]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gnu-v3-abi.c
Fix watching structs in C++
[thirdparty/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "objfiles.h"
27 #include "valprint.h"
28 #include "c-lang.h"
29 #include "typeprint.h"
30 #include <algorithm>
31
32 static struct cp_abi_ops gnu_v3_abi_ops;
33
34 /* A gdbarch key for std::type_info, in the event that it can't be
35 found in the debug info. */
36
37 static struct gdbarch_data *std_type_info_gdbarch_data;
38
39
40 static int
41 gnuv3_is_vtable_name (const char *name)
42 {
43 return startswith (name, "_ZTV");
44 }
45
46 static int
47 gnuv3_is_operator_name (const char *name)
48 {
49 return startswith (name, CP_OPERATOR_STR);
50 }
51
52
53 /* To help us find the components of a vtable, we build ourselves a
54 GDB type object representing the vtable structure. Following the
55 V3 ABI, it goes something like this:
56
57 struct gdb_gnu_v3_abi_vtable {
58
59 / * An array of virtual call and virtual base offsets. The real
60 length of this array depends on the class hierarchy; we use
61 negative subscripts to access the elements. Yucky, but
62 better than the alternatives. * /
63 ptrdiff_t vcall_and_vbase_offsets[0];
64
65 / * The offset from a virtual pointer referring to this table
66 to the top of the complete object. * /
67 ptrdiff_t offset_to_top;
68
69 / * The type_info pointer for this class. This is really a
70 std::type_info *, but GDB doesn't really look at the
71 type_info object itself, so we don't bother to get the type
72 exactly right. * /
73 void *type_info;
74
75 / * Virtual table pointers in objects point here. * /
76
77 / * Virtual function pointers. Like the vcall/vbase array, the
78 real length of this table depends on the class hierarchy. * /
79 void (*virtual_functions[0]) ();
80
81 };
82
83 The catch, of course, is that the exact layout of this table
84 depends on the ABI --- word size, endianness, alignment, etc. So
85 the GDB type object is actually a per-architecture kind of thing.
86
87 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
88 which refers to the struct type * for this structure, laid out
89 appropriately for the architecture. */
90 static struct gdbarch_data *vtable_type_gdbarch_data;
91
92
93 /* Human-readable names for the numbers of the fields above. */
94 enum {
95 vtable_field_vcall_and_vbase_offsets,
96 vtable_field_offset_to_top,
97 vtable_field_type_info,
98 vtable_field_virtual_functions
99 };
100
101
102 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
103 described above, laid out appropriately for ARCH.
104
105 We use this function as the gdbarch per-architecture data
106 initialization function. */
107 static void *
108 build_gdb_vtable_type (struct gdbarch *arch)
109 {
110 struct type *t;
111 struct field *field_list, *field;
112 int offset;
113
114 struct type *void_ptr_type
115 = builtin_type (arch)->builtin_data_ptr;
116 struct type *ptr_to_void_fn_type
117 = builtin_type (arch)->builtin_func_ptr;
118
119 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
120 struct type *ptrdiff_type
121 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
122
123 /* We assume no padding is necessary, since GDB doesn't know
124 anything about alignment at the moment. If this assumption bites
125 us, we should add a gdbarch method which, given a type, returns
126 the alignment that type requires, and then use that here. */
127
128 /* Build the field list. */
129 field_list = XCNEWVEC (struct field, 4);
130 field = &field_list[0];
131 offset = 0;
132
133 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
134 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
135 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
136 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
137 offset += TYPE_LENGTH (FIELD_TYPE (*field));
138 field++;
139
140 /* ptrdiff_t offset_to_top; */
141 FIELD_NAME (*field) = "offset_to_top";
142 FIELD_TYPE (*field) = ptrdiff_type;
143 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
144 offset += TYPE_LENGTH (FIELD_TYPE (*field));
145 field++;
146
147 /* void *type_info; */
148 FIELD_NAME (*field) = "type_info";
149 FIELD_TYPE (*field) = void_ptr_type;
150 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
151 offset += TYPE_LENGTH (FIELD_TYPE (*field));
152 field++;
153
154 /* void (*virtual_functions[0]) (); */
155 FIELD_NAME (*field) = "virtual_functions";
156 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
157 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
158 offset += TYPE_LENGTH (FIELD_TYPE (*field));
159 field++;
160
161 /* We assumed in the allocation above that there were four fields. */
162 gdb_assert (field == (field_list + 4));
163
164 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
165 TYPE_NFIELDS (t) = field - field_list;
166 TYPE_FIELDS (t) = field_list;
167 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
168 INIT_CPLUS_SPECIFIC (t);
169
170 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
171 }
172
173
174 /* Return the ptrdiff_t type used in the vtable type. */
175 static struct type *
176 vtable_ptrdiff_type (struct gdbarch *gdbarch)
177 {
178 struct type *vtable_type
179 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
180
181 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
182 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
183 }
184
185 /* Return the offset from the start of the imaginary `struct
186 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
187 (i.e., where objects' virtual table pointers point). */
