]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/hppa-tdep.c
e8f01ef08a1345a13df0638de1570fea97b06ce2
[thirdparty/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to. */
867 u = find_unwind_entry (pc);
868 if (u && u->stub_type != 0)
869 {
870 unsigned int insn;
871
872 /* If this is a dynamic executable, and we're in a signal handler,
873 then the call chain will eventually point us into the stub for
874 _sigreturn. Unlike most cases, we'll be pointed to the branch
875 to the real sigreturn rather than the code after the real branch!.
876
877 Else, try to dig the address the stub will return to in the normal
878 fashion. */
879 insn = read_memory_integer (pc, 4);
880 if ((insn & 0xfc00e000) == 0xe8000000)
881 return (pc + extract_17 (insn) + 8) & ~0x3;
882 else
883 goto restart;
884 }
885
886 return pc;
887 }
888 \f
889 /* We need to correct the PC and the FP for the outermost frame when we are
890 in a system call. */
891
892 void
893 init_extra_frame_info (fromleaf, frame)
894 int fromleaf;
895 struct frame_info *frame;
896 {
897 int flags;
898 int framesize;
899
900 if (frame->next && !fromleaf)
901 return;
902
903 /* If the next frame represents a frameless function invocation
904 then we have to do some adjustments that are normally done by
905 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
906 if (fromleaf)
907 {
908 /* Find the framesize of *this* frame without peeking at the PC
909 in the current frame structure (it isn't set yet). */
910 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
911
912 /* Now adjust our base frame accordingly. If we have a frame pointer
913 use it, else subtract the size of this frame from the current
914 frame. (we always want frame->frame to point at the lowest address
915 in the frame). */
916 if (framesize == -1)
917 frame->frame = read_register (FP_REGNUM);
918 else
919 frame->frame -= framesize;
920 return;
921 }
922
923 flags = read_register (FLAGS_REGNUM);
924 if (flags & 2) /* In system call? */
925 frame->pc = read_register (31) & ~0x3;
926
927 /* The outermost frame is always derived from PC-framesize
928
929 One might think frameless innermost frames should have
930 a frame->frame that is the same as the parent's frame->frame.
931 That is wrong; frame->frame in that case should be the *high*
932 address of the parent's frame. It's complicated as hell to
933 explain, but the parent *always* creates some stack space for
934 the child. So the child actually does have a frame of some
935 sorts, and its base is the high address in its parent's frame. */
936 framesize = find_proc_framesize(frame->pc);
937 if (framesize == -1)
938 frame->frame = read_register (FP_REGNUM);
939 else
940 frame->frame = read_register (SP_REGNUM) - framesize;
941 }
942 \f
943 /* Given a GDB frame, determine the address of the calling function's frame.
944 This will be used to create a new GDB frame struct, and then
945 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
946
947 This may involve searching through prologues for several functions
948 at boundaries where GCC calls HP C code, or where code which has
949 a frame pointer calls code without a frame pointer. */
950
951 CORE_ADDR
952 frame_chain (frame)
953 struct frame_info *frame;
954 {
955 int my_framesize, caller_framesize;
956 struct unwind_table_entry *u;
957 CORE_ADDR frame_base;
958 struct frame_info *tmp_frame;
959
960 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
961 are easy; at *sp we have a full save state strucutre which we can
962 pull the old stack pointer from. Also see frame_saved_pc for
963 code to dig a saved PC out of the save state structure. */
964 if (pc_in_interrupt_handler (frame->pc))
965 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
966 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
967 else if (frame->signal_handler_caller)
968 {
969 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
970 }
971 #endif
972 else
973 frame_base = frame->frame;
974
975 /* Get frame sizes for the current frame and the frame of the
976 caller. */
977 my_framesize = find_proc_framesize (frame->pc);
978 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
979
980 /* If caller does not have a frame pointer, then its frame
981 can be found at current_frame - caller_framesize. */
982 if (caller_framesize != -1)
983 return frame_base - caller_framesize;
984
985 /* Both caller and callee have frame pointers and are GCC compiled
986 (SAVE_SP bit in unwind descriptor is on for both functions.
987 The previous frame pointer is found at the top of the current frame. */
988 if (caller_framesize == -1 && my_framesize == -1)
989 return read_memory_integer (frame_base, 4);
990
991 /* Caller has a frame pointer, but callee does not. This is a little
992 more difficult as GCC and HP C lay out locals and callee register save
993 areas very differently.
994
995 The previous frame pointer could be in a register, or in one of
996 several areas on the stack.
997
998 Walk from the current frame to the innermost frame examining
999 unwind descriptors to determine if %r3 ever gets saved into the
1000 stack. If so return whatever value got saved into the stack.
1001 If it was never saved in the stack, then the value in %r3 is still
1002 valid, so use it.
1003
1004 We use information from unwind descriptors to determine if %r3
1005 is saved into the stack (Entry_GR field has this information). */
1006
1007 tmp_frame = frame;
1008 while (tmp_frame)
1009 {
1010 u = find_unwind_entry (tmp_frame->pc);
1011
1012 if (!u)
1013 {
1014 /* We could find this information by examining prologues. I don't
1015 think anyone has actually written any tools (not even "strip")
1016 which leave them out of an executable, so maybe this is a moot
1017 point. */
1018 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1019 return 0;
1020 }
1021
1022 /* Entry_GR specifies the number of callee-saved general registers
1023 saved in the stack. It starts at %r3, so %r3 would be 1. */
1024 if (u->Entry_GR >= 1 || u->Save_SP
1025 || tmp_frame->signal_handler_caller
1026 || pc_in_interrupt_handler (tmp_frame->pc))
1027 break;
1028 else
1029 tmp_frame = tmp_frame->next;
1030 }
1031
1032 if (tmp_frame)
1033 {
1034 /* We may have walked down the chain into a function with a frame
1035 pointer. */
1036 if (u->Save_SP
1037 && !tmp_frame->signal_handler_caller
1038 && !pc_in_interrupt_handler (tmp_frame->pc))
1039 return read_memory_integer (tmp_frame->frame, 4);
1040 /* %r3 was saved somewhere in the stack. Dig it out. */
1041 else
1042 {
1043 struct frame_saved_regs saved_regs;
1044
1045 /* Sick.
1046
1047 For optimization purposes many kernels don't have the
1048 callee saved registers into the save_state structure upon
1049 entry into the kernel for a syscall; the optimization
1050 is usually turned off if the process is being traced so
1051 that the debugger can get full register state for the
1052 process.
1053
1054 This scheme works well except for two cases:
1055
1056 * Attaching to a process when the process is in the
1057 kernel performing a system call (debugger can't get
1058 full register state for the inferior process since
1059 the process wasn't being traced when it entered the
1060 system call).
1061
1062 * Register state is not complete if the system call
1063 causes the process to core dump.
