]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Routines to extract various sized constants out of hppa
76 instructions. */
77
78 /* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
81 int
82 hppa_sign_extend (unsigned val, unsigned bits)
83 {
84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
85 }
86
87 /* For many immediate values the sign bit is the low bit! */
88
89 int
90 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
91 {
92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94
95 /* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
98 int
99 hppa_get_field (unsigned word, int from, int to)
100 {
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102 }
103
104 /* extract the immediate field from a ld{bhw}s instruction */
105
106 int
107 hppa_extract_5_load (unsigned word)
108 {
109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
110 }
111
112 /* extract the immediate field from a break instruction */
113
114 unsigned
115 hppa_extract_5r_store (unsigned word)
116 {
117 return (word & MASK_5);
118 }
119
120 /* extract the immediate field from a {sr}sm instruction */
121
122 unsigned
123 hppa_extract_5R_store (unsigned word)
124 {
125 return (word >> 16 & MASK_5);
126 }
127
128 /* extract a 14 bit immediate field */
129
130 int
131 hppa_extract_14 (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
134 }
135
136 /* extract a 21 bit constant */
137
138 int
139 hppa_extract_21 (unsigned word)
140 {
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
145 val = hppa_get_field (word, 20, 20);
146 val <<= 11;
147 val |= hppa_get_field (word, 9, 19);
148 val <<= 2;
149 val |= hppa_get_field (word, 5, 6);
150 val <<= 5;
151 val |= hppa_get_field (word, 0, 4);
152 val <<= 2;
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
155 }
156
157 /* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
160 int
161 hppa_extract_17 (unsigned word)
162 {
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
166 (word & 0x1) << 16, 17) << 2;
167 }
168
169 CORE_ADDR
170 hppa_symbol_address(const char *sym)
171 {
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179 }
180
181 struct hppa_objfile_private *
182 hppa_init_objfile_priv_data (struct objfile *objfile)
183 {
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193 }
194 \f
195
196 /* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200 static int
201 compare_unwind_entries (const void *arg1, const void *arg2)
202 {
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212 }
213
214 static void
215 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
216 {
217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
226 }
227
228 static void
229 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
232 {
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
235
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
241 CORE_ADDR low_text_segment_address;
242
243 /* For ELF targets, then unwinds are supposed to
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
250 {
251 low_text_segment_address = -1;
252
253 bfd_map_over_sections (objfile->obfd,
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
256
257 text_offset = low_text_segment_address;
258 }
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
263
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
267 endian issues. */
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
271 (bfd_byte *) buf);
272 table[i].region_start += text_offset;
273 buf += 4;
274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].region_end += text_offset;
276 buf += 4;
277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].sr4export = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved1 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].save_r19 = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].alloca_frame = (tmp >> 28) & 0x1;
309 table[i].reserved2 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
312 /* Stub unwinds are handled elsewhere. */
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317 }
318
319 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325 static void
326 read_unwind_info (struct objfile *objfile)
327 {
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
348
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
355 {
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
361
362 total_entries += unwind_entries;
363 }
364 }
365
366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
367 use stub unwinds at the current time. */
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
382 total_entries += stub_entries;
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
387 obstack_alloc (&objfile->objfile_obstack, total_size);
388 ui->last = total_entries - 1;
389
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
392 index = 0;
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
432 (bfd_byte *) buf);
433 buf += 2;
434 ui->table[index].region_end
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
452 obj_private->unwind_info = ui;
453 }
454
455 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460 struct unwind_table_entry *
461 find_unwind_entry (CORE_ADDR pc)
462 {
463 int first, middle, last;
464 struct objfile *objfile;
465 struct hppa_objfile_private *priv;
466
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
478
479 ALL_OBJFILES (objfile)
480 {
481 struct hppa_unwind_info *ui;
482 ui = NULL;
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
492 error (_("Internal error reading unwind information."));
493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
494 }
495
496 /* First, check the cache */
497
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
507
508 /* Not in the cache, do a binary search */
509
510 first = 0;
511 last = ui->last;
512
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
523 return &ui->table[middle];
524 }
525
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
536 return NULL;
537 }
538
539 /* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544 static int
545 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546 {
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575 }
576
577 static const unsigned char *
578 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579 {
580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583 }
584
585 /* Return the name of a register. */
586
587 static const char *
588 hppa32_register_name (int i)
589 {
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628 }
629
630 static const char *
631 hppa64_register_name (int i)
632 {
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663 }
664
665 static int
666 hppa64_dwarf_reg_to_regnum (int reg)
667 {
668 /* r0-r31 and sar map one-to-one. */
669 if (reg <= 32)
670 return reg;
671
672 /* fr4-fr31 are mapped from 72 in steps of 2. */
673 if (reg >= 72 || reg < 72 + 28 * 2)
674 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
675
676 error ("Invalid DWARF register num %d.", reg);
677 return -1;
678 }
679
680 /* This function pushes a stack frame with arguments as part of the
681 inferior function calling mechanism.
682
683 This is the version of the function for the 32-bit PA machines, in
684 which later arguments appear at lower addresses. (The stack always
685 grows towards higher addresses.)
686
687 We simply allocate the appropriate amount of stack space and put
688 arguments into their proper slots. */
689
690 static CORE_ADDR
691 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
692 struct regcache *regcache, CORE_ADDR bp_addr,
693 int nargs, struct value **args, CORE_ADDR sp,
694 int struct_return, CORE_ADDR struct_addr)
695 {
696 /* Stack base address at which any pass-by-reference parameters are
697 stored. */
698 CORE_ADDR struct_end = 0;
699 /* Stack base address at which the first parameter is stored. */
700 CORE_ADDR param_end = 0;
701
702 /* The inner most end of the stack after all the parameters have
703 been pushed. */
704 CORE_ADDR new_sp = 0;
705
706 /* Two passes. First pass computes the location of everything,
707 second pass writes the bytes out. */
708 int write_pass;
709
710 /* Global pointer (r19) of the function we are trying to call. */
711 CORE_ADDR gp;
712
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714
715 for (write_pass = 0; write_pass < 2; write_pass++)
716 {
717 CORE_ADDR struct_ptr = 0;
718 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
719 struct_ptr is adjusted for each argument below, so the first
720 argument will end up at sp-36. */
721 CORE_ADDR param_ptr = 32;
722 int i;
723 int small_struct = 0;
724
725 for (i = 0; i < nargs; i++)
726 {
727 struct value *arg = args[i];
728 struct type *type = check_typedef (value_type (arg));
729 /* The corresponding parameter that is pushed onto the
730 stack, and [possibly] passed in a register. */
731 char param_val[8];
732 int param_len;
733 memset (param_val, 0, sizeof param_val);
734 if (TYPE_LENGTH (type) > 8)
735 {
736 /* Large parameter, pass by reference. Store the value
737 in "struct" area and then pass its address. */
738 param_len = 4;
739 struct_ptr += align_up (TYPE_LENGTH (type), 8);
740 if (write_pass)
741 write_memory (struct_end - struct_ptr, value_contents (arg),
742 TYPE_LENGTH (type));
743 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
744 }
745 else if (TYPE_CODE (type) == TYPE_CODE_INT
746 || TYPE_CODE (type) == TYPE_CODE_ENUM)
747 {
748 /* Integer value store, right aligned. "unpack_long"
749 takes care of any sign-extension problems. */
750 param_len = align_up (TYPE_LENGTH (type), 4);
751 store_unsigned_integer (param_val, param_len,
752 unpack_long (type,
753 value_contents (arg)));
754 }
755 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
756 {
757 /* Floating point value store, right aligned. */
758 param_len = align_up (TYPE_LENGTH (type), 4);
759 memcpy (param_val, value_contents (arg), param_len);
760 }
761 else
762 {
763 param_len = align_up (TYPE_LENGTH (type), 4);
764
765 /* Small struct value are stored right-aligned. */
766 memcpy (param_val + param_len - TYPE_LENGTH (type),
767 value_contents (arg), TYPE_LENGTH (type));
768
769 /* Structures of size 5, 6 and 7 bytes are special in that
770 the higher-ordered word is stored in the lower-ordered
771 argument, and even though it is a 8-byte quantity the
772 registers need not be 8-byte aligned. */
773 if (param_len > 4 && param_len < 8)
774 small_struct = 1;
775 }
776
777 param_ptr += param_len;
778 if (param_len == 8 && !small_struct)
779 param_ptr = align_up (param_ptr, 8);
780
781 /* First 4 non-FP arguments are passed in gr26-gr23.
