]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 87, 89, 90, 91, 92, 93, 94, 95, 96, 1999
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30
31 /* For argument passing to the inferior */
32 #include "symtab.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <dl.h>
39 #include <sys/param.h>
40 #include <signal.h>
41
42 #include <sys/ptrace.h>
43 #include <machine/save_state.h>
44
45 #ifdef COFF_ENCAPSULATE
46 #include "a.out.encap.h"
47 #else
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include "gdb_stat.h"
53 #include "wait.h"
54
55 #include "gdbcore.h"
56 #include "gdbcmd.h"
57 #include "target.h"
58 #include "symfile.h"
59 #include "objfiles.h"
60
61 /* To support asking "What CPU is this?" */
62 #include <unistd.h>
63
64 /* To support detection of the pseudo-initial frame
65 that threads have. */
66 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
67 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
68
69 static int extract_5_load PARAMS ((unsigned int));
70
71 static unsigned extract_5R_store PARAMS ((unsigned int));
72
73 static unsigned extract_5r_store PARAMS ((unsigned int));
74
75 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
76 struct frame_saved_regs *));
77
78 static int find_proc_framesize PARAMS ((CORE_ADDR));
79
80 static int find_return_regnum PARAMS ((CORE_ADDR));
81
82 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
83
84 static int extract_17 PARAMS ((unsigned int));
85
86 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
87
88 static int extract_21 PARAMS ((unsigned));
89
90 static unsigned deposit_14 PARAMS ((int, unsigned int));
91
92 static int extract_14 PARAMS ((unsigned));
93
94 static void unwind_command PARAMS ((char *, int));
95
96 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
97
98 static int sign_extend PARAMS ((unsigned int, unsigned int));
99
100 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
101
102 static int hppa_alignof PARAMS ((struct type *));
103
104 /* To support multi-threading and stepping. */
105 int hppa_prepare_to_proceed PARAMS (());
106
107 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
108
109 static int is_branch PARAMS ((unsigned long));
110
111 static int inst_saves_gr PARAMS ((unsigned long));
112
113 static int inst_saves_fr PARAMS ((unsigned long));
114
115 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
116
117 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
118
119 static int compare_unwind_entries PARAMS ((const void *, const void *));
120
121 static void read_unwind_info PARAMS ((struct objfile *));
122
123 static void internalize_unwinds PARAMS ((struct objfile *,
124 struct unwind_table_entry *,
125 asection *, unsigned int,
126 unsigned int, CORE_ADDR));
127 static void pa_print_registers PARAMS ((char *, int, int));
128 static void pa_strcat_registers PARAMS ((char *, int, int, GDB_FILE *));
129 static void pa_register_look_aside PARAMS ((char *, int, long *));
130 static void pa_print_fp_reg PARAMS ((int));
131 static void pa_strcat_fp_reg PARAMS ((int, GDB_FILE *, enum precision_type));
132
133 typedef struct
134 {
135 struct minimal_symbol *msym;
136 CORE_ADDR solib_handle;
137 }
138 args_for_find_stub;
139
140 static CORE_ADDR cover_find_stub_with_shl_get PARAMS ((args_for_find_stub *));
141
142 static int is_pa_2 = 0; /* False */
143
144 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
145 extern int hp_som_som_object_present;
146
147 /* In breakpoint.c */
148 extern int exception_catchpoints_are_fragile;
149
150 /* This is defined in valops.c. */
151 extern value_ptr
152 find_function_in_inferior PARAMS ((char *));
153
154 /* Should call_function allocate stack space for a struct return? */
155 int
156 hppa_use_struct_convention (gcc_p, type)
157 int gcc_p;
158 struct type *type;
159 {
160 return (TYPE_LENGTH (type) > 8);
161 }
162 \f
163
164 /* Routines to extract various sized constants out of hppa
165 instructions. */
166
167 /* This assumes that no garbage lies outside of the lower bits of
168 value. */
169
170 static int
171 sign_extend (val, bits)
172 unsigned val, bits;
173 {
174 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
175 }
176
177 /* For many immediate values the sign bit is the low bit! */
178
179 static int
180 low_sign_extend (val, bits)
181 unsigned val, bits;
182 {
183 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
184 }
185
186 /* extract the immediate field from a ld{bhw}s instruction */
187
188 #if 0
189
190 unsigned
191 get_field (val, from, to)
192 unsigned val, from, to;
193 {
194 val = val >> 31 - to;
195 return val & ((1 << 32 - from) - 1);
196 }
197
198 unsigned
199 set_field (val, from, to, new_val)
200 unsigned *val, from, to;
201 {
202 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
203 return *val = *val & mask | (new_val << (31 - from));
204 }
205
206 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
207
208 int
209 extract_3 (word)
210 unsigned word;
211 {
212 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
213 }
214
215 #endif
216
217 static int
218 extract_5_load (word)
219 unsigned word;
220 {
221 return low_sign_extend (word >> 16 & MASK_5, 5);
222 }
223
224 #if 0
225
226 /* extract the immediate field from a st{bhw}s instruction */
227
228 int
229 extract_5_store (word)
230 unsigned word;
231 {
232 return low_sign_extend (word & MASK_5, 5);
233 }
234
235 #endif /* 0 */
236
237 /* extract the immediate field from a break instruction */
238
239 static unsigned
240 extract_5r_store (word)
241 unsigned word;
242 {
243 return (word & MASK_5);
244 }
245
246 /* extract the immediate field from a {sr}sm instruction */
247
248 static unsigned
249 extract_5R_store (word)
250 unsigned word;
251 {
252 return (word >> 16 & MASK_5);
253 }
254
255 /* extract an 11 bit immediate field */
256
257 #if 0
258
259 int
260 extract_11 (word)
261 unsigned word;
262 {
263 return low_sign_extend (word & MASK_11, 11);
264 }
265
266 #endif
267
268 /* extract a 14 bit immediate field */
269
270 static int
271 extract_14 (word)
272 unsigned word;
273 {
274 return low_sign_extend (word & MASK_14, 14);
275 }
276
277 /* deposit a 14 bit constant in a word */
278
279 static unsigned
280 deposit_14 (opnd, word)
281 int opnd;
282 unsigned word;
283 {
284 unsigned sign = (opnd < 0 ? 1 : 0);
285
286 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
287 }
288
289 /* extract a 21 bit constant */
290
291 static int
292 extract_21 (word)
293 unsigned word;
294 {
295 int val;
296
297 word &= MASK_21;
298 word <<= 11;
299 val = GET_FIELD (word, 20, 20);
300 val <<= 11;
301 val |= GET_FIELD (word, 9, 19);
302 val <<= 2;
303 val |= GET_FIELD (word, 5, 6);
304 val <<= 5;
305 val |= GET_FIELD (word, 0, 4);
306 val <<= 2;
307 val |= GET_FIELD (word, 7, 8);
308 return sign_extend (val, 21) << 11;
309 }
310
311 /* deposit a 21 bit constant in a word. Although 21 bit constants are
312 usually the top 21 bits of a 32 bit constant, we assume that only
313 the low 21 bits of opnd are relevant */
314
315 static unsigned
316 deposit_21 (opnd, word)
317 unsigned opnd, word;
318 {
319 unsigned val = 0;
320
321 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
322 val <<= 2;
323 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
324 val <<= 2;
325 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
326 val <<= 11;
327 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
328 val <<= 1;
329 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
330 return word | val;
331 }
332
333 /* extract a 12 bit constant from branch instructions */
334
335 #if 0
336
337 int
338 extract_12 (word)
339 unsigned word;
340 {
341 return sign_extend (GET_FIELD (word, 19, 28) |
342 GET_FIELD (word, 29, 29) << 10 |
343 (word & 0x1) << 11, 12) << 2;
344 }
345
346 /* Deposit a 17 bit constant in an instruction (like bl). */
347
348 unsigned int
349 deposit_17 (opnd, word)
350 unsigned opnd, word;
351 {
352 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
353 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
354 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
355 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
356
357 return word;
358 }
359
360 #endif
361
362 /* extract a 17 bit constant from branch instructions, returning the
363 19 bit signed value. */
364
365 static int
366 extract_17 (word)
367 unsigned word;
368 {
369 return sign_extend (GET_FIELD (word, 19, 28) |
370 GET_FIELD (word, 29, 29) << 10 |
371 GET_FIELD (word, 11, 15) << 11 |
372 (word & 0x1) << 16, 17) << 2;
373 }
374 \f
375
376 /* Compare the start address for two unwind entries returning 1 if
377 the first address is larger than the second, -1 if the second is
378 larger than the first, and zero if they are equal. */
379
380 static int
381 compare_unwind_entries (arg1, arg2)
382 const void *arg1;
383 const void *arg2;
384 {
385 const struct unwind_table_entry *a = arg1;
386 const struct unwind_table_entry *b = arg2;
387
388 if (a->region_start > b->region_start)
389 return 1;
390 else if (a->region_start < b->region_start)
391 return -1;
392 else
393 return 0;
394 }
395
396 static void
397 internalize_unwinds (objfile, table, section, entries, size, text_offset)
398 struct objfile *objfile;
399 struct unwind_table_entry *table;
400 asection *section;
401 unsigned int entries, size;
402 CORE_ADDR text_offset;
403 {
404 /* We will read the unwind entries into temporary memory, then
405 fill in the actual unwind table. */
406 if (size > 0)
407 {
408 unsigned long tmp;
409 unsigned i;
410 char *buf = alloca (size);
411
412 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
413
414 /* Now internalize the information being careful to handle host/target
415 endian issues. */
416 for (i = 0; i < entries; i++)
417 {
418 table[i].region_start = bfd_get_32 (objfile->obfd,
419 (bfd_byte *) buf);
420 table[i].region_start += text_offset;
421 buf += 4;
422 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
423 table[i].region_end += text_offset;
424 buf += 4;
425 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
426 buf += 4;
427 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
428 table[i].Millicode = (tmp >> 30) & 0x1;
429 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
430 table[i].Region_description = (tmp >> 27) & 0x3;
431 table[i].reserved1 = (tmp >> 26) & 0x1;
432 table[i].Entry_SR = (tmp >> 25) & 0x1;
433 table[i].Entry_FR = (tmp >> 21) & 0xf;
434 table[i].Entry_GR = (tmp >> 16) & 0x1f;
435 table[i].Args_stored = (tmp >> 15) & 0x1;
436 table[i].Variable_Frame = (tmp >> 14) & 0x1;
437 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
438 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
439 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
440 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
441 table[i].Ada_Region = (tmp >> 9) & 0x1;
442 table[i].cxx_info = (tmp >> 8) & 0x1;
443 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
444 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
445 table[i].reserved2 = (tmp >> 5) & 0x1;
446 table[i].Save_SP = (tmp >> 4) & 0x1;
447 table[i].Save_RP = (tmp >> 3) & 0x1;
448 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
449 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
450 table[i].Cleanup_defined = tmp & 0x1;
451 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
452 buf += 4;
453 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
454 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
455 table[i].Large_frame = (tmp >> 29) & 0x1;
456 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
457 table[i].reserved4 = (tmp >> 27) & 0x1;
458 table[i].Total_frame_size = tmp & 0x7ffffff;
459
460 /* Stub unwinds are handled elsewhere. */
461 table[i].stub_unwind.stub_type = 0;
462 table[i].stub_unwind.padding = 0;
463 }
464 }
465 }
466
467 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
468 the object file. This info is used mainly by find_unwind_entry() to find
469 out the stack frame size and frame pointer used by procedures. We put
470 everything on the psymbol obstack in the objfile so that it automatically
471 gets freed when the objfile is destroyed. */
472
473 static void
474 read_unwind_info (objfile)
475 struct objfile *objfile;
476 {
477 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
478 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
479 unsigned index, unwind_entries, elf_unwind_entries;
480 unsigned stub_entries, total_entries;
481 CORE_ADDR text_offset;
482 struct obj_unwind_info *ui;
483 obj_private_data_t *obj_private;
484
485 text_offset = ANOFFSET (objfile->section_offsets, 0);
486 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
487 sizeof (struct obj_unwind_info));
488
489 ui->table = NULL;
490 ui->cache = NULL;
491 ui->last = -1;
492
493 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
494 section in ELF at the moment. */
495 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
496 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
497 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
498
499 /* Get sizes and unwind counts for all sections. */
500 if (unwind_sec)
501 {
502 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
503 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
504 }
505 else
506 {
507 unwind_size = 0;
508 unwind_entries = 0;
509 }
510
511 if (elf_unwind_sec)
512 {
513 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec); /* purecov: deadcode */
514 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE; /* purecov: deadcode */
515 }
516 else
517 {
518 elf_unwind_size = 0;
519 elf_unwind_entries = 0;
520 }
521
522 if (stub_unwind_sec)
523 {
524 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
525 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
526 }
527 else
528 {
529 stub_unwind_size = 0;
530 stub_entries = 0;
531 }
532
533 /* Compute total number of unwind entries and their total size. */
534 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
535 total_size = total_entries * sizeof (struct unwind_table_entry);
536
537 /* Allocate memory for the unwind table. */
538 ui->table = (struct unwind_table_entry *)
539 obstack_alloc (&objfile->psymbol_obstack, total_size);
540 ui->last = total_entries - 1;
541
542 /* Internalize the standard unwind entries. */
543 index = 0;
544 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
545 unwind_entries, unwind_size, text_offset);
546 index += unwind_entries;
547 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
548 elf_unwind_entries, elf_unwind_size, text_offset);
549 index += elf_unwind_entries;
550
551 /* Now internalize the stub unwind entries. */
552 if (stub_unwind_size > 0)
553 {
554 unsigned int i;
555 char *buf = alloca (stub_unwind_size);
556
557 /* Read in the stub unwind entries. */
558 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
559 0, stub_unwind_size);
560
561 /* Now convert them into regular unwind entries. */
562 for (i = 0; i < stub_entries; i++, index++)
563 {
564 /* Clear out the next unwind entry. */
565 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
566
567 /* Convert offset & size into region_start and region_end.
568 Stuff away the stub type into "reserved" fields. */
569 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
570 (bfd_byte *) buf);
571 ui->table[index].region_start += text_offset;
572 buf += 4;
573 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
574 (bfd_byte *) buf);
575 buf += 2;
576 ui->table[index].region_end
577 = ui->table[index].region_start + 4 *
578 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
579 buf += 2;
580 }
581
582 }
583
584 /* Unwind table needs to be kept sorted. */
585 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
586 compare_unwind_entries);
587
588 /* Keep a pointer to the unwind information. */
589 if (objfile->obj_private == NULL)
590 {
591 obj_private = (obj_private_data_t *)
592 obstack_alloc (&objfile->psymbol_obstack,
593 sizeof (obj_private_data_t));
594 obj_private->unwind_info = NULL;
595 obj_private->so_info = NULL;
596
597 objfile->obj_private = (PTR) obj_private;
598 }
599 obj_private = (obj_private_data_t *) objfile->obj_private;
600 obj_private->unwind_info = ui;
601 }
602
603 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
604 of the objfiles seeking the unwind table entry for this PC. Each objfile
605 contains a sorted list of struct unwind_table_entry. Since we do a binary
606 search of the unwind tables, we depend upon them to be sorted. */
607
608 struct unwind_table_entry *
609 find_unwind_entry (pc)
610 CORE_ADDR pc;
611 {
612 int first, middle, last;
613 struct objfile *objfile;
614
615 /* A function at address 0? Not in HP-UX! */
616 if (pc == (CORE_ADDR) 0)
617 return NULL;
618
619 ALL_OBJFILES (objfile)
620 {
621 struct obj_unwind_info *ui;
622 ui = NULL;
623 if (objfile->obj_private)
624 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
625
626 if (!ui)
627 {
628 read_unwind_info (objfile);
629 if (objfile->obj_private == NULL)
630 error ("Internal error reading unwind information."); /* purecov: deadcode */
631 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
632 }
633
634 /* First, check the cache */
635
636 if (ui->cache
637 && pc >= ui->cache->region_start
638 && pc <= ui->cache->region_end)
639 return ui->cache;
640
641 /* Not in the cache, do a binary search */
642
643 first = 0;
644 last = ui->last;
645
646 while (first <= last)
647 {
648 middle = (first + last) / 2;
649 if (pc >= ui->table[middle].region_start
650 && pc <= ui->table[middle].region_end)
651 {
652 ui->cache = &ui->table[middle];
653 return &ui->table[middle];
654 }
655
656 if (pc < ui->table[middle].region_start)
657 last = middle - 1;
658 else
659 first = middle + 1;
660 }
661 } /* ALL_OBJFILES() */
662 return NULL;
663 }
664
665 /* Return the adjustment necessary to make for addresses on the stack
666 as presented by hpread.c.