1064
1065
1066 The following heinous code is an attempt to deal with
1067 the lack of register state in a core dump. It will
1068 fail miserably if the function which performs the
1069 system call has a variable sized stack frame. */
1070
1071 get_frame_saved_regs (tmp_frame, &saved_regs);
1072
1073 /* Abominable hack. */
1074 if (current_target.to_has_execution == 0
1075 && saved_regs.regs[FLAGS_REGNUM]
1076 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2))
1077 {
1078 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1079 if (!u)
1080 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1081 else
1082 return frame_base - (u->Total_frame_size << 3);
1083 }
1084
1085 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1086 }
1087 }
1088 else
1089 {
1090 /* The value in %r3 was never saved into the stack (thus %r3 still
1091 holds the value of the previous frame pointer). */
1092 return read_register (FP_REGNUM);
1093 }
1094 }
1095
1096 \f
1097 /* To see if a frame chain is valid, see if the caller looks like it
1098 was compiled with gcc. */
1099
1100 int
1101 frame_chain_valid (chain, thisframe)
1102 CORE_ADDR chain;
1103 struct frame_info *thisframe;
1104 {
1105 struct minimal_symbol *msym_us;
1106 struct minimal_symbol *msym_start;
1107 struct unwind_table_entry *u, *next_u = NULL;
1108 struct frame_info *next;
1109
1110 if (!chain)
1111 return 0;
1112
1113 u = find_unwind_entry (thisframe->pc);
1114
1115 if (u == NULL)
1116 return 1;
1117
1118 /* We can't just check that the same of msym_us is "_start", because
1119 someone idiotically decided that they were going to make a Ltext_end
1120 symbol with the same address. This Ltext_end symbol is totally
1121 indistinguishable (as nearly as I can tell) from the symbol for a function
1122 which is (legitimately, since it is in the user's namespace)
1123 named Ltext_end, so we can't just ignore it. */
1124 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1125 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1126 if (msym_us
1127 && msym_start
1128 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1129 return 0;
1130
1131 next = get_next_frame (thisframe);
1132 if (next)
1133 next_u = find_unwind_entry (next->pc);
1134
1135 /* If this frame does not save SP, has no stack, isn't a stub,
1136 and doesn't "call" an interrupt routine or signal handler caller,
1137 then its not valid. */
1138 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1139 || (thisframe->next && thisframe->next->signal_handler_caller)
1140 || (next_u && next_u->HP_UX_interrupt_marker))
1141 return 1;
1142
1143 if (pc_in_linker_stub (thisframe->pc))
1144 return 1;
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * These functions deal with saving and restoring register state
1151 * around a function call in the inferior. They keep the stack
1152 * double-word aligned; eventually, on an hp700, the stack will have
1153 * to be aligned to a 64-byte boundary.
1154 */
1155
1156 void
1157 push_dummy_frame (inf_status)
1158 struct inferior_status *inf_status;
1159 {
1160 CORE_ADDR sp, pc, pcspace;
1161 register int regnum;
1162 int int_buffer;
1163 double freg_buffer;
1164
1165 /* Oh, what a hack. If we're trying to perform an inferior call
1166 while the inferior is asleep, we have to make sure to clear
1167 the "in system call" bit in the flag register (the call will
1168 start after the syscall returns, so we're no longer in the system
1169 call!) This state is kept in "inf_status", change it there.
1170
1171 We also need a number of horrid hacks to deal with lossage in the
1172 PC queue registers (apparently they're not valid when the in syscall
1173 bit is set). */
1174 pc = target_read_pc (inferior_pid);
1175 int_buffer = read_register (FLAGS_REGNUM);
1176 if (int_buffer & 0x2)
1177 {
1178 unsigned int sid;
1179 int_buffer &= ~0x2;
1180 memcpy (inf_status->registers, &int_buffer, 4);
1181 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1182 pc += 4;
1183 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1184 pc -= 4;
1185 sid = (pc >> 30) & 0x3;
1186 if (sid == 0)
1187 pcspace = read_register (SR4_REGNUM);
1188 else
1189 pcspace = read_register (SR4_REGNUM + 4 + sid);
1190 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1191 &pcspace, 4);
1192 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1193 &pcspace, 4);
1194 }
1195 else
1196 pcspace = read_register (PCSQ_HEAD_REGNUM);
1197
1198 /* Space for "arguments"; the RP goes in here. */
1199 sp = read_register (SP_REGNUM) + 48;
1200 int_buffer = read_register (RP_REGNUM) | 0x3;
1201 write_memory (sp - 20, (char *)&int_buffer, 4);
1202
1203 int_buffer = read_register (FP_REGNUM);
1204 write_memory (sp, (char *)&int_buffer, 4);
1205
1206 write_register (FP_REGNUM, sp);
1207
1208 sp += 8;
1209
1210 for (regnum = 1; regnum < 32; regnum++)
1211 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1212 sp = push_word (sp, read_register (regnum));
1213
1214 sp += 4;
1215
1216 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1217 {
1218 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1219 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1220 }
1221 sp = push_word (sp, read_register (IPSW_REGNUM));
1222 sp = push_word (sp, read_register (SAR_REGNUM));
1223 sp = push_word (sp, pc);
1224 sp = push_word (sp, pcspace);
1225 sp = push_word (sp, pc + 4);
1226 sp = push_word (sp, pcspace);
1227 write_register (SP_REGNUM, sp);
1228 }
1229
1230 void
1231 find_dummy_frame_regs (frame, frame_saved_regs)
1232 struct frame_info *frame;
1233 struct frame_saved_regs *frame_saved_regs;
1234 {
1235 CORE_ADDR fp = frame->frame;
1236 int i;
1237
1238 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1239 frame_saved_regs->regs[FP_REGNUM] = fp;
1240 frame_saved_regs->regs[1] = fp + 8;
1241
1242 for (fp += 12, i = 3; i < 32; i++)
1243 {
1244 if (i != FP_REGNUM)
1245 {
1246 frame_saved_regs->regs[i] = fp;
1247 fp += 4;
1248 }
1249 }
1250
1251 fp += 4;
1252 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1253 frame_saved_regs->regs[i] = fp;
1254
1255 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1256 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1257 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1258 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1259 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1260 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1261 }
1262
1263 void
1264 hppa_pop_frame ()
1265 {
1266 register struct frame_info *frame = get_current_frame ();
1267 register CORE_ADDR fp, npc, target_pc;
1268 register int regnum;
1269 struct frame_saved_regs fsr;
1270 double freg_buffer;
1271
1272 fp = FRAME_FP (frame);
1273 get_frame_saved_regs (frame, &fsr);
1274
1275 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1276 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1277 restore_pc_queue (&fsr);
1278 #endif
1279
1280 for (regnum = 31; regnum > 0; regnum--)
1281 if (fsr.regs[regnum])
1282 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1283
1284 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1285 if (fsr.regs[regnum])
1286 {
1287 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1288 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1289 }
1290
1291 if (fsr.regs[IPSW_REGNUM])
1292 write_register (IPSW_REGNUM,
1293 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1294
1295 if (fsr.regs[SAR_REGNUM])
1296 write_register (SAR_REGNUM,
1297 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1298
1299 /* If the PC was explicitly saved, then just restore it. */
1300 if (fsr.regs[PCOQ_TAIL_REGNUM])
1301 {
1302 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1303 write_register (PCOQ_TAIL_REGNUM, npc);
1304 }
1305 /* Else use the value in %rp to set the new PC. */
1306 else
1307 {
1308 npc = read_register (RP_REGNUM);
1309 target_write_pc (npc, 0);
1310 }
1311
1312 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1313
1314 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1315 write_register (SP_REGNUM, fp - 48);
1316 else
1317 write_register (SP_REGNUM, fp);
1318
1319 /* The PC we just restored may be inside a return trampoline. If so
1320 we want to restart the inferior and run it through the trampoline.
1321
1322 Do this by setting a momentary breakpoint at the location the
1323 trampoline returns to.
