address, const struct value *val)
421 {
422 struct gdbarch *gdbarch;
423 struct type *ptr_type;
424 struct value *vtable;
425 struct value *vbase_array;
426 long int cur_base_offset, base_offset;
427
428 /* Determine architecture. */
429 gdbarch = get_type_arch (type);
430 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
431
432 /* If it isn't a virtual base, this is easy. The offset is in the
433 type definition. */
434 if (!BASETYPE_VIA_VIRTUAL (type, index))
435 return TYPE_BASECLASS_BITPOS (type, index) / 8;
436
437 /* To access a virtual base, we need to use the vbase offset stored in
438 our vtable. Recent GCC versions provide this information. If it isn't
439 available, we could get what we needed from RTTI, or from drawing the
440 complete inheritance graph based on the debug info. Neither is
441 worthwhile. */
442 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
443 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
444 error (_("Expected a negative vbase offset (old compiler?)"));
445
446 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
447 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
448 error (_("Misaligned vbase offset."));
449 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
450
451 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
452 gdb_assert (vtable != NULL);
453 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
454 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
455 return base_offset;
456 }
457
458 /* Locate a virtual method in DOMAIN or its non-virtual base classes
459 which has virtual table index VOFFSET. The method has an associated
460 "this" adjustment of ADJUSTMENT bytes. */
461
462 static const char *
463 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
464 LONGEST adjustment)
465 {
466 int i;
467
468 /* Search this class first. */
469 if (adjustment == 0)
470 {
471 int len;
472
473 len = TYPE_NFN_FIELDS (domain);
474 for (i = 0; i < len; i++)
475 {
476 int len2, j;
477 struct fn_field *f;
478
479 f = TYPE_FN_FIELDLIST1 (domain, i);
480 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
481
482 check_stub_method_group (domain, i);
483 for (j = 0; j < len2; j++)
484 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
485 return TYPE_FN_FIELD_PHYSNAME (f, j);
486 }
487 }
488
489 /* Next search non-virtual bases. If it's in a virtual base,
490 we're out of luck. */
491 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
492 {
493 int pos;
494 struct type *basetype;
495
496 if (BASETYPE_VIA_VIRTUAL (domain, i))
497 continue;
498
499 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
500 basetype = TYPE_FIELD_TYPE (domain, i);
501 /* Recurse with a modified adjustment. We don't need to adjust
502 voffset. */
503 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
504 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
505 }
506
507 return NULL;
508 }
509
510 /* Decode GNU v3 method pointer. */
511
512 static int
513 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
514 const gdb_byte *contents,
515 CORE_ADDR *value_p,
516 LONGEST *adjustment_p)
517 {
518 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
519 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
521 CORE_ADDR ptr_value;
522 LONGEST voffset, adjustment;
523 int vbit;
524
525 /* Extract the pointer to member. The first element is either a pointer
526 or a vtable offset. For pointers, we need to use extract_typed_address
527 to allow the back-end to convert the pointer to a GDB address -- but
528 vtable offsets we must handle as integers. At this point, we do not
529 yet know which case we have, so we extract the value under both
530 interpretations and choose the right one later on. */
531 ptr_value = extract_typed_address (contents, funcptr_type);
532 voffset = extract_signed_integer (contents,
533 TYPE_LENGTH (funcptr_type), byte_order);
534 contents += TYPE_LENGTH (funcptr_type);
535 adjustment = extract_signed_integer (contents,
536 TYPE_LENGTH (offset_type), byte_order);
537
538 if (!gdbarch_vbit_in_delta (gdbarch))
539 {
540 vbit = voffset & 1;
541 voffset = voffset ^ vbit;
542 }
543 else
544 {
545 vbit = adjustment & 1;
546 adjustment = adjustment >> 1;
547 }
548
549 *value_p = vbit? voffset : ptr_value;
550 *adjustment_p = adjustment;
551 return vbit;
552 }
553
554 /* GNU v3 implementation of cplus_print_method_ptr. */
555
556 static void
557 gnuv3_print_method_ptr (const gdb_byte *contents,
558 struct type *type,
559 struct ui_file *stream)
