]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-v3-abi.c
Remove spurious exceptions.h inclusions
[thirdparty/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "typeprint.h"
30
31 static struct cp_abi_ops gnu_v3_abi_ops;
32
33 /* A gdbarch key for std::type_info, in the event that it can't be
34 found in the debug info. */
35
36 static struct gdbarch_data *std_type_info_gdbarch_data;
37
38
39 static int
40 gnuv3_is_vtable_name (const char *name)
41 {
42 return strncmp (name, "_ZTV", 4) == 0;
43 }
44
45 static int
46 gnuv3_is_operator_name (const char *name)
47 {
48 return strncmp (name, "operator", 8) == 0;
49 }
50
51
52 /* To help us find the components of a vtable, we build ourselves a
53 GDB type object representing the vtable structure. Following the
54 V3 ABI, it goes something like this:
55
56 struct gdb_gnu_v3_abi_vtable {
57
58 / * An array of virtual call and virtual base offsets. The real
59 length of this array depends on the class hierarchy; we use
60 negative subscripts to access the elements. Yucky, but
61 better than the alternatives. * /
62 ptrdiff_t vcall_and_vbase_offsets[0];
63
64 / * The offset from a virtual pointer referring to this table
65 to the top of the complete object. * /
66 ptrdiff_t offset_to_top;
67
68 / * The type_info pointer for this class. This is really a
69 std::type_info *, but GDB doesn't really look at the
70 type_info object itself, so we don't bother to get the type
71 exactly right. * /
72 void *type_info;
73
74 / * Virtual table pointers in objects point here. * /
75
76 / * Virtual function pointers. Like the vcall/vbase array, the
77 real length of this table depends on the class hierarchy. * /
78 void (*virtual_functions[0]) ();
79
80 };
81
82 The catch, of course, is that the exact layout of this table
83 depends on the ABI --- word size, endianness, alignment, etc. So
84 the GDB type object is actually a per-architecture kind of thing.
85
86 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
87 which refers to the struct type * for this structure, laid out
88 appropriately for the architecture. */
89 static struct gdbarch_data *vtable_type_gdbarch_data;
90
91
92 /* Human-readable names for the numbers of the fields above. */
93 enum {
94 vtable_field_vcall_and_vbase_offsets,
95 vtable_field_offset_to_top,
96 vtable_field_type_info,
97 vtable_field_virtual_functions
98 };
99
100
101 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
102 described above, laid out appropriately for ARCH.
103
104 We use this function as the gdbarch per-architecture data
105 initialization function. */
106 static void *
107 build_gdb_vtable_type (struct gdbarch *arch)
108 {
109 struct type *t;
110 struct field *field_list, *field;
111 int offset;
112
113 struct type *void_ptr_type
114 = builtin_type (arch)->builtin_data_ptr;
115 struct type *ptr_to_void_fn_type
116 = builtin_type (arch)->builtin_func_ptr;
117
118 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
119 struct type *ptrdiff_type
120 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
121
122 /* We assume no padding is necessary, since GDB doesn't know
123 anything about alignment at the moment. If this assumption bites
124 us, we should add a gdbarch method which, given a type, returns
125 the alignment that type requires, and then use that here. */
126
127 /* Build the field list. */
128 field_list = xmalloc (sizeof (struct field [4]));
129 memset (field_list, 0, sizeof (struct field [4]));
130 field = &field_list[0];
131 offset = 0;
132
133 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
134 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
135 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
136 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
137 offset += TYPE_LENGTH (FIELD_TYPE (*field));
138 field++;
139
140 /* ptrdiff_t offset_to_top; */
141 FIELD_NAME (*field) = "offset_to_top";
142 FIELD_TYPE (*field) = ptrdiff_type;
143 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
144 offset += TYPE_LENGTH (FIELD_TYPE (*field));
145 field++;
146
147 /* void *type_info; */
148 FIELD_NAME (*field) = "type_info";
149 FIELD_TYPE (*field) = void_ptr_type;
150 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
151 offset += TYPE_LENGTH (FIELD_TYPE (*field));
152 field++;
153
154 /* void (*virtual_functions[0]) (); */
155 FIELD_NAME (*field) = "virtual_functions";
156 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
157 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
158 offset += TYPE_LENGTH (FIELD_TYPE (*field));
159 field++;
160
161 /* We assumed in the allocation above that there were four fields. */
162 gdb_assert (field == (field_list + 4));
163
164 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
165 TYPE_NFIELDS (t) = field - field_list;
166 TYPE_FIELDS (t) = field_list;
167 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
168 INIT_CPLUS_SPECIFIC (t);
169
170 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
171 }
172
173
174 /* Return the ptrdiff_t type used in the vtable type. */
175 static struct type *
176 vtable_ptrdiff_type (struct gdbarch *gdbarch)
177 {
178 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
179
180 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
181 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
182 }
183
184 /* Return the offset from the start of the imaginary `struct