1324
1325 Don't skip through the trampoline if we're popping a dummy frame. */
1326 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1327 if (target_pc && !fsr.regs[IPSW_REGNUM])
1328 {
1329 struct symtab_and_line sal;
1330 struct breakpoint *breakpoint;
1331 struct cleanup *old_chain;
1332
1333 /* Set up our breakpoint. Set it to be silent as the MI code
1334 for "return_command" will print the frame we returned to. */
1335 sal = find_pc_line (target_pc, 0);
1336 sal.pc = target_pc;
1337 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1338 breakpoint->silent = 1;
1339
1340 /* So we can clean things up. */
1341 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1342
1343 /* Start up the inferior. */
1344 proceed_to_finish = 1;
1345 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1346
1347 /* Perform our cleanups. */
1348 do_cleanups (old_chain);
1349 }
1350 flush_cached_frames ();
1351 }
1352
1353 /*
1354 * After returning to a dummy on the stack, restore the instruction
1355 * queue space registers. */
1356
1357 static int
1358 restore_pc_queue (fsr)
1359 struct frame_saved_regs *fsr;
1360 {
1361 CORE_ADDR pc = read_pc ();
1362 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1363 struct target_waitstatus w;
1364 int insn_count;
1365
1366 /* Advance past break instruction in the call dummy. */
1367 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1368 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1369
1370 /*
1371 * HPUX doesn't let us set the space registers or the space
1372 * registers of the PC queue through ptrace. Boo, hiss.
1373 * Conveniently, the call dummy has this sequence of instructions
1374 * after the break:
1375 * mtsp r21, sr0
1376 * ble,n 0(sr0, r22)
1377 *
1378 * So, load up the registers and single step until we are in the
1379 * right place.
1380 */
1381
1382 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1383 write_register (22, new_pc);
1384
1385 for (insn_count = 0; insn_count < 3; insn_count++)
1386 {
1387 /* FIXME: What if the inferior gets a signal right now? Want to
1388 merge this into wait_for_inferior (as a special kind of
1389 watchpoint? By setting a breakpoint at the end? Is there
1390 any other choice? Is there *any* way to do this stuff with
1391 ptrace() or some equivalent?). */
1392 resume (1, 0);
1393 target_wait (inferior_pid, &w);
1394
1395 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1396 {
1397 stop_signal = w.value.sig;
1398 terminal_ours_for_output ();
1399 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1400 target_signal_to_name (stop_signal),
1401 target_signal_to_string (stop_signal));
1402 gdb_flush (gdb_stdout);
1403 return 0;
1404 }
1405 }
1406 target_terminal_ours ();
1407 target_fetch_registers (-1);
1408 return 1;
1409 }
1410
1411 CORE_ADDR
1412 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1413 int nargs;
1414 value_ptr *args;
1415 CORE_ADDR sp;
1416 int struct_return;
1417 CORE_ADDR struct_addr;
1418 {
1419 /* array of arguments' offsets */
1420 int *offset = (int *)alloca(nargs * sizeof (int));
1421 int cum = 0;
1422 int i, alignment;
1423
1424 for (i = 0; i < nargs; i++)
1425 {
1426 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1427
1428 /* value must go at proper alignment. Assume alignment is a
1429 power of two.*/
1430 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1431 if (cum % alignment)
1432 cum = (cum + alignment) & -alignment;
1433 offset[i] = -cum;
1434 }
1435 sp += max ((cum + 7) & -8, 16);
1436
1437 for (i = 0; i < nargs; i++)
1438 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1439 TYPE_LENGTH (VALUE_TYPE (args[i])));
1440
1441 if (struct_return)
1442 write_register (28, struct_addr);
1443 return sp + 32;
1444 }
1445
1446 /*
1447 * Insert the specified number of args and function address
1448 * into a call sequence of the above form stored at DUMMYNAME.
1449 *
1450 * On the hppa we need to call the stack dummy through $$dyncall.
1451 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1452 * real_pc, which is the location where gdb should start up the
1453 * inferior to do the function call.
1454 */
1455
1456 CORE_ADDR
1457 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1458 char *dummy;
1459 CORE_ADDR pc;
1460 CORE_ADDR fun;
1461 int nargs;
1462 value_ptr *args;
1463 struct type *type;
1464 int gcc_p;
1465 {
1466 CORE_ADDR dyncall_addr;
1467 struct minimal_symbol *msymbol;
1468 struct minimal_symbol *trampoline;
1469 int flags = read_register (FLAGS_REGNUM);
1470 struct unwind_table_entry *u;
1471
1472 trampoline = NULL;
1473 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1474 if (msymbol == NULL)
1475 error ("Can't find an address for $$dyncall trampoline");
1476
1477 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1478
1479 /* FUN could be a procedure label, in which case we have to get
1480 its real address and the value of its GOT/DP. */
1481 if (fun & 0x2)
1482 {
1483 /* Get the GOT/DP value for the target function. It's
1484 at *(fun+4). Note the call dummy is *NOT* allowed to
1485 trash %r19 before calling the target function. */
1486 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1487
1488 /* Now get the real address for the function we are calling, it's
1489 at *fun. */
1490 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1491 }
1492 else
1493 {
1494
1495 #ifndef GDB_TARGET_IS_PA_ELF
1496 /* FUN could be either an export stub, or the real address of a
1497 function in a shared library. We must call an import stub
1498 rather than the export stub or real function for lazy binding
1499 to work correctly. */
1500 if (som_solib_get_got_by_pc (fun))
1501 {
1502 struct objfile *objfile;
1503 struct minimal_symbol *funsymbol, *stub_symbol;
1504 CORE_ADDR newfun = 0;
1505
1506 funsymbol = lookup_minimal_symbol_by_pc (fun);
1507 if (!funsymbol)
1508 error ("Unable to find minimal symbol for target fucntion.\n");
1509
1510 /* Search all the object files for an import symbol with the
1511 right name. */
1512 ALL_OBJFILES (objfile)
1513 {
1514 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1515 NULL, objfile);
1516 /* Found a symbol with the right name. */
1517 if (stub_symbol)
1518 {
1519 struct unwind_table_entry *u;
1520 /* It must be a shared library trampoline. */
1521 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1522 continue;
1523
1524 /* It must also be an import stub. */
1525 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1526 if (!u || u->stub_type != IMPORT)
1527 continue;
1528
1529 /* OK. Looks like the correct import stub. */
1530 newfun = SYMBOL_VALUE (stub_symbol);
1531 fun = newfun;
1532 }
1533 }
1534 if (newfun == 0)
1535 write_register (19, som_solib_get_got_by_pc (fun));
1536 }
1537 #endif
1538 }
1539
1540 /* If we are calling an import stub (eg calling into a dynamic library)
1541 then have sr4export call the magic __d_plt_call routine which is linked
1542 in from end.o. (You can't use _sr4export to call the import stub as
1543 the value in sp-24 will get fried and you end up returning to the
1544 wrong location. You can't call the import stub directly as the code
1545 to bind the PLT entry to a function can't return to a stack address.) */
1546 u = find_unwind_entry (fun);
1547 if (u && u->stub_type == IMPORT)
1548 {
1549 CORE_ADDR new_fun;
1550
1551 /* Prefer __gcc_plt_call over the HP supplied routine because
1552 __gcc_plt_call works for any number of arguments. */
1553 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1554 if (trampoline == NULL)
1555 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1556
1557 if (trampoline == NULL)
1558 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1559
1560 /* This is where sr4export will jump to. */
1561 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1562
1563 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1564 {
1565 /* We have to store the address of the stub in __shlib_funcptr. */
1566 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1567 (struct objfile *)NULL);
1568 if (msymbol == NULL)
1569 error ("Can't find an address for __shlib_funcptr");
1570
1571 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1572
1573 /* We want sr4export to call __d_plt_call, so we claim it is
1574 the final target. Clear trampoline. */
1575 fun = new_fun;
1576 trampoline = NULL;
1577 }
1578 }
1579
1580 /* Store upper 21 bits of function address into ldil. fun will either be
1581 the final target (most cases) or __d_plt_call when calling into a shared
1582 library and __gcc_plt_call is not available. */
1583 store_unsigned_integer
1584 (&dummy[FUNC_LDIL_OFFSET],
1585 INSTRUCTION_SIZE,
1586 deposit_21 (fun >> 11,
1587 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1588 INSTRUCTION_SIZE)));
1589
1590 /* Store lower 11 bits of function address into ldo */
1591 store_unsigned_integer
1592 (&dummy[FUNC_LDO_OFFSET],
1593 INSTRUCTION_SIZE,
1594 deposit_14 (fun & MASK_11,
1595 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1596 INSTRUCTION_SIZE)));
1597 #ifdef SR4EXPORT_LDIL_OFFSET
1598
1599 {
1600 CORE_ADDR trampoline_addr;
1601
1602 /* We may still need sr4export's address too. */
1603
1604 if (trampoline == NULL)
1605 {
1606 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1607 if (msymbol == NULL)
1608 error ("Can't find an address for _sr4export trampoline");
1609
1610 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1611 }
1612 else
1613 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1614
1615
1616 /* Store upper 21 bits of trampoline's address into ldil */
1617 store_unsigned_integer
1618 (&dummy[SR4EXPORT_LDIL_OFFSET],
1619 INSTRUCTION_SIZE,
1620 deposit_21 (trampoline_addr >> 11,
1621 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1622 INSTRUCTION_SIZE)));
1623
1624 /* Store lower 11 bits of trampoline's address into ldo */
1625 store_unsigned_integer
1626 (&dummy[SR4EXPORT_LDO_OFFSET],
1627 INSTRUCTION_SIZE,
1628 deposit_14 (trampoline_addr & MASK_11,
1629 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1630 INSTRUCTION_SIZE)));
1631 }
1632 #endif
1633
1634 write_register (22, pc);
1635
1636 /* If we are in a syscall, then we should call the stack dummy
1637 directly. $$dyncall is not needed as the kernel sets up the
1638 space id registers properly based on the value in %r31. In
1639 fact calling $$dyncall will not work because the value in %r22
1640 will be clobbered on the syscall exit path.