782 First 4 32-bit FP arguments are passed in fr4L-fr7L.
783 First 2 64-bit FP arguments are passed in fr5 and fr7.
784
785 The rest go on the stack, starting at sp-36, towards lower
786 addresses. 8-byte arguments must be aligned to a 8-byte
787 stack boundary. */
788 if (write_pass)
789 {
790 write_memory (param_end - param_ptr, param_val, param_len);
791
792 /* There are some cases when we don't know the type
793 expected by the callee (e.g. for variadic functions), so
794 pass the parameters in both general and fp regs. */
795 if (param_ptr <= 48)
796 {
797 int grreg = 26 - (param_ptr - 36) / 4;
798 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
799 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
800
801 regcache_cooked_write (regcache, grreg, param_val);
802 regcache_cooked_write (regcache, fpLreg, param_val);
803
804 if (param_len > 4)
805 {
806 regcache_cooked_write (regcache, grreg + 1,
807 param_val + 4);
808
809 regcache_cooked_write (regcache, fpreg, param_val);
810 regcache_cooked_write (regcache, fpreg + 1,
811 param_val + 4);
812 }
813 }
814 }
815 }
816
817 /* Update the various stack pointers. */
818 if (!write_pass)
819 {
820 struct_end = sp + align_up (struct_ptr, 64);
821 /* PARAM_PTR already accounts for all the arguments passed
822 by the user. However, the ABI mandates minimum stack
823 space allocations for outgoing arguments. The ABI also
824 mandates minimum stack alignments which we must
825 preserve. */
826 param_end = struct_end + align_up (param_ptr, 64);
827 }
828 }
829
830 /* If a structure has to be returned, set up register 28 to hold its
831 address */
832 if (struct_return)
833 write_register (28, struct_addr);
834
835 gp = tdep->find_global_pointer (function);
836
837 if (gp != 0)
838 write_register (19, gp);
839
840 /* Set the return address. */
841 if (!gdbarch_push_dummy_code_p (gdbarch))
842 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
843
844 /* Update the Stack Pointer. */
845 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
846
847 return param_end;
848 }
849
850 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
851 Runtime Architecture for PA-RISC 2.0", which is distributed as part
852 as of the HP-UX Software Transition Kit (STK). This implementation
853 is based on version 3.3, dated October 6, 1997. */
854
855 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
856
857 static int
858 hppa64_integral_or_pointer_p (const struct type *type)
859 {
860 switch (TYPE_CODE (type))
861 {
862 case TYPE_CODE_INT:
863 case TYPE_CODE_BOOL:
864 case TYPE_CODE_CHAR:
865 case TYPE_CODE_ENUM:
866 case TYPE_CODE_RANGE:
867 {
868 int len = TYPE_LENGTH (type);
869 return (len == 1 || len == 2 || len == 4 || len == 8);
870 }
871 case TYPE_CODE_PTR:
872 case TYPE_CODE_REF:
873 return (TYPE_LENGTH (type) == 8);
874 default:
875 break;
876 }
877
878 return 0;
879 }
880
881 /* Check whether TYPE is a "Floating Scalar Type". */
882
883 static int
884 hppa64_floating_p (const struct type *type)
885 {
886 switch (TYPE_CODE (type))
887 {
888 case TYPE_CODE_FLT:
889 {
890 int len = TYPE_LENGTH (type);
891 return (len == 4 || len == 8 || len == 16);
892 }
893 default:
894 break;
895 }
896
897 return 0;
898 }
899
900 /* If CODE points to a function entry address, try to look up the corresponding
901 function descriptor and return its address instead. If CODE is not a
902 function entry address, then just return it unchanged. */
903 static CORE_ADDR
904 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
905 {
906 struct obj_section *sec, *opd;
907
908 sec = find_pc_section (code);
909
910 if (!sec)
911 return code;
912
913 /* If CODE is in a data section, assume it's already a fptr. */
914 if (!(sec->the_bfd_section->flags & SEC_CODE))
915 return code;
916
917 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
918 {
919 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
920 break;
921 }
922
923 if (opd < sec->objfile->sections_end)
924 {
925 CORE_ADDR addr;
926
927 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
928 {
929 ULONGEST opdaddr;
930 char tmp[8];
931
932 if (target_read_memory (addr, tmp, sizeof (tmp)))
933 break;
934 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
935
936 if (opdaddr == code)
937 return addr - 16;
938 }
939 }
940
941 return code;
942 }
943
944 static CORE_ADDR
945 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
946 struct regcache *regcache, CORE_ADDR bp_addr,
947 int nargs, struct value **args, CORE_ADDR sp,
948 int struct_return, CORE_ADDR struct_addr)
949 {
950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
951 int i, offset = 0;
952 CORE_ADDR gp;
953
954 /* "The outgoing parameter area [...] must be aligned at a 16-byte
955 boundary." */
956 sp = align_up (sp, 16);
957
958 for (i = 0; i < nargs; i++)
959 {
960 struct value *arg = args[i];
961 struct type *type = value_type (arg);
962 int len = TYPE_LENGTH (type);
963 const bfd_byte *valbuf;
964 bfd_byte fptrbuf[8];
965 int regnum;
966
967 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
968 offset = align_up (offset, 8);
969
970 if (hppa64_integral_or_pointer_p (type))
971 {
972 /* "Integral scalar parameters smaller than 64 bits are
973 padded on the left (i.e., the value is in the
974 least-significant bits of the 64-bit storage unit, and
975 the high-order bits are undefined)." Therefore we can
976 safely sign-extend them. */
977 if (len < 8)
978 {
979 arg = value_cast (builtin_type_int64, arg);
980 len = 8;
981 }
982 }
983 else if (hppa64_floating_p (type))
984 {
985 if (len > 8)
986 {
987 /* "Quad-precision (128-bit) floating-point scalar
988 parameters are aligned on a 16-byte boundary." */
989 offset = align_up (offset, 16);
990
991 /* "Double-extended- and quad-precision floating-point
992 parameters within the first 64 bytes of the parameter
993 list are always passed in general registers." */
994 }
995 else
996 {
997 if (len == 4)
998 {
999 /* "Single-precision (32-bit) floating-point scalar
1000 parameters are padded on the left with 32 bits of
1001 garbage (i.e., the floating-point value is in the
1002 least-significant 32 bits of a 64-bit storage
1003 unit)." */
1004 offset += 4;
1005 }
1006
1007 /* "Single- and double-precision floating-point
1008 parameters in this area are passed according to the
1009 available formal parameter information in a function
1010 prototype. [...] If no prototype is in scope,
1011 floating-point parameters must be passed both in the
1012 corresponding general registers and in the
1013 corresponding floating-point registers." */
1014 regnum = HPPA64_FP4_REGNUM + offset / 8;
1015
1016 if (regnum < HPPA64_FP4_REGNUM + 8)
1017 {
1018 /* "Single-precision floating-point parameters, when
1019 passed in floating-point registers, are passed in
1020 the right halves of the floating point registers;
1021 the left halves are unused." */
1022 regcache_cooked_write_part (regcache, regnum, offset % 8,
1023 len, value_contents (arg));
1024 }
1025 }
1026 }
1027 else
1028 {
1029 if (len > 8)
1030 {
1031 /* "Aggregates larger than 8 bytes are aligned on a
1032 16-byte boundary, possibly leaving an unused argument
1033 slot, which is filled with garbage. If necessary,
1034 they are padded on the right (with garbage), to a
1035 multiple of 8 bytes." */
1036 offset = align_up (offset, 16);
1037 }
1038 }
1039
1040 /* If we are passing a function pointer, make sure we pass a function
1041 descriptor instead of the function entry address. */
1042 if (TYPE_CODE (type) == TYPE_CODE_PTR
1043 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1044 {
1045 ULONGEST codeptr, fptr;
1046
1047 codeptr = unpack_long (type, value_contents (arg));
1048 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1049 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1050 valbuf = fptrbuf;
1051 }
1052 else
1053 {
1054 valbuf = value_contents (arg);
1055 }
1056
1057 /* Always store the argument in memory. */
1058 write_memory (sp + offset, valbuf, len);
1059
1060 regnum = HPPA_ARG0_REGNUM - offset / 8;
1061 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1062 {
1063 regcache_cooked_write_part (regcache, regnum,
1064 offset % 8, min (len, 8), valbuf);
1065 offset += min (len, 8);
1066 valbuf += min (len, 8);
1067 len -= min (len, 8);
1068 regnum--;
1069 }
1070
1071 offset += len;
1072 }
1073
1074 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1075 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1076
1077 /* Allocate the outgoing parameter area. Make sure the outgoing
1078 parameter area is multiple of 16 bytes in length. */
1079 sp += max (align_up (offset, 16), 64);
1080
1081 /* Allocate 32-bytes of scratch space. The documentation doesn't
1082 mention this, but it seems to be needed. */
1083 sp += 32;
1084
1085 /* Allocate the frame marker area. */
1086 sp += 16;
1087
1088 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1089 its address. */
1090 if (struct_return)
1091 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1092
1093 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1094 gp = tdep->find_global_pointer (function);
1095 if (gp != 0)
1096 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1097
1098 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1099 if (!gdbarch_push_dummy_code_p (gdbarch))
1100 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1101
1102 /* Set up GR30 to hold the stack pointer (sp). */
1103 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1104
1105 return sp;
1106 }
1107 \f
1108
1109 /* Handle 32/64-bit struct return conventions. */
1110
1111 static enum return_value_convention
1112 hppa32_return_value (struct gdbarch *gdbarch,
1113 struct type *type, struct regcache *regcache,
1114 gdb_byte *readbuf, const gdb_byte *writebuf)
1115 {
1116 if (TYPE_LENGTH (type) <= 2 * 4)
1117 {
1118 /* The value always lives in the right hand end of the register
1119 (or register pair)? */
1120 int b;
1121 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1122 int part = TYPE_LENGTH (type) % 4;
1123 /* The left hand register contains only part of the value,
1124 transfer that first so that the rest can be xfered as entire
1125 4-byte registers. */
1126 if (part > 0)
1127 {
1128 if (readbuf != NULL)
1129 regcache_cooked_read_part (regcache, reg, 4 - part,
1130 part, readbuf);
1131 if (writebuf != NULL)
1132 regcache_cooked_write_part (regcache, reg, 4 - part,
1133 part, writebuf);
1134 reg++;
1135 }
1136 /* Now transfer the remaining register values. */
1137 for (b = part; b < TYPE_LENGTH (type); b += 4)
1138 {
1139 if (readbuf != NULL)
1140 regcache_cooked_read (regcache, reg, readbuf + b);
1141 if (writebuf != NULL)
1142 regcache_cooked_write (regcache, reg, writebuf + b);
1143 reg++;
1144 }
1145 return RETURN_VALUE_REGISTER_CONVENTION;
1146 }
1147 else
1148 return RETURN_VALUE_STRUCT_CONVENTION;
1149 }
1150
1151 static enum return_value_convention
1152 hppa64_return_value (struct gdbarch *gdbarch,
1153 struct type *type, struct regcache *regcache,
1154 gdb_byte *readbuf, const gdb_byte *writebuf)
1155 {
1156 int len = TYPE_LENGTH (type);
1157 int regnum, offset;
1158
1159 if (len > 16)
1160 {
1161 /* All return values larget than 128 bits must be aggregate
1162 return values. */
1163 gdb_assert (!hppa64_integral_or_pointer_p (type));
1164 gdb_assert (!hppa64_floating_p (type));
1165
1166 /* "Aggregate return values larger than 128 bits are returned in
1167 a buffer allocated by the caller. The address of the buffer
1168 must be passed in GR 28." */
1169 return RETURN_VALUE_STRUCT_CONVENTION;
1170 }
1171
1172 if (hppa64_integral_or_pointer_p (type))
1173 {
1174 /* "Integral return values are returned in GR 28. Values
1175 smaller than 64 bits are padded on the left (with garbage)." */
1176 regnum = HPPA_RET0_REGNUM;
1177 offset = 8 - len;
1178 }
1179 else if (hppa64_floating_p (type))
1180 {
1181 if (len > 8)
1182 {
1183 /* "Double-extended- and quad-precision floating-point
1184 values are returned in GRs 28 and 29. The sign,
1185 exponent, and most-significant bits of the mantissa are
1186 returned in GR 28; the least-significant bits of the
1187 mantissa are passed in GR 29. For double-extended
1188 precision values, GR 29 is padded on the right with 48
1189 bits of garbage." */
1190 regnum = HPPA_RET0_REGNUM;
1191 offset = 0;
1192 }
1193 else
1194 {
1195 /* "Single-precision and double-precision floating-point
1196 return values are returned in FR 4R (single precision) or
1197 FR 4 (double-precision)." */
1198 regnum = HPPA64_FP4_REGNUM;
1199 offset = 8 - len;
1200 }
1201 }
1202 else
1203 {
1204 /* "Aggregate return values up to 64 bits in size are returned
1205 in GR 28. Aggregates smaller than 64 bits are left aligned
1206 in the register; the pad bits on the right are undefined."