185 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
186 (i.e., where objects' virtual table pointers point). */
187 static int
188 vtable_address_point_offset (struct gdbarch *gdbarch)
189 {
190 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
191
192 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
193 / TARGET_CHAR_BIT);
194 }
195
196
197 /* Determine whether structure TYPE is a dynamic class. Cache the
198 result. */
199
200 static int
201 gnuv3_dynamic_class (struct type *type)
202 {
203 int fieldnum, fieldelem;
204
205 if (TYPE_CPLUS_DYNAMIC (type))
206 return TYPE_CPLUS_DYNAMIC (type) == 1;
207
208 ALLOCATE_CPLUS_STRUCT_TYPE (type);
209
210 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
211 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
212 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
213 {
214 TYPE_CPLUS_DYNAMIC (type) = 1;
215 return 1;
216 }
217
218 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
219 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
220 fieldelem++)
221 {
222 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
223
224 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
225 {
226 TYPE_CPLUS_DYNAMIC (type) = 1;
227 return 1;
228 }
229 }
230
231 TYPE_CPLUS_DYNAMIC (type) = -1;
232 return 0;
233 }
234
235 /* Find the vtable for a value of CONTAINER_TYPE located at
236 CONTAINER_ADDR. Return a value of the correct vtable type for this
237 architecture, or NULL if CONTAINER does not have a vtable. */
238
239 static struct value *
240 gnuv3_get_vtable (struct gdbarch *gdbarch,
241 struct type *container_type, CORE_ADDR container_addr)
242 {
243 struct type *vtable_type = gdbarch_data (gdbarch,
244 vtable_type_gdbarch_data);
245 struct type *vtable_pointer_type;
246 struct value *vtable_pointer;
247 CORE_ADDR vtable_address;
248
249 /* If this type does not have a virtual table, don't read the first
250 field. */
251 if (!gnuv3_dynamic_class (check_typedef (container_type)))
252 return NULL;
253
254 /* We do not consult the debug information to find the virtual table.
255 The ABI specifies that it is always at offset zero in any class,
256 and debug information may not represent it.
257
258 We avoid using value_contents on principle, because the object might
259 be large. */
260
261 /* Find the type "pointer to virtual table". */
262 vtable_pointer_type = lookup_pointer_type (vtable_type);
263
264 /* Load it from the start of the class. */
265 vtable_pointer = value_at (vtable_pointer_type, container_addr);
266 vtable_address = value_as_address (vtable_pointer);
267
268 /* Correct it to point at the start of the virtual table, rather
269 than the address point. */
270 return value_at_lazy (vtable_type,
271 vtable_address
272 - vtable_address_point_offset (gdbarch));
273 }
274
275
276 static struct type *
277 gnuv3_rtti_type (struct value *value,
278 int *full_p, int *top_p, int *using_enc_p)
279 {
280 struct gdbarch *gdbarch;
281 struct type *values_type = check_typedef (value_type (value));
282 struct value *vtable;
283 struct minimal_symbol *vtable_symbol;
284 const char *vtable_symbol_name;
285 const char *class_name;
286 struct type *run_time_type;
287 LONGEST offset_to_top;
288 char *atsign;
289
290 /* We only have RTTI for class objects. */
291 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
292 return NULL;
293
294 /* Java doesn't have RTTI following the C++ ABI. */
295 if (TYPE_CPLUS_REALLY_JAVA (values_type))
296 return NULL;
297
298 /* Determine architecture. */
299 gdbarch = get_type_arch (values_type);
300
301 if (using_enc_p)
302 *using_enc_p = 0;
303
304 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
305 value_as_address (value_addr (value)));
306 if (vtable == NULL)
307 return NULL;
308
309 /* Find the linker symbol for this vtable. */
310 vtable_symbol
311 = lookup_minimal_symbol_by_pc (value_address (vtable)
312 + value_embedded_offset (vtable)).minsym;
313 if (! vtable_symbol)
314 return NULL;
315
316 /* The symbol's demangled name should be something like "vtable for
317 CLASS", where CLASS is the name of the run-time type of VALUE.
318 If we didn't like this approach, we could instead look in the
319 type_info object itself to get the class name. But this way
320 should work just as well, and doesn't read target memory. */
321 vtable_symbol_name = MSYMBOL_DEMANGLED_NAME (vtable_symbol);
322 if (vtable_symbol_name == NULL
323 || strncmp (vtable_symbol_name, "vtable for ", 11))
324 {
325 warning (_("can't find linker symbol for virtual table for `%s' value"),
326 TYPE_SAFE_NAME (values_type));
327 if (vtable_symbol_name)
328 warning (_(" found `%s' instead"), vtable_symbol_name);
329 return NULL;
330 }
331 class_name = vtable_symbol_name + 11;
332
333 /* Strip off @plt and version suffixes. */
334 atsign = strchr (class_name, '@');
335 if (atsign != NULL)
336 {
337 char *copy;
338
339 copy = alloca (atsign - class_name + 1);
340 memcpy (copy, class_name, atsign - class_name);
341 copy[atsign - class_name] = '\0';
342 class_name = copy;
343 }
344
345 /* Try to look up the class name as a type name. */
346 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
347 run_time_type = cp_lookup_rtti_type (class_name, NULL);
348 if (run_time_type == NULL)
349 return NULL;
350
351 /* Get the offset from VALUE to the top of the complete object.