667
668 This is necessary because of the stack direction on the PA and the
669 bizarre way in which someone (?) decided they wanted to handle
670 frame pointerless code in GDB. */
671 int
672 hpread_adjust_stack_address (func_addr)
673 CORE_ADDR func_addr;
674 {
675 struct unwind_table_entry *u;
676
677 u = find_unwind_entry (func_addr);
678 if (!u)
679 return 0;
680 else
681 return u->Total_frame_size << 3;
682 }
683
684 /* Called to determine if PC is in an interrupt handler of some
685 kind. */
686
687 static int
688 pc_in_interrupt_handler (pc)
689 CORE_ADDR pc;
690 {
691 struct unwind_table_entry *u;
692 struct minimal_symbol *msym_us;
693
694 u = find_unwind_entry (pc);
695 if (!u)
696 return 0;
697
698 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
699 its frame isn't a pure interrupt frame. Deal with this. */
700 msym_us = lookup_minimal_symbol_by_pc (pc);
701
702 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
703 }
704
705 /* Called when no unwind descriptor was found for PC. Returns 1 if it
706 appears that PC is in a linker stub. */
707
708 static int
709 pc_in_linker_stub (pc)
710 CORE_ADDR pc;
711 {
712 int found_magic_instruction = 0;
713 int i;
714 char buf[4];
715
716 /* If unable to read memory, assume pc is not in a linker stub. */
717 if (target_read_memory (pc, buf, 4) != 0)
718 return 0;
719
720 /* We are looking for something like
721
722 ; $$dyncall jams RP into this special spot in the frame (RP')
723 ; before calling the "call stub"
724 ldw -18(sp),rp
725
726 ldsid (rp),r1 ; Get space associated with RP into r1
727 mtsp r1,sp ; Move it into space register 0
728 be,n 0(sr0),rp) ; back to your regularly scheduled program */
729
730 /* Maximum known linker stub size is 4 instructions. Search forward
731 from the given PC, then backward. */
732 for (i = 0; i < 4; i++)
733 {
734 /* If we hit something with an unwind, stop searching this direction. */
735
736 if (find_unwind_entry (pc + i * 4) != 0)
737 break;
738
739 /* Check for ldsid (rp),r1 which is the magic instruction for a
740 return from a cross-space function call. */
741 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
742 {
743 found_magic_instruction = 1;
744 break;
745 }
746 /* Add code to handle long call/branch and argument relocation stubs
747 here. */
748 }
749
750 if (found_magic_instruction != 0)
751 return 1;
752
753 /* Now look backward. */
754 for (i = 0; i < 4; i++)
755 {
756 /* If we hit something with an unwind, stop searching this direction. */
757
758 if (find_unwind_entry (pc - i * 4) != 0)
759 break;
760
761 /* Check for ldsid (rp),r1 which is the magic instruction for a
762 return from a cross-space function call. */
763 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
764 {
765 found_magic_instruction = 1;
766 break;
767 }
768 /* Add code to handle long call/branch and argument relocation stubs
769 here. */
770 }
771 return found_magic_instruction;
772 }
773
774 static int
775 find_return_regnum (pc)
776 CORE_ADDR pc;
777 {
778 struct unwind_table_entry *u;
779
780 u = find_unwind_entry (pc);
781
782 if (!u)
783 return RP_REGNUM;
784
785 if (u->Millicode)
786 return 31;
787
788 return RP_REGNUM;
789 }
790
791 /* Return size of frame, or -1 if we should use a frame pointer. */
792 static int
793 find_proc_framesize (pc)
794 CORE_ADDR pc;
795 {
796 struct unwind_table_entry *u;
797 struct minimal_symbol *msym_us;
798
799 /* This may indicate a bug in our callers... */
800 if (pc == (CORE_ADDR) 0)
801 return -1;
802
803 u = find_unwind_entry (pc);
804
805 if (!u)
806 {
807 if (pc_in_linker_stub (pc))
808 /* Linker stubs have a zero size frame. */
809 return 0;
810 else
811 return -1;
812 }
813
814 msym_us = lookup_minimal_symbol_by_pc (pc);
815
816 /* If Save_SP is set, and we're not in an interrupt or signal caller,
817 then we have a frame pointer. Use it. */
818 if (u->Save_SP && !pc_in_interrupt_handler (pc)
819 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
820 return -1;
821
822 return u->Total_frame_size << 3;
823 }
824
825 /* Return offset from sp at which rp is saved, or 0 if not saved. */
826 static int rp_saved PARAMS ((CORE_ADDR));
827
828 static int
829 rp_saved (pc)
830 CORE_ADDR pc;
831 {
832 struct unwind_table_entry *u;
833
834 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
835 if (pc == (CORE_ADDR) 0)
836 return 0;
837
838 u = find_unwind_entry (pc);
839
840 if (!u)
841 {
842 if (pc_in_linker_stub (pc))
843 /* This is the so-called RP'. */
844 return -24;
845 else
846 return 0;
847 }
848
849 if (u->Save_RP)
850 return -20;
851 else if (u->stub_unwind.stub_type != 0)
852 {
853 switch (u->stub_unwind.stub_type)
854 {
855 case EXPORT:
856 case IMPORT:
857 return -24;
858 case PARAMETER_RELOCATION:
859 return -8;
860 default:
861 return 0;
862 }
863 }
864 else
865 return 0;
866 }
867 \f
868 int
869 frameless_function_invocation (frame)
870 struct frame_info *frame;
871 {
872 struct unwind_table_entry *u;
873
874 u = find_unwind_entry (frame->pc);
875
876 if (u == 0)
877 return 0;
878
879 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
880 }
881
882 CORE_ADDR
883 saved_pc_after_call (frame)
884 struct frame_info *frame;
885 {
886 int ret_regnum;
887 CORE_ADDR pc;
888 struct unwind_table_entry *u;
889
890 ret_regnum = find_return_regnum (get_frame_pc (frame));
891 pc = read_register (ret_regnum) & ~0x3;
892
893 /* If PC is in a linker stub, then we need to dig the address
894 the stub will return to out of the stack. */
895 u = find_unwind_entry (pc);
896 if (u && u->stub_unwind.stub_type != 0)
897 return FRAME_SAVED_PC (frame);
898 else
899 return pc;
900 }
901 \f
902 CORE_ADDR
903 hppa_frame_saved_pc (frame)
904 struct frame_info *frame;
905 {
906 CORE_ADDR pc = get_frame_pc (frame);
907 struct unwind_table_entry *u;
908 CORE_ADDR old_pc;
909 int spun_around_loop = 0;
910 int rp_offset = 0;
911
912 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
913 at the base of the frame in an interrupt handler. Registers within
914 are saved in the exact same order as GDB numbers registers. How
915 convienent. */
916 if (pc_in_interrupt_handler (pc))
917 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
918
919 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
920 /* Deal with signal handler caller frames too. */
921 if (frame->signal_handler_caller)
922 {
923 CORE_ADDR rp;
924 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
925 return rp & ~0x3;
926 }
927 #endif
928
929 if (frameless_function_invocation (frame))
930 {
931 int ret_regnum;
932
933 ret_regnum = find_return_regnum (pc);
934
935 /* If the next frame is an interrupt frame or a signal
936 handler caller, then we need to look in the saved
937 register area to get the return pointer (the values
938 in the registers may not correspond to anything useful). */
939 if (frame->next
940 && (frame->next->signal_handler_caller
941 || pc_in_interrupt_handler (frame->next->pc)))
942 {
943 struct frame_saved_regs saved_regs;
944
945 get_frame_saved_regs (frame->next, &saved_regs);
946 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
947 {
948 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
949
950 /* Syscalls are really two frames. The syscall stub itself
951 with a return pointer in %rp and the kernel call with
952 a return pointer in %r31. We return the %rp variant
953 if %r31 is the same as frame->pc. */
954 if (pc == frame->pc)
955 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
956 }
957 else
958 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
959 }
960 else
961 pc = read_register (ret_regnum) & ~0x3;
962 }
963 else
964 {
965 spun_around_loop = 0;
966 old_pc = pc;
967
968 restart:
969 rp_offset = rp_saved (pc);
970
971 /* Similar to code in frameless function case. If the next
972 frame is a signal or interrupt handler, then dig the right
973 information out of the saved register info. */
974 if (rp_offset == 0
975 && frame->next
976 && (frame->next->signal_handler_caller
977 || pc_in_interrupt_handler (frame->next->pc)))
978 {
979 struct frame_saved_regs saved_regs;
980
981 get_frame_saved_regs (frame->next, &saved_regs);
982 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
983 {
984 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
985
986 /* Syscalls are really two frames. The syscall stub itself
987 with a return pointer in %rp and the kernel call with
988 a return pointer in %r31. We return the %rp variant
989 if %r31 is the same as frame->pc. */
990 if (pc == frame->pc)
991 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
992 }
993 else
994 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
995 }
996 else if (rp_offset == 0)
997 {
998 old_pc = pc;
999 pc = read_register (RP_REGNUM) & ~0x3;
1000 }
1001 else
1002 {
1003 old_pc = pc;
1004 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
1005 }
1006 }
1007
1008 /* If PC is inside a linker stub, then dig out the address the stub
1009 will return to.
1010
1011 Don't do this for long branch stubs. Why? For some unknown reason
1012 _start is marked as a long branch stub in hpux10. */
1013 u = find_unwind_entry (pc);
1014 if (u && u->stub_unwind.stub_type != 0
1015 && u->stub_unwind.stub_type != LONG_BRANCH)
1016 {
1017 unsigned int insn;
1018
1019 /* If this is a dynamic executable, and we're in a signal handler,
1020 then the call chain will eventually point us into the stub for
1021 _sigreturn. Unlike most cases, we'll be pointed to the branch
1022 to the real sigreturn rather than the code after the real branch!.
1023
1024 Else, try to dig the address the stub will return to in the normal
1025 fashion. */
1026 insn = read_memory_integer (pc, 4);
1027 if ((insn & 0xfc00e000) == 0xe8000000)
1028 return (pc + extract_17 (insn) + 8) & ~0x3;
1029 else
1030 {
1031 if (old_pc == pc)
1032 spun_around_loop++;
1033
1034 if (spun_around_loop > 1)
1035 {
1036 /* We're just about to go around the loop again with
1037 no more hope of success. Die. */
1038 error ("Unable to find return pc for this frame");
1039 }
1040 else
1041 goto restart;
1042 }
1043 }
1044
1045 return pc;
1046 }
1047 \f
1048 /* We need to correct the PC and the FP for the outermost frame when we are
1049 in a system call. */
1050
1051 void
1052 init_extra_frame_info (fromleaf, frame)
1053 int fromleaf;
1054 struct frame_info *frame;
1055 {
1056 int flags;
1057 int framesize;
1058
1059 if (frame->next && !fromleaf)
1060 return;
1061
1062 /* If the next frame represents a frameless function invocation
1063 then we have to do some adjustments that are normally done by
1064 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1065 if (fromleaf)
1066 {
1067 /* Find the framesize of *this* frame without peeking at the PC
1068 in the current frame structure (it isn't set yet). */
1069 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1070
1071 /* Now adjust our base frame accordingly. If we have a frame pointer
1072 use it, else subtract the size of this frame from the current
1073 frame. (we always want frame->frame to point at the lowest address
1074 in the frame). */
1075 if (framesize == -1)
1076 frame->frame = TARGET_READ_FP ();
1077 else
1078 frame->frame -= framesize;
1079 return;
1080 }
1081
1082 flags = read_register (FLAGS_REGNUM);
1083 if (flags & 2) /* In system call? */
1084 frame->pc = read_register (31) & ~0x3;
1085
1086 /* The outermost frame is always derived from PC-framesize
1087
1088 One might think frameless innermost frames should have
1089 a frame->frame that is the same as the parent's frame->frame.
1090 That is wrong; frame->frame in that case should be the *high*
1091 address of the parent's frame. It's complicated as hell to
1092 explain, but the parent *always* creates some stack space for
1093 the child. So the child actually does have a frame of some
1094 sorts, and its base is the high address in its parent's frame. */
1095 framesize = find_proc_framesize (frame->pc);
1096 if (framesize == -1)
1097 frame->frame = TARGET_READ_FP ();
1098 else
1099 frame->frame = read_register (SP_REGNUM) - framesize;
1100 }
1101 \f
1102 /* Given a GDB frame, determine the address of the calling function's frame.
1103 This will be used to create a new GDB frame struct, and then
1104 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1105
1106 This may involve searching through prologues for several functions
1107 at boundaries where GCC calls HP C code, or where code which has
1108 a frame pointer calls code without a frame pointer. */
1109
1110 CORE_ADDR
1111 frame_chain (frame)
1112 struct frame_info *frame;
1113 {
1114 int my_framesize, caller_framesize;
1115 struct unwind_table_entry *u;
1116 CORE_ADDR frame_base;
1117 struct frame_info *tmp_frame;
1118
1119 CORE_ADDR caller_pc;
1120
1121 struct minimal_symbol *min_frame_symbol;
1122 struct symbol *frame_symbol;
1123 char *frame_symbol_name;
1124
1125 /* If this is a threaded application, and we see the
1126 routine "__pthread_exit", treat it as the stack root
1127 for this thread. */
1128 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1129 frame_symbol = find_pc_function (frame->pc);
1130
1131 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1132 {
1133 /* The test above for "no user function name" would defend
1134 against the slim likelihood that a user might define a
1135 routine named "__pthread_exit" and then try to debug it.
1136
1137 If it weren't commented out, and you tried to debug the
1138 pthread library itself, you'd get errors.
1139
1140 So for today, we don't make that check. */
1141 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1142 if (frame_symbol_name != 0)
1143 {
1144 if (0 == strncmp (frame_symbol_name,
1145 THREAD_INITIAL_FRAME_SYMBOL,
1146 THREAD_INITIAL_FRAME_SYM_LEN))
1147 {
1148 /* Pretend we've reached the bottom of the stack. */
1149 return (CORE_ADDR) 0;
1150 }
1151 }
1152 } /* End of hacky code for threads. */
1153
1154 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1155 are easy; at *sp we have a full save state strucutre which we can
1156 pull the old stack pointer from. Also see frame_saved_pc for
1157 code to dig a saved PC out of the save state structure. */
1158 if (pc_in_interrupt_handler (frame->pc))
1159 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1160 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1161 else if (frame->signal_handler_caller)
1162 {
1163 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1164 }
1165 #endif
1166 else
1167 frame_base = frame->frame;
1168
1169 /* Get frame sizes for the current frame and the frame of the
1170 caller. */
1171 my_framesize = find_proc_framesize (frame->pc);
1172 caller_pc = FRAME_SAVED_PC (frame);
1173
1174 /* If we can't determine the caller's PC, then it's not likely we can
1175 really determine anything meaningful about its frame. We'll consider
1176 this to be stack bottom. */
1177 if (caller_pc == (CORE_ADDR) 0)
1178 return (CORE_ADDR) 0;
1179
1180 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1181
1182 /* If caller does not have a frame pointer, then its frame
1183 can be found at current_frame - caller_framesize. */
1184 if (caller_framesize != -1)
1185 {
1186 return frame_base - caller_framesize;
1187 }
1188 /* Both caller and callee have frame pointers and are GCC compiled
1189 (SAVE_SP bit in unwind descriptor is on for both functions.
1190 The previous frame pointer is found at the top of the current frame. */
1191 if (caller_framesize == -1 && my_framesize == -1)
1192 {
1193 return read_memory_integer (frame_base, 4);
1194 }
1195 /* Caller has a frame pointer, but callee does not. This is a little
1196 more difficult as GCC and HP C lay out locals and callee register save
1197 areas very differently.
1198
1199 The previous frame pointer could be in a register, or in one of
1200 several areas on the stack.
1201
1202 Walk from the current frame to the innermost frame examining
1203 unwind descriptors to determine if %r3 ever gets saved into the
1204 stack. If so return whatever value got saved into the stack.
1205 If it was never saved in the stack, then the value in %r3 is still
1206 valid, so use it.
1207
1208 We use information from unwind descriptors to determine if %r3
1209 is saved into the stack (Entry_GR field has this information). */
1210
1211 tmp_frame = frame;
1212 while (tmp_frame)
1213 {
1214 u = find_unwind_entry (tmp_frame->pc);
1215
1216 if (!u)
1217 {
1218 /* We could find this information by examining prologues. I don't
1219 think anyone has actually written any tools (not even "strip")
1220 which leave them out of an executable, so maybe this is a moot
1221 point. */
1222 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1223 code that doesn't have unwind entries. For example, stepping into
1224 the dynamic linker will give you a PC that has none. Thus, I've
1225 disabled this warning. */
1226 #if 0
1227 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1228 #endif
1229 return (CORE_ADDR) 0;
1230 }
1231
1232 /* Entry_GR specifies the number of callee-saved general registers
1233 saved in the stack. It starts at %r3, so %r3 would be 1. */
1234 if (u->Entry_GR >= 1 || u->Save_SP
1235 || tmp_frame->signal_handler_caller
1236 || pc_in_interrupt_handler (tmp_frame->pc))
1237 break;
1238 else
1239 tmp_frame = tmp_frame->next;
1240 }
1241
1242 if (tmp_frame)
1243 {
1244 /* We may have walked down the chain into a function with a frame
1245 pointer. */
1246 if (u->Save_SP
1247 && !tmp_frame->signal_handler_caller
1248 && !pc_in_interrupt_handler (tmp_frame->pc))
1249 {
1250 return read_memory_integer (tmp_frame->frame, 4);
1251 }
1252 /* %r3 was saved somewhere in the stack. Dig it out. */
1253 else
1254 {
1255 struct frame_saved_regs saved_regs;
1256
1257 /* Sick.