1207
1208 "Aggregate return values between 65 and 128 bits are returned
1209 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1210 the remaining bits are placed, left aligned, in GR 29. The
1211 pad bits on the right of GR 29 (if any) are undefined." */
1212 regnum = HPPA_RET0_REGNUM;
1213 offset = 0;
1214 }
1215
1216 if (readbuf)
1217 {
1218 while (len > 0)
1219 {
1220 regcache_cooked_read_part (regcache, regnum, offset,
1221 min (len, 8), readbuf);
1222 readbuf += min (len, 8);
1223 len -= min (len, 8);
1224 regnum++;
1225 }
1226 }
1227
1228 if (writebuf)
1229 {
1230 while (len > 0)
1231 {
1232 regcache_cooked_write_part (regcache, regnum, offset,
1233 min (len, 8), writebuf);
1234 writebuf += min (len, 8);
1235 len -= min (len, 8);
1236 regnum++;
1237 }
1238 }
1239
1240 return RETURN_VALUE_REGISTER_CONVENTION;
1241 }
1242 \f
1243
1244 static CORE_ADDR
1245 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1246 struct target_ops *targ)
1247 {
1248 if (addr & 2)
1249 {
1250 CORE_ADDR plabel = addr & ~3;
1251 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1252 }
1253
1254 return addr;
1255 }
1256
1257 static CORE_ADDR
1258 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1259 {
1260 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1261 and not _bit_)! */
1262 return align_up (addr, 64);
1263 }
1264
1265 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1266
1267 static CORE_ADDR
1268 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1269 {
1270 /* Just always 16-byte align. */
1271 return align_up (addr, 16);
1272 }
1273
1274 CORE_ADDR
1275 hppa_read_pc (ptid_t ptid)
1276 {
1277 ULONGEST ipsw;
1278 CORE_ADDR pc;
1279
1280 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1281 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1282
1283 /* If the current instruction is nullified, then we are effectively
1284 still executing the previous instruction. Pretend we are still
1285 there. This is needed when single stepping; if the nullified
1286 instruction is on a different line, we don't want GDB to think
1287 we've stepped onto that line. */
1288 if (ipsw & 0x00200000)
1289 pc -= 4;
1290
1291 return pc & ~0x3;
1292 }
1293
1294 void
1295 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1296 {
1297 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1298 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1299 }
1300
1301 /* return the alignment of a type in bytes. Structures have the maximum
1302 alignment required by their fields. */
1303
1304 static int
1305 hppa_alignof (struct type *type)
1306 {
1307 int max_align, align, i;
1308 CHECK_TYPEDEF (type);
1309 switch (TYPE_CODE (type))
1310 {
1311 case TYPE_CODE_PTR:
1312 case TYPE_CODE_INT:
1313 case TYPE_CODE_FLT:
1314 return TYPE_LENGTH (type);
1315 case TYPE_CODE_ARRAY:
1316 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1317 case TYPE_CODE_STRUCT:
1318 case TYPE_CODE_UNION:
1319 max_align = 1;
1320 for (i = 0; i < TYPE_NFIELDS (type); i++)
1321 {
1322 /* Bit fields have no real alignment. */
1323 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1324 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1325 {
1326 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1327 max_align = max (max_align, align);
1328 }
1329 }
1330 return max_align;
1331 default:
1332 return 4;
1333 }
1334 }
1335
1336 /* For the given instruction (INST), return any adjustment it makes
1337 to the stack pointer or zero for no adjustment.
1338
1339 This only handles instructions commonly found in prologues. */
1340
1341 static int
1342 prologue_inst_adjust_sp (unsigned long inst)
1343 {
1344 /* This must persist across calls. */
1345 static int save_high21;
1346
1347 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1348 if ((inst & 0xffffc000) == 0x37de0000)
1349 return hppa_extract_14 (inst);
1350
1351 /* stwm X,D(sp) */
1352 if ((inst & 0xffe00000) == 0x6fc00000)
1353 return hppa_extract_14 (inst);
1354
1355 /* std,ma X,D(sp) */
1356 if ((inst & 0xffe00008) == 0x73c00008)
1357 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1358
1359 /* addil high21,%r30; ldo low11,(%r1),%r30)
1360 save high bits in save_high21 for later use. */
1361 if ((inst & 0xffe00000) == 0x2bc00000)
1362 {
1363 save_high21 = hppa_extract_21 (inst);
1364 return 0;
1365 }
1366
1367 if ((inst & 0xffff0000) == 0x343e0000)
1368 return save_high21 + hppa_extract_14 (inst);
1369
1370 /* fstws as used by the HP compilers. */
1371 if ((inst & 0xffffffe0) == 0x2fd01220)
1372 return hppa_extract_5_load (inst);
1373
1374 /* No adjustment. */
1375 return 0;
1376 }
1377
1378 /* Return nonzero if INST is a branch of some kind, else return zero. */
1379
1380 static int
1381 is_branch (unsigned long inst)
1382 {
1383 switch (inst >> 26)
1384 {
1385 case 0x20:
1386 case 0x21:
1387 case 0x22:
1388 case 0x23:
1389 case 0x27:
1390 case 0x28:
1391 case 0x29:
1392 case 0x2a:
1393 case 0x2b:
1394 case 0x2f:
1395 case 0x30:
1396 case 0x31:
1397 case 0x32:
1398 case 0x33:
1399 case 0x38:
1400 case 0x39:
1401 case 0x3a:
1402 case 0x3b:
1403 return 1;
1404
1405 default:
1406 return 0;
1407 }
1408 }
1409
1410 /* Return the register number for a GR which is saved by INST or
1411 zero it INST does not save a GR. */
1412
1413 static int
1414 inst_saves_gr (unsigned long inst)
1415 {
1416 /* Does it look like a stw? */
1417 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1418 || (inst >> 26) == 0x1f
1419 || ((inst >> 26) == 0x1f
1420 && ((inst >> 6) == 0xa)))
1421 return hppa_extract_5R_store (inst);
1422
1423 /* Does it look like a std? */
1424 if ((inst >> 26) == 0x1c
1425 || ((inst >> 26) == 0x03
1426 && ((inst >> 6) & 0xf) == 0xb))
1427 return hppa_extract_5R_store (inst);
1428
1429 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1430 if ((inst >> 26) == 0x1b)
1431 return hppa_extract_5R_store (inst);
1432
1433 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1434 too. */
1435 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1436 || ((inst >> 26) == 0x3
1437 && (((inst >> 6) & 0xf) == 0x8
1438 || (inst >> 6) & 0xf) == 0x9))
1439 return hppa_extract_5R_store (inst);
1440
1441 return 0;
1442 }
1443
1444 /* Return the register number for a FR which is saved by INST or
1445 zero it INST does not save a FR.
1446
1447 Note we only care about full 64bit register stores (that's the only
1448 kind of stores the prologue will use).
1449
1450 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1451
1452 static int
1453 inst_saves_fr (unsigned long inst)
1454 {
1455 /* is this an FSTD ? */
1456 if ((inst & 0xfc00dfc0) == 0x2c001200)
1457 return hppa_extract_5r_store (inst);
1458 if ((inst & 0xfc000002) == 0x70000002)
1459 return hppa_extract_5R_store (inst);
1460 /* is this an FSTW ? */
1461 if ((inst & 0xfc00df80) == 0x24001200)
1462 return hppa_extract_5r_store (inst);
1463 if ((inst & 0xfc000002) == 0x7c000000)
1464 return hppa_extract_5R_store (inst);
1465 return 0;
1466 }
1467
1468 /* Advance PC across any function entry prologue instructions
1469 to reach some "real" code.
1470
1471 Use information in the unwind table to determine what exactly should
1472 be in the prologue. */
1473
1474
1475 static CORE_ADDR
1476 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1477 {
1478 char buf[4];
1479 CORE_ADDR orig_pc = pc;
1480 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1481 unsigned long args_stored, status, i, restart_gr, restart_fr;
1482 struct unwind_table_entry *u;
1483 int final_iteration;
1484
1485 restart_gr = 0;
1486 restart_fr = 0;
1487
1488 restart:
1489 u = find_unwind_entry (pc);
1490 if (!u)
1491 return pc;
1492
1493 /* If we are not at the beginning of a function, then return now. */
1494 if ((pc & ~0x3) != u->region_start)
1495 return pc;
1496
1497 /* This is how much of a frame adjustment we need to account for. */
1498 stack_remaining = u->Total_frame_size << 3;
1499
1500 /* Magic register saves we want to know about. */
1501 save_rp = u->Save_RP;
1502 save_sp = u->Save_SP;
1503
1504 /* An indication that args may be stored into the stack. Unfortunately
1505 the HPUX compilers tend to set this in cases where no args were
1506 stored too!. */
1507 args_stored = 1;
1508
1509 /* Turn the Entry_GR field into a bitmask. */
1510 save_gr = 0;
1511 for (i = 3; i < u->Entry_GR + 3; i++)
1512 {
1513 /* Frame pointer gets saved into a special location. */
1514 if (u->Save_SP && i == HPPA_FP_REGNUM)
1515 continue;
1516
1517 save_gr |= (1 << i);
1518 }
1519 save_gr &= ~restart_gr;
1520
1521 /* Turn the Entry_FR field into a bitmask too. */
1522 save_fr = 0;
1523 for (i = 12; i < u->Entry_FR + 12; i++)
1524 save_fr |= (1 << i);
1525 save_fr &= ~restart_fr;
1526
1527 final_iteration = 0;
1528
1529 /* Loop until we find everything of interest or hit a branch.