560 {
561 struct type *domain = TYPE_DOMAIN_TYPE (type);
562 struct gdbarch *gdbarch = get_type_arch (domain);
563 CORE_ADDR ptr_value;
564 LONGEST adjustment;
565 int vbit;
566
567 /* Extract the pointer to member. */
568 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
569
570 /* Check for NULL. */
571 if (ptr_value == 0 && vbit == 0)
572 {
573 fprintf_filtered (stream, "NULL");
574 return;
575 }
576
577 /* Search for a virtual method. */
578 if (vbit)
579 {
580 CORE_ADDR voffset;
581 const char *physname;
582
583 /* It's a virtual table offset, maybe in this class. Search
584 for a field with the correct vtable offset. First convert it
585 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
586 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
587
588 physname = gnuv3_find_method_in (domain, voffset, adjustment);
589
590 /* If we found a method, print that. We don't bother to disambiguate
591 possible paths to the method based on the adjustment. */
592 if (physname)
593 {
594 char *demangled_name = cplus_demangle (physname,
595 DMGL_ANSI | DMGL_PARAMS);
596
597 fprintf_filtered (stream, "&virtual ");
598 if (demangled_name == NULL)
599 fputs_filtered (physname, stream);
600 else
601 {
602 fputs_filtered (demangled_name, stream);
603 xfree (demangled_name);
604 }
605 return;
606 }
607 }
608 else if (ptr_value != 0)
609 {
610 /* Found a non-virtual function: print out the type. */
611 fputs_filtered ("(", stream);
612 c_print_type (type, "", stream, -1, 0);
613 fputs_filtered (") ", stream);
614 }
615
616 /* We didn't find it; print the raw data. */
617 if (vbit)
618 {
619 fprintf_filtered (stream, "&virtual table offset ");
620 print_longest (stream, 'd', 1, ptr_value);
621 }
622 else
623 print_address_demangle (gdbarch, ptr_value, stream, demangle);
624
625 if (adjustment)
626 {
627 fprintf_filtered (stream, ", this adjustment ");
628 print_longest (stream, 'd', 1, adjustment);
629 }
630 }
631
632 /* GNU v3 implementation of cplus_method_ptr_size. */
633
634 static int
635 gnuv3_method_ptr_size (struct type *type)
636 {
637 struct gdbarch *gdbarch = get_type_arch (type);
638
639 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
640 }
641
642 /* GNU v3 implementation of cplus_make_method_ptr. */
643
644 static void
645 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
646 CORE_ADDR value, int is_virtual)
647 {
648 struct gdbarch *gdbarch = get_type_arch (type);
649 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
653 always zero, since the method pointer is of the correct type.
654 But if the method pointer came from a base class, this is
655 incorrect - it should be the offset to the base. The best
656 fix might be to create the pointer to member pointing at the
657 base class and cast it to the derived class, but that requires
658 support for adjusting pointers to members when casting them -
659 not currently supported by GDB. */
660
661 if (!gdbarch_vbit_in_delta (gdbarch))
662 {
663 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
664 store_unsigned_integer (contents + size, size, byte_order, 0);
665 }
666 else
667 {
668 store_unsigned_integer (contents, size, byte_order, value);
669 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
670 }
671 }
672
673 /* GNU v3 implementation of cplus_method_ptr_to_value. */
674
675 static struct value *
676 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
677 {
678 struct gdbarch *gdbarch;
679 const gdb_byte *contents = value_contents (method_ptr);
680 CORE_ADDR ptr_value;
681 struct type *domain_type, *final_type, *method_type;
682 LONGEST adjustment;
683 int vbit;
684
685 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
686 final_type = lookup_pointer_type (domain_type);
687
688 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
689
690 /* Extract the pointer to member. */
691 gdbarch = get_type_arch (domain_type);
692 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
693
694 /* First convert THIS to match the containing type of the pointer to
695 member. This cast may adjust the value of THIS. */
696 *this_p = value_cast (final_type, *this_p);
697
698 /* Then apply whatever adjustment is necessary. This creates a somewhat
699 strange pointer: it claims to have type FINAL_TYPE, but in fact it
700 might not be a valid FINAL_TYPE. For instance, it might be a
701 base class of FINAL_TYPE. And if it's not the primary base class,
702 then printing it out as a FINAL_TYPE object would produce some pretty
703 garbage.