352 NOTE: this is the reverse of the meaning of *TOP_P. */
353 offset_to_top
354 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
355
356 if (full_p)
357 *full_p = (- offset_to_top == value_embedded_offset (value)
358 && (TYPE_LENGTH (value_enclosing_type (value))
359 >= TYPE_LENGTH (run_time_type)));
360 if (top_p)
361 *top_p = - offset_to_top;
362 return run_time_type;
363 }
364
365 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
366 function, of type FNTYPE. */
367
368 static struct value *
369 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
370 struct type *fntype, int vtable_index)
371 {
372 struct value *vtable, *vfn;
373
374 /* Every class with virtual functions must have a vtable. */
375 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
376 value_as_address (value_addr (container)));
377 gdb_assert (vtable != NULL);
378
379 /* Fetch the appropriate function pointer from the vtable. */
380 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
381 vtable_index);
382
383 /* If this architecture uses function descriptors directly in the vtable,
384 then the address of the vtable entry is actually a "function pointer"
385 (i.e. points to the descriptor). We don't need to scale the index
386 by the size of a function descriptor; GCC does that before outputing
387 debug information. */
388 if (gdbarch_vtable_function_descriptors (gdbarch))
389 vfn = value_addr (vfn);
390
391 /* Cast the function pointer to the appropriate type. */
392 vfn = value_cast (lookup_pointer_type (fntype), vfn);
393
394 return vfn;
395 }
396
397 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
398 for a description of the arguments. */
399
400 static struct value *
401 gnuv3_virtual_fn_field (struct value **value_p,
402 struct fn_field *f, int j,
403 struct type *vfn_base, int offset)
404 {
405 struct type *values_type = check_typedef (value_type (*value_p));
406 struct gdbarch *gdbarch;
407
408 /* Some simple sanity checks. */
409 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
410 error (_("Only classes can have virtual functions."));
411
412 /* Determine architecture. */
413 gdbarch = get_type_arch (values_type);
414
415 /* Cast our value to the base class which defines this virtual
416 function. This takes care of any necessary `this'
417 adjustments. */
418 if (vfn_base != values_type)
419 *value_p = value_cast (vfn_base, *value_p);
420
421 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
422 TYPE_FN_FIELD_VOFFSET (f, j));
423 }
424
425 /* Compute the offset of the baseclass which is
426 the INDEXth baseclass of class TYPE,
427 for value at VALADDR (in host) at ADDRESS (in target).
428 The result is the offset of the baseclass value relative
429 to (the address of)(ARG) + OFFSET.
430
431 -1 is returned on error. */
432
433 static int
434 gnuv3_baseclass_offset (struct type *type, int index,
435 const bfd_byte *valaddr, int embedded_offset,
436 CORE_ADDR address, const struct value *val)
437 {
438 struct gdbarch *gdbarch;
439 struct type *ptr_type;
440 struct value *vtable;
441 struct value *vbase_array;
442 long int cur_base_offset, base_offset;
443
444 /* Determine architecture. */
445 gdbarch = get_type_arch (type);
446 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
447
448 /* If it isn't a virtual base, this is easy. The offset is in the
449 type definition. Likewise for Java, which doesn't really have
450 virtual inheritance in the C++ sense. */
451 if (!BASETYPE_VIA_VIRTUAL (type, index) || TYPE_CPLUS_REALLY_JAVA (type))
452 return TYPE_BASECLASS_BITPOS (type, index) / 8;
453
454 /* To access a virtual base, we need to use the vbase offset stored in
455 our vtable. Recent GCC versions provide this information. If it isn't
456 available, we could get what we needed from RTTI, or from drawing the
457 complete inheritance graph based on the debug info. Neither is
458 worthwhile. */
459 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
460 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
461 error (_("Expected a negative vbase offset (old compiler?)"));
462
463 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
464 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
465 error (_("Misaligned vbase offset."));
466 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
467
468 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
469 gdb_assert (vtable != NULL);
470 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
471 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
472 return base_offset;
473 }
474
475 /* Locate a virtual method in DOMAIN or its non-virtual base classes
476 which has virtual table index VOFFSET. The method has an associated
477 "this" adjustment of ADJUSTMENT bytes. */
478
479 static const char *
480 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
481 LONGEST adjustment)
482 {
483 int i;
484
485 /* Search this class first. */
486 if (adjustment == 0)
487 {
488 int len;
489
490 len = TYPE_NFN_FIELDS (domain);
491 for (i = 0; i < len; i++)
492 {
493 int len2, j;
494 struct fn_field *f;
495
496 f = TYPE_FN_FIELDLIST1 (domain, i);
497 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
498
499 check_stub_method_group (domain, i);
500 for (j = 0; j < len2; j++)
501 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
502 return TYPE_FN_FIELD_PHYSNAME (f, j);
503 }
504 }
505
506 /* Next search non-virtual bases. If it's in a virtual base,
507 we're out of luck. */
508 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
509 {
510 int pos;
511 struct type *basetype;
512
513 if (BASETYPE_VIA_VIRTUAL (domain, i))
514 continue;
515
516 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
517 basetype = TYPE_FIELD_TYPE (domain, i);
518 /* Recurse with a modified adjustment. We don't need to adjust
519 voffset. */
520 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
521 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
522 }
523
524 return NULL;
525 }
526
527 /* Decode GNU v3 method pointer. */
528
529 static int
530 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
531 const gdb_byte *contents,
532 CORE_ADDR *value_p,