1258
1259 For optimization purposes many kernels don't have the
1260 callee saved registers into the save_state structure upon
1261 entry into the kernel for a syscall; the optimization
1262 is usually turned off if the process is being traced so
1263 that the debugger can get full register state for the
1264 process.
1265
1266 This scheme works well except for two cases:
1267
1268 * Attaching to a process when the process is in the
1269 kernel performing a system call (debugger can't get
1270 full register state for the inferior process since
1271 the process wasn't being traced when it entered the
1272 system call).
1273
1274 * Register state is not complete if the system call
1275 causes the process to core dump.
1276
1277
1278 The following heinous code is an attempt to deal with
1279 the lack of register state in a core dump. It will
1280 fail miserably if the function which performs the
1281 system call has a variable sized stack frame. */
1282
1283 get_frame_saved_regs (tmp_frame, &saved_regs);
1284
1285 /* Abominable hack. */
1286 if (current_target.to_has_execution == 0
1287 && ((saved_regs.regs[FLAGS_REGNUM]
1288 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1289 & 0x2))
1290 || (saved_regs.regs[FLAGS_REGNUM] == 0
1291 && read_register (FLAGS_REGNUM) & 0x2)))
1292 {
1293 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1294 if (!u)
1295 {
1296 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1297 }
1298 else
1299 {
1300 return frame_base - (u->Total_frame_size << 3);
1301 }
1302 }
1303
1304 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1305 }
1306 }
1307 else
1308 {
1309 struct frame_saved_regs saved_regs;
1310
1311 /* Get the innermost frame. */
1312 tmp_frame = frame;
1313 while (tmp_frame->next != NULL)
1314 tmp_frame = tmp_frame->next;
1315
1316 get_frame_saved_regs (tmp_frame, &saved_regs);
1317 /* Abominable hack. See above. */
1318 if (current_target.to_has_execution == 0
1319 && ((saved_regs.regs[FLAGS_REGNUM]
1320 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1321 & 0x2))
1322 || (saved_regs.regs[FLAGS_REGNUM] == 0
1323 && read_register (FLAGS_REGNUM) & 0x2)))
1324 {
1325 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1326 if (!u)
1327 {
1328 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1329 }
1330 else
1331 {
1332 return frame_base - (u->Total_frame_size << 3);
1333 }
1334 }
1335
1336 /* The value in %r3 was never saved into the stack (thus %r3 still
1337 holds the value of the previous frame pointer). */
1338 return TARGET_READ_FP ();
1339 }
1340 }
1341 \f
1342
1343 /* To see if a frame chain is valid, see if the caller looks like it
1344 was compiled with gcc. */
1345
1346 int
1347 hppa_frame_chain_valid (chain, thisframe)
1348 CORE_ADDR chain;
1349 struct frame_info *thisframe;
1350 {
1351 struct minimal_symbol *msym_us;
1352 struct minimal_symbol *msym_start;
1353 struct unwind_table_entry *u, *next_u = NULL;
1354 struct frame_info *next;
1355
1356 if (!chain)
1357 return 0;
1358
1359 u = find_unwind_entry (thisframe->pc);
1360
1361 if (u == NULL)
1362 return 1;
1363
1364 /* We can't just check that the same of msym_us is "_start", because
1365 someone idiotically decided that they were going to make a Ltext_end
1366 symbol with the same address. This Ltext_end symbol is totally
1367 indistinguishable (as nearly as I can tell) from the symbol for a function
1368 which is (legitimately, since it is in the user's namespace)
1369 named Ltext_end, so we can't just ignore it. */
1370 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1371 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1372 if (msym_us
1373 && msym_start
1374 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1375 return 0;
1376
1377 /* Grrrr. Some new idiot decided that they don't want _start for the
1378 PRO configurations; $START$ calls main directly.... Deal with it. */
1379 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1380 if (msym_us
1381 && msym_start
1382 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1383 return 0;
1384
1385 next = get_next_frame (thisframe);
1386 if (next)
1387 next_u = find_unwind_entry (next->pc);
1388
1389 /* If this frame does not save SP, has no stack, isn't a stub,
1390 and doesn't "call" an interrupt routine or signal handler caller,
1391 then its not valid. */
1392 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1393 || (thisframe->next && thisframe->next->signal_handler_caller)
1394 || (next_u && next_u->HP_UX_interrupt_marker))
1395 return 1;
1396
1397 if (pc_in_linker_stub (thisframe->pc))
1398 return 1;
1399
1400 return 0;
1401 }
1402
1403 /*
1404 These functions deal with saving and restoring register state
1405 around a function call in the inferior. They keep the stack
1406 double-word aligned; eventually, on an hp700, the stack will have
1407 to be aligned to a 64-byte boundary. */
1408
1409 void
1410 push_dummy_frame (inf_status)
1411 struct inferior_status *inf_status;
1412 {
1413 CORE_ADDR sp, pc, pcspace;
1414 register int regnum;
1415 int int_buffer;
1416 double freg_buffer;
1417
1418 /* Oh, what a hack. If we're trying to perform an inferior call
1419 while the inferior is asleep, we have to make sure to clear
1420 the "in system call" bit in the flag register (the call will
1421 start after the syscall returns, so we're no longer in the system
1422 call!) This state is kept in "inf_status", change it there.
1423
1424 We also need a number of horrid hacks to deal with lossage in the
1425 PC queue registers (apparently they're not valid when the in syscall
1426 bit is set). */
1427 pc = target_read_pc (inferior_pid);
1428 int_buffer = read_register (FLAGS_REGNUM);
1429 if (int_buffer & 0x2)
1430 {
1431 unsigned int sid;
1432 int_buffer &= ~0x2;
1433 write_inferior_status_register (inf_status, 0, int_buffer);
1434 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1435 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1436 sid = (pc >> 30) & 0x3;
1437 if (sid == 0)
1438 pcspace = read_register (SR4_REGNUM);
1439 else
1440 pcspace = read_register (SR4_REGNUM + 4 + sid);
1441 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1442 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1443 }
1444 else
1445 pcspace = read_register (PCSQ_HEAD_REGNUM);
1446
1447 /* Space for "arguments"; the RP goes in here. */
1448 sp = read_register (SP_REGNUM) + 48;
1449 int_buffer = read_register (RP_REGNUM) | 0x3;
1450 write_memory (sp - 20, (char *) &int_buffer, 4);
1451
1452 int_buffer = TARGET_READ_FP ();
1453 write_memory (sp, (char *) &int_buffer, 4);
1454
1455 write_register (FP_REGNUM, sp);
1456
1457 sp += 8;
1458
1459 for (regnum = 1; regnum < 32; regnum++)
1460 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1461 sp = push_word (sp, read_register (regnum));
1462
1463 sp += 4;
1464
1465 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1466 {
1467 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1468 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1469 }
1470 sp = push_word (sp, read_register (IPSW_REGNUM));
1471 sp = push_word (sp, read_register (SAR_REGNUM));
1472 sp = push_word (sp, pc);
1473 sp = push_word (sp, pcspace);
1474 sp = push_word (sp, pc + 4);
1475 sp = push_word (sp, pcspace);
1476 write_register (SP_REGNUM, sp);
1477 }
1478
1479 static void
1480 find_dummy_frame_regs (frame, frame_saved_regs)
1481 struct frame_info *frame;
1482 struct frame_saved_regs *frame_saved_regs;
1483 {
1484 CORE_ADDR fp = frame->frame;
1485 int i;
1486
1487 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1488 frame_saved_regs->regs[FP_REGNUM] = fp;
1489 frame_saved_regs->regs[1] = fp + 8;
1490
1491 for (fp += 12, i = 3; i < 32; i++)
1492 {
1493 if (i != FP_REGNUM)
1494 {
1495 frame_saved_regs->regs[i] = fp;
1496 fp += 4;
1497 }
1498 }
1499
1500 fp += 4;
1501 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1502 frame_saved_regs->regs[i] = fp;
1503
1504 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1505 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1506 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1507 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1508 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1509 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1510 }
1511
1512 void
1513 hppa_pop_frame ()
1514 {
1515 register struct frame_info *frame = get_current_frame ();
1516 register CORE_ADDR fp, npc, target_pc;
1517 register int regnum;
1518 struct frame_saved_regs fsr;
1519 double freg_buffer;
1520
1521 fp = FRAME_FP (frame);
1522 get_frame_saved_regs (frame, &fsr);
1523
1524 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1525 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1526 restore_pc_queue (&fsr);
1527 #endif
1528
1529 for (regnum = 31; regnum > 0; regnum--)
1530 if (fsr.regs[regnum])
1531 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1532
1533 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1534 if (fsr.regs[regnum])
1535 {
1536 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1537 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1538 }
1539
1540 if (fsr.regs[IPSW_REGNUM])
1541 write_register (IPSW_REGNUM,
1542 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1543
1544 if (fsr.regs[SAR_REGNUM])
1545 write_register (SAR_REGNUM,
1546 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1547
1548 /* If the PC was explicitly saved, then just restore it. */
1549 if (fsr.regs[PCOQ_TAIL_REGNUM])
1550 {
1551 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1552 write_register (PCOQ_TAIL_REGNUM, npc);
1553 }
1554 /* Else use the value in %rp to set the new PC. */
1555 else
1556 {
1557 npc = read_register (RP_REGNUM);
1558 write_pc (npc);
1559 }
1560
1561 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1562
1563 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1564 write_register (SP_REGNUM, fp - 48);
1565 else
1566 write_register (SP_REGNUM, fp);
1567
1568 /* The PC we just restored may be inside a return trampoline. If so
1569 we want to restart the inferior and run it through the trampoline.
1570
1571 Do this by setting a momentary breakpoint at the location the
1572 trampoline returns to.
1573
1574 Don't skip through the trampoline if we're popping a dummy frame. */
1575 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1576 if (target_pc && !fsr.regs[IPSW_REGNUM])
1577 {
1578 struct symtab_and_line sal;
1579 struct breakpoint *breakpoint;
1580 struct cleanup *old_chain;
1581
1582 /* Set up our breakpoint. Set it to be silent as the MI code
1583 for "return_command" will print the frame we returned to. */
1584 sal = find_pc_line (target_pc, 0);
1585 sal.pc = target_pc;
1586 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1587 breakpoint->silent = 1;
1588
1589 /* So we can clean things up. */
1590 old_chain = make_cleanup ((make_cleanup_func) delete_breakpoint, breakpoint);
1591
1592 /* Start up the inferior. */
1593 clear_proceed_status ();
1594 proceed_to_finish = 1;
1595 proceed ((CORE_ADDR) - 1, TARGET_SIGNAL_DEFAULT, 0);
1596
1597 /* Perform our cleanups. */
1598 do_cleanups (old_chain);
1599 }
1600 flush_cached_frames ();
1601 }
1602
1603 /* After returning to a dummy on the stack, restore the instruction
1604 queue space registers. */
1605
1606 static int
1607 restore_pc_queue (fsr)
1608 struct frame_saved_regs *fsr;
1609 {
1610 CORE_ADDR pc = read_pc ();
1611 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1612 struct target_waitstatus w;
1613 int insn_count;
1614
1615 /* Advance past break instruction in the call dummy. */
1616 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1617 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1618
1619 /* HPUX doesn't let us set the space registers or the space
1620 registers of the PC queue through ptrace. Boo, hiss.
1621 Conveniently, the call dummy has this sequence of instructions
1622 after the break:
1623 mtsp r21, sr0
1624 ble,n 0(sr0, r22)
1625
1626 So, load up the registers and single step until we are in the
1627 right place. */
1628
1629 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1630 write_register (22, new_pc);
1631
1632 for (insn_count = 0; insn_count < 3; insn_count++)
1633 {
1634 /* FIXME: What if the inferior gets a signal right now? Want to
1635 merge this into wait_for_inferior (as a special kind of
1636 watchpoint? By setting a breakpoint at the end? Is there
1637 any other choice? Is there *any* way to do this stuff with
1638 ptrace() or some equivalent?). */
1639 resume (1, 0);
1640 target_wait (inferior_pid, &w);
1641
1642 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1643 {
1644 stop_signal = w.value.sig;
1645 terminal_ours_for_output ();
1646 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1647 target_signal_to_name (stop_signal),
1648 target_signal_to_string (stop_signal));
1649 gdb_flush (gdb_stdout);
1650 return 0;
1651 }
1652 }
1653 target_terminal_ours ();
1654 target_fetch_registers (-1);
1655 return 1;
1656 }
1657
1658 #if 0
1659 CORE_ADDR
1660 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1661 int nargs;
1662 value_ptr *args;
1663 CORE_ADDR sp;
1664 int struct_return;
1665 CORE_ADDR struct_addr;
1666 {
1667 /* array of arguments' offsets */
1668 int *offset = (int *) alloca (nargs * sizeof (int));
1669 int cum = 0;
1670 int i, alignment;
1671
1672 for (i = 0; i < nargs; i++)
1673 {
1674 int x = 0;
1675 /* cum is the sum of the lengths in bytes of
1676 the arguments seen so far */
1677 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1678
1679 /* value must go at proper alignment. Assume alignment is a
1680 power of two. */
1681 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1682
1683 if (cum % alignment)
1684 cum = (cum + alignment) & -alignment;
1685 offset[i] = -cum;
1686
1687 }
1688 sp += max ((cum + 7) & -8, 16);
1689
1690 for (i = 0; i < nargs; i++)
1691 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1692 TYPE_LENGTH (VALUE_TYPE (args[i])));
1693
1694 if (struct_return)
1695 write_register (28, struct_addr);
1696 return sp + 32;
1697 }
1698 #endif
1699
1700 /* elz: I am rewriting this function, because the one above is a very
1701 obscure piece of code.
1702 This function pushes the arguments on the stack. The stack grows up
1703 on the PA.
1704 Each argument goes in one (or more) word (4 bytes) on the stack.
1705 The first four words for the args must be allocated, even if they
1706 are not used.
1707 The 'topmost' arg is arg0, the 'bottom-most' is arg3. (if you think of
1708 them as 1 word long).
1709 Below these there can be any number of arguments, as needed by the function.
1710 If an arg is bigger than one word, it will be written on the stack
1711 occupying as many words as needed. Args that are bigger than 64bits
1712 are not copied on the stack, a pointer is passed instead.
1713
1714 On top of the arg0 word there are other 8 words (32bytes) which are used
1715 for other purposes */
1716
1717 CORE_ADDR
1718 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1719 int nargs;
1720 value_ptr *args;
1721 CORE_ADDR sp;
1722 int struct_return;
1723 CORE_ADDR struct_addr;
1724 {
1725 /* array of arguments' offsets */
1726 int *offset = (int *) alloca (nargs * sizeof (int));
1727 /* array of arguments' lengths: real lengths in bytes, not aligned to word size */
1728 int *lengths = (int *) alloca (nargs * sizeof (int));
1729
1730 int bytes_reserved; /* this is the number of bytes on the stack occupied by an
1731 argument. This will be always a multiple of 4 */
1732
1733 int cum_bytes_reserved = 0; /* this is the total number of bytes reserved by the args
1734 seen so far. It is a multiple of 4 always */
1735 int cum_bytes_aligned = 0; /* same as above, but aligned on 8 bytes */
1736 int i;
1737
1738 /* When an arg does not occupy a whole word, for instance in bitfields:
1739 if the arg is x bits (0<x<32), it must be written
1740 starting from the (x-1)-th position down until the 0-th position.
1741 It is enough to align it to the word. */
1742 /* if an arg occupies 8 bytes, it must be aligned on the 64-bits
1743 high order word in odd arg word. */
1744 /* if an arg is larger than 64 bits, we need to pass a pointer to it, and
1745 copy the actual value on the stack, so that the callee can play with it.
1746 This is taken care of in valops.c in the call_function_by_hand function.
1747 The argument that is received in this function here has already be converted
1748 to a pointer to whatever is needed, so that it just can be pushed
1749 as a word argument */
1750
1751 for (i = 0; i < nargs; i++)
1752 {
1753
1754 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1755
1756 if (lengths[i] % 4)
1757 bytes_reserved = (lengths[i] / 4) * 4 + 4;
1758 else
1759 bytes_reserved = lengths[i];
1760
1761 offset[i] = cum_bytes_reserved + lengths[i];
1762
1763 if ((bytes_reserved == 8) && (offset[i] % 8)) /* if 64-bit arg is not 64 bit aligned */
1764 {
1765 int new_offset = 0;
1766 /* bytes_reserved is already aligned to the word, so we put it at one word
1767 more down the stack. This will leave one empty word on the
1768 stack, and one unused register. This is OK, see the calling
1769 convention doc */
1770 /* the offset may have to be moved to the corresponding position
1771 one word down the stack, to maintain
1772 alignment. */
1773 new_offset = (offset[i] / 8) * 8 + 8;
1774 if ((new_offset - offset[i]) >= 4)
1775 {
1776 bytes_reserved += 4;
1777 offset[i] += 4;
1778 }
1779 }
1780
1781 cum_bytes_reserved += bytes_reserved;
1782
1783 }
1784
1785 /* now move up the sp to reserve at least 4 words required for the args,
1786 or more than this if needed */
1787 /* wee also need to keep the sp aligned to 8 bytes */
1788 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1789 sp += max (cum_bytes_aligned, 16);
1790
1791 /* now write each of the args at the proper offset down the stack */
1792 for (i = 0; i < nargs; i++)
1793 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1794
1795
1796 /* if a structure has to be returned, set up register 28 to hold its address */
1797 if (struct_return)
1798 write_register (28, struct_addr);
1799
1800 /* the stack will have other 8 words on top of the args */
1801 return sp + 32;
1802 }
1803
1804
1805 /* elz: this function returns a value which is built looking at the given address.