704
705 But we don't really know the type of the first argument in
706 METHOD_TYPE either, which is why this happens. We can't
707 dereference this later as a FINAL_TYPE, but once we arrive in the
708 called method we'll have debugging information for the type of
709 "this" - and that'll match the value we produce here.
710
711 You can provoke this case by casting a Base::* to a Derived::*, for
712 instance. */
713 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
714 *this_p = value_ptradd (*this_p, adjustment);
715 *this_p = value_cast (final_type, *this_p);
716
717 if (vbit)
718 {
719 LONGEST voffset;
720
721 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
722 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
723 method_type, voffset);
724 }
725 else
726 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
727 }
728
729 /* Objects of this type are stored in a hash table and a vector when
730 printing the vtables for a class. */
731
732 struct value_and_voffset
733 {
734 /* The value representing the object. */
735 struct value *value;
736
737 /* The maximum vtable offset we've found for any object at this
738 offset in the outermost object. */
739 int max_voffset;
740 };
741
742 typedef struct value_and_voffset *value_and_voffset_p;
743 DEF_VEC_P (value_and_voffset_p);
744
745 /* Hash function for value_and_voffset. */
746
747 static hashval_t
748 hash_value_and_voffset (const void *p)
749 {
750 const struct value_and_voffset *o = p;
751
752 return value_address (o->value) + value_embedded_offset (o->value);
753 }
754
755 /* Equality function for value_and_voffset. */
756
757 static int
758 eq_value_and_voffset (const void *a, const void *b)
759 {
760 const struct value_and_voffset *ova = a;
761 const struct value_and_voffset *ovb = b;
762
763 return (value_address (ova->value) + value_embedded_offset (ova->value)
764 == value_address (ovb->value) + value_embedded_offset (ovb->value));
765 }
766
767 /* qsort comparison function for value_and_voffset. */
768
769 static int
770 compare_value_and_voffset (const void *a, const void *b)
771 {
772 const struct value_and_voffset * const *ova = a;
773 CORE_ADDR addra = (value_address ((*ova)->value)
774 + value_embedded_offset ((*ova)->value));
775 const struct value_and_voffset * const *ovb = b;
776 CORE_ADDR addrb = (value_address ((*ovb)->value)
777 + value_embedded_offset ((*ovb)->value));
778
779 if (addra < addrb)
780 return -1;
781 if (addra > addrb)
782 return 1;
783 return 0;
784 }
785
786 /* A helper function used when printing vtables. This determines the
787 key (most derived) sub-object at each address and also computes the
788 maximum vtable offset seen for the corresponding vtable. Updates
789 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
790 needed. VALUE is the object to examine. */
791
792 static void
793 compute_vtable_size (htab_t offset_hash,
794 VEC (value_and_voffset_p) **offset_vec,
795 struct value *value)
796 {
797 int i;
798 struct type *type = check_typedef (value_type (value));
799 void **slot;
800 struct value_and_voffset search_vo, *current_vo;
801 CORE_ADDR addr = value_address (value) + value_embedded_offset (value);
802
803 /* If the object is not dynamic, then we are done; as it cannot have
804 dynamic base types either. */
805 if (!gnuv3_dynamic_class (type))
806 return;
807
808 /* Update the hash and the vec, if needed. */
809 search_vo.value = value;
810 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
811 if (*slot)
812 current_vo = *slot;
813 else
814 {
815 current_vo = XNEW (struct value_and_voffset);
816 current_vo->value = value;
817 current_vo->max_voffset = -1;
818 *slot = current_vo;
819 VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
820 }
821
822 /* Update the value_and_voffset object with the highest vtable
823 offset from this class. */
824 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
825 {
826 int j;
827 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
828
829 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
830 {
831 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
832 {
833 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
834
835 if (voffset > current_vo->max_voffset)
836 current_vo->max_voffset = voffset;
837 }
838 }
839 }
840
841 /* Recurse into base classes. */
842 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
843 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
844 }
845
846 /* Helper for gnuv3_print_vtable that prints a single vtable. */
847
848 static void
849 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
850 int max_voffset,
851 struct value_print_options *opts)
852 {
853 int i;