1530
1531 For unoptimized GCC code and for any HP CC code this will never ever
1532 examine any user instructions.
1533
1534 For optimzied GCC code we're faced with problems. GCC will schedule
1535 its prologue and make prologue instructions available for delay slot
1536 filling. The end result is user code gets mixed in with the prologue
1537 and a prologue instruction may be in the delay slot of the first branch
1538 or call.
1539
1540 Some unexpected things are expected with debugging optimized code, so
1541 we allow this routine to walk past user instructions in optimized
1542 GCC code. */
1543 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1544 || args_stored)
1545 {
1546 unsigned int reg_num;
1547 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1548 unsigned long old_save_rp, old_save_sp, next_inst;
1549
1550 /* Save copies of all the triggers so we can compare them later
1551 (only for HPC). */
1552 old_save_gr = save_gr;
1553 old_save_fr = save_fr;
1554 old_save_rp = save_rp;
1555 old_save_sp = save_sp;
1556 old_stack_remaining = stack_remaining;
1557
1558 status = read_memory_nobpt (pc, buf, 4);
1559 inst = extract_unsigned_integer (buf, 4);
1560
1561 /* Yow! */
1562 if (status != 0)
1563 return pc;
1564
1565 /* Note the interesting effects of this instruction. */
1566 stack_remaining -= prologue_inst_adjust_sp (inst);
1567
1568 /* There are limited ways to store the return pointer into the
1569 stack. */
1570 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1571 save_rp = 0;
1572
1573 /* These are the only ways we save SP into the stack. At this time
1574 the HP compilers never bother to save SP into the stack. */
1575 if ((inst & 0xffffc000) == 0x6fc10000
1576 || (inst & 0xffffc00c) == 0x73c10008)
1577 save_sp = 0;
1578
1579 /* Are we loading some register with an offset from the argument
1580 pointer? */
1581 if ((inst & 0xffe00000) == 0x37a00000
1582 || (inst & 0xffffffe0) == 0x081d0240)
1583 {
1584 pc += 4;
1585 continue;
1586 }
1587
1588 /* Account for general and floating-point register saves. */
1589 reg_num = inst_saves_gr (inst);
1590 save_gr &= ~(1 << reg_num);
1591
1592 /* Ugh. Also account for argument stores into the stack.
1593 Unfortunately args_stored only tells us that some arguments
1594 where stored into the stack. Not how many or what kind!
1595
1596 This is a kludge as on the HP compiler sets this bit and it
1597 never does prologue scheduling. So once we see one, skip past
1598 all of them. We have similar code for the fp arg stores below.
1599
1600 FIXME. Can still die if we have a mix of GR and FR argument
1601 stores! */
1602 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1603 {
1604 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1605 {
1606 pc += 4;
1607 status = read_memory_nobpt (pc, buf, 4);
1608 inst = extract_unsigned_integer (buf, 4);
1609 if (status != 0)
1610 return pc;
1611 reg_num = inst_saves_gr (inst);
1612 }
1613 args_stored = 0;
1614 continue;
1615 }
1616
1617 reg_num = inst_saves_fr (inst);
1618 save_fr &= ~(1 << reg_num);
1619
1620 status = read_memory_nobpt (pc + 4, buf, 4);
1621 next_inst = extract_unsigned_integer (buf, 4);
1622
1623 /* Yow! */
1624 if (status != 0)
1625 return pc;
1626
1627 /* We've got to be read to handle the ldo before the fp register
1628 save. */
1629 if ((inst & 0xfc000000) == 0x34000000
1630 && inst_saves_fr (next_inst) >= 4
1631 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1632 {
1633 /* So we drop into the code below in a reasonable state. */
1634 reg_num = inst_saves_fr (next_inst);
1635 pc -= 4;
1636 }
1637
1638 /* Ugh. Also account for argument stores into the stack.
1639 This is a kludge as on the HP compiler sets this bit and it
1640 never does prologue scheduling. So once we see one, skip past
1641 all of them. */
1642 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1643 {
1644 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1645 {
1646 pc += 8;
1647 status = read_memory_nobpt (pc, buf, 4);
1648 inst = extract_unsigned_integer (buf, 4);
1649 if (status != 0)
1650 return pc;
1651 if ((inst & 0xfc000000) != 0x34000000)
1652 break;
1653 status = read_memory_nobpt (pc + 4, buf, 4);
1654 next_inst = extract_unsigned_integer (buf, 4);
1655 if (status != 0)
1656 return pc;
1657 reg_num = inst_saves_fr (next_inst);
1658 }
1659 args_stored = 0;
1660 continue;
1661 }
1662
1663 /* Quit if we hit any kind of branch. This can happen if a prologue
1664 instruction is in the delay slot of the first call/branch. */
1665 if (is_branch (inst) && stop_before_branch)
1666 break;
1667
1668 /* What a crock. The HP compilers set args_stored even if no
1669 arguments were stored into the stack (boo hiss). This could
1670 cause this code to then skip a bunch of user insns (up to the
1671 first branch).
1672
1673 To combat this we try to identify when args_stored was bogusly
1674 set and clear it. We only do this when args_stored is nonzero,
1675 all other resources are accounted for, and nothing changed on
1676 this pass. */
1677 if (args_stored
1678 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1679 && old_save_gr == save_gr && old_save_fr == save_fr
1680 && old_save_rp == save_rp && old_save_sp == save_sp
1681 && old_stack_remaining == stack_remaining)
1682 break;
1683
1684 /* Bump the PC. */
1685 pc += 4;
1686
1687 /* !stop_before_branch, so also look at the insn in the delay slot
1688 of the branch. */
1689 if (final_iteration)
1690 break;
1691 if (is_branch (inst))
1692 final_iteration = 1;
1693 }
1694
1695 /* We've got a tenative location for the end of the prologue. However
1696 because of limitations in the unwind descriptor mechanism we may
1697 have went too far into user code looking for the save of a register
1698 that does not exist. So, if there registers we expected to be saved
1699 but never were, mask them out and restart.
1700
1701 This should only happen in optimized code, and should be very rare. */
1702 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1703 {
1704 pc = orig_pc;
1705 restart_gr = save_gr;
1706 restart_fr = save_fr;
1707 goto restart;
1708 }
1709
1710 return pc;
1711 }
1712
1713
1714 /* Return the address of the PC after the last prologue instruction if
1715 we can determine it from the debug symbols. Else return zero. */
1716
1717 static CORE_ADDR
1718 after_prologue (CORE_ADDR pc)
1719 {
1720 struct symtab_and_line sal;
1721 CORE_ADDR func_addr, func_end;
1722 struct symbol *f;
1723
1724 /* If we can not find the symbol in the partial symbol table, then
1725 there is no hope we can determine the function's start address
1726 with this code. */
1727 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1728 return 0;
1729
1730 /* Get the line associated with FUNC_ADDR. */
1731 sal = find_pc_line (func_addr, 0);
1732
1733 /* There are only two cases to consider. First, the end of the source line
1734 is within the function bounds. In that case we return the end of the
1735 source line. Second is the end of the source line extends beyond the
1736 bounds of the current function. We need to use the slow code to
1737 examine instructions in that case.
1738
1739 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1740 the wrong thing to do. In fact, it should be entirely possible for this
1741 function to always return zero since the slow instruction scanning code
1742 is supposed to *always* work. If it does not, then it is a bug. */
1743 if (sal.end < func_end)
1744 return sal.end;
1745 else
1746 return 0;
1747 }
1748
1749 /* To skip prologues, I use this predicate. Returns either PC itself
1750 if the code at PC does not look like a function prologue; otherwise
1751 returns an address that (if we're lucky) follows the prologue.
1752
1753 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1754 It doesn't necessarily skips all the insns in the prologue. In fact
1755 we might not want to skip all the insns because a prologue insn may
1756 appear in the delay slot of the first branch, and we don't want to
1757 skip over the branch in that case. */
1758
1759 static CORE_ADDR
1760 hppa_skip_prologue (CORE_ADDR pc)
1761 {
1762 unsigned long inst;
1763 int offset;
1764 CORE_ADDR post_prologue_pc;
1765 char buf[4];
1766
1767 /* See if we can determine the end of the prologue via the symbol table.
1768 If so, then return either PC, or the PC after the prologue, whichever
1769 is greater. */
1770
1771 post_prologue_pc = after_prologue (pc);
1772
1773 /* If after_prologue returned a useful address, then use it. Else
1774 fall back on the instruction skipping code.