188 static int
189 vtable_address_point_offset (struct gdbarch *gdbarch)
190 {
191 struct type *vtable_type
192 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
193
194 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
195 / TARGET_CHAR_BIT);
196 }
197
198
199 /* Determine whether structure TYPE is a dynamic class. Cache the
200 result. */
201
202 static int
203 gnuv3_dynamic_class (struct type *type)
204 {
205 int fieldnum, fieldelem;
206
207 type = check_typedef (type);
208 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
209 || TYPE_CODE (type) == TYPE_CODE_UNION);
210
211 if (TYPE_CODE (type) == TYPE_CODE_UNION)
212 return 0;
213
214 if (TYPE_CPLUS_DYNAMIC (type))
215 return TYPE_CPLUS_DYNAMIC (type) == 1;
216
217 ALLOCATE_CPLUS_STRUCT_TYPE (type);
218
219 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
220 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
221 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
222 {
223 TYPE_CPLUS_DYNAMIC (type) = 1;
224 return 1;
225 }
226
227 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
228 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
229 fieldelem++)
230 {
231 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
232
233 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
234 {
235 TYPE_CPLUS_DYNAMIC (type) = 1;
236 return 1;
237 }
238 }
239
240 TYPE_CPLUS_DYNAMIC (type) = -1;
241 return 0;
242 }
243
244 /* Find the vtable for a value of CONTAINER_TYPE located at
245 CONTAINER_ADDR. Return a value of the correct vtable type for this
246 architecture, or NULL if CONTAINER does not have a vtable. */
247
248 static struct value *
249 gnuv3_get_vtable (struct gdbarch *gdbarch,
250 struct type *container_type, CORE_ADDR container_addr)
251 {
252 struct type *vtable_type
253 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
254 struct type *vtable_pointer_type;
255 struct value *vtable_pointer;
256 CORE_ADDR vtable_address;
257
258 container_type = check_typedef (container_type);
259 gdb_assert (TYPE_CODE (container_type) == TYPE_CODE_STRUCT);
260
261 /* If this type does not have a virtual table, don't read the first
262 field. */
263 if (!gnuv3_dynamic_class (container_type))
264 return NULL;
265
266 /* We do not consult the debug information to find the virtual table.
267 The ABI specifies that it is always at offset zero in any class,
268 and debug information may not represent it.
269
270 We avoid using value_contents on principle, because the object might
271 be large. */
272
273 /* Find the type "pointer to virtual table". */
274 vtable_pointer_type = lookup_pointer_type (vtable_type);
275
276 /* Load it from the start of the class. */
277 vtable_pointer = value_at (vtable_pointer_type, container_addr);
278 vtable_address = value_as_address (vtable_pointer);
279
280 /* Correct it to point at the start of the virtual table, rather
281 than the address point. */
282 return value_at_lazy (vtable_type,
283 vtable_address
284 - vtable_address_point_offset (gdbarch));
285 }
286
287
288 static struct type *
289 gnuv3_rtti_type (struct value *value,
290 int *full_p, LONGEST *top_p, int *using_enc_p)
291 {
292 struct gdbarch *gdbarch;
293 struct type *values_type = check_typedef (value_type (value));
294 struct value *vtable;
295 struct minimal_symbol *vtable_symbol;
296 const char *vtable_symbol_name;
297 const char *class_name;
298 struct type *run_time_type;
299 LONGEST offset_to_top;
300 const char *atsign;
301
302 /* We only have RTTI for dynamic class objects. */
303 if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT
304 || !gnuv3_dynamic_class (values_type))
305 return NULL;
306
307 /* Determine architecture. */
308 gdbarch = get_type_arch (values_type);
309
310 if (using_enc_p)
311 *using_enc_p = 0;
312
313 vtable = gnuv3_get_vtable (gdbarch, values_type,
314 value_as_address (value_addr (value)));
315 if (vtable == NULL)
316 return NULL;
317
318 /* Find the linker symbol for this vtable. */
319 vtable_symbol
320 = lookup_minimal_symbol_by_pc (value_address (vtable)
321 + value_embedded_offset (vtable)).minsym;
322 if (! vtable_symbol)
323 return NULL;
324
325 /* The symbol's demangled name should be something like "vtable for
326 CLASS", where CLASS is the name of the run-time type of VALUE.
327 If we didn't like this approach, we could instead look in the
328 type_info object itself to get the class name. But this way
329 should work just as well, and doesn't read target memory. */
330 vtable_symbol_name = MSYMBOL_DEMANGLED_NAME (vtable_symbol);
331 if (vtable_symbol_name == NULL
332 || !startswith (vtable_symbol_name, "vtable for "))
333 {
334 warning (_("can't find linker symbol for virtual table for `%s' value"),
335 TYPE_SAFE_NAME (values_type));
336 if (vtable_symbol_name)
337 warning (_(" found `%s' instead"), vtable_symbol_name);
338 return NULL;
339 }
340 class_name = vtable_symbol_name + 11;
341
342 /* Strip off @plt and version suffixes. */
343 atsign = strchr (class_name, '@');
344 if (atsign != NULL)
345 {
346 char *copy;
347
348 copy = (char *) alloca (atsign - class_name + 1);
349 memcpy (copy, class_name, atsign - class_name);
350 copy[atsign - class_name] = '\0';
351 class_name = copy;
352 }
353
354 /* Try to look up the class name as a type name. */
355 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
356 run_time_type = cp_lookup_rtti_type (class_name, NULL);
357 if (run_time_type == NULL)
358 return NULL;
359
360 /* Get the offset from VALUE to the top of the complete object.