1641
1642 Similarly if the current PC is in a shared library. Note however,
1643 this scheme won't work if the shared library isn't mapped into
1644 the same space as the stack. */
1645 if (flags & 2)
1646 return pc;
1647 #ifndef GDB_TARGET_IS_PA_ELF
1648 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1649 return pc;
1650 #endif
1651 else
1652 return dyncall_addr;
1653
1654 }
1655
1656 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1657 bits. */
1658
1659 CORE_ADDR
1660 target_read_pc (pid)
1661 int pid;
1662 {
1663 int flags = read_register (FLAGS_REGNUM);
1664
1665 if (flags & 2) {
1666 return read_register (31) & ~0x3;
1667 }
1668 return read_register (PC_REGNUM) & ~0x3;
1669 }
1670
1671 /* Write out the PC. If currently in a syscall, then also write the new
1672 PC value into %r31. */
1673
1674 void
1675 target_write_pc (v, pid)
1676 CORE_ADDR v;
1677 int pid;
1678 {
1679 int flags = read_register (FLAGS_REGNUM);
1680
1681 /* If in a syscall, then set %r31. Also make sure to get the
1682 privilege bits set correctly. */
1683 if (flags & 2)
1684 write_register (31, (long) (v | 0x3));
1685
1686 write_register (PC_REGNUM, (long) v);
1687 write_register (NPC_REGNUM, (long) v + 4);
1688 }
1689
1690 /* return the alignment of a type in bytes. Structures have the maximum
1691 alignment required by their fields. */
1692
1693 static int
1694 hppa_alignof (arg)
1695 struct type *arg;
1696 {
1697 int max_align, align, i;
1698 switch (TYPE_CODE (arg))
1699 {
1700 case TYPE_CODE_PTR:
1701 case TYPE_CODE_INT:
1702 case TYPE_CODE_FLT:
1703 return TYPE_LENGTH (arg);
1704 case TYPE_CODE_ARRAY:
1705 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1706 case TYPE_CODE_STRUCT:
1707 case TYPE_CODE_UNION:
1708 max_align = 2;
1709 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1710 {
1711 /* Bit fields have no real alignment. */
1712 if (!TYPE_FIELD_BITPOS (arg, i))
1713 {
1714 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1715 max_align = max (max_align, align);
1716 }
1717 }
1718 return max_align;
1719 default:
1720 return 4;
1721 }
1722 }
1723
1724 /* Print the register regnum, or all registers if regnum is -1 */
1725
1726 void
1727 pa_do_registers_info (regnum, fpregs)
1728 int regnum;
1729 int fpregs;
1730 {
1731 char raw_regs [REGISTER_BYTES];
1732 int i;
1733
1734 for (i = 0; i < NUM_REGS; i++)
1735 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1736 if (regnum == -1)
1737 pa_print_registers (raw_regs, regnum, fpregs);
1738 else if (regnum < FP0_REGNUM)
1739 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1740 REGISTER_BYTE (regnum)));
1741 else
1742 pa_print_fp_reg (regnum);
1743 }
1744
1745 static void
1746 pa_print_registers (raw_regs, regnum, fpregs)
1747 char *raw_regs;
1748 int regnum;
1749 int fpregs;
1750 {
1751 int i,j;
1752 long val;
1753
1754 for (i = 0; i < 18; i++)
1755 {
1756 for (j = 0; j < 4; j++)
1757 {
1758 val =
1759 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1760 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1761 }
1762 printf_unfiltered ("\n");
1763 }
1764
1765 if (fpregs)
1766 for (i = 72; i < NUM_REGS; i++)
1767 pa_print_fp_reg (i);
1768 }
1769
1770 static void
1771 pa_print_fp_reg (i)
1772 int i;
1773 {
1774 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1775 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1776
1777 /* Get 32bits of data. */
1778 read_relative_register_raw_bytes (i, raw_buffer);
1779
1780 /* Put it in the buffer. No conversions are ever necessary. */
1781 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1782
1783 fputs_filtered (reg_names[i], gdb_stdout);
1784 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1785 fputs_filtered ("(single precision) ", gdb_stdout);
1786
1787 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1788 1, 0, Val_pretty_default);
1789 printf_filtered ("\n");
1790
1791 /* If "i" is even, then this register can also be a double-precision
1792 FP register. Dump it out as such. */
1793 if ((i % 2) == 0)
1794 {
1795 /* Get the data in raw format for the 2nd half. */
1796 read_relative_register_raw_bytes (i + 1, raw_buffer);
1797
1798 /* Copy it into the appropriate part of the virtual buffer. */
1799 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1800 REGISTER_RAW_SIZE (i));
1801
1802 /* Dump it as a double. */
1803 fputs_filtered (reg_names[i], gdb_stdout);
1804 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1805 fputs_filtered ("(double precision) ", gdb_stdout);
1806
1807 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1808 1, 0, Val_pretty_default);
1809 printf_filtered ("\n");
1810 }
1811 }
1812
1813 /* Return one if PC is in the call path of a trampoline, else return zero.