1806 It is called from call_function_by_hand, in case we need to return a
1807 value which is larger than 64 bits, and it is stored in the stack rather than
1808 in the registers r28 and r29 or fr4.
1809 This function does the same stuff as value_being_returned in values.c, but
1810 gets the value from the stack rather than from the buffer where all the
1811 registers were saved when the function called completed. */
1812 value_ptr
1813 hppa_value_returned_from_stack (valtype, addr)
1814 register struct type *valtype;
1815 CORE_ADDR addr;
1816 {
1817 register value_ptr val;
1818
1819 val = allocate_value (valtype);
1820 CHECK_TYPEDEF (valtype);
1821 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1822
1823 return val;
1824 }
1825
1826
1827
1828 /* elz: Used to lookup a symbol in the shared libraries.
1829 This function calls shl_findsym, indirectly through a
1830 call to __d_shl_get. __d_shl_get is in end.c, which is always
1831 linked in by the hp compilers/linkers.
1832 The call to shl_findsym cannot be made directly because it needs
1833 to be active in target address space.
1834 inputs: - minimal symbol pointer for the function we want to look up
1835 - address in target space of the descriptor for the library
1836 where we want to look the symbol up.
1837 This address is retrieved using the
1838 som_solib_get_solib_by_pc function (somsolib.c).
1839 output: - real address in the library of the function.
1840 note: the handle can be null, in which case shl_findsym will look for
1841 the symbol in all the loaded shared libraries.
1842 files to look at if you need reference on this stuff:
1843 dld.c, dld_shl_findsym.c
1844 end.c
1845 man entry for shl_findsym */
1846
1847 CORE_ADDR
1848 find_stub_with_shl_get (function, handle)
1849 struct minimal_symbol *function;
1850 CORE_ADDR handle;
1851 {
1852 struct symbol *get_sym, *symbol2;
1853 struct minimal_symbol *buff_minsym, *msymbol;
1854 struct type *ftype;
1855 value_ptr *args;
1856 value_ptr funcval, val;
1857
1858 int x, namelen, err_value, tmp = -1;
1859 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1860 CORE_ADDR stub_addr;
1861
1862
1863 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1864 funcval = find_function_in_inferior ("__d_shl_get");
1865 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1866 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1867 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1868 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1869 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1870 namelen = strlen (SYMBOL_NAME (function));
1871 value_return_addr = endo_buff_addr + namelen;
1872 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1873
1874 /* do alignment */
1875 if ((x = value_return_addr % 64) != 0)
1876 value_return_addr = value_return_addr + 64 - x;
1877
1878 errno_return_addr = value_return_addr + 64;
1879
1880
1881 /* set up stuff needed by __d_shl_get in buffer in end.o */
1882
1883 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1884
1885 target_write_memory (value_return_addr, (char *) &tmp, 4);
1886
1887 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1888
1889 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1890 (char *) &handle, 4);
1891
1892 /* now prepare the arguments for the call */
1893
1894 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1895 args[1] = value_from_longest (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1896 args[2] = value_from_longest (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1897 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1898 args[4] = value_from_longest (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1899 args[5] = value_from_longest (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1900
1901 /* now call the function */
1902
1903 val = call_function_by_hand (funcval, 6, args);
1904
1905 /* now get the results */
1906
1907 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1908
1909 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1910 if (stub_addr <= 0)
1911 error ("call to __d_shl_get failed, error code is %d", err_value); /* purecov: deadcode */
1912
1913 return (stub_addr);
1914 }
1915
1916 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1917 static CORE_ADDR
1918 cover_find_stub_with_shl_get (args)
1919 args_for_find_stub *args;
1920 {
1921 return find_stub_with_shl_get (args->msym, args->solib_handle);
1922 }
1923
1924
1925 /* Insert the specified number of args and function address
1926 into a call sequence of the above form stored at DUMMYNAME.
1927
1928 On the hppa we need to call the stack dummy through $$dyncall.
1929 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1930 real_pc, which is the location where gdb should start up the
1931 inferior to do the function call.
1932
1933 This has to work across several versions of hpux, bsd, osf1. It has to
1934 work regardless of what compiler was used to build the inferior program.
1935 It should work regardless of whether or not end.o is available. It has
1936 to work even if gdb can not call into the dynamic loader in the inferior
1937 to query it for symbol names and addresses.
1938
1939 Yes, all those cases should work. Luckily code exists to handle most
1940 of them. The complexity is in selecting exactly what scheme should
1941 be used to perform the inferior call.
1942
1943 At the current time this routine is known not to handle cases where
1944 the program was linked with HP's compiler without including end.o.
1945
1946 Please contact Jeff Law (law@cygnus.com) before changing this code. */
1947
1948 CORE_ADDR
1949 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1950 char *dummy;
1951 CORE_ADDR pc;
1952 CORE_ADDR fun;
1953 int nargs;
1954 value_ptr *args;
1955 struct type *type;
1956 int gcc_p;
1957 {
1958 CORE_ADDR dyncall_addr;
1959 struct minimal_symbol *msymbol;
1960 struct minimal_symbol *trampoline;
1961 int flags = read_register (FLAGS_REGNUM);
1962 struct unwind_table_entry *u = NULL;
1963 CORE_ADDR new_stub = 0;
1964 CORE_ADDR solib_handle = 0;
1965
1966 /* Nonzero if we will use GCC's PLT call routine. This routine must be
1967 passed an import stub, not a PLABEL. It is also necessary to set %r19
1968 (the PIC register) before performing the call.
1969
1970 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
1971 are calling the target directly. When using __d_plt_call we want to
1972 use a PLABEL instead of an import stub. */
1973 int using_gcc_plt_call = 1;
1974
1975 /* Prefer __gcc_plt_call over the HP supplied routine because
1976 __gcc_plt_call works for any number of arguments. */
1977 trampoline = NULL;
1978 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
1979 using_gcc_plt_call = 0;
1980
1981 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1982 if (msymbol == NULL)
1983 error ("Can't find an address for $$dyncall trampoline");
1984
1985 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1986
1987 /* FUN could be a procedure label, in which case we have to get
1988 its real address and the value of its GOT/DP if we plan to
1989 call the routine via gcc_plt_call. */
1990 if ((fun & 0x2) && using_gcc_plt_call)
1991 {
1992 /* Get the GOT/DP value for the target function. It's
1993 at *(fun+4). Note the call dummy is *NOT* allowed to
1994 trash %r19 before calling the target function. */
1995 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1996
1997 /* Now get the real address for the function we are calling, it's
1998 at *fun. */
1999 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
2000 }
2001 else
2002 {
2003
2004 #ifndef GDB_TARGET_IS_PA_ELF
2005 /* FUN could be an export stub, the real address of a function, or
2006 a PLABEL. When using gcc's PLT call routine we must call an import
2007 stub rather than the export stub or real function for lazy binding
2008 to work correctly
2009
2010 /* If we are using the gcc PLT call routine, then we need to
2011 get the import stub for the target function. */
2012 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2013 {
2014 struct objfile *objfile;
2015 struct minimal_symbol *funsymbol, *stub_symbol;
2016 CORE_ADDR newfun = 0;
2017
2018 funsymbol = lookup_minimal_symbol_by_pc (fun);
2019 if (!funsymbol)
2020 error ("Unable to find minimal symbol for target fucntion.\n");
2021
2022 /* Search all the object files for an import symbol with the
2023 right name. */
2024 ALL_OBJFILES (objfile)
2025 {
2026 stub_symbol
2027 = lookup_minimal_symbol_solib_trampoline
2028 (SYMBOL_NAME (funsymbol), NULL, objfile);
2029
2030 if (!stub_symbol)
2031 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2032 NULL, objfile);
2033
2034 /* Found a symbol with the right name. */
2035 if (stub_symbol)
2036 {
2037 struct unwind_table_entry *u;
2038 /* It must be a shared library trampoline. */
2039 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2040 continue;
2041
2042 /* It must also be an import stub. */
2043 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2044 if (!u
2045 || (u->stub_unwind.stub_type != IMPORT)
2046 && u->stub_unwind.stub_type != IMPORT_SHLIB)
2047 continue;
2048
2049 /* OK. Looks like the correct import stub. */
2050 newfun = SYMBOL_VALUE (stub_symbol);
2051 fun = newfun;
2052 }
2053 }
2054
2055 /* Ouch. We did not find an import stub. Make an attempt to
2056 do the right thing instead of just croaking. Most of the
2057 time this will actually work. */
2058 if (newfun == 0)
2059 write_register (19, som_solib_get_got_by_pc (fun));
2060
2061 u = find_unwind_entry (fun);
2062 if (u
2063 && (u->stub_unwind.stub_type == IMPORT
2064 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2065 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2066
2067 /* If we found the import stub in the shared library, then we have
2068 to set %r19 before we call the stub. */
2069 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2070 write_register (19, som_solib_get_got_by_pc (fun));
2071 }
2072 #endif
2073 }
2074
2075 /* If we are calling into another load module then have sr4export call the
2076 magic __d_plt_call routine which is linked in from end.o.
2077
2078 You can't use _sr4export to make the call as the value in sp-24 will get
2079 fried and you end up returning to the wrong location. You can't call the
2080 target as the code to bind the PLT entry to a function can't return to a
2081 stack address.
2082
2083 Also, query the dynamic linker in the inferior to provide a suitable
2084 PLABEL for the target function. */
2085 if (!using_gcc_plt_call)
2086 {
2087 CORE_ADDR new_fun;
2088
2089 /* Get a handle for the shared library containing FUN. Given the
2090 handle we can query the shared library for a PLABEL. */
2091 solib_handle = som_solib_get_solib_by_pc (fun);
2092
2093 if (solib_handle)
2094 {
2095 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2096
2097 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2098
2099 if (trampoline == NULL)
2100 {
2101 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2102 }
2103
2104 /* This is where sr4export will jump to. */
2105 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2106
2107 /* If the function is in a shared library, then call __d_shl_get to
2108 get a PLABEL for the target function. */
2109 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2110
2111 if (new_stub == 0)
2112 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2113
2114 /* We have to store the address of the stub in __shlib_funcptr. */
2115 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2116 (struct objfile *) NULL);
2117
2118 if (msymbol == NULL)
2119 error ("Can't find an address for __shlib_funcptr");
2120 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2121 (char *) &new_stub, 4);
2122
2123 /* We want sr4export to call __d_plt_call, so we claim it is
2124 the final target. Clear trampoline. */
2125 fun = new_fun;
2126 trampoline = NULL;
2127 }
2128 }
2129
2130 /* Store upper 21 bits of function address into ldil. fun will either be
2131 the final target (most cases) or __d_plt_call when calling into a shared
2132 library and __gcc_plt_call is not available. */
2133 store_unsigned_integer
2134 (&dummy[FUNC_LDIL_OFFSET],
2135 INSTRUCTION_SIZE,
2136 deposit_21 (fun >> 11,
2137 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2138 INSTRUCTION_SIZE)));
2139
2140 /* Store lower 11 bits of function address into ldo */
2141 store_unsigned_integer
2142 (&dummy[FUNC_LDO_OFFSET],
2143 INSTRUCTION_SIZE,
2144 deposit_14 (fun & MASK_11,
2145 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2146 INSTRUCTION_SIZE)));
2147 #ifdef SR4EXPORT_LDIL_OFFSET
2148
2149 {
2150 CORE_ADDR trampoline_addr;
2151
2152 /* We may still need sr4export's address too. */
2153
2154 if (trampoline == NULL)
2155 {
2156 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2157 if (msymbol == NULL)
2158 error ("Can't find an address for _sr4export trampoline");
2159
2160 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2161 }
2162 else
2163 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2164
2165
2166 /* Store upper 21 bits of trampoline's address into ldil */
2167 store_unsigned_integer
2168 (&dummy[SR4EXPORT_LDIL_OFFSET],
2169 INSTRUCTION_SIZE,
2170 deposit_21 (trampoline_addr >> 11,
2171 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2172 INSTRUCTION_SIZE)));
2173
2174 /* Store lower 11 bits of trampoline's address into ldo */
2175 store_unsigned_integer
2176 (&dummy[SR4EXPORT_LDO_OFFSET],
2177 INSTRUCTION_SIZE,
2178 deposit_14 (trampoline_addr & MASK_11,
2179 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2180 INSTRUCTION_SIZE)));
2181 }
2182 #endif
2183
2184 write_register (22, pc);
2185
2186 /* If we are in a syscall, then we should call the stack dummy
2187 directly. $$dyncall is not needed as the kernel sets up the
2188 space id registers properly based on the value in %r31. In
2189 fact calling $$dyncall will not work because the value in %r22
2190 will be clobbered on the syscall exit path.
2191
2192 Similarly if the current PC is in a shared library. Note however,
2193 this scheme won't work if the shared library isn't mapped into
2194 the same space as the stack. */
2195 if (flags & 2)
2196 return pc;
2197 #ifndef GDB_TARGET_IS_PA_ELF
2198 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
2199 return pc;
2200 #endif
2201 else
2202 return dyncall_addr;
2203 }
2204
2205
2206
2207
2208 /* If the pid is in a syscall, then the FP register is not readable.
2209 We'll return zero in that case, rather than attempting to read it
2210 and cause a warning. */
2211 CORE_ADDR
2212 target_read_fp (pid)
2213 int pid;
2214 {
2215 int flags = read_register (FLAGS_REGNUM);
2216
2217 if (flags & 2)
2218 {
2219 return (CORE_ADDR) 0;
2220 }
2221
2222 /* This is the only site that may directly read_register () the FP
2223 register. All others must use TARGET_READ_FP (). */
2224 return read_register (FP_REGNUM);
2225 }
2226
2227
2228 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2229 bits. */
2230
2231 CORE_ADDR
2232 target_read_pc (pid)
2233 int pid;
2234 {
2235 int flags = read_register_pid (FLAGS_REGNUM, pid);
2236
2237 /* The following test does not belong here. It is OS-specific, and belongs
2238 in native code. */
2239 /* Test SS_INSYSCALL */
2240 if (flags & 2)
2241 return read_register_pid (31, pid) & ~0x3;
2242
2243 return read_register_pid (PC_REGNUM, pid) & ~0x3;
2244 }
2245
2246 /* Write out the PC. If currently in a syscall, then also write the new
2247 PC value into %r31. */
2248
2249 void
2250 target_write_pc (v, pid)
2251 CORE_ADDR v;
2252 int pid;
2253 {
2254 int flags = read_register_pid (FLAGS_REGNUM, pid);
2255
2256 /* The following test does not belong here. It is OS-specific, and belongs
2257 in native code. */
2258 /* If in a syscall, then set %r31. Also make sure to get the
2259 privilege bits set correctly. */
2260 /* Test SS_INSYSCALL */
2261 if (flags & 2)
2262 write_register_pid (31, v | 0x3, pid);
2263
2264 write_register_pid (PC_REGNUM, v, pid);
2265 write_register_pid (NPC_REGNUM, v + 4, pid);
2266 }
2267
2268 /* return the alignment of a type in bytes. Structures have the maximum
2269 alignment required by their fields. */
2270
2271 static int
2272 hppa_alignof (type)
2273 struct type *type;
2274 {
2275 int max_align, align, i;
2276 CHECK_TYPEDEF (type);
2277 switch (TYPE_CODE (type))
2278 {
2279 case TYPE_CODE_PTR:
2280 case TYPE_CODE_INT:
2281 case TYPE_CODE_FLT:
2282 return TYPE_LENGTH (type);
2283 case TYPE_CODE_ARRAY:
2284 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2285 case TYPE_CODE_STRUCT:
2286 case TYPE_CODE_UNION:
2287 max_align = 1;
2288 for (i = 0; i < TYPE_NFIELDS (type); i++)
2289 {
2290 /* Bit fields have no real alignment. */
2291 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2292 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2293 {
2294 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2295 max_align = max (max_align, align);
2296 }
2297 }
2298 return max_align;
2299 default:
2300 return 4;
2301 }
2302 }
2303
2304 /* Print the register regnum, or all registers if regnum is -1 */
2305
2306 void
2307 pa_do_registers_info (regnum, fpregs)
2308 int regnum;
2309 int fpregs;
2310 {
2311 char raw_regs[REGISTER_BYTES];
2312 int i;
2313
2314 /* Make a copy of gdb's save area (may cause actual
2315 reads from the target). */
2316 for (i = 0; i < NUM_REGS; i++)
2317 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2318
2319 if (regnum == -1)
2320 pa_print_registers (raw_regs, regnum, fpregs);
2321 else if (regnum < FP4_REGNUM)
2322 {
2323 long reg_val[2];
2324
2325 /* Why is the value not passed through "extract_signed_integer"
2326 as in "pa_print_registers" below? */
2327 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2328
2329 if (!is_pa_2)
2330 {
2331 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2332 }
2333 else
2334 {
2335 /* Fancy % formats to prevent leading zeros. */
2336 if (reg_val[0] == 0)
2337 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2338 else
2339 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2340 reg_val[0], reg_val[1]);
2341 }
2342 }
2343 else
2344 /* Note that real floating point values only start at
2345 FP4_REGNUM. FP0 and up are just status and error
2346 registers, which have integral (bit) values. */
2347 pa_print_fp_reg (regnum);
2348 }
2349
2350 /********** new function ********************/
2351 void
2352 pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
2353 int regnum;
2354 int fpregs;
2355 GDB_FILE *stream;
2356 enum precision_type precision;
2357 {
2358 char raw_regs[REGISTER_BYTES];
2359 int i;
2360
2361 /* Make a copy of gdb's save area (may cause actual
2362 reads from the target). */
2363 for (i = 0; i < NUM_REGS; i++)
2364 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2365
2366 if (regnum == -1)
2367 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2368
2369 else if (regnum < FP4_REGNUM)
2370 {
2371 long reg_val[2];
2372
2373 /* Why is the value not passed through "extract_signed_integer"
2374 as in "pa_print_registers" below? */
2375 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2376
2377 if (!is_pa_2)
2378 {
2379 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2380 }
2381 else
2382 {
2383 /* Fancy % formats to prevent leading zeros. */
2384 if (reg_val[0] == 0)
2385 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2386 reg_val[1]);
2387 else
2388 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2389 reg_val[0], reg_val[1]);
2390 }
2391 }
2392 else
2393 /* Note that real floating point values only start at
2394 FP4_REGNUM. FP0 and up are just status and error
2395 registers, which have integral (bit) values. */
2396 pa_strcat_fp_reg (regnum, stream, precision);
2397 }
2398
2399 /* If this is a PA2.0 machine, fetch the real 64-bit register
2400 value. Otherwise use the info from gdb's saved register area.