361 NOTE: this is the reverse of the meaning of *TOP_P. */
362 offset_to_top
363 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
364
365 if (full_p)
366 *full_p = (- offset_to_top == value_embedded_offset (value)
367 && (TYPE_LENGTH (value_enclosing_type (value))
368 >= TYPE_LENGTH (run_time_type)));
369 if (top_p)
370 *top_p = - offset_to_top;
371 return run_time_type;
372 }
373
374 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
375 function, of type FNTYPE. */
376
377 static struct value *
378 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
379 struct type *fntype, int vtable_index)
380 {
381 struct value *vtable, *vfn;
382
383 /* Every class with virtual functions must have a vtable. */
384 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
385 value_as_address (value_addr (container)));
386 gdb_assert (vtable != NULL);
387
388 /* Fetch the appropriate function pointer from the vtable. */
389 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
390 vtable_index);
391
392 /* If this architecture uses function descriptors directly in the vtable,
393 then the address of the vtable entry is actually a "function pointer"
394 (i.e. points to the descriptor). We don't need to scale the index
395 by the size of a function descriptor; GCC does that before outputing
396 debug information. */
397 if (gdbarch_vtable_function_descriptors (gdbarch))
398 vfn = value_addr (vfn);
399
400 /* Cast the function pointer to the appropriate type. */
401 vfn = value_cast (lookup_pointer_type (fntype), vfn);
402
403 return vfn;
404 }
405
406 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
407 for a description of the arguments. */
408
409 static struct value *
410 gnuv3_virtual_fn_field (struct value **value_p,
411 struct fn_field *f, int j,
412 struct type *vfn_base, int offset)
413 {
414 struct type *values_type = check_typedef (value_type (*value_p));
415 struct gdbarch *gdbarch;
416
417 /* Some simple sanity checks. */
418 if (TYPE_CODE (values_type) != TYPE_CODE_STRUCT)
419 error (_("Only classes can have virtual functions."));
420
421 /* Determine architecture. */
422 gdbarch = get_type_arch (values_type);
423
424 /* Cast our value to the base class which defines this virtual
425 function. This takes care of any necessary `this'
426 adjustments. */
427 if (vfn_base != values_type)
428 *value_p = value_cast (vfn_base, *value_p);
429
430 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
431 TYPE_FN_FIELD_VOFFSET (f, j));
432 }
433
434 /* Compute the offset of the baseclass which is
435 the INDEXth baseclass of class TYPE,
436 for value at VALADDR (in host) at ADDRESS (in target).
437 The result is the offset of the baseclass value relative
438 to (the address of)(ARG) + OFFSET.
439
440 -1 is returned on error. */
441
442 static int
443 gnuv3_baseclass_offset (struct type *type, int index,
444 const bfd_byte *valaddr, LONGEST embedded_offset,
445 CORE_ADDR address, const struct value *val)
446 {
447 struct gdbarch *gdbarch;
448 struct type *ptr_type;
449 struct value *vtable;
450 struct value *vbase_array;
451 long int cur_base_offset, base_offset;
452
453 /* Determine architecture. */
454 gdbarch = get_type_arch (type);
455 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
456
457 /* If it isn't a virtual base, this is easy. The offset is in the
458 type definition. */
459 if (!BASETYPE_VIA_VIRTUAL (type, index))
460 return TYPE_BASECLASS_BITPOS (type, index) / 8;
461
462 /* To access a virtual base, we need to use the vbase offset stored in
463 our vtable. Recent GCC versions provide this information. If it isn't
464 available, we could get what we needed from RTTI, or from drawing the
465 complete inheritance graph based on the debug info. Neither is
466 worthwhile. */
467 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
468 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
469 error (_("Expected a negative vbase offset (old compiler?)"));
470
471 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
472 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
473 error (_("Misaligned vbase offset."));
474 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
475
476 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
477 gdb_assert (vtable != NULL);
478 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
479 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
480 return base_offset;
481 }
482
483 /* Locate a virtual method in DOMAIN or its non-virtual base classes
484 which has virtual table index VOFFSET. The method has an associated
485 "this" adjustment of ADJUSTMENT bytes. */
486
487 static const char *
488 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
489 LONGEST adjustment)
490 {
491 int i;
492
493 /* Search this class first. */
494 if (adjustment == 0)
495 {
496 int len;
497
498 len = TYPE_NFN_FIELDS (domain);
499 for (i = 0; i < len; i++)
500 {
501 int len2, j;
502 struct fn_field *f;
503
504 f = TYPE_FN_FIELDLIST1 (domain, i);
505 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
506
507 check_stub_method_group (domain, i);