533 LONGEST *adjustment_p)
534 {
535 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
536 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
538 CORE_ADDR ptr_value;
539 LONGEST voffset, adjustment;
540 int vbit;
541
542 /* Extract the pointer to member. The first element is either a pointer
543 or a vtable offset. For pointers, we need to use extract_typed_address
544 to allow the back-end to convert the pointer to a GDB address -- but
545 vtable offsets we must handle as integers. At this point, we do not
546 yet know which case we have, so we extract the value under both
547 interpretations and choose the right one later on. */
548 ptr_value = extract_typed_address (contents, funcptr_type);
549 voffset = extract_signed_integer (contents,
550 TYPE_LENGTH (funcptr_type), byte_order);
551 contents += TYPE_LENGTH (funcptr_type);
552 adjustment = extract_signed_integer (contents,
553 TYPE_LENGTH (offset_type), byte_order);
554
555 if (!gdbarch_vbit_in_delta (gdbarch))
556 {
557 vbit = voffset & 1;
558 voffset = voffset ^ vbit;
559 }
560 else
561 {
562 vbit = adjustment & 1;
563 adjustment = adjustment >> 1;
564 }
565
566 *value_p = vbit? voffset : ptr_value;
567 *adjustment_p = adjustment;
568 return vbit;
569 }
570
571 /* GNU v3 implementation of cplus_print_method_ptr. */
572
573 static void
574 gnuv3_print_method_ptr (const gdb_byte *contents,
575 struct type *type,
576 struct ui_file *stream)
577 {
578 struct type *domain = TYPE_DOMAIN_TYPE (type);
579 struct gdbarch *gdbarch = get_type_arch (domain);
580 CORE_ADDR ptr_value;
581 LONGEST adjustment;
582 int vbit;
583
584 /* Extract the pointer to member. */
585 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
586
587 /* Check for NULL. */
588 if (ptr_value == 0 && vbit == 0)
589 {
590 fprintf_filtered (stream, "NULL");
591 return;
592 }
593
594 /* Search for a virtual method. */
595 if (vbit)
596 {
597 CORE_ADDR voffset;
598 const char *physname;
599
600 /* It's a virtual table offset, maybe in this class. Search
601 for a field with the correct vtable offset. First convert it
602 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
603 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
604
605 physname = gnuv3_find_method_in (domain, voffset, adjustment);
606
607 /* If we found a method, print that. We don't bother to disambiguate
608 possible paths to the method based on the adjustment. */
609 if (physname)
610 {
611 char *demangled_name = gdb_demangle (physname,
612 DMGL_ANSI | DMGL_PARAMS);
613
614 fprintf_filtered (stream, "&virtual ");
615 if (demangled_name == NULL)
616 fputs_filtered (physname, stream);
617 else
618 {
619 fputs_filtered (demangled_name, stream);
620 xfree (demangled_name);
621 }
622 return;
623 }
624 }
625 else if (ptr_value != 0)
626 {
627 /* Found a non-virtual function: print out the type. */
628 fputs_filtered ("(", stream);
629 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
630 fputs_filtered (") ", stream);
631 }
632
633 /* We didn't find it; print the raw data. */
634 if (vbit)
635 {
636 fprintf_filtered (stream, "&virtual table offset ");
637 print_longest (stream, 'd', 1, ptr_value);
638 }
639 else
640 {
641 struct value_print_options opts;
642
643 get_user_print_options (&opts);
644 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
645 }
646
647 if (adjustment)
648 {
649 fprintf_filtered (stream, ", this adjustment ");
650 print_longest (stream, 'd', 1, adjustment);
651 }
652 }
653
654 /* GNU v3 implementation of cplus_method_ptr_size. */
655
656 static int
657 gnuv3_method_ptr_size (struct type *type)
658 {
659 struct gdbarch *gdbarch = get_type_arch (type);
660
661 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
662 }
663
664 /* GNU v3 implementation of cplus_make_method_ptr. */
665
666 static void
667 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
668 CORE_ADDR value, int is_virtual)
669 {
670 struct gdbarch *gdbarch = get_type_arch (type);
671 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
672 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
673
674 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
675 always zero, since the method pointer is of the correct type.
676 But if the method pointer came from a base class, this is
677 incorrect - it should be the offset to the base. The best
678 fix might be to create the pointer to member pointing at the
679 base class and cast it to the derived class, but that requires
680 support for adjusting pointers to members when casting them -
681 not currently supported by GDB. */
682
683 if (!gdbarch_vbit_in_delta (gdbarch))
684 {
685 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
686 store_unsigned_integer (contents + size, size, byte_order, 0);
687 }
688 else
689 {
690 store_unsigned_integer (contents, size, byte_order, value);
691 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
692 }
693 }
694
695 /* GNU v3 implementation of cplus_method_ptr_to_value. */
696
697 static struct value *
698 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
699 {
700 struct gdbarch *gdbarch;
701 const gdb_byte *contents = value_contents (method_ptr);
702 CORE_ADDR ptr_value;
703 struct type *domain_type, *final_type, *method_type;
704 LONGEST adjustment;
705 int vbit;
706
707 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
708 final_type = lookup_pointer_type (domain_type);
709
710 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
711
712 /* Extract the pointer to member. */
713 gdbarch = get_type_arch (domain_type);
714 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
715
716 /* First convert THIS to match the containing type of the pointer to
717 member. This cast may adjust the value of THIS. */
718 *this_p = value_cast (final_type, *this_p);
719
720 /* Then apply whatever adjustment is necessary. This creates a somewhat
721 strange pointer: it claims to have type FINAL_TYPE, but in fact it
722 might not be a valid FINAL_TYPE. For instance, it might be a
723 base class of FINAL_TYPE. And if it's not the primary base class,
724 then printing it out as a FINAL_TYPE object would produce some pretty
725 garbage.