1814
1815 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1816 just shared library trampolines (import, export). */
1817
1818 int
1819 in_solib_call_trampoline (pc, name)
1820 CORE_ADDR pc;
1821 char *name;
1822 {
1823 struct minimal_symbol *minsym;
1824 struct unwind_table_entry *u;
1825 static CORE_ADDR dyncall = 0;
1826 static CORE_ADDR sr4export = 0;
1827
1828 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1829 new exec file */
1830
1831 /* First see if PC is in one of the two C-library trampolines. */
1832 if (!dyncall)
1833 {
1834 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1835 if (minsym)
1836 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1837 else
1838 dyncall = -1;
1839 }
1840
1841 if (!sr4export)
1842 {
1843 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1844 if (minsym)
1845 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1846 else
1847 sr4export = -1;
1848 }
1849
1850 if (pc == dyncall || pc == sr4export)
1851 return 1;
1852
1853 /* Get the unwind descriptor corresponding to PC, return zero
1854 if no unwind was found. */
1855 u = find_unwind_entry (pc);
1856 if (!u)
1857 return 0;
1858
1859 /* If this isn't a linker stub, then return now. */
1860 if (u->stub_type == 0)
1861 return 0;
1862
1863 /* By definition a long-branch stub is a call stub. */
1864 if (u->stub_type == LONG_BRANCH)
1865 return 1;
1866
1867 /* The call and return path execute the same instructions within
1868 an IMPORT stub! So an IMPORT stub is both a call and return
1869 trampoline. */
1870 if (u->stub_type == IMPORT)
1871 return 1;
1872
1873 /* Parameter relocation stubs always have a call path and may have a
1874 return path. */
1875 if (u->stub_type == PARAMETER_RELOCATION
1876 || u->stub_type == EXPORT)
1877 {
1878 CORE_ADDR addr;
1879
1880 /* Search forward from the current PC until we hit a branch
1881 or the end of the stub. */
1882 for (addr = pc; addr <= u->region_end; addr += 4)
1883 {
1884 unsigned long insn;
1885
1886 insn = read_memory_integer (addr, 4);
1887
1888 /* Does it look like a bl? If so then it's the call path, if
1889 we find a bv or be first, then we're on the return path. */
1890 if ((insn & 0xfc00e000) == 0xe8000000)
1891 return 1;
1892 else if ((insn & 0xfc00e001) == 0xe800c000
1893 || (insn & 0xfc000000) == 0xe0000000)
1894 return 0;
1895 }
1896
1897 /* Should never happen. */
1898 warning ("Unable to find branch in parameter relocation stub.\n");
1899 return 0;
1900 }
1901
1902 /* Unknown stub type. For now, just return zero. */
1903 return 0;
1904 }
1905
1906 /* Return one if PC is in the return path of a trampoline, else return zero.
1907
1908 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1909 just shared library trampolines (import, export). */
1910
1911 int
1912 in_solib_return_trampoline (pc, name)
1913 CORE_ADDR pc;
1914 char *name;
1915 {
1916 struct unwind_table_entry *u;
1917
1918 /* Get the unwind descriptor corresponding to PC, return zero
1919 if no unwind was found. */
1920 u = find_unwind_entry (pc);
1921 if (!u)
1922 return 0;
1923
1924 /* If this isn't a linker stub or it's just a long branch stub, then
1925 return zero. */
1926 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1927 return 0;
1928
1929 /* The call and return path execute the same instructions within
1930 an IMPORT stub! So an IMPORT stub is both a call and return
1931 trampoline. */
1932 if (u->stub_type == IMPORT)
1933 return 1;
1934
1935 /* Parameter relocation stubs always have a call path and may have a
1936 return path. */
1937 if (u->stub_type == PARAMETER_RELOCATION
1938 || u->stub_type == EXPORT)
1939 {
1940 CORE_ADDR addr;
1941
1942 /* Search forward from the current PC until we hit a branch
1943 or the end of the stub. */
1944 for (addr = pc; addr <= u->region_end; addr += 4)
1945 {
1946 unsigned long insn;
1947
1948 insn = read_memory_integer (addr, 4);
1949
1950 /* Does it look like a bl? If so then it's the call path, if
1951 we find a bv or be first, then we're on the return path. */
1952 if ((insn & 0xfc00e000) == 0xe8000000)
1953 return 0;
1954 else if ((insn & 0xfc00e001) == 0xe800c000
1955 || (insn & 0xfc000000) == 0xe0000000)
1956 return 1;
1957 }
1958
1959 /* Should never happen. */
1960 warning ("Unable to find branch in parameter relocation stub.\n");
1961 return 0;
1962 }
1963
1964 /* Unknown stub type. For now, just return zero. */
1965 return 0;
1966
1967 }
1968
1969 /* Figure out if PC is in a trampoline, and if so find out where
1970 the trampoline will jump to. If not in a trampoline, return zero.
1971
1972 Simple code examination probably is not a good idea since the code
1973 sequences in trampolines can also appear in user code.
1974
1975 We use unwinds and information from the minimal symbol table to
1976 determine when we're in a trampoline. This won't work for ELF
1977 (yet) since it doesn't create stub unwind entries. Whether or
1978 not ELF will create stub unwinds or normal unwinds for linker
1979 stubs is still being debated.
1980
1981 This should handle simple calls through dyncall or sr4export,
1982 long calls, argument relocation stubs, and dyncall/sr4export
1983 calling an argument relocation stub. It even handles some stubs
1984 used in dynamic executables. */
1985
1986 CORE_ADDR
1987 skip_trampoline_code (pc, name)
1988 CORE_ADDR pc;
1989 char *name;
1990 {
1991 long orig_pc = pc;
1992 long prev_inst, curr_inst, loc;
1993 static CORE_ADDR dyncall = 0;
1994 static CORE_ADDR sr4export = 0;
1995 struct minimal_symbol *msym;
1996 struct unwind_table_entry *u;
1997
1998 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1999 new exec file */
2000
2001 if (!dyncall)
2002 {
2003 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2004 if (msym)
2005 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2006 else
2007 dyncall = -1;
2008 }
2009
2010 if (!sr4export)
2011 {
2012 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2013 if (msym)
2014 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2015 else
2016 sr4export = -1;
2017 }
2018
2019 /* Addresses passed to dyncall may *NOT* be the actual address
2020 of the function. So we may have to do something special. */
2021 if (pc == dyncall)
2022 {
2023 pc = (CORE_ADDR) read_register (22);
2024
2025 /* If bit 30 (counting from the left) is on, then pc is the address of
2026 the PLT entry for this function, not the address of the function
2027 itself. Bit 31 has meaning too, but only for MPE. */
2028 if (pc & 0x2)
2029 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2030 }
2031 else if (pc == sr4export)
2032 pc = (CORE_ADDR) (read_register (22));
2033
2034 /* Get the unwind descriptor corresponding to PC, return zero
2035 if no unwind was found. */
2036 u = find_unwind_entry (pc);
2037 if (!u)
2038 return 0;
2039
2040 /* If this isn't a linker stub, then return now. */
2041 if (u->stub_type == 0)
2042 return orig_pc == pc ? 0 : pc & ~0x3;
2043
2044 /* It's a stub. Search for a branch and figure out where it goes.
2045 Note we have to handle multi insn branch sequences like ldil;ble.
2046 Most (all?) other branches can be determined by examining the contents
2047 of certain registers and the stack. */
2048 loc = pc;
2049 curr_inst = 0;
2050 prev_inst = 0;
2051 while (1)
2052 {
2053 /* Make sure we haven't walked outside the range of this stub. */
2054 if (u != find_unwind_entry (loc))
2055 {
2056 warning ("Unable to find branch in linker stub");
2057 return orig_pc == pc ? 0 : pc & ~0x3;
2058 }
2059
2060 prev_inst = curr_inst;
2061 curr_inst = read_memory_integer (loc, 4);
2062
2063 /* Does it look like a branch external using %r1? Then it's the
2064 branch from the stub to the actual function. */
2065 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2066 {
2067 /* Yup. See if the previous instruction loaded
2068 a value into %r1. If so compute and return the jump address. */
2069 if ((prev_inst & 0xffe00000) == 0x20200000)
2070 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2071 else
2072 {
2073 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2074 return orig_pc == pc ? 0 : pc & ~0x3;
2075 }
2076 }
2077
2078 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2079 import stub to an export stub.