508 for (j = 0; j < len2; j++)
509 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
510 return TYPE_FN_FIELD_PHYSNAME (f, j);
511 }
512 }
513
514 /* Next search non-virtual bases. If it's in a virtual base,
515 we're out of luck. */
516 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
517 {
518 int pos;
519 struct type *basetype;
520
521 if (BASETYPE_VIA_VIRTUAL (domain, i))
522 continue;
523
524 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
525 basetype = TYPE_FIELD_TYPE (domain, i);
526 /* Recurse with a modified adjustment. We don't need to adjust
527 voffset. */
528 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
529 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
530 }
531
532 return NULL;
533 }
534
535 /* Decode GNU v3 method pointer. */
536
537 static int
538 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
539 const gdb_byte *contents,
540 CORE_ADDR *value_p,
541 LONGEST *adjustment_p)
542 {
543 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
544 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546 CORE_ADDR ptr_value;
547 LONGEST voffset, adjustment;
548 int vbit;
549
550 /* Extract the pointer to member. The first element is either a pointer
551 or a vtable offset. For pointers, we need to use extract_typed_address
552 to allow the back-end to convert the pointer to a GDB address -- but
553 vtable offsets we must handle as integers. At this point, we do not
554 yet know which case we have, so we extract the value under both
555 interpretations and choose the right one later on. */
556 ptr_value = extract_typed_address (contents, funcptr_type);
557 voffset = extract_signed_integer (contents,
558 TYPE_LENGTH (funcptr_type), byte_order);
559 contents += TYPE_LENGTH (funcptr_type);
560 adjustment = extract_signed_integer (contents,
561 TYPE_LENGTH (offset_type), byte_order);
562
563 if (!gdbarch_vbit_in_delta (gdbarch))
564 {
565 vbit = voffset & 1;
566 voffset = voffset ^ vbit;
567 }
568 else
569 {
570 vbit = adjustment & 1;
571 adjustment = adjustment >> 1;
572 }
573
574 *value_p = vbit? voffset : ptr_value;
575 *adjustment_p = adjustment;
576 return vbit;
577 }
578
579 /* GNU v3 implementation of cplus_print_method_ptr. */
580
581 static void
582 gnuv3_print_method_ptr (const gdb_byte *contents,
583 struct type *type,
584 struct ui_file *stream)
585 {
586 struct type *self_type = TYPE_SELF_TYPE (type);
587 struct gdbarch *gdbarch = get_type_arch (self_type);
588 CORE_ADDR ptr_value;
589 LONGEST adjustment;
590 int vbit;
591
592 /* Extract the pointer to member. */
593 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
594
595 /* Check for NULL. */
596 if (ptr_value == 0 && vbit == 0)
597 {
598 fprintf_filtered (stream, "NULL");
599 return;
600 }
601
602 /* Search for a virtual method. */
603 if (vbit)
604 {
605 CORE_ADDR voffset;
606 const char *physname;
607
608 /* It's a virtual table offset, maybe in this class. Search
609 for a field with the correct vtable offset. First convert it
610 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
611 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
612
613 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
614
615 /* If we found a method, print that. We don't bother to disambiguate
616 possible paths to the method based on the adjustment. */
617 if (physname)
618 {
619 char *demangled_name = gdb_demangle (physname,
620 DMGL_ANSI | DMGL_PARAMS);
621
622 fprintf_filtered (stream, "&virtual ");
623 if (demangled_name == NULL)
624 fputs_filtered (physname, stream);
625 else
626 {
627 fputs_filtered (demangled_name, stream);
628 xfree (demangled_name);
629 }
630 return;
631 }
632 }
633 else if (ptr_value != 0)
634 {
635 /* Found a non-virtual function: print out the type. */
636 fputs_filtered ("(", stream);
637 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
638 fputs_filtered (") ", stream);
639 }
640
641 /* We didn't find it; print the raw data. */
642 if (vbit)
643 {
644 fprintf_filtered (stream, "&virtual table offset ");
645 print_longest (stream, 'd', 1, ptr_value);
646 }
647 else
648 {
649 struct value_print_options opts;
650
651 get_user_print_options (&opts);
652 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
653 }
654
655 if (adjustment)
656 {
657 fprintf_filtered (stream, ", this adjustment ");
658 print_longest (stream, 'd', 1, adjustment);
659 }
660 }
661
662 /* GNU v3 implementation of cplus_method_ptr_size. */
663
664 static int
665 gnuv3_method_ptr_size (struct type *type)
666 {
667 struct gdbarch *gdbarch = get_type_arch (type);
668
669 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
670 }
671
672 /* GNU v3 implementation of cplus_make_method_ptr. */
673
674 static void
675 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
676 CORE_ADDR value, int is_virtual)
677 {
678 struct gdbarch *gdbarch = get_type_arch (type);
679 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
681
682 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
683 always zero, since the method pointer is of the correct type.