726
727 But we don't really know the type of the first argument in
728 METHOD_TYPE either, which is why this happens. We can't
729 dereference this later as a FINAL_TYPE, but once we arrive in the
730 called method we'll have debugging information for the type of
731 "this" - and that'll match the value we produce here.
732
733 You can provoke this case by casting a Base::* to a Derived::*, for
734 instance. */
735 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
736 *this_p = value_ptradd (*this_p, adjustment);
737 *this_p = value_cast (final_type, *this_p);
738
739 if (vbit)
740 {
741 LONGEST voffset;
742
743 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
744 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
745 method_type, voffset);
746 }
747 else
748 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
749 }
750
751 /* Objects of this type are stored in a hash table and a vector when
752 printing the vtables for a class. */
753
754 struct value_and_voffset
755 {
756 /* The value representing the object. */
757 struct value *value;
758
759 /* The maximum vtable offset we've found for any object at this
760 offset in the outermost object. */
761 int max_voffset;
762 };
763
764 typedef struct value_and_voffset *value_and_voffset_p;
765 DEF_VEC_P (value_and_voffset_p);
766
767 /* Hash function for value_and_voffset. */
768
769 static hashval_t
770 hash_value_and_voffset (const void *p)
771 {
772 const struct value_and_voffset *o = p;
773
774 return value_address (o->value) + value_embedded_offset (o->value);
775 }
776
777 /* Equality function for value_and_voffset. */
778
779 static int
780 eq_value_and_voffset (const void *a, const void *b)
781 {
782 const struct value_and_voffset *ova = a;
783 const struct value_and_voffset *ovb = b;
784
785 return (value_address (ova->value) + value_embedded_offset (ova->value)
786 == value_address (ovb->value) + value_embedded_offset (ovb->value));
787 }
788
789 /* qsort comparison function for value_and_voffset. */
790
791 static int
792 compare_value_and_voffset (const void *a, const void *b)
793 {
794 const struct value_and_voffset * const *ova = a;
795 CORE_ADDR addra = (value_address ((*ova)->value)
796 + value_embedded_offset ((*ova)->value));
797 const struct value_and_voffset * const *ovb = b;
798 CORE_ADDR addrb = (value_address ((*ovb)->value)
799 + value_embedded_offset ((*ovb)->value));
800
801 if (addra < addrb)
802 return -1;
803 if (addra > addrb)
804 return 1;
805 return 0;
806 }
807
808 /* A helper function used when printing vtables. This determines the
809 key (most derived) sub-object at each address and also computes the
810 maximum vtable offset seen for the corresponding vtable. Updates
811 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
812 needed. VALUE is the object to examine. */
813
814 static void
815 compute_vtable_size (htab_t offset_hash,
816 VEC (value_and_voffset_p) **offset_vec,
817 struct value *value)
818 {
819 int i;
820 struct type *type = check_typedef (value_type (value));
821 void **slot;
822 struct value_and_voffset search_vo, *current_vo;
823
824 /* If the object is not dynamic, then we are done; as it cannot have
825 dynamic base types either. */
826 if (!gnuv3_dynamic_class (type))
827 return;
828
829 /* Update the hash and the vec, if needed. */
830 search_vo.value = value;
831 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
832 if (*slot)
833 current_vo = *slot;
834 else
835 {
836 current_vo = XNEW (struct value_and_voffset);
837 current_vo->value = value;
838 current_vo->max_voffset = -1;
839 *slot = current_vo;
840 VEC_safe_push (value_and_voffset_p, *offset_vec, current_vo);
841 }
842
843 /* Update the value_and_voffset object with the highest vtable
844 offset from this class. */
845 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
846 {
847 int j;
848 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
849
850 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
851 {
852 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
853 {
854 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
855
856 if (voffset > current_vo->max_voffset)
857 current_vo->max_voffset = voffset;
858 }
859 }
860 }
861
862 /* Recurse into base classes. */
863 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
864 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
865 }
866
867 /* Helper for gnuv3_print_vtable that prints a single vtable. */
868
869 static void
870 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
871 int max_voffset,
872 struct value_print_options *opts)
873 {
874 int i;
875 struct type *type = check_typedef (value_type (value));
876 struct value *vtable;
877 CORE_ADDR vt_addr;
878
879 vtable = gnuv3_get_vtable (gdbarch, type,
880 value_address (value)
881 + value_embedded_offset (value));
882 vt_addr = value_address (value_field (vtable,
883 vtable_field_virtual_functions));
884
885 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
886 TYPE_SAFE_NAME (type),
887 paddress (gdbarch, vt_addr),
888 paddress (gdbarch, (value_address (value)
889 + value_embedded_offset (value))));
890
891 for (i = 0; i <= max_voffset; ++i)
892 {
893 /* Initialize it just to avoid a GCC false warning. */
894 CORE_ADDR addr = 0;
895 struct value *vfn;
896 volatile struct gdb_exception ex;
897
898 printf_filtered ("[%d]: ", i);
899
900 vfn = value_subscript (value_field (vtable,
901 vtable_field_virtual_functions),
902 i);
903
904 if (gdbarch_vtable_function_descriptors (gdbarch))
905 vfn = value_addr (vfn);
906
907 TRY_CATCH (ex, RETURN_MASK_ERROR)