1775
1776 Some folks have claimed this causes problems because the breakpoint
1777 may be the first instruction of the prologue. If that happens, then
1778 the instruction skipping code has a bug that needs to be fixed. */
1779 if (post_prologue_pc != 0)
1780 return max (pc, post_prologue_pc);
1781 else
1782 return (skip_prologue_hard_way (pc, 1));
1783 }
1784
1785 /* Return an unwind entry that falls within the frame's code block. */
1786 static struct unwind_table_entry *
1787 hppa_find_unwind_entry_in_block (struct frame_info *f)
1788 {
1789 CORE_ADDR pc;
1790
1791 pc = frame_unwind_address_in_block (f);
1792 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1793 return find_unwind_entry (pc);
1794 }
1795
1796 struct hppa_frame_cache
1797 {
1798 CORE_ADDR base;
1799 struct trad_frame_saved_reg *saved_regs;
1800 };
1801
1802 static struct hppa_frame_cache *
1803 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1804 {
1805 struct hppa_frame_cache *cache;
1806 long saved_gr_mask;
1807 long saved_fr_mask;
1808 CORE_ADDR this_sp;
1809 long frame_size;
1810 struct unwind_table_entry *u;
1811 CORE_ADDR prologue_end;
1812 int fp_in_r1 = 0;
1813 int i;
1814
1815 if (hppa_debug)
1816 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1817 frame_relative_level(next_frame));
1818
1819 if ((*this_cache) != NULL)
1820 {
1821 if (hppa_debug)
1822 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1823 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1824 return (*this_cache);
1825 }
1826 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1827 (*this_cache) = cache;
1828 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1829
1830 /* Yow! */
1831 u = hppa_find_unwind_entry_in_block (next_frame);
1832 if (!u)
1833 {
1834 if (hppa_debug)
1835 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1836 return (*this_cache);
1837 }
1838
1839 /* Turn the Entry_GR field into a bitmask. */
1840 saved_gr_mask = 0;
1841 for (i = 3; i < u->Entry_GR + 3; i++)
1842 {
1843 /* Frame pointer gets saved into a special location. */
1844 if (u->Save_SP && i == HPPA_FP_REGNUM)
1845 continue;
1846
1847 saved_gr_mask |= (1 << i);
1848 }
1849
1850 /* Turn the Entry_FR field into a bitmask too. */
1851 saved_fr_mask = 0;
1852 for (i = 12; i < u->Entry_FR + 12; i++)
1853 saved_fr_mask |= (1 << i);
1854
1855 /* Loop until we find everything of interest or hit a branch.
1856
1857 For unoptimized GCC code and for any HP CC code this will never ever
1858 examine any user instructions.
1859
1860 For optimized GCC code we're faced with problems. GCC will schedule
1861 its prologue and make prologue instructions available for delay slot
1862 filling. The end result is user code gets mixed in with the prologue
1863 and a prologue instruction may be in the delay slot of the first branch
1864 or call.
1865
1866 Some unexpected things are expected with debugging optimized code, so
1867 we allow this routine to walk past user instructions in optimized
1868 GCC code. */
1869 {
1870 int final_iteration = 0;
1871 CORE_ADDR pc, start_pc, end_pc;
1872 int looking_for_sp = u->Save_SP;
1873 int looking_for_rp = u->Save_RP;
1874 int fp_loc = -1;
1875
1876 /* We have to use skip_prologue_hard_way instead of just
1877 skip_prologue_using_sal, in case we stepped into a function without
1878 symbol information. hppa_skip_prologue also bounds the returned
1879 pc by the passed in pc, so it will not return a pc in the next
1880 function.
1881
1882 We used to call hppa_skip_prologue to find the end of the prologue,
1883 but if some non-prologue instructions get scheduled into the prologue,
1884 and the program is compiled with debug information, the "easy" way
1885 in hppa_skip_prologue will return a prologue end that is too early
1886 for us to notice any potential frame adjustments. */
1887
1888 /* We used to use frame_func_unwind () to locate the beginning of the
1889 function to pass to skip_prologue (). However, when objects are
1890 compiled without debug symbols, frame_func_unwind can return the wrong
1891 function (or 0). We can do better than that by using unwind records.
1892 This only works if the Region_description of the unwind record
1893 indicates that it includes the entry point of the function.
1894 HP compilers sometimes generate unwind records for regions that
1895 do not include the entry or exit point of a function. GNU tools
1896 do not do this. */
1897
1898 if ((u->Region_description & 0x2) == 0)
1899 start_pc = u->region_start;
1900 else
1901 start_pc = frame_func_unwind (next_frame);
1902
1903 prologue_end = skip_prologue_hard_way (start_pc, 0);
1904 end_pc = frame_pc_unwind (next_frame);
1905
1906 if (prologue_end != 0 && end_pc > prologue_end)
1907 end_pc = prologue_end;
1908
1909 frame_size = 0;
1910
1911 for (pc = start_pc;
1912 ((saved_gr_mask || saved_fr_mask
1913 || looking_for_sp || looking_for_rp
1914 || frame_size < (u->Total_frame_size << 3))
1915 && pc < end_pc);
1916 pc += 4)
1917 {
1918 int reg;
1919 char buf4[4];
1920 long inst;
1921
1922 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1923 sizeof buf4))
1924 {
1925 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1926 return (*this_cache);
1927 }
1928
1929 inst = extract_unsigned_integer (buf4, sizeof buf4);
1930
1931 /* Note the interesting effects of this instruction. */
1932 frame_size += prologue_inst_adjust_sp (inst);
1933
1934 /* There are limited ways to store the return pointer into the
1935 stack. */
1936 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1937 {
1938 looking_for_rp = 0;
1939 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1940 }
1941 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1942 {
1943 looking_for_rp = 0;
1944 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1945 }
1946 else if (inst == 0x0fc212c1
1947 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1948 {
1949 looking_for_rp = 0;
1950 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1951 }
1952
1953 /* Check to see if we saved SP into the stack. This also
1954 happens to indicate the location of the saved frame
1955 pointer. */
1956 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1957 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1958 {
1959 looking_for_sp = 0;
1960 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1961 }
1962 else if (inst == 0x08030241) /* copy %r3, %r1 */
1963 {
1964 fp_in_r1 = 1;
1965 }
1966
1967 /* Account for general and floating-point register saves. */
1968 reg = inst_saves_gr (inst);
1969 if (reg >= 3 && reg <= 18
1970 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1971 {
1972 saved_gr_mask &= ~(1 << reg);
1973 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1974 /* stwm with a positive displacement is a _post_
1975 _modify_. */
1976 cache->saved_regs[reg].addr = 0;
1977 else if ((inst & 0xfc00000c) == 0x70000008)
1978 /* A std has explicit post_modify forms. */
1979 cache->saved_regs[reg].addr = 0;
1980 else
1981 {
1982 CORE_ADDR offset;
1983
1984 if ((inst >> 26) == 0x1c)
1985 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1986 else if ((inst >> 26) == 0x03)
1987 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1988 else
1989 offset = hppa_extract_14 (inst);
1990
1991 /* Handle code with and without frame pointers. */
1992 if (u->Save_SP)
1993 cache->saved_regs[reg].addr = offset;
1994 else
1995 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1996 }
1997 }
1998
1999 /* GCC handles callee saved FP regs a little differently.
2000
2001 It emits an instruction to put the value of the start of
2002 the FP store area into %r1. It then uses fstds,ma with a
2003 basereg of %r1 for the stores.
2004
2005 HP CC emits them at the current stack pointer modifying the
2006 stack pointer as it stores each register. */
2007
2008 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2009 if ((inst & 0xffffc000) == 0x34610000
2010 || (inst & 0xffffc000) == 0x37c10000)
2011 fp_loc = hppa_extract_14 (inst);
2012
2013 reg = inst_saves_fr (inst);
2014 if (reg >= 12 && reg <= 21)
2015 {
2016 /* Note +4 braindamage below is necessary because the FP
2017 status registers are internally 8 registers rather than
2018 the expected 4 registers. */
2019 saved_fr_mask &= ~(1 << reg);
2020 if (fp_loc == -1)
2021 {
2022 /* 1st HP CC FP register store. After this
2023 instruction we've set enough state that the GCC and
2024 HPCC code are both handled in the same manner. */
2025 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2026 fp_loc = 8;
2027 }
2028 else
2029 {
2030 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2031 fp_loc += 8;
2032 }
2033 }
2034
2035 /* Quit if we hit any kind of branch the previous iteration. */
2036 if (final_iteration)
2037 break;
2038 /* We want to look precisely one instruction beyond the branch
2039 if we have not found everything yet. */
2040 if (is_branch (inst))
2041 final_iteration = 1;
2042 }
2043 }
2044
2045 {
2046 /* The frame base always represents the value of %sp at entry to
2047 the current function (and is thus equivalent to the "saved"
2048 stack pointer. */
2049 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2050 CORE_ADDR fp;
2051
2052 if (hppa_debug)
2053 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2054 "prologue_end=0x%s) ",
2055 paddr_nz (this_sp),
2056 paddr_nz (frame_pc_unwind (next_frame)),
2057 paddr_nz (prologue_end));
2058
2059 /* Check to see if a frame pointer is available, and use it for
2060 frame unwinding if it is.
2061
2062 There are some situations where we need to rely on the frame
2063 pointer to do stack unwinding. For example, if a function calls
2064 alloca (), the stack pointer can get adjusted inside the body of
2065 the function. In this case, the ABI requires that the compiler
2066 maintain a frame pointer for the function.
2067
2068 The unwind record has a flag (alloca_frame) that indicates that
2069 a function has a variable frame; unfortunately, gcc/binutils
2070 does not set this flag. Instead, whenever a frame pointer is used
2071 and saved on the stack, the Save_SP flag is set. We use this to
2072 decide whether to use the frame pointer for unwinding.
2073
2074 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2075 instead of Save_SP. */
2076
2077 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2078
2079 if (u->alloca_frame)
2080 fp -= u->Total_frame_size << 3;
2081
2082 if (frame_pc_unwind (next_frame) >= prologue_end
2083 && (u->Save_SP || u->alloca_frame) && fp != 0)
2084 {
2085 cache->base = fp;
2086
2087 if (hppa_debug)
2088 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2089 paddr_nz (cache->base));
2090 }
2091 else if (u->Save_SP
2092 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2093 {
2094 /* Both we're expecting the SP to be saved and the SP has been
2095 saved. The entry SP value is saved at this frame's SP
2096 address. */
2097 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2098
2099 if (hppa_debug)
2100 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2101 paddr_nz (cache->base));
2102 }
2103 else
2104 {
2105 /* The prologue has been slowly allocating stack space. Adjust
2106 the SP back. */
2107 cache->base = this_sp - frame_size;
2108 if (hppa_debug)
2109 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2110 paddr_nz (cache->base));
2111
2112 }
2113 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2114 }
2115
2116 /* The PC is found in the "return register", "Millicode" uses "r31"
2117 as the return register while normal code uses "rp". */
2118 if (u->Millicode)
2119 {
2120 if (trad_frame_addr_p (cache->saved_regs, 31))
2121 {
2122 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2123 if (hppa_debug)
2124 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2125 }
2126 else
2127 {
2128 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2129 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2130 if (hppa_debug)
2131 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2132 }
2133 }
2134 else
2135 {
2136 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2137 {
2138 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2139 cache->saved_regs[HPPA_RP_REGNUM];
2140 if (hppa_debug)
2141 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2142 }
2143 else
2144 {
2145 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2146 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2147 if (hppa_debug)
2148 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2149 }
2150 }
2151
2152 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2153 frame. However, there is a one-insn window where we haven't saved it
2154 yet, but we've already clobbered it. Detect this case and fix it up.