684 But if the method pointer came from a base class, this is
685 incorrect - it should be the offset to the base. The best
686 fix might be to create the pointer to member pointing at the
687 base class and cast it to the derived class, but that requires
688 support for adjusting pointers to members when casting them -
689 not currently supported by GDB. */
690
691 if (!gdbarch_vbit_in_delta (gdbarch))
692 {
693 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
694 store_unsigned_integer (contents + size, size, byte_order, 0);
695 }
696 else
697 {
698 store_unsigned_integer (contents, size, byte_order, value);
699 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
700 }
701 }
702
703 /* GNU v3 implementation of cplus_method_ptr_to_value. */
704
705 static struct value *
706 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
707 {
708 struct gdbarch *gdbarch;
709 const gdb_byte *contents = value_contents (method_ptr);
710 CORE_ADDR ptr_value;
711 struct type *self_type, *final_type, *method_type;
712 LONGEST adjustment;
713 int vbit;
714
715 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
716 final_type = lookup_pointer_type (self_type);
717
718 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
719
720 /* Extract the pointer to member. */
721 gdbarch = get_type_arch (self_type);
722 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
723
724 /* First convert THIS to match the containing type of the pointer to
725 member. This cast may adjust the value of THIS. */
726 *this_p = value_cast (final_type, *this_p);
727
728 /* Then apply whatever adjustment is necessary. This creates a somewhat
729 strange pointer: it claims to have type FINAL_TYPE, but in fact it
730 might not be a valid FINAL_TYPE. For instance, it might be a
731 base class of FINAL_TYPE. And if it's not the primary base class,
732 then printing it out as a FINAL_TYPE object would produce some pretty
733 garbage.
734
735 But we don't really know the type of the first argument in
736 METHOD_TYPE either, which is why this happens. We can't
737 dereference this later as a FINAL_TYPE, but once we arrive in the
738 called method we'll have debugging information for the type of
739 "this" - and that'll match the value we produce here.
740
741 You can provoke this case by casting a Base::* to a Derived::*, for
742 instance. */
743 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
744 *this_p = value_ptradd (*this_p, adjustment);
745 *this_p = value_cast (final_type, *this_p);
746
747 if (vbit)
748 {
749 LONGEST voffset;
750
751 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
752 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
753 method_type, voffset);
754 }
755 else
756 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
757 }
758
759 /* Objects of this type are stored in a hash table and a vector when
760 printing the vtables for a class. */
761
762 struct value_and_voffset
763 {
764 /* The value representing the object. */
765 struct value *value;
766
767 /* The maximum vtable offset we've found for any object at this
768 offset in the outermost object. */
769 int max_voffset;
770 };
771
772 /* Hash function for value_and_voffset. */
773
774 static hashval_t
775 hash_value_and_voffset (const void *p)
776 {
777 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
778
779 return value_address (o->value) + value_embedded_offset (o->value);
780 }
781
782 /* Equality function for value_and_voffset. */
783
784 static int
785 eq_value_and_voffset (const void *a, const void *b)
786 {
787 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
788 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
789
790 return (value_address (ova->value) + value_embedded_offset (ova->value)
791 == value_address (ovb->value) + value_embedded_offset (ovb->value));
792 }
793
794 /* Comparison function for value_and_voffset. */
795
796 static bool
797 compare_value_and_voffset (const struct value_and_voffset *va,
798 const struct value_and_voffset *vb)
799 {
800 CORE_ADDR addra = (value_address (va->value)
801 + value_embedded_offset (va->value));
802 CORE_ADDR addrb = (value_address (vb->value)
803 + value_embedded_offset (vb->value));
804
805 return addra < addrb;
806 }
807
808 /* A helper function used when printing vtables. This determines the
809 key (most derived) sub-object at each address and also computes the
810 maximum vtable offset seen for the corresponding vtable. Updates
811 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
812 needed. VALUE is the object to examine. */
813
814 static void
815 compute_vtable_size (htab_t offset_hash,
816 std::vector<value_and_voffset *> *offset_vec,
817 struct value *value)
818 {
819 int i;
820 struct type *type = check_typedef (value_type (value));
821 void **slot;
822 struct value_and_voffset search_vo, *current_vo;
823
824 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
825
826 /* If the object is not dynamic, then we are done; as it cannot have
827 dynamic base types either. */
828 if (!gnuv3_dynamic_class (type))
829 return;
830
831 /* Update the hash and the vec, if needed. */
832 search_vo.value = value;
833 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
834 if (*slot)
835 current_vo = (struct value_and_voffset *) *slot;
836 else
837 {
838 current_vo = XNEW (struct value_and_voffset);
839 current_vo->value = value;
840 current_vo->max_voffset = -1;
841 *slot = current_vo;
842 offset_vec->push_back (current_vo);
843 }
844
845 /* Update the value_and_voffset object with the highest vtable
846 offset from this class. */
847 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
848 {
849 int j;
850 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
851
852 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
853 {
854 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
855 {
856 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
857