2080
2081 It is impossible to determine the target of the branch via
2082 simple examination of instructions and/or data (consider
2083 that the address in the plabel may be the address of the
2084 bind-on-reference routine in the dynamic loader).
2085
2086 So we have try an alternative approach.
2087
2088 Get the name of the symbol at our current location; it should
2089 be a stub symbol with the same name as the symbol in the
2090 shared library.
2091
2092 Then lookup a minimal symbol with the same name; we should
2093 get the minimal symbol for the target routine in the shared
2094 library as those take precedence of import/export stubs. */
2095 if (curr_inst == 0xe2a00000)
2096 {
2097 struct minimal_symbol *stubsym, *libsym;
2098
2099 stubsym = lookup_minimal_symbol_by_pc (loc);
2100 if (stubsym == NULL)
2101 {
2102 warning ("Unable to find symbol for 0x%x", loc);
2103 return orig_pc == pc ? 0 : pc & ~0x3;
2104 }
2105
2106 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2107 if (libsym == NULL)
2108 {
2109 warning ("Unable to find library symbol for %s\n",
2110 SYMBOL_NAME (stubsym));
2111 return orig_pc == pc ? 0 : pc & ~0x3;
2112 }
2113
2114 return SYMBOL_VALUE (libsym);
2115 }
2116
2117 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2118 branch from the stub to the actual function. */
2119 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2120 || (curr_inst & 0xffe0e000) == 0xe8000000)
2121 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2122
2123 /* Does it look like bv (rp)? Note this depends on the
2124 current stack pointer being the same as the stack
2125 pointer in the stub itself! This is a branch on from the
2126 stub back to the original caller. */
2127 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2128 {
2129 /* Yup. See if the previous instruction loaded
2130 rp from sp - 8. */
2131 if (prev_inst == 0x4bc23ff1)
2132 return (read_memory_integer
2133 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2134 else
2135 {
2136 warning ("Unable to find restore of %%rp before bv (%%rp).");
2137 return orig_pc == pc ? 0 : pc & ~0x3;
2138 }
2139 }
2140
2141 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2142 the original caller from the stub. Used in dynamic executables. */
2143 else if (curr_inst == 0xe0400002)
2144 {
2145 /* The value we jump to is sitting in sp - 24. But that's
2146 loaded several instructions before the be instruction.
2147 I guess we could check for the previous instruction being
2148 mtsp %r1,%sr0 if we want to do sanity checking. */
2149 return (read_memory_integer
2150 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2151 }
2152
2153 /* Haven't found the branch yet, but we're still in the stub.
2154 Keep looking. */
2155 loc += 4;
2156 }
2157 }
2158
2159 /* For the given instruction (INST), return any adjustment it makes
2160 to the stack pointer or zero for no adjustment.
2161
2162 This only handles instructions commonly found in prologues. */
2163
2164 static int
2165 prologue_inst_adjust_sp (inst)
2166 unsigned long inst;
2167 {
2168 /* This must persist across calls. */
2169 static int save_high21;
2170
2171 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2172 if ((inst & 0xffffc000) == 0x37de0000)
2173 return extract_14 (inst);
2174
2175 /* stwm X,D(sp) */
2176 if ((inst & 0xffe00000) == 0x6fc00000)
2177 return extract_14 (inst);
2178
2179 /* addil high21,%r1; ldo low11,(%r1),%r30)
2180 save high bits in save_high21 for later use. */
2181 if ((inst & 0xffe00000) == 0x28200000)
2182 {
2183 save_high21 = extract_21 (inst);
2184 return 0;
2185 }
2186
2187 if ((inst & 0xffff0000) == 0x343e0000)
2188 return save_high21 + extract_14 (inst);
2189
2190 /* fstws as used by the HP compilers. */
2191 if ((inst & 0xffffffe0) == 0x2fd01220)
2192 return extract_5_load (inst);
2193
2194 /* No adjustment. */
2195 return 0;
2196 }
2197
2198 /* Return nonzero if INST is a branch of some kind, else return zero. */
2199
2200 static int
2201 is_branch (inst)
2202 unsigned long inst;
2203 {
2204 switch (inst >> 26)
2205 {
2206 case 0x20:
2207 case 0x21:
2208 case 0x22:
2209 case 0x23:
2210 case 0x28:
2211 case 0x29:
2212 case 0x2a:
2213 case 0x2b:
2214 case 0x30:
2215 case 0x31:
2216 case 0x32:
2217 case 0x33:
2218 case 0x38:
2219 case 0x39:
2220 case 0x3a:
2221 return 1;
2222
2223 default:
2224 return 0;
2225 }
2226 }
2227
2228 /* Return the register number for a GR which is saved by INST or
2229 zero it INST does not save a GR. */
2230
2231 static int
2232 inst_saves_gr (inst)
2233 unsigned long inst;
2234 {
2235 /* Does it look like a stw? */
2236 if ((inst >> 26) == 0x1a)
2237 return extract_5R_store (inst);
2238
2239 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2240 if ((inst >> 26) == 0x1b)
2241 return extract_5R_store (inst);
2242
2243 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2244 too. */
2245 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2246 return extract_5R_store (inst);
2247
2248 return 0;
2249 }
2250
2251 /* Return the register number for a FR which is saved by INST or
2252 zero it INST does not save a FR.
2253
2254 Note we only care about full 64bit register stores (that's the only
2255 kind of stores the prologue will use).
2256
2257 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2258
2259 static int
2260 inst_saves_fr (inst)
2261 unsigned long inst;
2262 {
2263 if ((inst & 0xfc00dfc0) == 0x2c001200)
2264 return extract_5r_store (inst);
2265 return 0;
2266 }
2267
2268 /* Advance PC across any function entry prologue instructions
2269 to reach some "real" code.
2270
2271 Use information in the unwind table to determine what exactly should
2272 be in the prologue. */
2273
2274 CORE_ADDR
2275 skip_prologue (pc)
2276 CORE_ADDR pc;
2277 {
2278 char buf[4];
2279 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2280 unsigned long args_stored, status, i;
2281 struct unwind_table_entry *u;
2282
2283 u = find_unwind_entry (pc);
2284 if (!u)
2285 return pc;
2286
2287 /* If we are not at the beginning of a function, then return now. */
2288 if ((pc & ~0x3) != u->region_start)
2289 return pc;
2290
2291 /* This is how much of a frame adjustment we need to account for. */
2292 stack_remaining = u->Total_frame_size << 3;
2293
2294 /* Magic register saves we want to know about. */
2295 save_rp = u->Save_RP;
2296 save_sp = u->Save_SP;
2297
2298 /* An indication that args may be stored into the stack. Unfortunately
2299 the HPUX compilers tend to set this in cases where no args were
2300 stored too!. */
2301 args_stored = u->Args_stored;
2302
2303 /* Turn the Entry_GR field into a bitmask. */
2304 save_gr = 0;
2305 for (i = 3; i < u->Entry_GR + 3; i++)
2306 {
2307 /* Frame pointer gets saved into a special location. */
2308 if (u->Save_SP && i == FP_REGNUM)
2309 continue;
2310
2311 save_gr |= (1 << i);
2312 }
2313
2314 /* Turn the Entry_FR field into a bitmask too. */
2315 save_fr = 0;
2316 for (i = 12; i < u->Entry_FR + 12; i++)
2317 save_fr |= (1 << i);
2318
2319 /* Loop until we find everything of interest or hit a branch.