2155
2156 The prologue sequence for frame-pointer functions is:
2157 0: stw %rp, -20(%sp)
2158 4: copy %r3, %r1
2159 8: copy %sp, %r3
2160 c: stw,ma %r1, XX(%sp)
2161
2162 So if we are at offset c, the r3 value that we want is not yet saved
2163 on the stack, but it's been overwritten. The prologue analyzer will
2164 set fp_in_r1 when it sees the copy insn so we know to get the value
2165 from r1 instead. */
2166 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2167 && fp_in_r1)
2168 {
2169 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2170 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2171 }
2172
2173 {
2174 /* Convert all the offsets into addresses. */
2175 int reg;
2176 for (reg = 0; reg < NUM_REGS; reg++)
2177 {
2178 if (trad_frame_addr_p (cache->saved_regs, reg))
2179 cache->saved_regs[reg].addr += cache->base;
2180 }
2181 }
2182
2183 {
2184 struct gdbarch *gdbarch;
2185 struct gdbarch_tdep *tdep;
2186
2187 gdbarch = get_frame_arch (next_frame);
2188 tdep = gdbarch_tdep (gdbarch);
2189
2190 if (tdep->unwind_adjust_stub)
2191 {
2192 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2193 }
2194 }
2195
2196 if (hppa_debug)
2197 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2198 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2199 return (*this_cache);
2200 }
2201
2202 static void
2203 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2204 struct frame_id *this_id)
2205 {
2206 struct hppa_frame_cache *info;
2207 CORE_ADDR pc = frame_pc_unwind (next_frame);
2208 struct unwind_table_entry *u;
2209
2210 info = hppa_frame_cache (next_frame, this_cache);
2211 u = hppa_find_unwind_entry_in_block (next_frame);
2212
2213 (*this_id) = frame_id_build (info->base, u->region_start);
2214 }
2215
2216 static void
2217 hppa_frame_prev_register (struct frame_info *next_frame,
2218 void **this_cache,
2219 int regnum, int *optimizedp,
2220 enum lval_type *lvalp, CORE_ADDR *addrp,
2221 int *realnump, gdb_byte *valuep)
2222 {
2223 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2224 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2225 optimizedp, lvalp, addrp, realnump, valuep);
2226 }
2227
2228 static const struct frame_unwind hppa_frame_unwind =
2229 {
2230 NORMAL_FRAME,
2231 hppa_frame_this_id,
2232 hppa_frame_prev_register
2233 };
2234
2235 static const struct frame_unwind *
2236 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2237 {
2238 if (hppa_find_unwind_entry_in_block (next_frame))
2239 return &hppa_frame_unwind;
2240
2241 return NULL;
2242 }
2243
2244 /* This is a generic fallback frame unwinder that kicks in if we fail all
2245 the other ones. Normally we would expect the stub and regular unwinder
2246 to work, but in some cases we might hit a function that just doesn't
2247 have any unwind information available. In this case we try to do
2248 unwinding solely based on code reading. This is obviously going to be
2249 slow, so only use this as a last resort. Currently this will only
2250 identify the stack and pc for the frame. */
2251
2252 static struct hppa_frame_cache *
2253 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2254 {
2255 struct hppa_frame_cache *cache;
2256 unsigned int frame_size = 0;
2257 int found_rp = 0;
2258 CORE_ADDR start_pc;
2259
2260 if (hppa_debug)
2261 fprintf_unfiltered (gdb_stdlog,
2262 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2263 frame_relative_level (next_frame));
2264
2265 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2266 (*this_cache) = cache;
2267 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2268
2269 start_pc = frame_func_unwind (next_frame);
2270 if (start_pc)
2271 {
2272 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2273 CORE_ADDR pc;
2274
2275 for (pc = start_pc; pc < cur_pc; pc += 4)
2276 {
2277 unsigned int insn;
2278
2279 insn = read_memory_unsigned_integer (pc, 4);
2280 frame_size += prologue_inst_adjust_sp (insn);
2281
2282 /* There are limited ways to store the return pointer into the
2283 stack. */
2284 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2285 {
2286 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2287 found_rp = 1;
2288 }
2289 else if (insn == 0x0fc212c1
2290 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2291 {
2292 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2293 found_rp = 1;
2294 }
2295 }
2296 }
2297
2298 if (hppa_debug)
2299 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2300 frame_size, found_rp);
2301
2302 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2303 cache->base -= frame_size;
2304 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2305
2306 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2307 {
2308 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2309 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2310 cache->saved_regs[HPPA_RP_REGNUM];
2311 }
2312 else
2313 {
2314 ULONGEST rp;
2315 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2316 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2317 }
2318
2319 return cache;
2320 }
2321
2322 static void
2323 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2324 struct frame_id *this_id)
2325 {
2326 struct hppa_frame_cache *info =
2327 hppa_fallback_frame_cache (next_frame, this_cache);
2328 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2329 }
2330
2331 static void
2332 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2333 void **this_cache,
2334 int regnum, int *optimizedp,
2335 enum lval_type *lvalp, CORE_ADDR *addrp,
2336 int *realnump, gdb_byte *valuep)
2337 {
2338 struct hppa_frame_cache *info =
2339 hppa_fallback_frame_cache (next_frame, this_cache);
2340 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2341 optimizedp, lvalp, addrp, realnump, valuep);
2342 }
2343
2344 static const struct frame_unwind hppa_fallback_frame_unwind =
2345 {
2346 NORMAL_FRAME,
2347 hppa_fallback_frame_this_id,
2348 hppa_fallback_frame_prev_register
2349 };
2350
2351 static const struct frame_unwind *
2352 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2353 {
2354 return &hppa_fallback_frame_unwind;
2355 }
2356
2357 /* Stub frames, used for all kinds of call stubs. */
2358 struct hppa_stub_unwind_cache
2359 {
2360 CORE_ADDR base;
2361 struct trad_frame_saved_reg *saved_regs;
2362 };
2363
2364 static struct hppa_stub_unwind_cache *
2365 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2366 void **this_cache)
2367 {
2368 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2369 struct hppa_stub_unwind_cache *info;
2370 struct unwind_table_entry *u;
2371
2372 if (*this_cache)
2373 return *this_cache;
2374
2375 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2376 *this_cache = info;
2377 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2378
2379 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2380
2381 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2382 {
2383 /* HPUX uses export stubs in function calls; the export stub clobbers
2384 the return value of the caller, and, later restores it from the
2385 stack. */
2386 u = find_unwind_entry (frame_pc_unwind (next_frame));
2387
2388 if (u && u->stub_unwind.stub_type == EXPORT)
2389 {
2390 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2391
2392 return info;
2393 }
2394 }
2395
2396 /* By default we assume that stubs do not change the rp. */
2397 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2398
2399 return info;
2400 }
2401
2402 static void
2403 hppa_stub_frame_this_id (struct frame_info *next_frame,
2404 void **this_prologue_cache,
2405 struct frame_id *this_id)
2406 {
2407 struct hppa_stub_unwind_cache *info
2408 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2409
2410 if (info)
2411 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2412 else
2413 *this_id = null_frame_id;
2414 }
2415
2416 static void
2417 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2418 void **this_prologue_cache,
2419 int regnum, int *optimizedp,
2420 enum lval_type *lvalp, CORE_ADDR *addrp,
2421 int *realnump, gdb_byte *valuep)
2422 {
2423 struct hppa_stub_unwind_cache *info
2424 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2425
2426 if (info)
2427 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2428 optimizedp, lvalp, addrp, realnump,
2429 valuep);
2430 else
2431 error (_("Requesting registers from null frame."));
2432 }
2433
2434 static const struct frame_unwind hppa_stub_frame_unwind = {
2435 NORMAL_FRAME,
2436 hppa_stub_frame_this_id,
2437 hppa_stub_frame_prev_register
2438 };
2439
2440 static const struct frame_unwind *
2441 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2442 {
2443 CORE_ADDR pc = frame_pc_unwind (next_frame);
2444 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2445 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2446
2447 if (pc == 0
2448 || (tdep->in_solib_call_trampoline != NULL
2449 && tdep->in_solib_call_trampoline (pc, NULL))
2450 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2451 return &hppa_stub_frame_unwind;
2452 return NULL;
2453 }
2454
2455 static struct frame_id
2456 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2457 {
2458 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2459 HPPA_SP_REGNUM),
2460 frame_pc_unwind (next_frame));
2461 }
2462
2463 CORE_ADDR
2464 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2465 {
2466 ULONGEST ipsw;
2467 CORE_ADDR pc;
2468
2469 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2470 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2471
2472 /* If the current instruction is nullified, then we are effectively
2473 still executing the previous instruction. Pretend we are still
2474 there. This is needed when single stepping; if the nullified
2475 instruction is on a different line, we don't want GDB to think
2476 we've stepped onto that line. */
2477 if (ipsw & 0x00200000)
2478 pc -= 4;
2479
2480 return pc & ~0x3;
2481 }
2482
2483 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2484 Return NULL if no such symbol was found. */
2485
2486 struct minimal_symbol *
2487 hppa_lookup_stub_minimal_symbol (const char *name,
2488 enum unwind_stub_types stub_type)
2489 {
2490 struct objfile *objfile;
2491 struct minimal_symbol *msym;
2492
2493 ALL_MSYMBOLS (objfile, msym)
2494 {
2495 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2496 {