858 if (voffset > current_vo->max_voffset)
859 current_vo->max_voffset = voffset;
860 }
861 }
862 }
863
864 /* Recurse into base classes. */
865 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
866 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
867 }
868
869 /* Helper for gnuv3_print_vtable that prints a single vtable. */
870
871 static void
872 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
873 int max_voffset,
874 struct value_print_options *opts)
875 {
876 int i;
877 struct type *type = check_typedef (value_type (value));
878 struct value *vtable;
879 CORE_ADDR vt_addr;
880
881 vtable = gnuv3_get_vtable (gdbarch, type,
882 value_address (value)
883 + value_embedded_offset (value));
884 vt_addr = value_address (value_field (vtable,
885 vtable_field_virtual_functions));
886
887 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
888 TYPE_SAFE_NAME (type),
889 paddress (gdbarch, vt_addr),
890 paddress (gdbarch, (value_address (value)
891 + value_embedded_offset (value))));
892
893 for (i = 0; i <= max_voffset; ++i)
894 {
895 /* Initialize it just to avoid a GCC false warning. */
896 CORE_ADDR addr = 0;
897 int got_error = 0;
898 struct value *vfn;
899
900 printf_filtered ("[%d]: ", i);
901
902 vfn = value_subscript (value_field (vtable,
903 vtable_field_virtual_functions),
904 i);
905
906 if (gdbarch_vtable_function_descriptors (gdbarch))
907 vfn = value_addr (vfn);
908
909 TRY
910 {
911 addr = value_as_address (vfn);
912 }
913 CATCH (ex, RETURN_MASK_ERROR)
914 {
915 printf_filtered (_("<error: %s>"), ex.message);
916 got_error = 1;
917 }
918 END_CATCH
919
920 if (!got_error)
921 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
922 printf_filtered ("\n");
923 }
924 }
925
926 /* Implementation of the print_vtable method. */
927
928 static void
929 gnuv3_print_vtable (struct value *value)
930 {
931 struct gdbarch *gdbarch;
932 struct type *type;
933 struct value *vtable;
934 struct value_print_options opts;
935 int count;
936
937 value = coerce_ref (value);
938 type = check_typedef (value_type (value));
939 if (TYPE_CODE (type) == TYPE_CODE_PTR)
940 {
941 value = value_ind (value);
942 type = check_typedef (value_type (value));
943 }
944
945 get_user_print_options (&opts);
946
947 /* Respect 'set print object'. */
948 if (opts.objectprint)
949 {
950 value = value_full_object (value, NULL, 0, 0, 0);
951 type = check_typedef (value_type (value));
952 }
953
954 gdbarch = get_type_arch (type);
955
956 vtable = NULL;
957 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
958 vtable = gnuv3_get_vtable (gdbarch, type,
959 value_as_address (value_addr (value)));
960
961 if (!vtable)
962 {
963 printf_filtered (_("This object does not have a virtual function table\n"));
964 return;
965 }
966
967 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
968 eq_value_and_voffset,
969 xfree, xcalloc, xfree));
970 std::vector<value_and_voffset *> result_vec;
971
972 compute_vtable_size (offset_hash.get (), &result_vec, value);
973 std::sort (result_vec.begin (), result_vec.end (),
974 compare_value_and_voffset);
975
976 count = 0;
977 for (value_and_voffset *iter : result_vec)
978 {
979 if (iter->max_voffset >= 0)
980 {
981 if (count > 0)
982 printf_filtered ("\n");
983 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
984 ++count;
985 }
986 }
987 }
988
989 /* Return a GDB type representing `struct std::type_info', laid out
990 appropriately for ARCH.
991
992 We use this function as the gdbarch per-architecture data
993 initialization function. */
994
995 static void *
996 build_std_type_info_type (struct gdbarch *arch)
997 {
998 struct type *t;
999 struct field *field_list, *field;
1000 int offset;
1001 struct type *void_ptr_type
1002 = builtin_type (arch)->builtin_data_ptr;
1003 struct type *char_type
1004 = builtin_type (arch)->builtin_char;
1005 struct type *char_ptr_type
1006 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1007
1008 field_list = XCNEWVEC (struct field, 2);
1009 field = &field_list[0];
1010 offset = 0;
1011
1012 /* The vtable. */
1013 FIELD_NAME (*field) = "_vptr.type_info";
1014 FIELD_TYPE (*field) = void_ptr_type;
1015 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1016 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1017 field++;
1018
1019 /* The name. */
1020 FIELD_NAME (*field) = "__name";
1021 FIELD_TYPE (*field) = char_ptr_type;
1022 SET_FIELD_BITPOS (*field, offset * TARGET_CHAR_BIT);
1023 offset += TYPE_LENGTH (FIELD_TYPE (*field));
1024 field++;
1025
1026 gdb_assert (field == (field_list + 2));
1027
1028 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1029 TYPE_NFIELDS (t) = field - field_list;
1030 TYPE_FIELDS (t) = field_list;
1031 TYPE_TAG_NAME (t) = "gdb_gnu_v3_type_info";
1032 INIT_CPLUS_SPECIFIC (t);
1033
1034 return t;
1035 }
1036
1037 /* Implement the 'get_typeid_type' method. */
1038
1039 static struct type *
1040 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1041 {
1042 struct symbol *typeinfo;
1043 struct type *typeinfo_type;
1044
1045 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1046 NULL).symbol;
1047 if (typeinfo == NULL)
1048 typeinfo_type
1049 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1050 else
1051 typeinfo_type = SYMBOL_TYPE (typeinfo);
1052
1053 return typeinfo_type;
1054 }
1055
1056 /* Implement the 'get_typeid' method. */
1057
1058 static struct value *
1059 gnuv3_get_typeid (struct value *value)
1060 {
1061 struct type *typeinfo_type;
1062 struct type *type;
1063 struct gdbarch *gdbarch;
1064 struct value *result;
1065 std::string type_name, canonical;
1066
1067 /* We have to handle values a bit trickily here, to allow this code
1068 to work properly with non_lvalue values that are really just
1069 disguised types. */
1070 if (value_lval_const (value) == lval_memory)
1071 value = coerce_ref (value);
1072
1073 type = check_typedef (value_type (value));
1074
1075 /* In the non_lvalue case, a reference might have slipped through