854 struct type *type = check_typedef (value_type (value));
855 struct value *vtable;
856 CORE_ADDR vt_addr;
857
858 vtable = gnuv3_get_vtable (gdbarch, type,
859 value_address (value)
860 + value_embedded_offset (value));
861 vt_addr = value_address (value_field (vtable,
862 vtable_field_virtual_functions));
863
864 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
865 TYPE_SAFE_NAME (type),
866 paddress (gdbarch, vt_addr),
867 paddress (gdbarch, (value_address (value)
868 + value_embedded_offset (value))));
869
870 for (i = 0; i <= max_voffset; ++i)
871 {
872 /* Initialize it just to avoid a GCC false warning. */
873 CORE_ADDR addr = 0;
874 struct value *vfn;
875 volatile struct gdb_exception ex;
876
877 printf_filtered ("[%d]: ", i);
878
879 vfn = value_subscript (value_field (vtable,
880 vtable_field_virtual_functions),
881 i);
882
883 if (gdbarch_vtable_function_descriptors (gdbarch))
884 vfn = value_addr (vfn);
885
886 TRY_CATCH (ex, RETURN_MASK_ERROR)
887 {
888 addr = value_as_address (vfn);
889 }
890 if (ex.reason < 0)
891 printf_filtered (_("<error: %s>"), ex.message);
892 else
893 print_function_pointer_address (gdbarch, addr, gdb_stdout,
894 opts->addressprint);
895 printf_filtered ("\n");
896 }
897 }
898
899 /* Implementation of the print_vtable method. */
900
901 static void
902 gnuv3_print_vtable (struct value *value)
903 {
904 struct gdbarch *gdbarch;
905 struct type *type;
906 struct value *vtable;
907 struct value_print_options opts;
908 htab_t offset_hash;
909 struct cleanup *cleanup;
910 VEC (value_and_voffset_p) *result_vec = NULL;
911 struct value_and_voffset *iter;
912 int i, count;
913
914 value = coerce_ref (value);
915 type = check_typedef (value_type (value));
916 if (TYPE_CODE (type) == TYPE_CODE_PTR)
917 {
918 value = value_ind (value);
919 type = check_typedef (value_type (value));
920 }
921
922 get_user_print_options (&opts);
923
924 /* Respect 'set print object'. */
925 if (opts.objectprint)
926 {
927 value = value_full_object (value, NULL, 0, 0, 0);
928 type = check_typedef (value_type (value));
929 }
930
931 gdbarch = get_type_arch (type);
932 vtable = gnuv3_get_vtable (gdbarch, type,
933 value_as_address (value_addr (value)));
934
935 if (!vtable)
936 {
937 printf_filtered (_("This object does not have a virtual function table\n"));
938 return;
939 }
940
941 offset_hash = htab_create_alloc (1, hash_value_and_voffset,
942 eq_value_and_voffset,
943 xfree, xcalloc, xfree);
944 cleanup = make_cleanup_htab_delete (offset_hash);
945 make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
946
947 compute_vtable_size (offset_hash, &result_vec, value);
948
949 qsort (VEC_address (value_and_voffset_p, result_vec),
950 VEC_length (value_and_voffset_p, result_vec),
951 sizeof (value_and_voffset_p),
952 compare_value_and_voffset);
953
954 count = 0;
955 for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
956 {
957 if (iter->max_voffset >= 0)
958 {
959 if (count > 0)
960 printf_filtered ("\n");
961 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
962 ++count;
963 }
964 }
965
966 do_cleanups (cleanup);
967 }
968
969 /* Determine if we are currently in a C++ thunk. If so, get the address
970 of the routine we are thunking to and continue to there instead. */
971
972 static CORE_ADDR
973 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
974 {
975 CORE_ADDR real_stop_pc, method_stop_pc;
976 struct gdbarch *gdbarch = get_frame_arch (frame);
977 struct minimal_symbol *thunk_sym, *fn_sym;
978 struct obj_section *section;
979 const char *thunk_name, *fn_name;
980
981 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
982 if (real_stop_pc == 0)
983 real_stop_pc = stop_pc;
984
985 /* Find the linker symbol for this potential thunk. */
986 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
987 section = find_pc_section (real_stop_pc);
988 if (thunk_sym == NULL || section == NULL)
989 return 0;
990
991 /* The symbol's demangled name should be something like "virtual
992 thunk to FUNCTION", where FUNCTION is the name of the function
993 being thunked to. */
994 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
995 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
996 return 0;
997
998 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
999 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1000 if (fn_sym == NULL)
1001 return 0;
1002
1003 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
1004 real_stop_pc = gdbarch_skip_trampoline_code
1005 (gdbarch, frame, method_stop_pc);
1006 if (real_stop_pc == 0)
1007 real_stop_pc = method_stop_pc;
1008
1009 return real_stop_pc;
1010 }
1011
1012 /* Return nonzero if a type should be passed by reference.