2497 struct unwind_table_entry *u;
2498
2499 u = find_unwind_entry (SYMBOL_VALUE (msym));
2500 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2501 return msym;
2502 }
2503 }
2504
2505 return NULL;
2506 }
2507
2508 static void
2509 unwind_command (char *exp, int from_tty)
2510 {
2511 CORE_ADDR address;
2512 struct unwind_table_entry *u;
2513
2514 /* If we have an expression, evaluate it and use it as the address. */
2515
2516 if (exp != 0 && *exp != 0)
2517 address = parse_and_eval_address (exp);
2518 else
2519 return;
2520
2521 u = find_unwind_entry (address);
2522
2523 if (!u)
2524 {
2525 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2526 return;
2527 }
2528
2529 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2530
2531 printf_unfiltered ("\tregion_start = ");
2532 print_address (u->region_start, gdb_stdout);
2533 gdb_flush (gdb_stdout);
2534
2535 printf_unfiltered ("\n\tregion_end = ");
2536 print_address (u->region_end, gdb_stdout);
2537 gdb_flush (gdb_stdout);
2538
2539 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2540
2541 printf_unfiltered ("\n\tflags =");
2542 pif (Cannot_unwind);
2543 pif (Millicode);
2544 pif (Millicode_save_sr0);
2545 pif (Entry_SR);
2546 pif (Args_stored);
2547 pif (Variable_Frame);
2548 pif (Separate_Package_Body);
2549 pif (Frame_Extension_Millicode);
2550 pif (Stack_Overflow_Check);
2551 pif (Two_Instruction_SP_Increment);
2552 pif (sr4export);
2553 pif (cxx_info);
2554 pif (cxx_try_catch);
2555 pif (sched_entry_seq);
2556 pif (Save_SP);
2557 pif (Save_RP);
2558 pif (Save_MRP_in_frame);
2559 pif (save_r19);
2560 pif (Cleanup_defined);
2561 pif (MPE_XL_interrupt_marker);
2562 pif (HP_UX_interrupt_marker);
2563 pif (Large_frame);
2564 pif (alloca_frame);
2565
2566 putchar_unfiltered ('\n');
2567
2568 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2569
2570 pin (Region_description);
2571 pin (Entry_FR);
2572 pin (Entry_GR);
2573 pin (Total_frame_size);
2574
2575 if (u->stub_unwind.stub_type)
2576 {
2577 printf_unfiltered ("\tstub type = ");
2578 switch (u->stub_unwind.stub_type)
2579 {
2580 case LONG_BRANCH:
2581 printf_unfiltered ("long branch\n");
2582 break;
2583 case PARAMETER_RELOCATION:
2584 printf_unfiltered ("parameter relocation\n");
2585 break;
2586 case EXPORT:
2587 printf_unfiltered ("export\n");
2588 break;
2589 case IMPORT:
2590 printf_unfiltered ("import\n");
2591 break;
2592 case IMPORT_SHLIB:
2593 printf_unfiltered ("import shlib\n");
2594 break;
2595 default:
2596 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2597 }
2598 }
2599 }
2600
2601 int
2602 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2603 {
2604 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2605
2606 An example of this occurs when an a.out is linked against a foo.sl.
2607 The foo.sl defines a global bar(), and the a.out declares a signature
2608 for bar(). However, the a.out doesn't directly call bar(), but passes
2609 its address in another call.
2610
2611 If you have this scenario and attempt to "break bar" before running,
2612 gdb will find a minimal symbol for bar() in the a.out. But that
2613 symbol's address will be negative. What this appears to denote is
2614 an index backwards from the base of the procedure linkage table (PLT)
2615 into the data linkage table (DLT), the end of which is contiguous
2616 with the start of the PLT. This is clearly not a valid address for
2617 us to set a breakpoint on.
2618
2619 Note that one must be careful in how one checks for a negative address.
2620 0xc0000000 is a legitimate address of something in a shared text
2621 segment, for example. Since I don't know what the possible range
2622 is of these "really, truly negative" addresses that come from the
2623 minimal symbols, I'm resorting to the gross hack of checking the
2624 top byte of the address for all 1's. Sigh. */
2625
2626 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2627 }
2628
2629 /* Return the GDB type object for the "standard" data type of data in
2630 register REGNUM. */
2631
2632 static struct type *
2633 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2634 {
2635 if (regnum < HPPA_FP4_REGNUM)
2636 return builtin_type_uint32;
2637 else
2638 return builtin_type_ieee_single_big;
2639 }
2640
2641 static struct type *
2642 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2643 {
2644 if (regnum < HPPA64_FP4_REGNUM)
2645 return builtin_type_uint64;
2646 else
2647 return builtin_type_ieee_double_big;
2648 }
2649
2650 /* Return non-zero if REGNUM is not a register available to the user
2651 through ptrace/ttrace. */
2652
2653 static int
2654 hppa32_cannot_store_register (int regnum)
2655 {
2656 return (regnum == 0
2657 || regnum == HPPA_PCSQ_HEAD_REGNUM
2658 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2659 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2660 }
2661
2662 static int
2663 hppa64_cannot_store_register (int regnum)
2664 {
2665 return (regnum == 0
2666 || regnum == HPPA_PCSQ_HEAD_REGNUM
2667 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2668 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2669 }
2670
2671 static CORE_ADDR
2672 hppa_smash_text_address (CORE_ADDR addr)
2673 {
2674 /* The low two bits of the PC on the PA contain the privilege level.
2675 Some genius implementing a (non-GCC) compiler apparently decided
2676 this means that "addresses" in a text section therefore include a
2677 privilege level, and thus symbol tables should contain these bits.
2678 This seems like a bonehead thing to do--anyway, it seems to work
2679 for our purposes to just ignore those bits. */
2680
2681 return (addr &= ~0x3);
2682 }
2683
2684 /* Get the ARGIth function argument for the current function. */
2685
2686 static CORE_ADDR
2687 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2688 struct type *type)
2689 {
2690 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2691 }
2692
2693 static void
2694 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2695 int regnum, gdb_byte *buf)
2696 {
2697 ULONGEST tmp;
2698
2699 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2700 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2701 tmp &= ~0x3;
2702 store_unsigned_integer (buf, sizeof tmp, tmp);
2703 }
2704
2705 static CORE_ADDR
2706 hppa_find_global_pointer (struct value *function)
2707 {
2708 return 0;
2709 }
2710
2711 void
2712 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2713 struct trad_frame_saved_reg saved_regs[],
2714 int regnum, int *optimizedp,
2715 enum lval_type *lvalp, CORE_ADDR *addrp,
2716 int *realnump, gdb_byte *valuep)
2717 {
2718 struct gdbarch *arch = get_frame_arch (next_frame);
2719
2720 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2721 {
2722 if (valuep)
2723 {
2724 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2725 CORE_ADDR pc;
2726
2727 trad_frame_get_prev_register (next_frame, saved_regs,
2728 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2729 lvalp, addrp, realnump, valuep);
2730
2731 pc = extract_unsigned_integer (valuep, size);
2732 store_unsigned_integer (valuep, size, pc + 4);
2733 }
2734
2735 /* It's a computed value. */
2736 *optimizedp = 0;
2737 *lvalp = not_lval;
2738 *addrp = 0;
2739 *realnump = -1;
2740 return;
2741 }
2742
2743 /* Make sure the "flags" register is zero in all unwound frames.
2744 The "flags" registers is a HP-UX specific wart, and only the code
2745 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2746 with it here. This shouldn't affect other systems since those
2747 should provide zero for the "flags" register anyway. */
2748 if (regnum == HPPA_FLAGS_REGNUM)
2749 {
2750 if (valuep)
2751 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2752
2753 /* It's a computed value. */
2754 *optimizedp = 0;
2755 *lvalp = not_lval;
2756 *addrp = 0;
2757 *realnump = -1;
2758 return;
2759 }
2760
2761 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2762 optimizedp, lvalp, addrp, realnump, valuep);
2763 }
2764 \f
2765
2766 /* An instruction to match. */
2767 struct insn_pattern
2768 {
2769 unsigned int data; /* See if it matches this.... */
2770 unsigned int mask; /* ... with this mask. */
2771 };
2772
2773 /* See bfd/elf32-hppa.c */
2774 static struct insn_pattern hppa_long_branch_stub[] = {
2775 /* ldil LR'xxx,%r1 */
2776 { 0x20200000, 0xffe00000 },
2777 /* be,n RR'xxx(%sr4,%r1) */
2778 { 0xe0202002, 0xffe02002 },
2779 { 0, 0 }
2780 };
2781
2782 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2783 /* b,l .+8, %r1 */
2784 { 0xe8200000, 0xffe00000 },
2785 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2786 { 0x28200000, 0xffe00000 },
2787 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2788 { 0xe0202002, 0xffe02002 },
2789 { 0, 0 }
2790 };
2791
2792 static struct insn_pattern hppa_import_stub[] = {
2793 /* addil LR'xxx, %dp */
2794 { 0x2b600000, 0xffe00000 },
2795 /* ldw RR'xxx(%r1), %r21 */
2796 { 0x48350000, 0xffffb000 },
2797 /* bv %r0(%r21) */
2798 { 0xeaa0c000, 0xffffffff },
2799 /* ldw RR'xxx+4(%r1), %r19 */
2800 { 0x48330000, 0xffffb000 },
2801 { 0, 0 }
2802 };
2803
2804 static struct insn_pattern hppa_import_pic_stub[] = {
2805 /* addil LR'xxx,%r19 */
2806 { 0x2a600000, 0xffe00000 },
2807 /* ldw RR'xxx(%r1),%r21 */
2808 { 0x48350000, 0xffffb000 },
2809 /* bv %r0(%r21) */
2810 { 0xeaa0c000, 0xffffffff },
2811 /* ldw RR'xxx+4(%r1),%r19 */
2812 { 0x48330000, 0xffffb000 },
2813 { 0, 0 },
2814 };
2815
2816 static struct insn_pattern hppa_plt_stub[] = {
2817 /* b,l 1b, %r20 - 1b is 3 insns before here */
2818 { 0xea9f1fdd, 0xffffffff },
2819 /* depi 0,31,2,%r20 */
2820 { 0xd6801c1e, 0xffffffff },
2821 { 0, 0 }
2822 };
2823
2824 static struct insn_pattern hppa_sigtramp[] = {
2825 /* ldi 0, %r25 or ldi 1, %r25 */
2826 { 0x34190000, 0xfffffffd },
2827 /* ldi __NR_rt_sigreturn, %r20 */
2828 { 0x3414015a, 0xffffffff },
2829 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2830 { 0xe4008200, 0xffffffff },
2831 /* nop */
2832 { 0x08000240, 0xffffffff },
2833 { 0, 0 }
2834 };
2835
2836 /* Maximum number of instructions on the patterns above. */
2837 #define HPPA_MAX_INSN_PATTERN_LEN 4
2838
2839 /* Return non-zero if the instructions at PC match the series
2840 described in PATTERN, or zero otherwise. PATTERN is an array of
2841 'struct insn_pattern' objects, terminated by an entry whose mask is
2842 zero.