1076 here. */
1077 if (TYPE_CODE (type) == TYPE_CODE_REF)
1078 type = check_typedef (TYPE_TARGET_TYPE (type));
1079
1080 /* Ignore top-level cv-qualifiers. */
1081 type = make_cv_type (0, 0, type, NULL);
1082 gdbarch = get_type_arch (type);
1083
1084 type_name = type_to_string (type);
1085 if (type_name.empty ())
1086 error (_("cannot find typeinfo for unnamed type"));
1087
1088 /* We need to canonicalize the type name here, because we do lookups
1089 using the demangled name, and so we must match the format it
1090 uses. E.g., GDB tends to use "const char *" as a type name, but
1091 the demangler uses "char const *". */
1092 canonical = cp_canonicalize_string (type_name.c_str ());
1093 if (!canonical.empty ())
1094 type_name = canonical;
1095
1096 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1097
1098 /* We check for lval_memory because in the "typeid (type-id)" case,
1099 the type is passed via a not_lval value object. */
1100 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1101 && value_lval_const (value) == lval_memory
1102 && gnuv3_dynamic_class (type))
1103 {
1104 struct value *vtable, *typeinfo_value;
1105 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1106
1107 vtable = gnuv3_get_vtable (gdbarch, type, address);
1108 if (vtable == NULL)
1109 error (_("cannot find typeinfo for object of type '%s'"),
1110 type_name.c_str ());
1111 typeinfo_value = value_field (vtable, vtable_field_type_info);
1112 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1113 typeinfo_value));
1114 }
1115 else
1116 {
1117 std::string sym_name = std::string ("typeinfo for ") + type_name;
1118 bound_minimal_symbol minsym
1119 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1120
1121 if (minsym.minsym == NULL)
1122 error (_("could not find typeinfo symbol for '%s'"), type_name.c_str ());
1123
1124 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1125 }
1126
1127 return result;
1128 }
1129
1130 /* Implement the 'get_typename_from_type_info' method. */
1131
1132 static std::string
1133 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1134 {
1135 struct gdbarch *gdbarch = get_type_arch (value_type (type_info_ptr));
1136 struct bound_minimal_symbol typeinfo_sym;
1137 CORE_ADDR addr;
1138 const char *symname;
1139 const char *class_name;
1140 const char *atsign;
1141
1142 addr = value_as_address (type_info_ptr);
1143 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1144 if (typeinfo_sym.minsym == NULL)
1145 error (_("could not find minimal symbol for typeinfo address %s"),
1146 paddress (gdbarch, addr));
1147
1148 #define TYPEINFO_PREFIX "typeinfo for "
1149 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1150 symname = MSYMBOL_DEMANGLED_NAME (typeinfo_sym.minsym);
1151 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1152 TYPEINFO_PREFIX_LEN))
1153 error (_("typeinfo symbol '%s' has unexpected name"),
1154 MSYMBOL_LINKAGE_NAME (typeinfo_sym.minsym));
1155 class_name = symname + TYPEINFO_PREFIX_LEN;
1156
1157 /* Strip off @plt and version suffixes. */
1158 atsign = strchr (class_name, '@');
1159 if (atsign != NULL)
1160 return std::string (class_name, atsign - class_name);
1161 return class_name;
1162 }
1163
1164 /* Implement the 'get_type_from_type_info' method. */
1165
1166 static struct type *
1167 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1168 {
1169 /* We have to parse the type name, since in general there is not a
1170 symbol for a type. This is somewhat bogus since there may be a
1171 mis-parse. Another approach might be to re-use the demangler's
1172 internal form to reconstruct the type somehow. */
1173 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1174 expression_up expr (parse_expression (type_name.c_str ()));
1175 struct value *type_val = evaluate_type (expr.get ());
1176 return value_type (type_val);
1177 }
1178
1179 /* Determine if we are currently in a C++ thunk. If so, get the address
1180 of the routine we are thunking to and continue to there instead. */
1181
1182 static CORE_ADDR
1183 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1184 {
1185 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1186 struct gdbarch *gdbarch = get_frame_arch (frame);
1187 struct bound_minimal_symbol thunk_sym, fn_sym;
1188 struct obj_section *section;
1189 const char *thunk_name, *fn_name;
1190
1191 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1192 if (real_stop_pc == 0)
1193 real_stop_pc = stop_pc;
1194
1195 /* Find the linker symbol for this potential thunk. */
1196 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1197 section = find_pc_section (real_stop_pc);
1198 if (thunk_sym.minsym == NULL || section == NULL)
1199 return 0;
1200
1201 /* The symbol's demangled name should be something like "virtual
1202 thunk to FUNCTION", where FUNCTION is the name of the function
1203 being thunked to. */
1204 thunk_name = MSYMBOL_DEMANGLED_NAME (thunk_sym.minsym);
1205 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1206 return 0;
1207
1208 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1209 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1210 if (fn_sym.minsym == NULL)
1211 return 0;
1212
1213 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1214
1215 /* Some targets have minimal symbols pointing to function descriptors
1216 (powerpc 64 for example). Make sure to retrieve the address
1217 of the real function from the function descriptor before passing on
1218 the address to other layers of GDB. */
1219 func_addr = gdbarch_convert_from_func_ptr_addr (gdbarch, method_stop_pc,
1220 &current_target);
1221 if (func_addr != 0)
1222 method_stop_pc = func_addr;
1223
1224 real_stop_pc = gdbarch_skip_trampoline_code
1225 (gdbarch, frame, method_stop_pc);
1226 if (real_stop_pc == 0)
1227 real_stop_pc = method_stop_pc;
1228
1229 return real_stop_pc;
1230 }
1231
1232 /* Return nonzero if a type should be passed by reference.