2320
2321 For unoptimized GCC code and for any HP CC code this will never ever
2322 examine any user instructions.
2323
2324 For optimzied GCC code we're faced with problems. GCC will schedule
2325 its prologue and make prologue instructions available for delay slot
2326 filling. The end result is user code gets mixed in with the prologue
2327 and a prologue instruction may be in the delay slot of the first branch
2328 or call.
2329
2330 Some unexpected things are expected with debugging optimized code, so
2331 we allow this routine to walk past user instructions in optimized
2332 GCC code. */
2333 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2334 || args_stored)
2335 {
2336 unsigned int reg_num;
2337 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2338 unsigned long old_save_rp, old_save_sp, next_inst;
2339
2340 /* Save copies of all the triggers so we can compare them later
2341 (only for HPC). */
2342 old_save_gr = save_gr;
2343 old_save_fr = save_fr;
2344 old_save_rp = save_rp;
2345 old_save_sp = save_sp;
2346 old_stack_remaining = stack_remaining;
2347
2348 status = target_read_memory (pc, buf, 4);
2349 inst = extract_unsigned_integer (buf, 4);
2350
2351 /* Yow! */
2352 if (status != 0)
2353 return pc;
2354
2355 /* Note the interesting effects of this instruction. */
2356 stack_remaining -= prologue_inst_adjust_sp (inst);
2357
2358 /* There is only one instruction used for saving RP into the stack. */
2359 if (inst == 0x6bc23fd9)
2360 save_rp = 0;
2361
2362 /* This is the only way we save SP into the stack. At this time
2363 the HP compilers never bother to save SP into the stack. */
2364 if ((inst & 0xffffc000) == 0x6fc10000)
2365 save_sp = 0;
2366
2367 /* Account for general and floating-point register saves. */
2368 reg_num = inst_saves_gr (inst);
2369 save_gr &= ~(1 << reg_num);
2370
2371 /* Ugh. Also account for argument stores into the stack.
2372 Unfortunately args_stored only tells us that some arguments
2373 where stored into the stack. Not how many or what kind!
2374
2375 This is a kludge as on the HP compiler sets this bit and it
2376 never does prologue scheduling. So once we see one, skip past
2377 all of them. We have similar code for the fp arg stores below.
2378
2379 FIXME. Can still die if we have a mix of GR and FR argument
2380 stores! */
2381 if (reg_num >= 23 && reg_num <= 26)
2382 {
2383 while (reg_num >= 23 && reg_num <= 26)
2384 {
2385 pc += 4;
2386 status = target_read_memory (pc, buf, 4);
2387 inst = extract_unsigned_integer (buf, 4);
2388 if (status != 0)
2389 return pc;
2390 reg_num = inst_saves_gr (inst);
2391 }
2392 args_stored = 0;
2393 continue;
2394 }
2395
2396 reg_num = inst_saves_fr (inst);
2397 save_fr &= ~(1 << reg_num);
2398
2399 status = target_read_memory (pc + 4, buf, 4);
2400 next_inst = extract_unsigned_integer (buf, 4);
2401
2402 /* Yow! */
2403 if (status != 0)
2404 return pc;
2405
2406 /* We've got to be read to handle the ldo before the fp register
2407 save. */
2408 if ((inst & 0xfc000000) == 0x34000000
2409 && inst_saves_fr (next_inst) >= 4
2410 && inst_saves_fr (next_inst) <= 7)
2411 {
2412 /* So we drop into the code below in a reasonable state. */
2413 reg_num = inst_saves_fr (next_inst);
2414 pc -= 4;
2415 }
2416
2417 /* Ugh. Also account for argument stores into the stack.
2418 This is a kludge as on the HP compiler sets this bit and it
2419 never does prologue scheduling. So once we see one, skip past
2420 all of them. */
2421 if (reg_num >= 4 && reg_num <= 7)
2422 {
2423 while (reg_num >= 4 && reg_num <= 7)
2424 {
2425 pc += 8;
2426 status = target_read_memory (pc, buf, 4);
2427 inst = extract_unsigned_integer (buf, 4);
2428 if (status != 0)
2429 return pc;
2430 if ((inst & 0xfc000000) != 0x34000000)
2431 break;
2432 status = target_read_memory (pc + 4, buf, 4);
2433 next_inst = extract_unsigned_integer (buf, 4);
2434 if (status != 0)
2435 return pc;
2436 reg_num = inst_saves_fr (next_inst);
2437 }
2438 args_stored = 0;
2439 continue;
2440 }
2441
2442 /* Quit if we hit any kind of branch. This can happen if a prologue
2443 instruction is in the delay slot of the first call/branch. */
2444 if (is_branch (inst))
2445 break;
2446
2447 /* What a crock. The HP compilers set args_stored even if no
2448 arguments were stored into the stack (boo hiss). This could
2449 cause this code to then skip a bunch of user insns (up to the
2450 first branch).
2451
2452 To combat this we try to identify when args_stored was bogusly
2453 set and clear it. We only do this when args_stored is nonzero,
2454 all other resources are accounted for, and nothing changed on
2455 this pass. */
2456 if (args_stored
2457 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2458 && old_save_gr == save_gr && old_save_fr == save_fr
2459 && old_save_rp == save_rp && old_save_sp == save_sp
2460 && old_stack_remaining == stack_remaining)
2461 break;
2462
2463 /* Bump the PC. */
2464 pc += 4;
2465 }
2466
2467 return pc;
2468 }
2469
2470 /* Put here the code to store, into a struct frame_saved_regs,
2471 the addresses of the saved registers of frame described by FRAME_INFO.
2472 This includes special registers such as pc and fp saved in special
2473 ways in the stack frame. sp is even more special:
2474 the address we return for it IS the sp for the next frame. */
2475
2476 void
2477 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2478 struct frame_info *frame_info;
2479 struct frame_saved_regs *frame_saved_regs;
2480 {
2481 CORE_ADDR pc;
2482 struct unwind_table_entry *u;
2483 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2484 int status, i, reg;
2485 char buf[4];
2486 int fp_loc = -1;
2487
2488 /* Zero out everything. */
2489 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2490
2491 /* Call dummy frames always look the same, so there's no need to
2492 examine the dummy code to determine locations of saved registers;
2493 instead, let find_dummy_frame_regs fill in the correct offsets
2494 for the saved registers. */
2495 if ((frame_info->pc >= frame_info->frame
2496 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2497 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2498 + 6 * 4)))
2499 find_dummy_frame_regs (frame_info, frame_saved_regs);
2500
2501 /* Interrupt handlers are special too. They lay out the register
2502 state in the exact same order as the register numbers in GDB. */
2503 if (pc_in_interrupt_handler (frame_info->pc))
2504 {
2505 for (i = 0; i < NUM_REGS; i++)
2506 {
2507 /* SP is a little special. */
2508 if (i == SP_REGNUM)
2509 frame_saved_regs->regs[SP_REGNUM]
2510 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2511 else
2512 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2513 }
2514 return;
2515 }
2516
2517 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2518 /* Handle signal handler callers. */
2519 if (frame_info->signal_handler_caller)
2520 {
2521 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2522 return;
2523 }
2524 #endif
2525
2526 /* Get the starting address of the function referred to by the PC
2527 saved in frame. */
2528 pc = get_pc_function_start (frame_info->pc);
2529
2530 /* Yow! */
2531 u = find_unwind_entry (pc);
2532 if (!u)
2533 return;
2534
2535 /* This is how much of a frame adjustment we need to account for. */
2536 stack_remaining = u->Total_frame_size << 3;
2537
2538 /* Magic register saves we want to know about. */
2539 save_rp = u->Save_RP;
2540 save_sp = u->Save_SP;
2541
2542 /* Turn the Entry_GR field into a bitmask. */
2543 save_gr = 0;
2544 for (i = 3; i < u->Entry_GR + 3; i++)
2545 {
2546 /* Frame pointer gets saved into a special location. */
2547 if (u->Save_SP && i == FP_REGNUM)
2548 continue;
2549
2550 save_gr |= (1 << i);
2551 }
2552
2553 /* Turn the Entry_FR field into a bitmask too. */
2554 save_fr = 0;
2555 for (i = 12; i < u->Entry_FR + 12; i++)
2556 save_fr |= (1 << i);
2557
2558 /* The frame always represents the value of %sp at entry to the
2559 current function (and is thus equivalent to the "saved" stack
2560 pointer. */
2561 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2562
2563 /* Loop until we find everything of interest or hit a branch.