908 {
909 addr = value_as_address (vfn);
910 }
911 if (ex.reason < 0)
912 printf_filtered (_("<error: %s>"), ex.message);
913 else
914 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
915 printf_filtered ("\n");
916 }
917 }
918
919 /* Implementation of the print_vtable method. */
920
921 static void
922 gnuv3_print_vtable (struct value *value)
923 {
924 struct gdbarch *gdbarch;
925 struct type *type;
926 struct value *vtable;
927 struct value_print_options opts;
928 htab_t offset_hash;
929 struct cleanup *cleanup;
930 VEC (value_and_voffset_p) *result_vec = NULL;
931 struct value_and_voffset *iter;
932 int i, count;
933
934 value = coerce_ref (value);
935 type = check_typedef (value_type (value));
936 if (TYPE_CODE (type) == TYPE_CODE_PTR)
937 {
938 value = value_ind (value);
939 type = check_typedef (value_type (value));
940 }
941
942 get_user_print_options (&opts);
943
944 /* Respect 'set print object'. */
945 if (opts.objectprint)
946 {
947 value = value_full_object (value, NULL, 0, 0, 0);
948 type = check_typedef (value_type (value));
949 }
950
951 gdbarch = get_type_arch (type);
952 vtable = gnuv3_get_vtable (gdbarch, type,
953 value_as_address (value_addr (value)));
954
955 if (!vtable)
956 {
957 printf_filtered (_("This object does not have a virtual function table\n"));
958 return;
959 }
960
961 offset_hash = htab_create_alloc (1, hash_value_and_voffset,
962 eq_value_and_voffset,
963 xfree, xcalloc, xfree);
964 cleanup = make_cleanup_htab_delete (offset_hash);
965 make_cleanup (VEC_cleanup (value_and_voffset_p), &result_vec);
966
967 compute_vtable_size (offset_hash, &result_vec, value);
968
969 qsort (VEC_address (value_and_voffset_p, result_vec),
970 VEC_length (value_and_voffset_p, result_vec),
971 sizeof (value_and_voffset_p),
972 compare_value_and_voffset);
973
974 count = 0;
975 for (i = 0; VEC_iterate (value_and_voffset_p, result_vec, i, iter); ++i)
976 {
977 if (iter->max_voffset >= 0)
978 {
979 if (count > 0)
980 printf_filtered ("\n");
981 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
982 ++count;
983 }
984 }
985
986 do_cleanups (cleanup);
987 }
988
989 /* Return a GDB type representing `struct std::type_info', laid out
990 appropriately for ARCH.
991
992 We use this function as the gdbarch per-architecture data
993 initialization function. */
994
995 static void *
996 build_std_type_info_type (struct gdbarch *arch)
997 {
998 struct type *t;
999 struct field *field_list, *field;
1000 int offset;
1001 struct type *void_ptr_type
1002 = builtin_type (arch)->builtin_data_ptr;
1003 struct type *char_type
1004 = builtin_type (arch)->builtin_char;
1005 struct type *char_ptr_type
1006 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1007
1008 field_list = xmalloc (sizeof (struct field [2]));
1009 memset (field_list, 0, sizeof (struct field [2]));
1010 field = &field_list[0];
1011 offset = 0;
1012
1013 /* The vtable. */
1014 FIELD_NAME (*field) = "_vptr.type_info";
1015 FIELD_TYPE (*field) = void_ptr_type;
1016 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1017 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1018 field++;
1019
1020 /* The name. */
1021 FIELD_NAME (*field) = "__name";
1022 FIELD_TYPE (*field) = char_ptr_type;
1023 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1024 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1025 field++;
1026
1027 gdb_assert (field == (field_list + 2));
1028
1029 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
1030 TYPE_NFIELDS (t) = field - field_list;
1031 TYPE_FIELDS (t) = field_list;
1032 TYPE_TAG_NAME (t) = "gdb_gnu_v3_type_info";
1033 INIT_CPLUS_SPECIFIC (t);
1034
1035 return t;
1036 }
1037
1038 /* Implement the 'get_typeid_type' method. */
1039
1040 static struct type *
1041 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1042 {
1043 struct symbol *typeinfo;
1044 struct type *typeinfo_type;
1045
1046 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN, NULL);
1047 if (typeinfo == NULL)
1048 typeinfo_type = gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1049 else
1050 typeinfo_type = SYMBOL_TYPE (typeinfo);
1051
1052 return typeinfo_type;
1053 }
1054
1055 /* Implement the 'get_typeid' method. */
1056
1057 static struct value *
1058 gnuv3_get_typeid (struct value *value)
1059 {
1060 struct type *typeinfo_type;
1061 struct type *type;
1062 struct gdbarch *gdbarch;
1063 struct cleanup *cleanup;
1064 struct value *result;
1065 char *typename, *canonical;
1066
1067 /* We have to handle values a bit trickily here, to allow this code
1068 to work properly with non_lvalue values that are really just
1069 disguised types. */
1070 if (value_lval_const (value) == lval_memory)
1071 value = coerce_ref (value);
1072
1073 type = check_typedef (value_type (value));
1074
1075 /* In the non_lvalue case, a reference might have slipped through
1076 here. */
1077 if (TYPE_CODE (type) == TYPE_CODE_REF)
1078 type = check_typedef (TYPE_TARGET_TYPE (type));
1079
1080 /* Ignore top-level cv-qualifiers. */
1081 type = make_cv_type (0, 0, type, NULL);
1082 gdbarch = get_type_arch (type);
1083
1084 typename = type_to_string (type);
1085 if (typename == NULL)
1086 error (_("cannot find typeinfo for unnamed type"));
1087 cleanup = make_cleanup (xfree, typename);
1088
1089 /* We need to canonicalize the type name here, because we do lookups
1090 using the demangled name, and so we must match the format it
1091 uses. E.g., GDB tends to use "const char *" as a type name, but
1092 the demangler uses "char const *". */
1093 canonical = cp_canonicalize_string (typename);