2401
2402 Note that reg_val is really expected to be an array of longs,
2403 with two elements. */
2404 static void
2405 pa_register_look_aside (raw_regs, regnum, raw_val)
2406 char *raw_regs;
2407 int regnum;
2408 long *raw_val;
2409 {
2410 static int know_which = 0; /* False */
2411
2412 int regaddr;
2413 unsigned int offset;
2414 register int i;
2415 int start;
2416
2417
2418 char buf[MAX_REGISTER_RAW_SIZE];
2419 long long reg_val;
2420
2421 if (!know_which)
2422 {
2423 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2424 {
2425 is_pa_2 = (1 == 1);
2426 }
2427
2428 know_which = 1; /* True */
2429 }
2430
2431 raw_val[0] = 0;
2432 raw_val[1] = 0;
2433
2434 if (!is_pa_2)
2435 {
2436 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2437 return;
2438 }
2439
2440 /* Code below copied from hppah-nat.c, with fixes for wide
2441 registers, using different area of save_state, etc. */
2442 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2443 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2444 {
2445 /* Use narrow regs area of save_state and default macro. */
2446 offset = U_REGS_OFFSET;
2447 regaddr = register_addr (regnum, offset);
2448 start = 1;
2449 }
2450 else
2451 {
2452 /* Use wide regs area, and calculate registers as 8 bytes wide.
2453
2454 We'd like to do this, but current version of "C" doesn't
2455 permit "offsetof":
2456
2457 offset = offsetof(save_state_t, ss_wide);
2458
2459 Note that to avoid "C" doing typed pointer arithmetic, we
2460 have to cast away the type in our offset calculation:
2461 otherwise we get an offset of 1! */
2462
2463 /* NB: save_state_t is not available before HPUX 9.
2464 The ss_wide field is not available previous to HPUX 10.20,
2465 so to avoid compile-time warnings, we only compile this for
2466 PA 2.0 processors. This control path should only be followed
2467 if we're debugging a PA 2.0 processor, so this should not cause
2468 problems. */
2469
2470 /* #if the following code out so that this file can still be
2471 compiled on older HPUX boxes (< 10.20) which don't have
2472 this structure/structure member. */
2473 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2474 save_state_t temp;
2475
2476 offset = ((int) &temp.ss_wide) - ((int) &temp);
2477 regaddr = offset + regnum * 8;
2478 start = 0;
2479 #endif
2480 }
2481
2482 for (i = start; i < 2; i++)
2483 {
2484 errno = 0;
2485 raw_val[i] = call_ptrace (PT_RUREGS, inferior_pid,
2486 (PTRACE_ARG3_TYPE) regaddr, 0);
2487 if (errno != 0)
2488 {
2489 /* Warning, not error, in case we are attached; sometimes the
2490 kernel doesn't let us at the registers. */
2491 char *err = safe_strerror (errno);
2492 char *msg = alloca (strlen (err) + 128);
2493 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2494 warning (msg);
2495 goto error_exit;
2496 }
2497
2498 regaddr += sizeof (long);
2499 }
2500
2501 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2502 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2503
2504 error_exit:
2505 ;
2506 }
2507
2508 /* "Info all-reg" command */
2509
2510 static void
2511 pa_print_registers (raw_regs, regnum, fpregs)
2512 char *raw_regs;
2513 int regnum;
2514 int fpregs;
2515 {
2516 int i, j;
2517 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2518 long long_val;
2519
2520 for (i = 0; i < 18; i++)
2521 {
2522 for (j = 0; j < 4; j++)
2523 {
2524 /* Q: Why is the value passed through "extract_signed_integer",
2525 while above, in "pa_do_registers_info" it isn't?
2526 A: ? */
2527 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2528
2529 /* Even fancier % formats to prevent leading zeros
2530 and still maintain the output in columns. */
2531 if (!is_pa_2)
2532 {
2533 /* Being big-endian, on this machine the low bits
2534 (the ones we want to look at) are in the second longword. */
2535 long_val = extract_signed_integer (&raw_val[1], 4);
2536 printf_filtered ("%8.8s: %8x ",
2537 REGISTER_NAME (i + (j * 18)), long_val);
2538 }
2539 else
2540 {
2541 /* raw_val = extract_signed_integer(&raw_val, 8); */
2542 if (raw_val[0] == 0)
2543 printf_filtered ("%8.8s: %8x ",
2544 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2545 else
2546 printf_filtered ("%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2547 raw_val[0], raw_val[1]);
2548 }
2549 }
2550 printf_unfiltered ("\n");
2551 }
2552
2553 if (fpregs)
2554 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2555 pa_print_fp_reg (i);
2556 }
2557
2558 /************* new function ******************/
2559 static void
2560 pa_strcat_registers (raw_regs, regnum, fpregs, stream)
2561 char *raw_regs;
2562 int regnum;
2563 int fpregs;
2564 GDB_FILE *stream;
2565 {
2566 int i, j;
2567 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2568 long long_val;
2569 enum precision_type precision;
2570
2571 precision = unspecified_precision;
2572
2573 for (i = 0; i < 18; i++)
2574 {
2575 for (j = 0; j < 4; j++)
2576 {
2577 /* Q: Why is the value passed through "extract_signed_integer",
2578 while above, in "pa_do_registers_info" it isn't?
2579 A: ? */
2580 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2581
2582 /* Even fancier % formats to prevent leading zeros
2583 and still maintain the output in columns. */
2584 if (!is_pa_2)
2585 {
2586 /* Being big-endian, on this machine the low bits
2587 (the ones we want to look at) are in the second longword. */
2588 long_val = extract_signed_integer (&raw_val[1], 4);
2589 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2590 }
2591 else
2592 {
2593 /* raw_val = extract_signed_integer(&raw_val, 8); */
2594 if (raw_val[0] == 0)
2595 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2596 raw_val[1]);
2597 else
2598 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2599 raw_val[0], raw_val[1]);
2600 }
2601 }
2602 fprintf_unfiltered (stream, "\n");
2603 }
2604
2605 if (fpregs)
2606 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2607 pa_strcat_fp_reg (i, stream, precision);
2608 }
2609
2610 static void
2611 pa_print_fp_reg (i)
2612 int i;
2613 {
2614 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2615 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2616
2617 /* Get 32bits of data. */
2618 read_relative_register_raw_bytes (i, raw_buffer);
2619
2620 /* Put it in the buffer. No conversions are ever necessary. */
2621 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2622
2623 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2624 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2625 fputs_filtered ("(single precision) ", gdb_stdout);
2626
2627 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2628 1, 0, Val_pretty_default);
2629 printf_filtered ("\n");
2630
2631 /* If "i" is even, then this register can also be a double-precision
2632 FP register. Dump it out as such. */
2633 if ((i % 2) == 0)
2634 {
2635 /* Get the data in raw format for the 2nd half. */
2636 read_relative_register_raw_bytes (i + 1, raw_buffer);
2637
2638 /* Copy it into the appropriate part of the virtual buffer. */
2639 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2640 REGISTER_RAW_SIZE (i));
2641
2642 /* Dump it as a double. */
2643 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2644 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2645 fputs_filtered ("(double precision) ", gdb_stdout);
2646
2647 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2648 1, 0, Val_pretty_default);
2649 printf_filtered ("\n");
2650 }
2651 }
2652
2653 /*************** new function ***********************/
2654 static void
2655 pa_strcat_fp_reg (i, stream, precision)
2656 int i;
2657 GDB_FILE *stream;
2658 enum precision_type precision;
2659 {
2660 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2661 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2662
2663 fputs_filtered (REGISTER_NAME (i), stream);
2664 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2665
2666 /* Get 32bits of data. */
2667 read_relative_register_raw_bytes (i, raw_buffer);
2668
2669 /* Put it in the buffer. No conversions are ever necessary. */
2670 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2671
2672 if (precision == double_precision && (i % 2) == 0)
2673 {
2674
2675 char raw_buf[MAX_REGISTER_RAW_SIZE];
2676
2677 /* Get the data in raw format for the 2nd half. */
2678 read_relative_register_raw_bytes (i + 1, raw_buf);
2679
2680 /* Copy it into the appropriate part of the virtual buffer. */
2681 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2682
2683 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2684 1, 0, Val_pretty_default);
2685
2686 }
2687 else
2688 {
2689 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2690 1, 0, Val_pretty_default);
2691 }
2692
2693 }
2694
2695 /* Return one if PC is in the call path of a trampoline, else return zero.
2696
2697 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2698 just shared library trampolines (import, export). */
2699
2700 int
2701 in_solib_call_trampoline (pc, name)
2702 CORE_ADDR pc;
2703 char *name;
2704 {
2705 struct minimal_symbol *minsym;
2706 struct unwind_table_entry *u;
2707 static CORE_ADDR dyncall = 0;
2708 static CORE_ADDR sr4export = 0;
2709
2710 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2711 new exec file */
2712
2713 /* First see if PC is in one of the two C-library trampolines. */
2714 if (!dyncall)
2715 {
2716 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2717 if (minsym)
2718 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2719 else
2720 dyncall = -1;
2721 }
2722
2723 if (!sr4export)
2724 {
2725 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2726 if (minsym)
2727 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2728 else
2729 sr4export = -1;
2730 }
2731
2732 if (pc == dyncall || pc == sr4export)
2733 return 1;
2734
2735 /* Get the unwind descriptor corresponding to PC, return zero
2736 if no unwind was found. */
2737 u = find_unwind_entry (pc);
2738 if (!u)
2739 return 0;
2740
2741 /* If this isn't a linker stub, then return now. */
2742 if (u->stub_unwind.stub_type == 0)
2743 return 0;
2744
2745 /* By definition a long-branch stub is a call stub. */
2746 if (u->stub_unwind.stub_type == LONG_BRANCH)
2747 return 1;
2748
2749 /* The call and return path execute the same instructions within
2750 an IMPORT stub! So an IMPORT stub is both a call and return
2751 trampoline. */
2752 if (u->stub_unwind.stub_type == IMPORT)
2753 return 1;
2754
2755 /* Parameter relocation stubs always have a call path and may have a
2756 return path. */
2757 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2758 || u->stub_unwind.stub_type == EXPORT)
2759 {
2760 CORE_ADDR addr;
2761
2762 /* Search forward from the current PC until we hit a branch
2763 or the end of the stub. */
2764 for (addr = pc; addr <= u->region_end; addr += 4)
2765 {
2766 unsigned long insn;
2767
2768 insn = read_memory_integer (addr, 4);
2769
2770 /* Does it look like a bl? If so then it's the call path, if
2771 we find a bv or be first, then we're on the return path. */
2772 if ((insn & 0xfc00e000) == 0xe8000000)
2773 return 1;
2774 else if ((insn & 0xfc00e001) == 0xe800c000
2775 || (insn & 0xfc000000) == 0xe0000000)
2776 return 0;
2777 }
2778
2779 /* Should never happen. */
2780 warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
2781 return 0; /* purecov: deadcode */
2782 }
2783
2784 /* Unknown stub type. For now, just return zero. */
2785 return 0; /* purecov: deadcode */
2786 }
2787
2788 /* Return one if PC is in the return path of a trampoline, else return zero.
2789
2790 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2791 just shared library trampolines (import, export). */
2792
2793 int
2794 in_solib_return_trampoline (pc, name)
2795 CORE_ADDR pc;
2796 char *name;
2797 {
2798 struct unwind_table_entry *u;
2799
2800 /* Get the unwind descriptor corresponding to PC, return zero
2801 if no unwind was found. */
2802 u = find_unwind_entry (pc);
2803 if (!u)
2804 return 0;
2805
2806 /* If this isn't a linker stub or it's just a long branch stub, then
2807 return zero. */
2808 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
2809 return 0;
2810
2811 /* The call and return path execute the same instructions within
2812 an IMPORT stub! So an IMPORT stub is both a call and return
2813 trampoline. */
2814 if (u->stub_unwind.stub_type == IMPORT)
2815 return 1;
2816
2817 /* Parameter relocation stubs always have a call path and may have a
2818 return path. */
2819 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2820 || u->stub_unwind.stub_type == EXPORT)
2821 {
2822 CORE_ADDR addr;
2823
2824 /* Search forward from the current PC until we hit a branch
2825 or the end of the stub. */
2826 for (addr = pc; addr <= u->region_end; addr += 4)
2827 {
2828 unsigned long insn;
2829
2830 insn = read_memory_integer (addr, 4);
2831
2832 /* Does it look like a bl? If so then it's the call path, if
2833 we find a bv or be first, then we're on the return path. */
2834 if ((insn & 0xfc00e000) == 0xe8000000)
2835 return 0;
2836 else if ((insn & 0xfc00e001) == 0xe800c000
2837 || (insn & 0xfc000000) == 0xe0000000)
2838 return 1;
2839 }
2840
2841 /* Should never happen. */
2842 warning ("Unable to find branch in parameter relocation stub.\n"); /* purecov: deadcode */
2843 return 0; /* purecov: deadcode */
2844 }
2845
2846 /* Unknown stub type. For now, just return zero. */
2847 return 0; /* purecov: deadcode */
2848
2849 }
2850
2851 /* Figure out if PC is in a trampoline, and if so find out where
2852 the trampoline will jump to. If not in a trampoline, return zero.
2853
2854 Simple code examination probably is not a good idea since the code
2855 sequences in trampolines can also appear in user code.
2856
2857 We use unwinds and information from the minimal symbol table to
2858 determine when we're in a trampoline. This won't work for ELF
2859 (yet) since it doesn't create stub unwind entries. Whether or
2860 not ELF will create stub unwinds or normal unwinds for linker
2861 stubs is still being debated.