2564
2565 For unoptimized GCC code and for any HP CC code this will never ever
2566 examine any user instructions.
2567
2568 For optimzied GCC code we're faced with problems. GCC will schedule
2569 its prologue and make prologue instructions available for delay slot
2570 filling. The end result is user code gets mixed in with the prologue
2571 and a prologue instruction may be in the delay slot of the first branch
2572 or call.
2573
2574 Some unexpected things are expected with debugging optimized code, so
2575 we allow this routine to walk past user instructions in optimized
2576 GCC code. */
2577 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2578 {
2579 status = target_read_memory (pc, buf, 4);
2580 inst = extract_unsigned_integer (buf, 4);
2581
2582 /* Yow! */
2583 if (status != 0)
2584 return;
2585
2586 /* Note the interesting effects of this instruction. */
2587 stack_remaining -= prologue_inst_adjust_sp (inst);
2588
2589 /* There is only one instruction used for saving RP into the stack. */
2590 if (inst == 0x6bc23fd9)
2591 {
2592 save_rp = 0;
2593 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2594 }
2595
2596 /* Just note that we found the save of SP into the stack. The
2597 value for frame_saved_regs was computed above. */
2598 if ((inst & 0xffffc000) == 0x6fc10000)
2599 save_sp = 0;
2600
2601 /* Account for general and floating-point register saves. */
2602 reg = inst_saves_gr (inst);
2603 if (reg >= 3 && reg <= 18
2604 && (!u->Save_SP || reg != FP_REGNUM))
2605 {
2606 save_gr &= ~(1 << reg);
2607
2608 /* stwm with a positive displacement is a *post modify*. */
2609 if ((inst >> 26) == 0x1b
2610 && extract_14 (inst) >= 0)
2611 frame_saved_regs->regs[reg] = frame_info->frame;
2612 else
2613 {
2614 /* Handle code with and without frame pointers. */
2615 if (u->Save_SP)
2616 frame_saved_regs->regs[reg]
2617 = frame_info->frame + extract_14 (inst);
2618 else
2619 frame_saved_regs->regs[reg]
2620 = frame_info->frame + (u->Total_frame_size << 3)
2621 + extract_14 (inst);
2622 }
2623 }
2624
2625
2626 /* GCC handles callee saved FP regs a little differently.
2627
2628 It emits an instruction to put the value of the start of
2629 the FP store area into %r1. It then uses fstds,ma with
2630 a basereg of %r1 for the stores.
2631
2632 HP CC emits them at the current stack pointer modifying
2633 the stack pointer as it stores each register. */
2634
2635 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2636 if ((inst & 0xffffc000) == 0x34610000
2637 || (inst & 0xffffc000) == 0x37c10000)
2638 fp_loc = extract_14 (inst);
2639
2640 reg = inst_saves_fr (inst);
2641 if (reg >= 12 && reg <= 21)
2642 {
2643 /* Note +4 braindamage below is necessary because the FP status
2644 registers are internally 8 registers rather than the expected
2645 4 registers. */
2646 save_fr &= ~(1 << reg);
2647 if (fp_loc == -1)
2648 {
2649 /* 1st HP CC FP register store. After this instruction
2650 we've set enough state that the GCC and HPCC code are
2651 both handled in the same manner. */
2652 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2653 fp_loc = 8;
2654 }
2655 else
2656 {
2657 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2658 = frame_info->frame + fp_loc;
2659 fp_loc += 8;
2660 }
2661 }
2662
2663 /* Quit if we hit any kind of branch. This can happen if a prologue
2664 instruction is in the delay slot of the first call/branch. */
2665 if (is_branch (inst))
2666 break;
2667
2668 /* Bump the PC. */
2669 pc += 4;
2670 }
2671 }
2672
2673 #ifdef MAINTENANCE_CMDS
2674
2675 static void
2676 unwind_command (exp, from_tty)
2677 char *exp;
2678 int from_tty;
2679 {
2680 CORE_ADDR address;
2681 struct unwind_table_entry *u;
2682
2683 /* If we have an expression, evaluate it and use it as the address. */
2684
2685 if (exp != 0 && *exp != 0)
2686 address = parse_and_eval_address (exp);
2687 else
2688 return;
2689
2690 u = find_unwind_entry (address);
2691
2692 if (!u)
2693 {
2694 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2695 return;
2696 }
2697
2698 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2699
2700 printf_unfiltered ("\tregion_start = ");
2701 print_address (u->region_start, gdb_stdout);
2702
2703 printf_unfiltered ("\n\tregion_end = ");
2704 print_address (u->region_end, gdb_stdout);
2705
2706 #ifdef __STDC__
2707 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2708 #else
2709 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2710 #endif
2711
2712 printf_unfiltered ("\n\tflags =");
2713 pif (Cannot_unwind);
2714 pif (Millicode);
2715 pif (Millicode_save_sr0);
2716 pif (Entry_SR);
2717 pif (Args_stored);
2718 pif (Variable_Frame);
2719 pif (Separate_Package_Body);
2720 pif (Frame_Extension_Millicode);
2721 pif (Stack_Overflow_Check);
2722 pif (Two_Instruction_SP_Increment);
2723 pif (Ada_Region);
2724 pif (Save_SP);
2725 pif (Save_RP);
2726 pif (Save_MRP_in_frame);
2727 pif (extn_ptr_defined);
2728 pif (Cleanup_defined);
2729 pif (MPE_XL_interrupt_marker);
2730 pif (HP_UX_interrupt_marker);
2731 pif (Large_frame);
2732
2733 putchar_unfiltered ('\n');
2734
2735 #ifdef __STDC__
2736 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2737 #else
2738 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2739 #endif
2740
2741 pin (Region_description);
2742 pin (Entry_FR);
2743 pin (Entry_GR);
2744 pin (Total_frame_size);
2745 }
2746 #endif /* MAINTENANCE_CMDS */
2747
2748 void
2749 _initialize_hppa_tdep ()
2750 {
2751 tm_print_insn = print_insn_hppa;
2752
2753 #ifdef MAINTENANCE_CMDS
2754 add_cmd ("unwind", class_maintenance, unwind_command,
2755 "Print unwind table entry at given address.",
2756 &maintenanceprintlist);
2757 #endif /* MAINTENANCE_CMDS */
2758 }