1233
1234 The rule in the v3 ABI document comes from section 3.1.1. If the
1235 type has a non-trivial copy constructor or destructor, then the
1236 caller must make a copy (by calling the copy constructor if there
1237 is one or perform the copy itself otherwise), pass the address of
1238 the copy, and then destroy the temporary (if necessary).
1239
1240 For return values with non-trivial copy constructors or
1241 destructors, space will be allocated in the caller, and a pointer
1242 will be passed as the first argument (preceding "this").
1243
1244 We don't have a bulletproof mechanism for determining whether a
1245 constructor or destructor is trivial. For GCC and DWARF2 debug
1246 information, we can check the artificial flag.
1247
1248 We don't do anything with the constructors or destructors,
1249 but we have to get the argument passing right anyway. */
1250 static int
1251 gnuv3_pass_by_reference (struct type *type)
1252 {
1253 int fieldnum, fieldelem;
1254
1255 type = check_typedef (type);
1256
1257 /* We're only interested in things that can have methods. */
1258 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1259 && TYPE_CODE (type) != TYPE_CODE_UNION)
1260 return 0;
1261
1262 /* A dynamic class has a non-trivial copy constructor.
1263 See c++98 section 12.8 Copying class objects [class.copy]. */
1264 if (gnuv3_dynamic_class (type))
1265 return 1;
1266
1267 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1268 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1269 fieldelem++)
1270 {
1271 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1272 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1273 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1274
1275 /* If this function is marked as artificial, it is compiler-generated,
1276 and we assume it is trivial. */
1277 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1278 continue;
1279
1280 /* If we've found a destructor, we must pass this by reference. */
1281 if (name[0] == '~')
1282 return 1;
1283
1284 /* If the mangled name of this method doesn't indicate that it
1285 is a constructor, we're not interested.
1286
1287 FIXME drow/2007-09-23: We could do this using the name of
1288 the method and the name of the class instead of dealing
1289 with the mangled name. We don't have a convenient function
1290 to strip off both leading scope qualifiers and trailing
1291 template arguments yet. */
1292 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1293 && !TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1294 continue;
1295
1296 /* If this method takes two arguments, and the second argument is
1297 a reference to this class, then it is a copy constructor. */
1298 if (TYPE_NFIELDS (fieldtype) == 2)
1299 {
1300 struct type *arg_type = TYPE_FIELD_TYPE (fieldtype, 1);
1301
1302 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
1303 {
1304 struct type *arg_target_type;
1305
1306 arg_target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1307 if (class_types_same_p (arg_target_type, type))
1308 return 1;
1309 }
1310 }
1311 }
1312
1313 /* Even if all the constructors and destructors were artificial, one
1314 of them may have invoked a non-artificial constructor or
1315 destructor in a base class. If any base class needs to be passed
1316 by reference, so does this class. Similarly for members, which
1317 are constructed whenever this class is. We do not need to worry
1318 about recursive loops here, since we are only looking at members
1319 of complete class type. Also ignore any static members. */
1320 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
1321 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
1322 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
1323 return 1;
1324
1325 return 0;
1326 }
1327
1328 static void
1329 init_gnuv3_ops (void)
1330 {
1331 vtable_type_gdbarch_data
1332 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1333 std_type_info_gdbarch_data
1334 = gdbarch_data_register_post_init (build_std_type_info_type);
1335
1336 gnu_v3_abi_ops.shortname = "gnu-v3";
1337 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1338 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1339 gnu_v3_abi_ops.is_destructor_name =
1340 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1341 gnu_v3_abi_ops.is_constructor_name =
1342 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1343 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1344 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1345 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1346 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1347 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1348 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1349 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1350 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1351 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1352 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1353 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1354 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1355 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1356 gnu_v3_abi_ops.get_typename_from_type_info
1357 = gnuv3_get_typename_from_type_info;
1358 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1359 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1360 }
1361
1362 void
1363 _initialize_gnu_v3_abi (void)
1364 {
1365 init_gnuv3_ops ();
1366
1367 register_cp_abi (&gnu_v3_abi_ops);
1368 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1369 }