1094 if (canonical != NULL)
1095 {
1096 make_cleanup (xfree, canonical);
1097 typename = canonical;
1098 }
1099
1100 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1101
1102 /* We check for lval_memory because in the "typeid (type-id)" case,
1103 the type is passed via a not_lval value object. */
1104 if (TYPE_CODE (type) == TYPE_CODE_CLASS
1105 && value_lval_const (value) == lval_memory
1106 && gnuv3_dynamic_class (type))
1107 {
1108 struct value *vtable, *typeinfo_value;
1109 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1110
1111 vtable = gnuv3_get_vtable (gdbarch, type, address);
1112 if (vtable == NULL)
1113 error (_("cannot find typeinfo for object of type '%s'"), typename);
1114 typeinfo_value = value_field (vtable, vtable_field_type_info);
1115 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1116 typeinfo_value));
1117 }
1118 else
1119 {
1120 char *sym_name;
1121 struct bound_minimal_symbol minsym;
1122
1123 sym_name = concat ("typeinfo for ", typename, (char *) NULL);
1124 make_cleanup (xfree, sym_name);
1125 minsym = lookup_minimal_symbol (sym_name, NULL, NULL);
1126
1127 if (minsym.minsym == NULL)
1128 error (_("could not find typeinfo symbol for '%s'"), typename);
1129
1130 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1131 }
1132
1133 do_cleanups (cleanup);
1134 return result;
1135 }
1136
1137 /* Implement the 'get_typename_from_type_info' method. */
1138
1139 static char *
1140 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1141 {
1142 struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
1143 struct bound_minimal_symbol typeinfo_sym;
1144 CORE_ADDR addr;
1145 const char *symname;
1146 const char *class_name;
1147 const char *atsign;
1148
1149 addr = value_as_address (type_info_ptr);
1150 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1151 if (typeinfo_sym.minsym == NULL)
1152 error (_("could not find minimal symbol for typeinfo address %s"),
1153 paddress (gdbarch, addr));
1154
1155 #define TYPEINFO_PREFIX "typeinfo for "
1156 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1157 symname = MSYMBOL_DEMANGLED_NAME (typeinfo_sym.minsym);
1158 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1159 TYPEINFO_PREFIX_LEN))
1160 error (_("typeinfo symbol '%s' has unexpected name"),
1161 MSYMBOL_LINKAGE_NAME (typeinfo_sym.minsym));
1162 class_name = symname + TYPEINFO_PREFIX_LEN;
1163
1164 /* Strip off @plt and version suffixes. */
1165 atsign = strchr (class_name, '@');
1166 if (atsign != NULL)
1167 return savestring (class_name, atsign - class_name);
1168 return xstrdup (class_name);
1169 }
1170
1171 /* Implement the 'get_type_from_type_info' method. */
1172
1173 static struct type *
1174 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1175 {
1176 char *typename;
1177 struct cleanup *cleanup;
1178 struct value *type_val;
1179 struct expression *expr;
1180 struct type *result;
1181
1182 typename = gnuv3_get_typename_from_type_info (type_info_ptr);
1183 cleanup = make_cleanup (xfree, typename);
1184
1185 /* We have to parse the type name, since in general there is not a
1186 symbol for a type. This is somewhat bogus since there may be a
1187 mis-parse. Another approach might be to re-use the demangler's
1188 internal form to reconstruct the type somehow. */
1189
1190 expr = parse_expression (typename);
1191 make_cleanup (xfree, expr);
1192
1193 type_val = evaluate_type (expr);
1194 result = value_type (type_val);
1195
1196 do_cleanups (cleanup);
1197 return result;
1198 }
1199
1200 /* Determine if we are currently in a C++ thunk. If so, get the address
1201 of the routine we are thunking to and continue to there instead. */
1202
1203 static CORE_ADDR
1204 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1205 {
1206 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1207 struct gdbarch *gdbarch = get_frame_arch (frame);
1208 struct bound_minimal_symbol thunk_sym, fn_sym;
1209 struct obj_section *section;
1210 const char *thunk_name, *fn_name;
1211
1212 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1213 if (real_stop_pc == 0)
1214 real_stop_pc = stop_pc;
1215
1216 /* Find the linker symbol for this potential thunk. */
1217 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1218 section = find_pc_section (real_stop_pc);
1219 if (thunk_sym.minsym == NULL || section == NULL)
1220 return 0;
1221
1222 /* The symbol's demangled name should be something like "virtual
1223 thunk to FUNCTION", where FUNCTION is the name of the function
1224 being thunked to. */
1225 thunk_name = MSYMBOL_DEMANGLED_NAME (thunk_sym.minsym);
1226 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1227 return 0;
1228
1229 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1230 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1231 if (fn_sym.minsym == NULL)
1232 return 0;
1233
1234 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1235
1236 /* Some targets have minimal symbols pointing to function descriptors
1237 (powerpc 64 for example). Make sure to retrieve the address
1238 of the real function from the function descriptor before passing on
1239 the address to other layers of GDB. */
1240 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
1241 &current_target);
1242 if (func_addr != 0)
1243 method_stop_pc = func_addr;
1244
1245 real_stop_pc = gdbarch_skip_trampoline_code
1246 (gdbarch, frame, method_stop_pc);
1247 if (real_stop_pc == 0)
1248 real_stop_pc = method_stop_pc;
1249
1250 return real_stop_pc;
1251 }
1252
1253 /* Return nonzero if a type should be passed by reference.