2862
2863 This should handle simple calls through dyncall or sr4export,
2864 long calls, argument relocation stubs, and dyncall/sr4export
2865 calling an argument relocation stub. It even handles some stubs
2866 used in dynamic executables. */
2867
2868 #if 0
2869 CORE_ADDR
2870 skip_trampoline_code (pc, name)
2871 CORE_ADDR pc;
2872 char *name;
2873 {
2874 return find_solib_trampoline_target (pc);
2875 }
2876
2877 #endif
2878
2879 CORE_ADDR
2880 skip_trampoline_code (pc, name)
2881 CORE_ADDR pc;
2882 char *name;
2883 {
2884 long orig_pc = pc;
2885 long prev_inst, curr_inst, loc;
2886 static CORE_ADDR dyncall = 0;
2887 static CORE_ADDR dyncall_external = 0;
2888 static CORE_ADDR sr4export = 0;
2889 struct minimal_symbol *msym;
2890 struct unwind_table_entry *u;
2891
2892
2893 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2894 new exec file */
2895
2896 if (!dyncall)
2897 {
2898 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2899 if (msym)
2900 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2901 else
2902 dyncall = -1;
2903 }
2904
2905 if (!dyncall_external)
2906 {
2907 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
2908 if (msym)
2909 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
2910 else
2911 dyncall_external = -1;
2912 }
2913
2914 if (!sr4export)
2915 {
2916 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2917 if (msym)
2918 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2919 else
2920 sr4export = -1;
2921 }
2922
2923 /* Addresses passed to dyncall may *NOT* be the actual address
2924 of the function. So we may have to do something special. */
2925 if (pc == dyncall)
2926 {
2927 pc = (CORE_ADDR) read_register (22);
2928
2929 /* If bit 30 (counting from the left) is on, then pc is the address of
2930 the PLT entry for this function, not the address of the function
2931 itself. Bit 31 has meaning too, but only for MPE. */
2932 if (pc & 0x2)
2933 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2934 }
2935 if (pc == dyncall_external)
2936 {
2937 pc = (CORE_ADDR) read_register (22);
2938 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2939 }
2940 else if (pc == sr4export)
2941 pc = (CORE_ADDR) (read_register (22));
2942
2943 /* Get the unwind descriptor corresponding to PC, return zero
2944 if no unwind was found. */
2945 u = find_unwind_entry (pc);
2946 if (!u)
2947 return 0;
2948
2949 /* If this isn't a linker stub, then return now. */
2950 /* elz: attention here! (FIXME) because of a compiler/linker
2951 error, some stubs which should have a non zero stub_unwind.stub_type
2952 have unfortunately a value of zero. So this function would return here
2953 as if we were not in a trampoline. To fix this, we go look at the partial
2954 symbol information, which reports this guy as a stub.
2955 (FIXME): Unfortunately, we are not that lucky: it turns out that the
2956 partial symbol information is also wrong sometimes. This is because
2957 when it is entered (somread.c::som_symtab_read()) it can happen that
2958 if the type of the symbol (from the som) is Entry, and the symbol is
2959 in a shared library, then it can also be a trampoline. This would
2960 be OK, except that I believe the way they decide if we are ina shared library
2961 does not work. SOOOO..., even if we have a regular function w/o trampolines
2962 its minimal symbol can be assigned type mst_solib_trampoline.
2963 Also, if we find that the symbol is a real stub, then we fix the unwind
2964 descriptor, and define the stub type to be EXPORT.
2965 Hopefully this is correct most of the times. */
2966 if (u->stub_unwind.stub_type == 0)
2967 {
2968
2969 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
2970 we can delete all the code which appears between the lines */
2971 /*--------------------------------------------------------------------------*/
2972 msym = lookup_minimal_symbol_by_pc (pc);
2973
2974 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
2975 return orig_pc == pc ? 0 : pc & ~0x3;
2976
2977 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
2978 {
2979 struct objfile *objfile;
2980 struct minimal_symbol *msymbol;
2981 int function_found = 0;
2982
2983 /* go look if there is another minimal symbol with the same name as
2984 this one, but with type mst_text. This would happen if the msym
2985 is an actual trampoline, in which case there would be another
2986 symbol with the same name corresponding to the real function */
2987
2988 ALL_MSYMBOLS (objfile, msymbol)
2989 {
2990 if (MSYMBOL_TYPE (msymbol) == mst_text
2991 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
2992 {
2993 function_found = 1;
2994 break;
2995 }
2996 }
2997
2998 if (function_found)
2999 /* the type of msym is correct (mst_solib_trampoline), but
3000 the unwind info is wrong, so set it to the correct value */
3001 u->stub_unwind.stub_type = EXPORT;
3002 else
3003 /* the stub type info in the unwind is correct (this is not a
3004 trampoline), but the msym type information is wrong, it
3005 should be mst_text. So we need to fix the msym, and also
3006 get out of this function */
3007 {
3008 MSYMBOL_TYPE (msym) = mst_text;
3009 return orig_pc == pc ? 0 : pc & ~0x3;
3010 }
3011 }
3012
3013 /*--------------------------------------------------------------------------*/
3014 }
3015
3016 /* It's a stub. Search for a branch and figure out where it goes.
3017 Note we have to handle multi insn branch sequences like ldil;ble.
3018 Most (all?) other branches can be determined by examining the contents
3019 of certain registers and the stack. */
3020
3021 loc = pc;
3022 curr_inst = 0;
3023 prev_inst = 0;
3024 while (1)
3025 {
3026 /* Make sure we haven't walked outside the range of this stub. */
3027 if (u != find_unwind_entry (loc))
3028 {
3029 warning ("Unable to find branch in linker stub");
3030 return orig_pc == pc ? 0 : pc & ~0x3;
3031 }
3032
3033 prev_inst = curr_inst;
3034 curr_inst = read_memory_integer (loc, 4);
3035
3036 /* Does it look like a branch external using %r1? Then it's the
3037 branch from the stub to the actual function. */
3038 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3039 {
3040 /* Yup. See if the previous instruction loaded
3041 a value into %r1. If so compute and return the jump address. */
3042 if ((prev_inst & 0xffe00000) == 0x20200000)
3043 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3044 else
3045 {
3046 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3047 return orig_pc == pc ? 0 : pc & ~0x3;
3048 }
3049 }
3050
3051 /* Does it look like a be 0(sr0,%r21)? OR
3052 Does it look like a be, n 0(sr0,%r21)? OR
3053 Does it look like a bve (r21)? (this is on PA2.0)
3054 Does it look like a bve, n(r21)? (this is also on PA2.0)
3055 That's the branch from an
3056 import stub to an export stub.
3057
3058 It is impossible to determine the target of the branch via
3059 simple examination of instructions and/or data (consider
3060 that the address in the plabel may be the address of the
3061 bind-on-reference routine in the dynamic loader).
3062
3063 So we have try an alternative approach.
3064
3065 Get the name of the symbol at our current location; it should
3066 be a stub symbol with the same name as the symbol in the
3067 shared library.
3068
3069 Then lookup a minimal symbol with the same name; we should
3070 get the minimal symbol for the target routine in the shared
3071 library as those take precedence of import/export stubs. */
3072 if ((curr_inst == 0xe2a00000) ||
3073 (curr_inst == 0xe2a00002) ||
3074 (curr_inst == 0xeaa0d000) ||
3075 (curr_inst == 0xeaa0d002))
3076 {
3077 struct minimal_symbol *stubsym, *libsym;
3078
3079 stubsym = lookup_minimal_symbol_by_pc (loc);
3080 if (stubsym == NULL)
3081 {
3082 warning ("Unable to find symbol for 0x%x", loc);
3083 return orig_pc == pc ? 0 : pc & ~0x3;
3084 }
3085
3086 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3087 if (libsym == NULL)
3088 {
3089 warning ("Unable to find library symbol for %s\n",
3090 SYMBOL_NAME (stubsym));
3091 return orig_pc == pc ? 0 : pc & ~0x3;
3092 }
3093
3094 return SYMBOL_VALUE (libsym);
3095 }
3096
3097 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3098 branch from the stub to the actual function. */
3099 /*elz */
3100 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3101 || (curr_inst & 0xffe0e000) == 0xe8000000
3102 || (curr_inst & 0xffe0e000) == 0xe800A000)
3103 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3104
3105 /* Does it look like bv (rp)? Note this depends on the
3106 current stack pointer being the same as the stack
3107 pointer in the stub itself! This is a branch on from the
3108 stub back to the original caller. */
3109 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3110 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3111 {
3112 /* Yup. See if the previous instruction loaded
3113 rp from sp - 8. */
3114 if (prev_inst == 0x4bc23ff1)
3115 return (read_memory_integer
3116 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3117 else
3118 {
3119 warning ("Unable to find restore of %%rp before bv (%%rp).");
3120 return orig_pc == pc ? 0 : pc & ~0x3;
3121 }
3122 }
3123
3124 /* elz: added this case to capture the new instruction
3125 at the end of the return part of an export stub used by
3126 the PA2.0: BVE, n (rp) */
3127 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3128 {
3129 return (read_memory_integer
3130 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
3131 }
3132
3133 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3134 the original caller from the stub. Used in dynamic executables. */
3135 else if (curr_inst == 0xe0400002)
3136 {
3137 /* The value we jump to is sitting in sp - 24. But that's
3138 loaded several instructions before the be instruction.
3139 I guess we could check for the previous instruction being
3140 mtsp %r1,%sr0 if we want to do sanity checking. */
3141 return (read_memory_integer
3142 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
3143 }
3144
3145 /* Haven't found the branch yet, but we're still in the stub.
3146 Keep looking. */
3147 loc += 4;
3148 }
3149 }
3150
3151
3152 /* For the given instruction (INST), return any adjustment it makes
3153 to the stack pointer or zero for no adjustment.
3154
3155 This only handles instructions commonly found in prologues. */
3156
3157 static int
3158 prologue_inst_adjust_sp (inst)
3159 unsigned long inst;
3160 {
3161 /* This must persist across calls. */
3162 static int save_high21;
3163
3164 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3165 if ((inst & 0xffffc000) == 0x37de0000)
3166 return extract_14 (inst);
3167
3168 /* stwm X,D(sp) */
3169 if ((inst & 0xffe00000) == 0x6fc00000)
3170 return extract_14 (inst);
3171
3172 /* addil high21,%r1; ldo low11,(%r1),%r30)
3173 save high bits in save_high21 for later use. */
3174 if ((inst & 0xffe00000) == 0x28200000)
3175 {
3176 save_high21 = extract_21 (inst);
3177 return 0;
3178 }
3179
3180 if ((inst & 0xffff0000) == 0x343e0000)
3181 return save_high21 + extract_14 (inst);
3182
3183 /* fstws as used by the HP compilers. */
3184 if ((inst & 0xffffffe0) == 0x2fd01220)
3185 return extract_5_load (inst);
3186
3187 /* No adjustment. */
3188 return 0;
3189 }
3190
3191 /* Return nonzero if INST is a branch of some kind, else return zero. */
3192
3193 static int
3194 is_branch (inst)
3195 unsigned long inst;
3196 {
3197 switch (inst >> 26)
3198 {
3199 case 0x20:
3200 case 0x21:
3201 case 0x22:
3202 case 0x23:
3203 case 0x28:
3204 case 0x29:
3205 case 0x2a:
3206 case 0x2b:
3207 case 0x30:
3208 case 0x31:
3209 case 0x32:
3210 case 0x33:
3211 case 0x38:
3212 case 0x39:
3213 case 0x3a:
3214 return 1;
3215
3216 default:
3217 return 0;
3218 }
3219 }
3220
3221 /* Return the register number for a GR which is saved by INST or
3222 zero it INST does not save a GR. */
3223
3224 static int
3225 inst_saves_gr (inst)
3226 unsigned long inst;
3227 {
3228 /* Does it look like a stw? */
3229 if ((inst >> 26) == 0x1a)
3230 return extract_5R_store (inst);
3231
3232 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3233 if ((inst >> 26) == 0x1b)
3234 return extract_5R_store (inst);
3235
3236 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3237 too. */
3238 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
3239 return extract_5R_store (inst);
3240
3241 return 0;
3242 }
3243
3244 /* Return the register number for a FR which is saved by INST or
3245 zero it INST does not save a FR.
3246
3247 Note we only care about full 64bit register stores (that's the only
3248 kind of stores the prologue will use).
3249
3250 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3251
3252 static int
3253 inst_saves_fr (inst)
3254 unsigned long inst;
3255 {
3256 /* is this an FSTDS ? */
3257 if ((inst & 0xfc00dfc0) == 0x2c001200)
3258 return extract_5r_store (inst);
3259 /* is this an FSTWS ? */
3260 if ((inst & 0xfc00df80) == 0x24001200)
3261 return extract_5r_store (inst);
3262 return 0;
3263 }
3264
3265 /* Advance PC across any function entry prologue instructions
3266 to reach some "real" code.
3267
3268 Use information in the unwind table to determine what exactly should
3269 be in the prologue. */
3270
3271
3272 CORE_ADDR
3273 skip_prologue_hard_way (pc)
3274 CORE_ADDR pc;
3275 {
3276 char buf[4];
3277 CORE_ADDR orig_pc = pc;
3278 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3279 unsigned long args_stored, status, i, restart_gr, restart_fr;
3280 struct unwind_table_entry *u;
3281
3282 restart_gr = 0;
3283 restart_fr = 0;
3284
3285 restart:
3286 u = find_unwind_entry (pc);
3287 if (!u)
3288 return pc;
3289
3290 /* If we are not at the beginning of a function, then return now. */
3291 if ((pc & ~0x3) != u->region_start)
3292 return pc;
3293
3294 /* This is how much of a frame adjustment we need to account for. */
3295 stack_remaining = u->Total_frame_size << 3;
3296
3297 /* Magic register saves we want to know about. */
3298 save_rp = u->Save_RP;
3299 save_sp = u->Save_SP;
3300
3301 /* An indication that args may be stored into the stack. Unfortunately
3302 the HPUX compilers tend to set this in cases where no args were
3303 stored too!. */
3304 args_stored = 1;
3305
3306 /* Turn the Entry_GR field into a bitmask. */
3307 save_gr = 0;
3308 for (i = 3; i < u->Entry_GR + 3; i++)
3309 {
3310 /* Frame pointer gets saved into a special location. */
3311 if (u->Save_SP && i == FP_REGNUM)
3312 continue;
3313
3314 save_gr |= (1 << i);
3315 }
3316 save_gr &= ~restart_gr;
3317
3318 /* Turn the Entry_FR field into a bitmask too. */
3319 save_fr = 0;
3320 for (i = 12; i < u->Entry_FR + 12; i++)
3321 save_fr |= (1 << i);
3322 save_fr &= ~restart_fr;
3323
3324 /* Loop until we find everything of interest or hit a branch.
3325
3326 For unoptimized GCC code and for any HP CC code this will never ever
3327 examine any user instructions.
3328
3329 For optimzied GCC code we're faced with problems. GCC will schedule
3330 its prologue and make prologue instructions available for delay slot
3331 filling. The end result is user code gets mixed in with the prologue
3332 and a prologue instruction may be in the delay slot of the first branch
3333 or call.
3334
3335 Some unexpected things are expected with debugging optimized code, so
3336 we allow this routine to walk past user instructions in optimized
3337 GCC code. */
3338 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3339 || args_stored)
3340 {
3341 unsigned int reg_num;
3342 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3343 unsigned long old_save_rp, old_save_sp, next_inst;
3344
3345 /* Save copies of all the triggers so we can compare them later
3346 (only for HPC). */
3347 old_save_gr = save_gr;
3348 old_save_fr = save_fr;
3349 old_save_rp = save_rp;
3350 old_save_sp = save_sp;
3351 old_stack_remaining = stack_remaining;
3352
3353 status = target_read_memory (pc, buf, 4);
3354 inst = extract_unsigned_integer (buf, 4);
3355
3356 /* Yow! */
3357 if (status != 0)
3358 return pc;
3359
3360 /* Note the interesting effects of this instruction. */
3361 stack_remaining -= prologue_inst_adjust_sp (inst);
3362
3363 /* There is only one instruction used for saving RP into the stack. */
3364 if (inst == 0x6bc23fd9)
3365 save_rp = 0;
3366
3367 /* This is the only way we save SP into the stack. At this time
3368 the HP compilers never bother to save SP into the stack. */
3369 if ((inst & 0xffffc000) == 0x6fc10000)
3370 save_sp = 0;
3371
3372 /* Account for general and floating-point register saves. */
3373 reg_num = inst_saves_gr (inst);
3374 save_gr &= ~(1 << reg_num);
3375
3376 /* Ugh. Also account for argument stores into the stack.
3377 Unfortunately args_stored only tells us that some arguments
3378 where stored into the stack. Not how many or what kind!
3379
3380 This is a kludge as on the HP compiler sets this bit and it
3381 never does prologue scheduling. So once we see one, skip past
3382 all of them. We have similar code for the fp arg stores below.
3383
3384 FIXME. Can still die if we have a mix of GR and FR argument
3385 stores! */
3386 if (reg_num >= 23 && reg_num <= 26)
3387 {
3388 while (reg_num >= 23 && reg_num <= 26)
3389 {
3390 pc += 4;
3391 status = target_read_memory (pc, buf, 4);
3392 inst = extract_unsigned_integer (buf, 4);
3393 if (status != 0)
3394 return pc;
3395 reg_num = inst_saves_gr (inst);
3396 }
3397 args_stored = 0;
3398 continue;
3399 }
3400
3401 reg_num = inst_saves_fr (inst);
3402 save_fr &= ~(1 << reg_num);
3403
3404 status = target_read_memory (pc + 4, buf, 4);
3405 next_inst = extract_unsigned_integer (buf, 4);
3406
3407 /* Yow! */
3408 if (status != 0)
3409 return pc;
3410
3411 /* We've got to be read to handle the ldo before the fp register
3412 save. */
3413 if ((inst & 0xfc000000) == 0x34000000
3414 && inst_saves_fr (next_inst) >= 4
3415 && inst_saves_fr (next_inst) <= 7)
3416 {
3417 /* So we drop into the code below in a reasonable state. */
3418 reg_num = inst_saves_fr (next_inst);
3419 pc -= 4;
3420 }
3421
3422 /* Ugh. Also account for argument stores into the stack.