1013
1014 The rule in the v3 ABI document comes from section 3.1.1. If the
1015 type has a non-trivial copy constructor or destructor, then the
1016 caller must make a copy (by calling the copy constructor if there
1017 is one or perform the copy itself otherwise), pass the address of
1018 the copy, and then destroy the temporary (if necessary).
1019
1020 For return values with non-trivial copy constructors or
1021 destructors, space will be allocated in the caller, and a pointer
1022 will be passed as the first argument (preceding "this").
1023
1024 We don't have a bulletproof mechanism for determining whether a
1025 constructor or destructor is trivial. For GCC and DWARF2 debug
1026 information, we can check the artificial flag.
1027
1028 We don't do anything with the constructors or destructors,
1029 but we have to get the argument passing right anyway. */
1030 static int
1031 gnuv3_pass_by_reference (struct type *type)
1032 {
1033 int fieldnum, fieldelem;
1034
1035 CHECK_TYPEDEF (type);
1036
1037 /* We're only interested in things that can have methods. */
1038 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1039 && TYPE_CODE (type) != TYPE_CODE_CLASS
1040 && TYPE_CODE (type) != TYPE_CODE_UNION)
1041 return 0;
1042
1043 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1044 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1045 fieldelem++)
1046 {
1047 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1048 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1049 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1050
1051 /* If this function is marked as artificial, it is compiler-generated,
1052 and we assume it is trivial. */
1053 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1054 continue;
1055
1056 /* If we've found a destructor, we must pass this by reference. */
1057 if (name[0] == '~')
1058 return 1;
1059
1060 /* If the mangled name of this method doesn't indicate that it
1061 is a constructor, we're not interested.
1062
1063 FIXME drow/2007-09-23: We could do this using the name of
1064 the method and the name of the class instead of dealing
1065 with the mangled name. We don't have a convenient function
1066 to strip off both leading scope qualifiers and trailing
1067 template arguments yet. */
1068 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
1069 continue;
1070
1071 /* If this method takes two arguments, and the second argument is
1072 a reference to this class, then it is a copy constructor. */
1073 if (TYPE_NFIELDS (fieldtype) == 2
1074 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
1075 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
1076 1))) == type)
1077 return 1;
1078 }
1079
1080 /* Even if all the constructors and destructors were artificial, one
1081 of them may have invoked a non-artificial constructor or
1082 destructor in a base class. If any base class needs to be passed
1083 by reference, so does this class. Similarly for members, which
1084 are constructed whenever this class is. We do not need to worry
1085 about recursive loops here, since we are only looking at members
1086 of complete class type. Also ignore any static members. */
1087 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1088 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1089 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1090 return 1;
1091
1092 return 0;
1093 }
1094
1095 static void
1096 init_gnuv3_ops (void)
1097 {
1098 vtable_type_gdbarch_data
1099 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1100
1101 gnu_v3_abi_ops.shortname = "gnu-v3";
1102 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1103 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1104 gnu_v3_abi_ops.is_destructor_name =
1105 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1106 gnu_v3_abi_ops.is_constructor_name =
1107 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1108 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1109 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1110 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1111 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1112 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1113 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1114 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1115 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1116 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1117 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1118 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1119 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1120 }
1121
1122 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
1123
1124 void
1125 _initialize_gnu_v3_abi (void)
1126 {
1127 init_gnuv3_ops ();
1128
1129 register_cp_abi (&gnu_v3_abi_ops);
1130 }