2843
2844 When the match is successful, fill INSN[i] with what PATTERN[i]
2845 matched. */
2846
2847 static int
2848 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2849 unsigned int *insn)
2850 {
2851 CORE_ADDR npc = pc;
2852 int i;
2853
2854 for (i = 0; pattern[i].mask; i++)
2855 {
2856 gdb_byte buf[HPPA_INSN_SIZE];
2857
2858 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2859 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2860 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2861 npc += 4;
2862 else
2863 return 0;
2864 }
2865
2866 return 1;
2867 }
2868
2869 /* This relaxed version of the insstruction matcher allows us to match
2870 from somewhere inside the pattern, by looking backwards in the
2871 instruction scheme. */
2872
2873 static int
2874 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2875 unsigned int *insn)
2876 {
2877 int offset, len = 0;
2878
2879 while (pattern[len].mask)
2880 len++;
2881
2882 for (offset = 0; offset < len; offset++)
2883 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2884 return 1;
2885
2886 return 0;
2887 }
2888
2889 static int
2890 hppa_in_dyncall (CORE_ADDR pc)
2891 {
2892 struct unwind_table_entry *u;
2893
2894 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2895 if (!u)
2896 return 0;
2897
2898 return (pc >= u->region_start && pc <= u->region_end);
2899 }
2900
2901 int
2902 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2903 {
2904 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2905 struct unwind_table_entry *u;
2906
2907 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2908 return 1;
2909
2910 /* The GNU toolchain produces linker stubs without unwind
2911 information. Since the pattern matching for linker stubs can be
2912 quite slow, so bail out if we do have an unwind entry. */
2913
2914 u = find_unwind_entry (pc);
2915 if (u != NULL)
2916 return 0;
2917
2918 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2919 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2920 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2921 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2922 }
2923
2924 /* This code skips several kind of "trampolines" used on PA-RISC
2925 systems: $$dyncall, import stubs and PLT stubs. */
2926
2927 CORE_ADDR
2928 hppa_skip_trampoline_code (CORE_ADDR pc)
2929 {
2930 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2931 int dp_rel;
2932
2933 /* $$dyncall handles both PLABELs and direct addresses. */
2934 if (hppa_in_dyncall (pc))
2935 {
2936 pc = read_register (HPPA_R0_REGNUM + 22);
2937
2938 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2939 if (pc & 0x2)
2940 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2941
2942 return pc;
2943 }
2944
2945 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2946 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2947 {
2948 /* Extract the target address from the addil/ldw sequence. */
2949 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2950
2951 if (dp_rel)
2952 pc += read_register (HPPA_DP_REGNUM);
2953 else
2954 pc += read_register (HPPA_R0_REGNUM + 19);
2955
2956 /* fallthrough */
2957 }
2958
2959 if (in_plt_section (pc, NULL))
2960 {
2961 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2962
2963 /* If the PLT slot has not yet been resolved, the target will be
2964 the PLT stub. */
2965 if (in_plt_section (pc, NULL))
2966 {
2967 /* Sanity check: are we pointing to the PLT stub? */
2968 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2969 {
2970 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2971 return 0;
2972 }
2973
2974 /* This should point to the fixup routine. */
2975 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2976 }
2977 }
2978
2979 return pc;
2980 }
2981 \f
2982
2983 /* Here is a table of C type sizes on hppa with various compiles
2984 and options. I measured this on PA 9000/800 with HP-UX 11.11
2985 and these compilers:
2986
2987 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2988 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2989 /opt/aCC/bin/aCC B3910B A.03.45
2990 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2991
2992 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2993 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2994 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2995 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2996 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2997 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2998 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2999 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3000
3001 Each line is:
3002
3003 compiler and options
3004 char, short, int, long, long long
3005 float, double, long double
3006 char *, void (*)()
3007
3008 So all these compilers use either ILP32 or LP64 model.
3009 TODO: gcc has more options so it needs more investigation.
3010
3011 For floating point types, see:
3012
3013 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3014 HP-UX floating-point guide, hpux 11.00
3015
3016 -- chastain 2003-12-18 */
3017
3018 static struct gdbarch *
3019 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3020 {
3021 struct gdbarch_tdep *tdep;
3022 struct gdbarch *gdbarch;
3023
3024 /* Try to determine the ABI of the object we are loading. */
3025 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3026 {
3027 /* If it's a SOM file, assume it's HP/UX SOM. */
3028 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3029 info.osabi = GDB_OSABI_HPUX_SOM;
3030 }
3031
3032 /* find a candidate among the list of pre-declared architectures. */
3033 arches = gdbarch_list_lookup_by_info (arches, &info);
3034 if (arches != NULL)
3035 return (arches->gdbarch);
3036
3037 /* If none found, then allocate and initialize one. */
3038 tdep = XZALLOC (struct gdbarch_tdep);
3039 gdbarch = gdbarch_alloc (&info, tdep);
3040
3041 /* Determine from the bfd_arch_info structure if we are dealing with
3042 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3043 then default to a 32bit machine. */
3044 if (info.bfd_arch_info != NULL)
3045 tdep->bytes_per_address =
3046 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3047 else
3048 tdep->bytes_per_address = 4;
3049
3050 tdep->find_global_pointer = hppa_find_global_pointer;
3051
3052 /* Some parts of the gdbarch vector depend on whether we are running
3053 on a 32 bits or 64 bits target. */
3054 switch (tdep->bytes_per_address)
3055 {
3056 case 4:
3057 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3058 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3059 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3060 set_gdbarch_cannot_store_register (gdbarch,
3061 hppa32_cannot_store_register);
3062 set_gdbarch_cannot_fetch_register (gdbarch,
3063 hppa32_cannot_store_register);
3064 break;
3065 case 8:
3066 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3067 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3068 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3069 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3070 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3071 set_gdbarch_cannot_store_register (gdbarch,
3072 hppa64_cannot_store_register);
3073 set_gdbarch_cannot_fetch_register (gdbarch,
3074 hppa64_cannot_store_register);
3075 break;
3076 default:
3077 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3078 tdep->bytes_per_address);
3079 }
3080
3081 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3082 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3083
3084 /* The following gdbarch vector elements are the same in both ILP32
3085 and LP64, but might show differences some day. */
3086 set_gdbarch_long_long_bit (gdbarch, 64);
3087 set_gdbarch_long_double_bit (gdbarch, 128);
3088 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
3089
3090 /* The following gdbarch vector elements do not depend on the address
3091 size, or in any other gdbarch element previously set. */
3092 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3093 set_gdbarch_in_function_epilogue_p (gdbarch,
3094 hppa_in_function_epilogue_p);
3095 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3096 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3097 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3098 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3099 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3100 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3101 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3102 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3103
3104 /* Helper for function argument information. */
3105 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3106
3107 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3108
3109 /* When a hardware watchpoint triggers, we'll move the inferior past
3110 it by removing all eventpoints; stepping past the instruction
3111 that caused the trigger; reinserting eventpoints; and checking
3112 whether any watched location changed. */
3113 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3114
3115 /* Inferior function call methods. */
3116 switch (tdep->bytes_per_address)
3117 {
3118 case 4:
3119 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3120 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3121 set_gdbarch_convert_from_func_ptr_addr
3122 (gdbarch, hppa32_convert_from_func_ptr_addr);
3123 break;
3124 case 8:
3125 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3126 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3127 break;
3128 default:
3129 internal_error (__FILE__, __LINE__, _("bad switch"));
3130 }
3131
3132 /* Struct return methods. */
3133 switch (tdep->bytes_per_address)
3134 {
3135 case 4:
3136 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3137 break;
3138 case 8:
3139 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3140 break;
3141 default:
3142 internal_error (__FILE__, __LINE__, _("bad switch"));
3143 }
3144
3145 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3146 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3147
3148 /* Frame unwind methods. */
3149 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3150 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3151
3152 /* Hook in ABI-specific overrides, if they have been registered. */
3153 gdbarch_init_osabi (info, gdbarch);
3154
3155 /* Hook in the default unwinders. */
3156 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3157 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3158 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3159
3160 return gdbarch;
3161 }
3162
3163 static void
3164 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3165 {
3166 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3167
3168 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3169 tdep->bytes_per_address);
3170 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3171 }
3172
3173 void
3174 _initialize_hppa_tdep (void)
3175 {
3176 struct cmd_list_element *c;
3177
3178 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3179
3180 hppa_objfile_priv_data = register_objfile_data ();
3181
3182 add_cmd ("unwind", class_maintenance, unwind_command,
3183 _("Print unwind table entry at given address."),
3184 &maintenanceprintlist);
3185
3186 /* Debug this files internals. */
3187 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3188 Set whether hppa target specific debugging information should be displayed."),
3189 _("\
3190 Show whether hppa target specific debugging information is displayed."), _("\
3191 This flag controls whether hppa target specific debugging information is\n\
3192 displayed. This information is particularly useful for debugging frame\n\
3193 unwinding problems."),
3194 NULL,
3195 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3196 &setdebuglist, &showdebuglist);
3197 }