3423 This is a kludge as on the HP compiler sets this bit and it
3424 never does prologue scheduling. So once we see one, skip past
3425 all of them. */
3426 if (reg_num >= 4 && reg_num <= 7)
3427 {
3428 while (reg_num >= 4 && reg_num <= 7)
3429 {
3430 pc += 8;
3431 status = target_read_memory (pc, buf, 4);
3432 inst = extract_unsigned_integer (buf, 4);
3433 if (status != 0)
3434 return pc;
3435 if ((inst & 0xfc000000) != 0x34000000)
3436 break;
3437 status = target_read_memory (pc + 4, buf, 4);
3438 next_inst = extract_unsigned_integer (buf, 4);
3439 if (status != 0)
3440 return pc;
3441 reg_num = inst_saves_fr (next_inst);
3442 }
3443 args_stored = 0;
3444 continue;
3445 }
3446
3447 /* Quit if we hit any kind of branch. This can happen if a prologue
3448 instruction is in the delay slot of the first call/branch. */
3449 if (is_branch (inst))
3450 break;
3451
3452 /* What a crock. The HP compilers set args_stored even if no
3453 arguments were stored into the stack (boo hiss). This could
3454 cause this code to then skip a bunch of user insns (up to the
3455 first branch).
3456
3457 To combat this we try to identify when args_stored was bogusly
3458 set and clear it. We only do this when args_stored is nonzero,
3459 all other resources are accounted for, and nothing changed on
3460 this pass. */
3461 if (args_stored
3462 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3463 && old_save_gr == save_gr && old_save_fr == save_fr
3464 && old_save_rp == save_rp && old_save_sp == save_sp
3465 && old_stack_remaining == stack_remaining)
3466 break;
3467
3468 /* Bump the PC. */
3469 pc += 4;
3470 }
3471
3472 /* We've got a tenative location for the end of the prologue. However
3473 because of limitations in the unwind descriptor mechanism we may
3474 have went too far into user code looking for the save of a register
3475 that does not exist. So, if there registers we expected to be saved
3476 but never were, mask them out and restart.
3477
3478 This should only happen in optimized code, and should be very rare. */
3479 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3480 {
3481 pc = orig_pc;
3482 restart_gr = save_gr;
3483 restart_fr = save_fr;
3484 goto restart;
3485 }
3486
3487 return pc;
3488 }
3489
3490
3491
3492
3493
3494 /* return 0 if we cannot determine the end of the prologue,
3495 return the new pc value if we know where the prologue ends */
3496
3497 static CORE_ADDR
3498 after_prologue (pc)
3499 CORE_ADDR pc;
3500 {
3501 struct symtab_and_line sal;
3502 CORE_ADDR func_addr, func_end;
3503 struct symbol *f;
3504
3505 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3506 return 0; /* Unknown */
3507
3508 f = find_pc_function (pc);
3509 if (!f)
3510 return 0; /* no debug info, do it the hard way! */
3511
3512 sal = find_pc_line (func_addr, 0);
3513
3514 if (sal.end < func_end)
3515 {
3516 /* this happens when the function has no prologue, because the way
3517 find_pc_line works: elz. Note: this may not be a very good
3518 way to decide whether a function has a prologue or not, but
3519 it is the best I can do with the info available
3520 Also, this will work for functions like: int f()
3521 {
3522 return 2;
3523 }
3524 I.e. the bp will be inserted at the first open brace.
3525 For functions where the body is only one line written like this:
3526 int f()
3527 { return 2; }
3528 this will make the breakpoint to be at the last brace, after the body
3529 has been executed already. What's the point of stepping through a function
3530 without any variables anyway?? */
3531
3532 if ((SYMBOL_LINE (f) > 0) && (SYMBOL_LINE (f) < sal.line))
3533 return pc; /*no adjusment will be made */
3534 else
3535 return sal.end; /* this is the end of the prologue */
3536 }
3537 /* The line after the prologue is after the end of the function. In this
3538 case, put the end of the prologue is the beginning of the function. */
3539 /* This should happen only when the function is prologueless and has no
3540 code in it. For instance void dumb(){} Note: this kind of function
3541 is used quite a lot in the test system */
3542
3543 else
3544 return pc; /* no adjustment will be made */
3545 }
3546
3547 /* To skip prologues, I use this predicate. Returns either PC itself
3548 if the code at PC does not look like a function prologue; otherwise
3549 returns an address that (if we're lucky) follows the prologue. If
3550 LENIENT, then we must skip everything which is involved in setting
3551 up the frame (it's OK to skip more, just so long as we don't skip
3552 anything which might clobber the registers which are being saved.
3553 Currently we must not skip more on the alpha, but we might the lenient
3554 stuff some day. */
3555
3556 CORE_ADDR
3557 hppa_skip_prologue (pc)
3558 CORE_ADDR pc;
3559 {
3560 unsigned long inst;
3561 int offset;
3562 CORE_ADDR post_prologue_pc;
3563 char buf[4];
3564
3565 #ifdef GDB_TARGET_HAS_SHARED_LIBS
3566 /* Silently return the unaltered pc upon memory errors.
3567 This could happen on OSF/1 if decode_line_1 tries to skip the
3568 prologue for quickstarted shared library functions when the
3569 shared library is not yet mapped in.
3570 Reading target memory is slow over serial lines, so we perform
3571 this check only if the target has shared libraries. */
3572 if (target_read_memory (pc, buf, 4))
3573 return pc;
3574 #endif
3575
3576 /* See if we can determine the end of the prologue via the symbol table.
3577 If so, then return either PC, or the PC after the prologue, whichever
3578 is greater. */
3579
3580 post_prologue_pc = after_prologue (pc);
3581
3582 if (post_prologue_pc != 0)
3583 return max (pc, post_prologue_pc);
3584
3585
3586 /* Can't determine prologue from the symbol table, (this can happen if there
3587 is no debug information) so we need to fall back on the old code, which
3588 looks at the instructions */
3589 /* FIXME (elz) !!!!: this may create a problem if, once the bp is hit, the user says
3590 where: the backtrace info is not right: this is because the point at which we
3591 break is at the very first instruction of the function. At this time the stuff that
3592 needs to be saved on the stack, has not been saved yet, so the backtrace
3593 cannot know all it needs to know. This will need to be fixed in the
3594 actual backtrace code. (Note: this is what DDE does) */
3595
3596 else
3597 return (skip_prologue_hard_way (pc));
3598
3599 #if 0
3600 /* elz: I am keeping this code around just in case, but remember, all the
3601 instructions are for alpha: you should change all to the hppa instructions */
3602
3603 /* Can't determine prologue from the symbol table, need to examine
3604 instructions. */
3605
3606 /* Skip the typical prologue instructions. These are the stack adjustment
3607 instruction and the instructions that save registers on the stack
3608 or in the gcc frame. */
3609 for (offset = 0; offset < 100; offset += 4)
3610 {
3611 int status;
3612
3613 status = read_memory_nobpt (pc + offset, buf, 4);
3614 if (status)
3615 memory_error (status, pc + offset);
3616 inst = extract_unsigned_integer (buf, 4);
3617
3618 /* The alpha has no delay slots. But let's keep the lenient stuff,
3619 we might need it for something else in the future. */
3620 if (lenient && 0)
3621 continue;
3622
3623 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
3624 continue;
3625 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
3626 continue;
3627 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
3628 continue;
3629 else if ((inst & 0xfc1f0000) == 0xb41e0000
3630 && (inst & 0xffff0000) != 0xb7fe0000)
3631 continue; /* stq reg,n($sp) */
3632 /* reg != $zero */
3633 else if ((inst & 0xfc1f0000) == 0x9c1e0000
3634 && (inst & 0xffff0000) != 0x9ffe0000)
3635 continue; /* stt reg,n($sp) */
3636 /* reg != $zero */
3637 else if (inst == 0x47de040f) /* bis sp,sp,fp */
3638 continue;
3639 else
3640 break;
3641 }
3642 return pc + offset;
3643 #endif /* 0 */
3644 }
3645
3646 /* Put here the code to store, into a struct frame_saved_regs,
3647 the addresses of the saved registers of frame described by FRAME_INFO.
3648 This includes special registers such as pc and fp saved in special
3649 ways in the stack frame. sp is even more special:
3650 the address we return for it IS the sp for the next frame. */
3651
3652 void
3653 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
3654 struct frame_info *frame_info;
3655 struct frame_saved_regs *frame_saved_regs;
3656 {
3657 CORE_ADDR pc;
3658 struct unwind_table_entry *u;
3659 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3660 int status, i, reg;
3661 char buf[4];
3662 int fp_loc = -1;
3663
3664 /* Zero out everything. */
3665 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3666
3667 /* Call dummy frames always look the same, so there's no need to
3668 examine the dummy code to determine locations of saved registers;
3669 instead, let find_dummy_frame_regs fill in the correct offsets
3670 for the saved registers. */
3671 if ((frame_info->pc >= frame_info->frame
3672 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
3673 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
3674 + 6 * 4)))
3675 find_dummy_frame_regs (frame_info, frame_saved_regs);
3676
3677 /* Interrupt handlers are special too. They lay out the register
3678 state in the exact same order as the register numbers in GDB. */
3679 if (pc_in_interrupt_handler (frame_info->pc))
3680 {
3681 for (i = 0; i < NUM_REGS; i++)
3682 {
3683 /* SP is a little special. */
3684 if (i == SP_REGNUM)
3685 frame_saved_regs->regs[SP_REGNUM]
3686 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
3687 else
3688 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3689 }
3690 return;
3691 }
3692
3693 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3694 /* Handle signal handler callers. */
3695 if (frame_info->signal_handler_caller)
3696 {
3697 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3698 return;
3699 }
3700 #endif
3701
3702 /* Get the starting address of the function referred to by the PC
3703 saved in frame. */
3704 pc = get_pc_function_start (frame_info->pc);
3705
3706 /* Yow! */
3707 u = find_unwind_entry (pc);
3708 if (!u)
3709 return;
3710
3711 /* This is how much of a frame adjustment we need to account for. */
3712 stack_remaining = u->Total_frame_size << 3;
3713
3714 /* Magic register saves we want to know about. */
3715 save_rp = u->Save_RP;
3716 save_sp = u->Save_SP;
3717
3718 /* Turn the Entry_GR field into a bitmask. */
3719 save_gr = 0;
3720 for (i = 3; i < u->Entry_GR + 3; i++)
3721 {
3722 /* Frame pointer gets saved into a special location. */
3723 if (u->Save_SP && i == FP_REGNUM)
3724 continue;
3725
3726 save_gr |= (1 << i);
3727 }
3728
3729 /* Turn the Entry_FR field into a bitmask too. */
3730 save_fr = 0;
3731 for (i = 12; i < u->Entry_FR + 12; i++)
3732 save_fr |= (1 << i);
3733
3734 /* The frame always represents the value of %sp at entry to the
3735 current function (and is thus equivalent to the "saved" stack
3736 pointer. */
3737 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3738
3739 /* Loop until we find everything of interest or hit a branch.
3740
3741 For unoptimized GCC code and for any HP CC code this will never ever
3742 examine any user instructions.
3743
3744 For optimzied GCC code we're faced with problems. GCC will schedule
3745 its prologue and make prologue instructions available for delay slot
3746 filling. The end result is user code gets mixed in with the prologue
3747 and a prologue instruction may be in the delay slot of the first branch
3748 or call.
3749
3750 Some unexpected things are expected with debugging optimized code, so
3751 we allow this routine to walk past user instructions in optimized
3752 GCC code. */
3753 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3754 {
3755 status = target_read_memory (pc, buf, 4);
3756 inst = extract_unsigned_integer (buf, 4);
3757
3758 /* Yow! */
3759 if (status != 0)
3760 return;
3761
3762 /* Note the interesting effects of this instruction. */
3763 stack_remaining -= prologue_inst_adjust_sp (inst);
3764
3765 /* There is only one instruction used for saving RP into the stack. */
3766 if (inst == 0x6bc23fd9)
3767 {
3768 save_rp = 0;
3769 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3770 }
3771
3772 /* Just note that we found the save of SP into the stack. The
3773 value for frame_saved_regs was computed above. */
3774 if ((inst & 0xffffc000) == 0x6fc10000)
3775 save_sp = 0;
3776
3777 /* Account for general and floating-point register saves. */
3778 reg = inst_saves_gr (inst);
3779 if (reg >= 3 && reg <= 18
3780 && (!u->Save_SP || reg != FP_REGNUM))
3781 {
3782 save_gr &= ~(1 << reg);
3783
3784 /* stwm with a positive displacement is a *post modify*. */
3785 if ((inst >> 26) == 0x1b
3786 && extract_14 (inst) >= 0)
3787 frame_saved_regs->regs[reg] = frame_info->frame;
3788 else
3789 {
3790 /* Handle code with and without frame pointers. */
3791 if (u->Save_SP)
3792 frame_saved_regs->regs[reg]
3793 = frame_info->frame + extract_14 (inst);
3794 else
3795 frame_saved_regs->regs[reg]
3796 = frame_info->frame + (u->Total_frame_size << 3)
3797 + extract_14 (inst);
3798 }
3799 }
3800
3801
3802 /* GCC handles callee saved FP regs a little differently.
3803
3804 It emits an instruction to put the value of the start of
3805 the FP store area into %r1. It then uses fstds,ma with
3806 a basereg of %r1 for the stores.
3807
3808 HP CC emits them at the current stack pointer modifying
3809 the stack pointer as it stores each register. */
3810
3811 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
3812 if ((inst & 0xffffc000) == 0x34610000
3813 || (inst & 0xffffc000) == 0x37c10000)
3814 fp_loc = extract_14 (inst);
3815
3816 reg = inst_saves_fr (inst);
3817 if (reg >= 12 && reg <= 21)
3818 {
3819 /* Note +4 braindamage below is necessary because the FP status
3820 registers are internally 8 registers rather than the expected
3821 4 registers. */
3822 save_fr &= ~(1 << reg);
3823 if (fp_loc == -1)
3824 {
3825 /* 1st HP CC FP register store. After this instruction
3826 we've set enough state that the GCC and HPCC code are
3827 both handled in the same manner. */
3828 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
3829 fp_loc = 8;
3830 }
3831 else
3832 {
3833 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
3834 = frame_info->frame + fp_loc;
3835 fp_loc += 8;
3836 }
3837 }
3838
3839 /* Quit if we hit any kind of branch. This can happen if a prologue
3840 instruction is in the delay slot of the first call/branch. */
3841 if (is_branch (inst))
3842 break;
3843
3844 /* Bump the PC. */
3845 pc += 4;
3846 }
3847 }
3848
3849
3850 /* Exception handling support for the HP-UX ANSI C++ compiler.
3851 The compiler (aCC) provides a callback for exception events;
3852 GDB can set a breakpoint on this callback and find out what
3853 exception event has occurred. */
3854
3855 /* The name of the hook to be set to point to the callback function */
3856 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
3857 /* The name of the function to be used to set the hook value */
3858 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
3859 /* The name of the callback function in end.o */
3860 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
3861 /* Name of function in end.o on which a break is set (called by above) */
3862 static char HP_ACC_EH_break[] = "__d_eh_break";
3863 /* Name of flag (in end.o) that enables catching throws */
3864 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
3865 /* Name of flag (in end.o) that enables catching catching */
3866 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
3867 /* The enum used by aCC */
3868 typedef enum
3869 {
3870 __EH_NOTIFY_THROW,
3871 __EH_NOTIFY_CATCH
3872 }
3873 __eh_notification;
3874
3875 /* Is exception-handling support available with this executable? */
3876 static int hp_cxx_exception_support = 0;
3877 /* Has the initialize function been run? */
3878 int hp_cxx_exception_support_initialized = 0;
3879 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
3880 extern int exception_support_initialized;
3881 /* Address of __eh_notify_hook */
3882 static CORE_ADDR eh_notify_hook_addr = NULL;
3883 /* Address of __d_eh_notify_callback */
3884 static CORE_ADDR eh_notify_callback_addr = NULL;
3885 /* Address of __d_eh_break */
3886 static CORE_ADDR eh_break_addr = NULL;
3887 /* Address of __d_eh_catch_catch */
3888 static CORE_ADDR eh_catch_catch_addr = NULL;
3889 /* Address of __d_eh_catch_throw */
3890 static CORE_ADDR eh_catch_throw_addr = NULL;
3891 /* Sal for __d_eh_break */
3892 static struct symtab_and_line *break_callback_sal = NULL;
3893
3894 /* Code in end.c expects __d_pid to be set in the inferior,
3895 otherwise __d_eh_notify_callback doesn't bother to call
3896 __d_eh_break! So we poke the pid into this symbol
3897 ourselves.