1254
1255 The rule in the v3 ABI document comes from section 3.1.1. If the
1256 type has a non-trivial copy constructor or destructor, then the
1257 caller must make a copy (by calling the copy constructor if there
1258 is one or perform the copy itself otherwise), pass the address of
1259 the copy, and then destroy the temporary (if necessary).
1260
1261 For return values with non-trivial copy constructors or
1262 destructors, space will be allocated in the caller, and a pointer
1263 will be passed as the first argument (preceding "this").
1264
1265 We don't have a bulletproof mechanism for determining whether a
1266 constructor or destructor is trivial. For GCC and DWARF2 debug
1267 information, we can check the artificial flag.
1268
1269 We don't do anything with the constructors or destructors,
1270 but we have to get the argument passing right anyway. */
1271 static int
1272 gnuv3_pass_by_reference (struct type *type)
1273 {
1274 int fieldnum, fieldelem;
1275
1276 CHECK_TYPEDEF (type);
1277
1278 /* We're only interested in things that can have methods. */
1279 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1280 && TYPE_CODE (type) != TYPE_CODE_CLASS
1281 && TYPE_CODE (type) != TYPE_CODE_UNION)
1282 return 0;
1283
1284 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1285 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1286 fieldelem++)
1287 {
1288 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1289 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1290 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1291
1292 /* If this function is marked as artificial, it is compiler-generated,
1293 and we assume it is trivial. */
1294 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1295 continue;
1296
1297 /* If we've found a destructor, we must pass this by reference. */
1298 if (name[0] == '~')
1299 return 1;
1300
1301 /* If the mangled name of this method doesn't indicate that it
1302 is a constructor, we're not interested.
1303
1304 FIXME drow/2007-09-23: We could do this using the name of
1305 the method and the name of the class instead of dealing
1306 with the mangled name. We don't have a convenient function
1307 to strip off both leading scope qualifiers and trailing
1308 template arguments yet. */
1309 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1310 && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1311 continue;
1312
1313 /* If this method takes two arguments, and the second argument is
1314 a reference to this class, then it is a copy constructor. */
1315 if (TYPE_NFIELDS (fieldtype) == 2
1316 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
1317 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
1318 1))) == type)
1319 return 1;
1320 }
1321
1322 /* Even if all the constructors and destructors were artificial, one
1323 of them may have invoked a non-artificial constructor or
1324 destructor in a base class. If any base class needs to be passed
1325 by reference, so does this class. Similarly for members, which
1326 are constructed whenever this class is. We do not need to worry
1327 about recursive loops here, since we are only looking at members
1328 of complete class type. Also ignore any static members. */
1329 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1330 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1331 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1332 return 1;
1333
1334 return 0;
1335 }
1336
1337 static void
1338 init_gnuv3_ops (void)
1339 {
1340 vtable_type_gdbarch_data
1341 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1342 std_type_info_gdbarch_data
1343 = gdbarch_data_register_post_init (build_std_type_info_type);
1344
1345 gnu_v3_abi_ops.shortname = "gnu-v3";
1346 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1347 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1348 gnu_v3_abi_ops.is_destructor_name =
1349 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1350 gnu_v3_abi_ops.is_constructor_name =
1351 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1352 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1353 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1354 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1355 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1356 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1357 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1358 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1359 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1360 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1361 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1362 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1363 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1364 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1365 gnu_v3_abi_ops.get_typename_from_type_info
1366 = gnuv3_get_typename_from_type_info;
1367 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1368 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1369 }
1370
1371 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
1372
1373 void
1374 _initialize_gnu_v3_abi (void)
1375 {
1376 init_gnuv3_ops ();
1377
1378 register_cp_abi (&gnu_v3_abi_ops);
1379 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1380 }