3898 0 => success
3899 1 => failure */
3900 int
3901 setup_d_pid_in_inferior ()
3902 {
3903 CORE_ADDR anaddr;
3904 struct minimal_symbol *msymbol;
3905 char buf[4]; /* FIXME 32x64? */
3906
3907 /* Slam the pid of the process into __d_pid; failing is only a warning! */
3908 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
3909 if (msymbol == NULL)
3910 {
3911 warning ("Unable to find __d_pid symbol in object file.");
3912 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3913 return 1;
3914 }
3915
3916 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
3917 store_unsigned_integer (buf, 4, inferior_pid); /* FIXME 32x64? */
3918 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
3919 {
3920 warning ("Unable to write __d_pid");
3921 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
3922 return 1;
3923 }
3924 return 0;
3925 }
3926
3927 /* Initialize exception catchpoint support by looking for the
3928 necessary hooks/callbacks in end.o, etc., and set the hook value to
3929 point to the required debug function
3930
3931 Return 0 => failure
3932 1 => success */
3933
3934 static int
3935 initialize_hp_cxx_exception_support ()
3936 {
3937 struct symtabs_and_lines sals;
3938 struct cleanup *old_chain;
3939 struct cleanup *canonical_strings_chain = NULL;
3940 int i;
3941 char *addr_start;
3942 char *addr_end = NULL;
3943 char **canonical = (char **) NULL;
3944 int thread = -1;
3945 struct symbol *sym = NULL;
3946 struct minimal_symbol *msym = NULL;
3947 struct objfile *objfile;
3948 asection *shlib_info;
3949
3950 /* Detect and disallow recursion. On HP-UX with aCC, infinite
3951 recursion is a possibility because finding the hook for exception
3952 callbacks involves making a call in the inferior, which means
3953 re-inserting breakpoints which can re-invoke this code */
3954
3955 static int recurse = 0;
3956 if (recurse > 0)
3957 {
3958 hp_cxx_exception_support_initialized = 0;
3959 exception_support_initialized = 0;
3960 return 0;
3961 }
3962
3963 hp_cxx_exception_support = 0;
3964
3965 /* First check if we have seen any HP compiled objects; if not,
3966 it is very unlikely that HP's idiosyncratic callback mechanism
3967 for exception handling debug support will be available!
3968 This will percolate back up to breakpoint.c, where our callers
3969 will decide to try the g++ exception-handling support instead. */
3970 if (!hp_som_som_object_present)
3971 return 0;
3972
3973 /* We have a SOM executable with SOM debug info; find the hooks */
3974
3975 /* First look for the notify hook provided by aCC runtime libs */
3976 /* If we find this symbol, we conclude that the executable must
3977 have HP aCC exception support built in. If this symbol is not
3978 found, even though we're a HP SOM-SOM file, we may have been
3979 built with some other compiler (not aCC). This results percolates
3980 back up to our callers in breakpoint.c which can decide to
3981 try the g++ style of exception support instead.
3982 If this symbol is found but the other symbols we require are
3983 not found, there is something weird going on, and g++ support
3984 should *not* be tried as an alternative.
3985
3986 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
3987 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
3988
3989 /* libCsup has this hook; it'll usually be non-debuggable */
3990 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
3991 if (msym)
3992 {
3993 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
3994 hp_cxx_exception_support = 1;
3995 }
3996 else
3997 {
3998 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
3999 warning ("Executable may not have been compiled debuggable with HP aCC.");
4000 warning ("GDB will be unable to intercept exception events.");
4001 eh_notify_hook_addr = 0;
4002 hp_cxx_exception_support = 0;
4003 return 0;
4004 }
4005
4006 /* Next look for the notify callback routine in end.o */
4007 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4008 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4009 if (msym)
4010 {
4011 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4012 hp_cxx_exception_support = 1;
4013 }
4014 else
4015 {
4016 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4017 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4018 warning ("GDB will be unable to intercept exception events.");
4019 eh_notify_callback_addr = 0;
4020 return 0;
4021 }
4022
4023 /* Check whether the executable is dynamically linked or archive bound */
4024 /* With an archive-bound executable we can use the raw addresses we find
4025 for the callback function, etc. without modification. For an executable
4026 with shared libraries, we have to do more work to find the plabel, which
4027 can be the target of a call through $$dyncall from the aCC runtime support
4028 library (libCsup) which is linked shared by default by aCC. */
4029 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4030 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4031 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4032 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4033 {
4034 /* The minsym we have has the local code address, but that's not the
4035 plabel that can be used by an inter-load-module call. */
4036 /* Find solib handle for main image (which has end.o), and use that
4037 and the min sym as arguments to __d_shl_get() (which does the equivalent
4038 of shl_findsym()) to find the plabel. */
4039
4040 args_for_find_stub args;
4041 static char message[] = "Error while finding exception callback hook:\n";
4042
4043 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4044 args.msym = msym;
4045
4046 recurse++;
4047 eh_notify_callback_addr = catch_errors ((int (*)PARAMS ((char *))) cover_find_stub_with_shl_get,
4048 (char *) &args,
4049 message, RETURN_MASK_ALL);
4050 recurse--;
4051
4052 exception_catchpoints_are_fragile = 1;
4053
4054 if (!eh_notify_callback_addr)
4055 {
4056 /* We can get here either if there is no plabel in the export list
4057 for the main image, or if something strange happened (??) */
4058 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4059 warning ("GDB will not be able to intercept exception events.");
4060 return 0;
4061 }
4062 }
4063 else
4064 exception_catchpoints_are_fragile = 0;
4065
4066 /* Now, look for the breakpointable routine in end.o */
4067 /* This should also be available in the SOM symbol dict. if end.o linked in */
4068 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4069 if (msym)
4070 {
4071 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4072 hp_cxx_exception_support = 1;
4073 }
4074 else
4075 {
4076 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4077 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4078 warning ("GDB will be unable to intercept exception events.");
4079 eh_break_addr = 0;
4080 return 0;
4081 }
4082
4083 /* Next look for the catch enable flag provided in end.o */
4084 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4085 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4086 if (sym) /* sometimes present in debug info */
4087 {
4088 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4089 hp_cxx_exception_support = 1;
4090 }
4091 else
4092 /* otherwise look in SOM symbol dict. */
4093 {
4094 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4095 if (msym)
4096 {
4097 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4098 hp_cxx_exception_support = 1;
4099 }
4100 else
4101 {
4102 warning ("Unable to enable interception of exception catches.");
4103 warning ("Executable may not have been compiled debuggable with HP aCC.");
4104 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4105 return 0;
4106 }
4107 }
4108
4109 /* Next look for the catch enable flag provided end.o */
4110 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4111 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4112 if (sym) /* sometimes present in debug info */
4113 {
4114 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4115 hp_cxx_exception_support = 1;
4116 }
4117 else
4118 /* otherwise look in SOM symbol dict. */
4119 {
4120 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4121 if (msym)
4122 {
4123 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4124 hp_cxx_exception_support = 1;
4125 }
4126 else
4127 {
4128 warning ("Unable to enable interception of exception throws.");
4129 warning ("Executable may not have been compiled debuggable with HP aCC.");
4130 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4131 return 0;
4132 }
4133 }
4134
4135 /* Set the flags */
4136 hp_cxx_exception_support = 2; /* everything worked so far */
4137 hp_cxx_exception_support_initialized = 1;
4138 exception_support_initialized = 1;
4139
4140 return 1;
4141 }
4142
4143 /* Target operation for enabling or disabling interception of
4144 exception events.
4145 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4146 ENABLE is either 0 (disable) or 1 (enable).
4147 Return value is NULL if no support found;
4148 -1 if something went wrong,
4149 or a pointer to a symtab/line struct if the breakpointable
4150 address was found. */
4151
4152 struct symtab_and_line *
4153 child_enable_exception_callback (kind, enable)
4154 enum exception_event_kind kind;
4155 int enable;
4156 {
4157 char buf[4];
4158
4159 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4160 if (!initialize_hp_cxx_exception_support ())
4161 return NULL;
4162
4163 switch (hp_cxx_exception_support)
4164 {
4165 case 0:
4166 /* Assuming no HP support at all */
4167 return NULL;
4168 case 1:
4169 /* HP support should be present, but something went wrong */
4170 return (struct symtab_and_line *) -1; /* yuck! */
4171 /* there may be other cases in the future */
4172 }
4173
4174 /* Set the EH hook to point to the callback routine */
4175 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4176 /* pai: (temp) FIXME should there be a pack operation first? */
4177 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4178 {
4179 warning ("Could not write to target memory for exception event callback.");
4180 warning ("Interception of exception events may not work.");
4181 return (struct symtab_and_line *) -1;
4182 }
4183 if (enable)
4184 {
4185 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4186 if (inferior_pid > 0)
4187 {
4188 if (setup_d_pid_in_inferior ())
4189 return (struct symtab_and_line *) -1;
4190 }
4191 else
4192 {
4193 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events."); /* purecov: deadcode */
4194 return (struct symtab_and_line *) -1; /* purecov: deadcode */
4195 }
4196 }
4197
4198 switch (kind)
4199 {
4200 case EX_EVENT_THROW:
4201 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4202 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4203 {
4204 warning ("Couldn't enable exception throw interception.");
4205 return (struct symtab_and_line *) -1;
4206 }
4207 break;
4208 case EX_EVENT_CATCH:
4209 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4210 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4211 {
4212 warning ("Couldn't enable exception catch interception.");
4213 return (struct symtab_and_line *) -1;
4214 }
4215 break;
4216 default: /* purecov: deadcode */
4217 error ("Request to enable unknown or unsupported exception event."); /* purecov: deadcode */
4218 }
4219
4220 /* Copy break address into new sal struct, malloc'ing if needed. */
4221 if (!break_callback_sal)
4222 {
4223 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4224 }
4225 INIT_SAL (break_callback_sal);
4226 break_callback_sal->symtab = NULL;
4227 break_callback_sal->pc = eh_break_addr;
4228 break_callback_sal->line = 0;
4229 break_callback_sal->end = eh_break_addr;
4230
4231 return break_callback_sal;
4232 }
4233
4234 /* Record some information about the current exception event */
4235 static struct exception_event_record current_ex_event;
4236 /* Convenience struct */
4237 static struct symtab_and_line null_symtab_and_line =
4238 {NULL, 0, 0, 0};
4239
4240 /* Report current exception event. Returns a pointer to a record
4241 that describes the kind of the event, where it was thrown from,
4242 and where it will be caught. More information may be reported
4243 in the future */
4244 struct exception_event_record *
4245 child_get_current_exception_event ()
4246 {
4247 CORE_ADDR event_kind;
4248 CORE_ADDR throw_addr;
4249 CORE_ADDR catch_addr;
4250 struct frame_info *fi, *curr_frame;
4251 int level = 1;
4252
4253 curr_frame = get_current_frame ();
4254 if (!curr_frame)
4255 return (struct exception_event_record *) NULL;
4256
4257 /* Go up one frame to __d_eh_notify_callback, because at the
4258 point when this code is executed, there's garbage in the
4259 arguments of __d_eh_break. */
4260 fi = find_relative_frame (curr_frame, &level);
4261 if (level != 0)
4262 return (struct exception_event_record *) NULL;
4263
4264 select_frame (fi, -1);
4265
4266 /* Read in the arguments */
4267 /* __d_eh_notify_callback() is called with 3 arguments:
4268 1. event kind catch or throw
4269 2. the target address if known
4270 3. a flag -- not sure what this is. pai/1997-07-17 */
4271 event_kind = read_register (ARG0_REGNUM);
4272 catch_addr = read_register (ARG1_REGNUM);
4273
4274 /* Now go down to a user frame */
4275 /* For a throw, __d_eh_break is called by
4276 __d_eh_notify_callback which is called by
4277 __notify_throw which is called
4278 from user code.
4279 For a catch, __d_eh_break is called by
4280 __d_eh_notify_callback which is called by
4281 <stackwalking stuff> which is called by
4282 __throw__<stuff> or __rethrow_<stuff> which is called
4283 from user code. */
4284 /* FIXME: Don't use such magic numbers; search for the frames */
4285 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4286 fi = find_relative_frame (curr_frame, &level);
4287 if (level != 0)
4288 return (struct exception_event_record *) NULL;
4289
4290 select_frame (fi, -1);
4291 throw_addr = fi->pc;
4292
4293 /* Go back to original (top) frame */
4294 select_frame (curr_frame, -1);
4295
4296 current_ex_event.kind = (enum exception_event_kind) event_kind;
4297 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4298 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4299
4300 return &current_ex_event;
4301 }
4302
4303 static void
4304 unwind_command (exp, from_tty)
4305 char *exp;
4306 int from_tty;
4307 {
4308 CORE_ADDR address;
4309 struct unwind_table_entry *u;
4310
4311 /* If we have an expression, evaluate it and use it as the address. */
4312
4313 if (exp != 0 && *exp != 0)
4314 address = parse_and_eval_address (exp);
4315 else
4316 return;
4317
4318 u = find_unwind_entry (address);
4319
4320 if (!u)
4321 {
4322 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4323 return;
4324 }
4325
4326 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4327
4328 printf_unfiltered ("\tregion_start = ");
4329 print_address (u->region_start, gdb_stdout);
4330
4331 printf_unfiltered ("\n\tregion_end = ");
4332 print_address (u->region_end, gdb_stdout);
4333
4334 #ifdef __STDC__
4335 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4336 #else
4337 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
4338 #endif
4339
4340 printf_unfiltered ("\n\tflags =");
4341 pif (Cannot_unwind);
4342 pif (Millicode);
4343 pif (Millicode_save_sr0);
4344 pif (Entry_SR);
4345 pif (Args_stored);
4346 pif (Variable_Frame);
4347 pif (Separate_Package_Body);
4348 pif (Frame_Extension_Millicode);
4349 pif (Stack_Overflow_Check);
4350 pif (Two_Instruction_SP_Increment);
4351 pif (Ada_Region);
4352 pif (Save_SP);
4353 pif (Save_RP);
4354 pif (Save_MRP_in_frame);
4355 pif (extn_ptr_defined);
4356 pif (Cleanup_defined);
4357 pif (MPE_XL_interrupt_marker);
4358 pif (HP_UX_interrupt_marker);
4359 pif (Large_frame);
4360
4361 putchar_unfiltered ('\n');
4362
4363 #ifdef __STDC__
4364 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4365 #else
4366 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
4367 #endif
4368
4369 pin (Region_description);
4370 pin (Entry_FR);
4371 pin (Entry_GR);
4372 pin (Total_frame_size);
4373 }
4374
4375 #ifdef PREPARE_TO_PROCEED
4376
4377 /* If the user has switched threads, and there is a breakpoint
4378 at the old thread's pc location, then switch to that thread
4379 and return TRUE, else return FALSE and don't do a thread
4380 switch (or rather, don't seem to have done a thread switch).
4381
4382 Ptrace-based gdb will always return FALSE to the thread-switch
4383 query, and thus also to PREPARE_TO_PROCEED.
4384
4385 The important thing is whether there is a BPT instruction,
4386 not how many user breakpoints there are. So we have to worry
4387 about things like these:
4388
4389 o Non-bp stop -- NO
4390
4391 o User hits bp, no switch -- NO
4392
4393 o User hits bp, switches threads -- YES
4394
4395 o User hits bp, deletes bp, switches threads -- NO
4396
4397 o User hits bp, deletes one of two or more bps
4398 at that PC, user switches threads -- YES
4399
4400 o Plus, since we're buffering events, the user may have hit a
4401 breakpoint, deleted the breakpoint and then gotten another
4402 hit on that same breakpoint on another thread which
4403 actually hit before the delete. (FIXME in breakpoint.c
4404 so that "dead" breakpoints are ignored?) -- NO
4405
4406 For these reasons, we have to violate information hiding and
4407 call "breakpoint_here_p". If core gdb thinks there is a bpt
4408 here, that's what counts, as core gdb is the one which is
4409 putting the BPT instruction in and taking it out. */
4410 int
4411 hppa_prepare_to_proceed ()
4412 {
4413 pid_t old_thread;
4414 pid_t current_thread;
4415
4416 old_thread = hppa_switched_threads (inferior_pid);
4417 if (old_thread != 0)
4418 {
4419 /* Switched over from "old_thread". Try to do
4420 as little work as possible, 'cause mostly
4421 we're going to switch back. */
4422 CORE_ADDR new_pc;
4423 CORE_ADDR old_pc = read_pc ();
4424
4425 /* Yuk, shouldn't use global to specify current
4426 thread. But that's how gdb does it. */
4427 current_thread = inferior_pid;
4428 inferior_pid = old_thread;
4429
4430 new_pc = read_pc ();
4431 if (new_pc != old_pc /* If at same pc, no need */
4432 && breakpoint_here_p (new_pc))
4433 {
4434 /* User hasn't deleted the BP.
4435 Return TRUE, finishing switch to "old_thread". */
4436 flush_cached_frames ();
4437 registers_changed ();
4438 #if 0
4439 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4440 current_thread, inferior_pid);
4441 #endif
4442
4443 return 1;
4444 }
4445
4446 /* Otherwise switch back to the user-chosen thread. */
4447 inferior_pid = current_thread;
4448 new_pc = read_pc (); /* Re-prime register cache */
4449 }
4450
4451 return 0;
4452 }
4453 #endif /* PREPARE_TO_PROCEED */
4454
4455 void
4456 _initialize_hppa_tdep ()
4457 {
4458 tm_print_insn = print_insn_hppa;
4459
4460 add_cmd ("unwind", class_maintenance, unwind_command,
4461 "Print unwind table entry at given address.",
4462 &maintenanceprintlist);
4463 }